Package 'APackOfTheClones'

October 11, 2024

Title Visualization of Clonal Expansion for Single Cell Immune

Type Package

Profiles

Version 1.2.1 Maintainer Qile Yang <qile.yang@berkeley.edu> Description Visualize clonal expansion via circle-packing. 'APackOfTheClones' extends 'scRepertoire' to produce a publication-ready visualization of clonal expansion at a single cell resolution, by representing expanded clones as differently sized circles. The method was originally implemented by Murray Christian and Ben Murrell in the following immunology study: Ma et al. (2021) <doi:10.1126/sciimmunol.abg6356>. BugReports https://github.com/Qile0317/APackOfTheClones/issues/ **Depends** R (>= 4.1.0) License MIT + file LICENSE **Encoding UTF-8** Language en-US LazyData false Suggests cowplot, covr, knitr, rmarkdown, sf, spelling, testthat (>= 3.0.0), vdiffr Config/testthat/edition 3 Imports assertthat, dplyr, ggforce, ggplot2, hash, lifecycle, methods, Rcpp, rlang, Seurat, SeuratObject RoxygenNote 7.3.2 URL https://qile0317.github.io/APackOfTheClones/ LinkingTo Rcpp VignetteBuilder knitr **NeedsCompilation** yes **Author** Qile Yang [cre, aut, cph] (https://orcid.org/0009-0005-0148-2499) Repository CRAN **Date/Publication** 2024-10-10 22:20:02 UTC

Contents

AdjustAPOTC		Adjust the parameters of the APackOfTheClones reduction in a seurat object																	
Index																			35
	vizAPOTC			•		•		•			•	 •	 •	•	 ٠	•	 •	•	 2)
	showCloneHighlight																		
	RunAPOTC																		
	renameApotcRun .																		
	removeLegend																		
	overlayLegend																		
	mergeCloneSizes .																		
	getSharedClones .																		
	getReductionCentroi																		
	getLastApotcDataId																		
	getApotcDataIds .																		
	deleteApotcData .																		
	countCloneSizes .																		
	containsApotcRun.																		
	combined_pbmc																		
	APOTCPlot																		
	AdjustAPOTC																		 2

Description

[Stable]

If the user is unsatisfied with the clonal expansion plot that was generated from RunAPOTC() and APOTCPlot(), this function has a range of arguments to modify the data and/or parameters of the visualization. Note that some of the arguments may conflict with each other.

Usage

```
AdjustAPOTC(
   seurat_obj,
   reduction_base = NULL,
   clonecall = NULL,
   ...,
   extra_filter = NULL,
   run_id = NULL,
   new_rad_scale_factor = NULL,
   new_clone_scale_factor = NULL,
   repulse = FALSE,
   repulsion_threshold = 1,
   repulsion_strength = 1,
   max_repulsion_iter = 10L,
```

```
relocate_cluster = NULL,
relocation_coord = NULL,
nudge_cluster = NULL,
nudge_vector = NULL,
recolor_cluster = NULL,
new_color = NULL,
rename_label = NULL,
new_label = NULL,
relocate_label = NULL,
label_relocation_coord = NULL,
nudge_label = NULL,
label_nudge_vector = NULL,
verbose = TRUE
)
```

Arguments

seurat_obj

The seurat object to be adjusted.

reduction_base

character. The seurat reduction to base the clonal expansion plotting on. Defaults to 'umap' but can be any reduction present within the reductions slot of the input seurat object, including custom ones. If ''pca'", the cluster coordinates will be based on PC1 and PC2. However, generally APackOfTheClones is used for displaying UMAP and occasionally t-SNE versions to intuitively highlight clonal expansion.

clonecall

character. The column name in the seurat object metadata to use. See scRepertoire documentation for more information about this parameter that is central to both packages.

. . .

additional "subsetting" keyword arguments indicating the rows corresponding to elements in the seurat object metadata that should be filtered by. E.g., seurat_clusters = c(1, 9, 10) will filter the cells to those in the seurat_clusters column with any of the values 1, 9, and 10. Unfortunately, column names in the seurat object metadata cannot conflict with the keyword arguments. **MAJOR NOTE** if any subsetting keyword arguments are a *prefix* of any preceding argument names (e.g. a column named reduction is a prefix of the reduction_base argument) R will interpret it as the same argument unless *both* arguments are named. Additionally, this means any subsequent arguments *must* be named.

extra_filter

character. An additional string that should be formatted *exactly* like a statement one would pass into dplyr::filter that does *additional* filtering to cells in the seurat object - on top of the other keyword arguments - based on the metadata. This means that it will be logically AND'ed with any keyword argument filters. This is a more flexible alternative / addition to the filtering keyword arguments. For example, if one wanted to filter by the length of the amino acid sequence of TCRs, one could pass in something like extra_filter = "nchar(CTaa) - 1 > 10". When involving characters, ensure to enclose with single quotes.

run_id

character. This will be the ID associated with the data of a run, and will be used by other important functions like APOTCPlot() and AdjustAPOTC. Defaults to NULL, in which case the ID will be generated in the following format:

reduction_base; clonecall; keyword_arguments; extra_filter

where if keyword arguments and extra_filter are underscore characters if there was no input for the . . . and extra_filter parameters.

new_rad_scale_factor

a single numeric in (0, 1]. changes the radius scaling factor of all circles.

new_clone_scale_factor

a single numeric in (0, 1]. changes the clone_scale_factor

repulse If TRUE, will attempt to push overlapping clusters away from each other.

repulsion_threshold

numeric. The radius that clonal circle clusters overlap is acceptable when repulsing.

repulsion_strength

numeric. The smaller the value the less the clusters repulse each other per iteration, and vice versa.

max_repulsion_iter

integer. The number of repulsion iterations.

relocate_cluster

Numeric or Character. Indicates which cluster(s) based on the index or label to relocate to new coordinates.

relocation_coord

numeric of length two or a list of numerics of length two of length of relocate_cluster. If its a list, indicates each coordinate that the clusters in relocate_cluster should move to. If its just a numeric, then will relocate all clusters in relocate_cluster to the input, which is likely not desired behavior, so this should only be convenience syntax if relocate_cluster has length 1.

nudge_cluster

Numeric or Character. Indicates which cluster(s) based on the index or label to "nudge"/translate their coordinate(s) by.

nudge_vector

numeric of length two or a list of numerics of length two of length of nudge_cluster. If its a list, indicates each translation vector (in other words, x-y coordinates) that the clusters in nudge_cluster should be translate by. If its just a numeric, then will translate all clusters in nudge_cluster by the input - which mostly is syntactic sugar for translating a single cluster if the input of nudge_cluster is of length 1.

recolor_cluster

Numeric or Character. Indicates which cluster(s) based on the index or label to change their color by.

new_color

character of arbitrary length. Indicates the corresponding new colors that selected clusters in recolor_cluster should be changed to.

rename_label

new_label

Numeric or character. Indicates the index or name of label(s) to be renamed. Character. Indicates the corresponding new label(s) that selected label(s) in

rename_label should be changed to.

 $\label{label} \begin{tabular}{ll} \textbf{Pumeric or character. Indicates the index or name of label(s) to be relocated.} \\ \textbf{label_relocation_coord} \end{tabular}$

Numeric of length two or a list of numerics of length two of length of relocate_label. If it's a list, indicates each coordinate that the labels in relocate_label should

move to. If it's just a numeric, then will relocate all labels in relocate_label to the input, which is likely not desired behavior, so this should only be convenience syntax if relocate_label has length 1.

nudge_label Numeric or character. Indicates the index or name of label(s) to be "nudged"/translated. label_nudge_vector

Numeric of length two or a list of numerics of length two of length of nudge_label. If it's a list, indicates each translation vector (in other words, x-y coordinates) that the labels in nudge_label should be translated by. If it's just a numeric, then will translate all labels in nudge_label by the input - which mostly is syntactic sugar for translating a single label if the input of nudge_label is of length 1

verbose

logical. Decides if visual cues are displayed to the R console of the progress.

Value

The adjusted seurat_obj

Examples

```
# do an APackOfTheClones run
pbmc <- RunAPOTC(get(data("combined_pbmc")), verbose = FALSE)</pre>
# adjust the rad_scale_factor, and nudge cluster 1 by x = 1, y = 1
pbmc <- AdjustAPOTC(</pre>
   pbmc,
   new_rad_scale_factor = 0.9,
   nudge\_cluster = 1,
    nudge\_vector = c(1, 1),
    verbose = FALSE
)
# plot the result
APOTCPlot(pbmc)
# rename some labels
pbmc <- AdjustAPOTC(</pre>
    pbmc, rename_label = c(2, 5), new_label = c("Foo", "Bar")
)
# perhaps multiple clusters need to be relocated and repulsed
pbmc <- AdjustAPOTC(</pre>
    pbmc,
    relocate_cluster = c("Foo", "C10"), # using labels works too
    relocation_coord = list(c(2, 3.5), c(0, 5)),
    repulse = TRUE,
    verbose = FALSE
)
# plot again to check results
APOTCPlot(pbmc, show_labels = TRUE, verbose = FALSE)
```

APOTCP1ot	Various variations RunAPOTC	of visualizations	of clonal	expansion post-

Description

[Stable]

Given a seurat object with an 'apotc' (APackOfTheClones) object from running RunAPOTC(), this function will read the information and return a customizable ggplot2 object of the clonal expansion with a circle size legend. If the user is unhappy about certain aspects of the plot, many parameters can be adjusted with the AdjustAPOTC function.

The specific APackOfTheClones run to be plotted can be identified in two ways: either by inputting the run_id associated with the run that was either defined / auto-generated during RunAPOTC(), or by inputting the reduction_base, clonecall, extra_filter and any other keyword arguments that corresponded to the run. Its heavily recommended to use the run_id. If none of these parameters are inputted, the function defaults to returning the plot of the latest run.

Usage

```
APOTCPlot(
  seurat_obj,
  reduction_base = NULL,
  clonecall = NULL,
  . . . ,
  extra_filter = NULL,
  run_id = NULL,
  show_shared = NULL,
  only_link = NULL,
  clone_link_width = "auto",
  clone_link_color = "black",
  clone_link_alpha = 0.5,
  res = 360L,
  linetype = "blank",
  use_default_theme = TRUE,
  retain_axis_scales = FALSE,
  alpha = 1,
  show_labels = FALSE,
  label_size = 5,
  add_size_legend = TRUE,
  legend_sizes = "auto",
  legend_position = "auto",
  legend_buffer = 0.2,
  legend_color = "#808080",
  legend_spacing = "auto",
  legend_label = "Clone sizes",
  legend_text_size = 5,
```

```
add_legend_background = TRUE,
add_legend_centerspace = 0,
detail = TRUE,
verbose = TRUE)
```

Arguments

seurat_obj

A seurat object that has been integrated with clonotype data and has had a valid run of RunAPOTC().

reduction_base

character. The seurat reduction to base the clonal expansion plotting on. Defaults to 'umap' but can be any reduction present within the reductions slot of the input seurat object, including custom ones. If "pca", the cluster coordinates will be based on PC1 and PC2. However, generally APackOfTheClones is used for displaying UMAP and occasionally t-SNE versions to intuitively highlight clonal expansion.

clonecall

character. The column name in the seurat object metadata to use. See scRepertoire documentation for more information about this parameter that is central to both packages.

additional "subsetting" keyword arguments indicating the rows corresponding to elements in the seurat object metadata that should be filtered by. E.g., seurat_clusters = c(1, 9, 10) will filter the cells to those in the seurat_clusters column with any of the values 1, 9, and 10. Unfortunately, column names in the seurat object metadata cannot conflict with the keyword arguments. MAJOR NOTE if any subsetting keyword arguments are a *prefix* of any preceding argument names (e.g. a column named reduction is a prefix of the reduction_base argument) R will interpret it as the same argument unless *both* arguments are named. Additionally, this means any subsequent arguments *must* be named.

extra_filter

character. An additional string that should be formatted *exactly* like a statement one would pass into dplyr::filter that does *additional* filtering to cells in the seurat object - on top of the other keyword arguments - based on the metadata. This means that it will be logically AND'ed with any keyword argument filters. This is a more flexible alternative / addition to the filtering keyword arguments. For example, if one wanted to filter by the length of the amino acid sequence of TCRs, one could pass in something like extra_filter = "nchar(CTaa) - 1 > 10". When involving characters, ensure to enclose with single quotes.

run id

character. This will be the ID associated with the data of a run, and will be used by other important functions like APOTCPlot() and AdjustAPOTC. Defaults to NULL, in which case the ID will be generated in the following format: reduction_base; clonecall; keyword_arguments; extra_filter where if keyword arguments and extra_filter are underscore characters if there was no input for the . . . and extra_filter parameters.

show_shared

The output of getSharedClones can be inputted here, and the resulting plot will overlay lines between clone circles if that clonotype is common between clusters. Note that the input **must** be generated from data in the correct APackOfTheClones run, and the behavior is undefined otherwise and will likely error. The next 4 arguments allow for aesthetic customization of these line links.

only_link

Optional integer indicating to only display clone links originating from this cluster if showing shared clones.

clone_link_width

numeric. The width of the lines that connect shared clones. Defaults to "auto" which will estimate a reasonable value depending on circle sizes.

clone_link_color

character. The color of the lines that connect shared clones. Defaults to "blend" which will use the average colors of the two connected clones. Else, any hex color or valid color string input will work, and the corresponding color will be applied on all links.

clone_link_alpha

numeric. The alpha of the lines that connect shared clones.

res

The number of points on the generated path per full circle. From plot viewers, if circles seem slightly too pixelated, it is recommended to first try to export the plot as an . svg before increasing res due to increased plotting times from ggforce::geom_circle.

linetype

The type of outline each circle should have. defaults to "blank meaning no outline. More information is in the function documentation of ggforce::geom_circle.

use default theme

logical that defaults to TRUE. If TRUE, the resulting plot will have the same theme as the seurat reference reduction plot. Else, the plot will simply have a blank background.

retain_axis_scales

If TRUE, approximately maintains the axis scales of the original reduction plot. However, it will only attempt to extend the axes and never shorten. Users are recommended to set this to TRUE especially if working with subsetted versions of the clonal data to better preserve the geometric relation to the original dimensional reduction.

alpha numeric. The alpha of the circles in (0, 1]. Defaults to 1.

show_labels If TRUE, will label each circle cluster at the centroid, defaulting to "C0, C1, ...".

label_size The text size of labels if shown. Defaults to 5.

If TRUE, adds a legend to the plot visualizing the relative sizes of clones. Note that it is simply an overlay and not a real ggplot2 legend.

numeric vector. Indicates the circle sizes to be displayed on the legend, and will legend_sizes always be sorted from smallest to greatest. Defaults to "auto" which estimate a

reasonable range of sizes to display.

legend_position

character or numeric. Can be set to either "top_left", "top_right", "bottom_left", "bottom_right" and places the legend roughly in the corresponding position. Otherwise, can be a numeric vector of length 2 indicating the x and y position of the topmost (smallest) circle of the legend.

legend_buffer numeric. Indicates how much to "push" the legend towards the center of the plot from the selected corner. If negative, will push away

add_size_legend

legend_color character. Indicates the hex color of the circles displayed on the legend. Defaults

to the hex code for a gray tone

legend_spacing numeric. Indicates the horizontal distance between each stacked circle on the

size legend. Defaults to "auto" which will use an estimated value depending on

plot size

legend_label character. The title of the legend, which defaults to "clone sizes.

legend_text_size

numeric. The text size of the letters and numbers on the legend

add_legend_background

logical. If TRUE, will add a border around the legend and fill the background to be white, overlaying anything else.

add_legend_centerspace

numeric. An additional amount of distance changed between the circle sizes on the left side of the legend and the numbers on the right. Useful to set to around 0.5 (or more / less) when there are particularly large clone sizes that may cover

the numbers.

detail logical. If FALSE, will only plot entire clusters as one large circle, which may

be useful in cases where there are a high number of clones resulting in a large number of circles on the resulting ggplot, which has increased plotting times, and certain aspects of the plot needs to be finely adjusted with AdjustAPOTC or simply inspected. This should not be set to FALSE for the actual clonal expansion

plot.

verbose logical. Decides if visual cues are displayed to the R console of the progress.

Value

A ggplot object of the APackOfTheClones clonal expansion plot of the seurat object. There is an additional 10th element in the object named "APackOfTheClones" used by other functions in this package and shouldn't interfere with any other ggplot functionality. (As far as currently known)

See Also

AdjustAPOTC

Examples

```
data("combined_pbmc")

combined_pbmc <- RunAPOTC(
    combined_pbmc, run_id = "run1", verbose = FALSE
)

# plotting with default arguments will plot the latest "run1"
clonal_packing_plot <- APOTCPlot(combined_pbmc)</pre>
```

10 combined_pbmc

combined_pbmc	Example Multi-sampled T-cell seurat object with integrated TCR library

Description

[Stable]

Generated with scRepertoire::combineExpression. To construct this object from scratch, try: scRepertoire::combineExpression(scRepertoire::combineTCR(get(data("contig_list", , package = "scRepertoire")), samples = c("P17B", "P17L", "P18B", , "P18L", "P19B", "P19L", "P20B", "P20L"), removeNA = FALSE, , removeMulti = FALSE, filterMulti = FALSE), get(data("scRep_example", , package = "scRepertoire")), cloneCall = "gene", proportion = TRUE)

Usage

```
data("combined_pbmc")
```

Format

A Seurat object with the following slots filled

assays Currently only contains one assay ("RNA" - scRNA-seq expression data)

counts - Raw expression data

- data Normalized expression data
- scale.data Scaled expression data
- var.features names of the current features selected as variable
- meta.features Assay level metadata such as mean and variance

meta.data Cell level metadata with a combined TCR contig list from scRepertoire

active.assay Current default assay

active.ident Current default idents

graphs Neighbor graphs computed, currently stores the SNN

reductions Dimensional reductions: UMAP

version Seurat version used to create the object

commands Command history, including the one used to create this object "combineExpression"

containsApotcRun 11

containsApotcRun

Check for the existence of an APackOfTheClones run with its run id

Description

[Stable]

A convenience function to check for the existence of an APackOfTheClones run with its run id, regardless of if any run has been made

Usage

```
containsApotcRun(seurat_obj, run_id)
```

Arguments

```
seurat_obj a seurat object
run_id character. The id of the associated ApotcRun.
```

Value

A logical indicating whether the run exists.

Examples

```
pbmc <- RunAPOTC(
    seurat_obj = get(data("combined_pbmc")),
    reduction_base = "umap",
    clonecall = "strict",
    run_id = "run1",
    verbose = FALSE
)

containsApotcRun(pbmc, "run1")
#> [1] TRUE

containsApotcRun(pbmc, "run2")
#> [1] FALSE
```

12 countCloneSizes

countCloneSizes

count the number of clonotype sizes in a seurat object combined with a VDJ library overall or by cluster

Description

[Stable]

Get clonotype frequencies from a seurat object's metadata, either as one whole table, or in a list of tables, based on the current / some custom ident of each cell. Note that depending on the ident (indicated by the by_cluster argument) there may be more or less clonotypes counted based on the number of rows containing NA for that column of that ident if it isn't the active ident.

Usage

```
countCloneSizes(
  seurat_obj,
  clonecall = "strict",
  extra_filter = NULL,
   ...,
  by_cluster = TRUE,
  sort_decreasing = NULL
)
```

Arguments

seurat_obj

a seurat object combined with a VDJ library with scRepertoire.

clonecall

character. The column name in the seurat object metadata to use. See scRepertoire documentation for more information about this parameter that is central to both packages.

extra_filter

character. An additional string that should be formatted *exactly* like a statement one would pass into dplyr::filter that does *additional* filtering to cells in the seurat object - on top of the other keyword arguments - based on the metadata. This means that it will be logically AND'ed with any keyword argument filters. This is a more flexible alternative / addition to the filtering keyword arguments. For example, if one wanted to filter by the length of the amino acid sequence of TCRs, one could pass in something like extra_filter = "nchar(CTaa) - 1 > 10". When involving characters, ensure to enclose with single quotes.

. . .

additional "subsetting" keyword arguments indicating the rows corresponding to elements in the seurat object metadata that should be filtered by. E.g., seurat_clusters = c(1, 9, 10) will filter the cells to those in the seurat_clusters column with any of the values 1, 9, and 10. Unfortunately, column names in the seurat object metadata cannot conflict with the keyword arguments. **MAJOR NOTE** if any subsetting keyword arguments are a *prefix* of any preceding argument names (e.g. a column named reduction is a prefix of the reduction_base argument) R will interpret it as the same argument unless *both* arguments are named. Additionally, this means any subsequent arguments *must* be named.

deleteApotcData 13

by_cluster

Logical or Character. If TRUE, will output a list of table objects, with the table at each index corresponding to level in Idents(). Each table's names are the clonotype name indicated by clonecall after filtering, while the values are the actual clone sizes. If FALSE, outputs just the aggregate clone sizes for all cells. Note that if FALSE, the output should be identical to that produced by mergeCloneSizes(countCloneSizes(..., by_cluster = TRUE)). Otherwise, this argument can also be a character indicating some column in the seurat object metadata to use a cell identity guiding (e.g. "seurat_clusters").

sort_decreasing

a logical or NULL. If TRUE/FALSE, sorts each/the table by clonotype frequency with largest/smallest clones first with a stable sorting algorithm, and if NULL, no order is guaranteed but the output is deterministic.

Value

A list of tables or a single table depending on by_cluster

See Also

mergeCloneSizes

Examples

```
data("combined_pbmc")
countCloneSizes(combined_pbmc)
countCloneSizes(combined_pbmc, "aa")
countCloneSizes(combined_pbmc, "nt", orig.ident = c("P17B", "P17L"))
```

deleteApotcData

Delete the results of an APackOfTheClones run

Description

[Stable]

A convenience function to erase all data associated with a particular run, including the ApotcData and command in seurat_obj@command. The run_id would be no longer accessible afterwards.

Usage

```
deleteApotcData(seurat_obj, run_id)
```

Arguments

seurat_obj a seurat object that has had RunAPOTC ran on it before in order of the functions

being called.

run_id character. The id of the associated ApotcRun.

14 getApotcDataIds

Value

The modified input seurat object

Examples

```
pbmc <- RunAPOTC(
    seurat_obj = get(data("combined_pbmc")),
    reduction_base = "umap",
    clonecall = "strict",
    run_id = "run1",
    verbose = FALSE
)

getApotcDataIds(pbmc)
#> [1] "run1"

# delete the data
pbmc <- deleteApotcData(pbmc, "run1")

getApotcDataIds(pbmc)
#> NULL
```

getApotcDataIds

Get all run ids of previous RunAPOTC runs on a seurat object

Description

[Stable]

A convenience function to get all run ids of previous RunAPOTC run IDs

Usage

```
getApotcDataIds(seurat_obj)
```

Arguments

seurat_obj

a seurat object that has had RunAPOTC ran on it before in order of the functions being called.

Value

a character vector of all run ids of previous RunAPOTC runs, in the order they were ran in. If there are no runs on the object, it returns NULL.

getLastApotcDataId 15

Examples

```
pbmc <- RunAPOTC(</pre>
    seurat_obj = get(data("combined_pbmc")),
    reduction_base = "umap",
    clonecall = "strict",
    verbose = FALSE
)
getApotcDataIds(pbmc)
#> [1] "umap;CTstrict;_;_"
pbmc <- RunAPOTC(</pre>
    seurat_obj = pbmc,
    reduction_base = "umap",
    clonecall = "gene",
    verbose = FALSE
)
getApotcDataIds(pbmc)
#> [1] "umap;CTstrict;_;_" "umap;CTgene;_;_"
```

getLastApotcDataId

Get the object id of the most recent RunAPOTC run on a seurat object

Description

[Stable]

A convenience function to get the object id of the most recent valid RunAPOTC() run, to be used by APOTCPlot() and AdjustAPOTC

Usage

```
getLastApotcDataId(seurat_obj)
```

Arguments

seurat_obj

a seurat object that has had RunAPOTC ran on it before in order of the functions being called.

Value

```
a character of the object id of the last RunAPOTC() call
```

Examples

```
# first run
pbmc <- RunAPOTC(</pre>
    seurat_obj = get(data("combined_pbmc")),
    reduction_base = "umap",
   clonecall = "strict",
    verbose = FALSE
)
getLastApotcDataId(pbmc)
#> [1] "umap;CTstrict;_;_"
# second run with a different clonecall
pbmc <- RunAPOTC(</pre>
   seurat_obj = pbmc,
    reduction_base = "umap",
    clonecall = "gene",
    verbose = FALSE
)
getLastApotcDataId(pbmc)
#> [1] "umap;CTgene;_;_"
```

getReductionCentroids Calculate seurat cluster centroids based on a Dimensional reduction

Description

[Stable]

Utility function to calculate the physical xy coordinates of each seurat cluster based on a dimensional reduction already present in the object. The results are returned in a list with the length of the number of distinct seurat clusters based on the seurat_obj meta.data.

Usage

```
getReductionCentroids(seurat_obj, reduction)
```

Arguments

seurat_obj input seurat object with the dimensional reduction of choice already present, and

seurat clusters computed.

reduction character. The reduction that the centroid calculation should be based on.

Value

A list of the length of the number of distinct clusters in the seurat object metadata, where each element of the list is a numeric vector of length 2, with the numbers corresponding to the x and y coordinate respectively of the seurat cluster with the corresponding index.

getSharedClones 17

Examples

```
data("combined_pbmc")
getReductionCentroids(combined_pbmc, reduction = "umap")
```

getSharedClones

Compute a list of clonotypes that are shared between seurat clusters

Description

[Stable]

This function allows users to get a list of clonotypes that are shared between clusters based on the levels of the active cell identities / some custom identity based on the alt_ident. A list is returned with its **names** being the shared clonotypes, and the values are numeric vectors indicating the index of the clusters that clonotype is found in. The index corresponds to the index in the default levels of the factored identities.

If run_id is inputted, then the function will attempt to get the shared clonotypes from the corresponding APackOfTheClones run generated from RunAPOTC(). Otherwise, it will use the filtering / subsetting parameters to generate the shared clones.

Usage

```
getSharedClones(
    seurat_obj,
    reduction_base = "umap",
    clonecall = "strict",
    ...,
    extra_filter = NULL,
    alt_ident = NULL,
    run_id = NULL,
    top = NULL,
    top_per_cl = NULL,
    intop = NULL,
    intop_per_cl = NULL,
    publicity = c(2L, Inf)
)
```

Arguments

seurat_obj

Seurat object with one or more dimension reductions and already have been integrated with a TCR/BCR library with scRepertoire::combineExpression.

reduction_base

character. The seurat reduction to base the clonal expansion plotting on. Defaults to 'umap' but can be any reduction present within the reductions slot of the input seurat object, including custom ones. If ''pca'", the cluster coordinates will be based on PC1 and PC2. However, generally APackOfTheClones is used for displaying UMAP and occasionally t-SNE versions to intuitively highlight clonal expansion.

18 getSharedClones

clonecall

character. The column name in the seurat object metadata to use. See scRepertoire documentation for more information about this parameter that is central to both packages.

additional "subsetting" keyword arguments indicating the rows corresponding to elements in the seurat object metadata that should be filtered by. E.g., seurat_clusters = c(1, 9, 10) will filter the cells to those in the seurat_clusters column with any of the values 1, 9, and 10. Unfortunately, column names in the seurat object metadata cannot conflict with the keyword arguments. MAJOR NOTE if any subsetting keyword arguments are a prefix of any preceding argument names (e.g. a column named reduction is a prefix of the reduction_base argument) R will interpret it as the same argument unless both arguments are named. Additionally, this means any subsequent arguments must be named.

extra_filter

character. An additional string that should be formatted exactly like a statement one would pass into dplyr::filter that does additional filtering to cells in the seurat object - on top of the other keyword arguments - based on the metadata. This means that it will be logically AND'ed with any keyword argument filters. This is a more flexible alternative / addition to the filtering keyword arguments. For example, if one wanted to filter by the length of the amino acid sequence of TCRs, one could pass in something like extra_filter = "nchar(CTaa) - 1 > 10". When involving characters, ensure to enclose with single quotes.

alt_ident

character. By default, cluster identity is assumed to be whatever is in Idents(seurat_obj), and clones will be grouped by the active ident. However, alt_ident could be set as the name of some column in the meta data of the seurat object to be grouped by. This column is meant to have been a product of Seurat::StashIdent or manually added.

run_id

character. This will be the ID associated with the data of a run, and will be used by other important functions like APOTCPlot() and AdjustAPOTC. Defaults to NULL, in which case the ID will be generated in the following format: reduction_base; clonecall; keyword_arguments; extra_filter where if keyword arguments and extra filter are underscore characters if there

was no input for the ... and extra_filter parameters.

top

integer or numeric in (0, 1) - if not null, filters the output clones so that only the shared clonotypes with counts the top top count / proportion (for numeric in (0, 1) input) shared clones are kept. For cases where several clonotypes tie in size, the clonotype(s) added are not guaranteed but deterministic given the other arguments are identical.

top_per_cl

integer or numeric in (0, 1) - if not null, filters the output clones so that for each seurat cluster, only the clonotypes with the top_per_cl frequency/count is preserved when aggregating shared clones, in the same way as the above. Note that if inputted in conjunction with top, it will get the *intersection* of the clonotypes filtered each way. For cases where several clonotypes tie in size, the clonotype(s) added are not guaranteed but deterministic given the other arguments are identical.

intop

integer or numeric in (0, 1) - if not null, filters the raw clone sizes before computing the shared clonotypes so that only the clonotypes that have their overall size in the top intop largest sizes (if it is integer, else the intop proportion) are

mergeCloneSizes 19

kept. To emphasize, this argument **does not necessarily** return the top shared clones and likely a little less, because this filters the raw clone sizes, of which, its very likely that not all those clones end up being shared.

intop_per_cl

integer or numeric in (0, 1) - if not null, filters the raw *clustered* clone sizes before computing shared clones, so that for every clone in a seurat cluster, the top intop_per_cl count / proportion (for numeric in (0, 1) input) clones are kept.

publicity

numeric pair. A simple filter range of c(lowerbound, upperbound) to retain only shared clones with their "publicity" - number of clusters they are present in - within this range.

Value

a named list where each name is a clonotype, each element is a numeric indicating which seurat cluster(s) its in, in no particular order. If no shared clones are present, the output is an empty list.

Examples

```
data("combined_pbmc")
getSharedClones(combined_pbmc)
getSharedClones(
    combined_pbmc,
    orig.ident = c("P17B", "P18B"), # a named subsetting parameter
    clonecall = "aa"
# extract shared clones from a past RunAPOTC run
combined_pbmc <- RunAPOTC(</pre>
    combined_pbmc, run_id = "foo", verbose = FALSE
)
getSharedClones(
    combined_pbmc, run_id = "foo", top = 5
)
# doing a run and then getting the clones works too
combined_pbmc <- RunAPOTC(combined_pbmc, run_id = "run1", verbose = FALSE)</pre>
getSharedClones(combined_pbmc, run_id = "run1")
```

20 overlayLegend

Description

The list of clustered clonotype frequencies from countCloneSizes can be merged by this function to a frequency table of all clonotypes similar to the data that can be seen in the seurat object metadata. By default, this function sorts the table with largest clonotypes first, and this may be useful for quickly gauging which clonotypes are the most expanded overall.

Usage

```
mergeCloneSizes(clustered_clone_sizes, sort_decreasing = TRUE)
```

Arguments

a logical or NULL. If TRUE/FALSE, sorts the table by clonotype frequency with largest/smallest clones first, and if NULL, no order is guaranteed but the output is deterministic.

Value

a table object

See Also

countCloneSizes

Examples

```
clustered_clone_sizes <- countCloneSizes(get(data("combined_pbmc")))
mergeCloneSizes(clustered_clone_sizes)</pre>
```

overlayLegend

overlay a clone size legend on an APackOfTheClones plot

Description

[Stable]

This function has most of the parameters related to legend in APOTCPlot(), and can plot a new / override the current legend. However, it is very important that the input plot to the function is a plot generated solely by APOTCPlot() or vizAPOTC() due to it being a custom ggplot object. It will not override or erase any additional layers that the user/other functions have added. To just remove the legend, see removeLegend.

overlayLegend 21

Usage

```
overlayLegend(
  apotc_ggplot,
  legend_sizes = "auto",
  legend_position = "auto",
  legend_buffer = 0.2,
  legend_color = "#808080",
  legend_spacing = "auto",
  legend_label = "Clone sizes",
  legend_text_size = 5,
  add_legend_background = TRUE,
  add_legend_centerspace = 0,
  linetype = "blank",
  res = 360L
)
```

Arguments

apotc_ggplot a ggplot object that is the output of APOTCPlot() or vizAPOTC()

legend_sizes numeric vector. Indicates the circle sizes to be displayed on the legend, and will

always be sorted from smallest to greatest. Defaults to "auto" which estimate a

reasonable range of sizes to display.

legend_position

character or numeric. Can be set to either "top_left", "top_right", "bottom_left", "bottom_right" and places the legend roughly in the corresponding position.

Otherwise, can be a numeric vector of length 2 indicating the x and y position

of the topmost (smallest) circle of the legend.

legend_buffer numeric. Indicates how much to "push" the legend towards the center of the plot

from the selected corner. If negative, will push away

legend_color character. Indicates the hex color of the circles displayed on the legend. Defaults

to the hex code for a gray tone

legend_spacing numeric. Indicates the horizontal distance between each stacked circle on the

size legend. Defaults to "auto" which will use an estimated value depending on

plot size

legend_label character. The title of the legend, which defaults to "clone sizes.

legend_text_size

numeric. The text size of the letters and numbers on the legend

add_legend_background

logical. If TRUE, will add a border around the legend and fill the background to be white, overlaying anything else.

add_legend_centerspace

numeric. An additional amount of distance changed between the circle sizes on the left side of the legend and the numbers on the right. Useful to set to around 0.5 (or more / less) when there are particularly large clone sizes that may cover the numbers.

22 removeLegend

linetype The type of outline each circle should have. defaults to "blank meaning no out-

line. More information is in the function documentation of ggforce::geom_circle.

res The number of points on the generated path per full circle. From plot viewers,

if circles seem slightly too pixelated, it is recommended to first try to export the plot as an .svg before increasing res due to increased plotting times from

ggforce::geom_circle.

Details

The size legend on APackOfTheClones plots are simply a collection of annotation layers of the rect, text, circle geoms. Therefore it isn't quite a ggplot legend. In the actual ggplot object, the \$layers element should all be named with an empty character "", and those that comprise the annotation layers of the legend should be named whatever APackOfTheClones:::.ApotcLegendLayerName is. Note that this is simply an implementation detail that the user should not interfere with.

Value

A ggplot object of the APackOfTheClones clonal expansion plot of the seurat object. There is an additional 10th element in the object named "APackOfTheClones" used by other functions in this package and shouldn't interfere with any other ggplot functionality. (As far as currently known)

See Also

removeLegend

Examples

```
library(dplyr)

# create a plot with a legend
apotc_plot <- vizAPOTC(get(data("combined_pbmc")), verbose = FALSE)

# reposition the legend to top right
overlayLegend(apotc_plot, legend_position = "top right")

# use different sizes and label - may be nice to use the pipe
apotc_plot %>% overlayLegend(
    legend_sizes = c(1, 3, 7, 9),
    legend_label = "odd sizes"
)
```

removeLegend

Remove current APackOfTheClones legend

Description

[Stable]

Removes the clone size legend on an APackOfTheClones plot, if one is present. Will preserve any additional ggplot layers.

renameApotcRun 23

Usage

```
removeLegend(apotc_ggplot)
```

Arguments

```
apotc_ggplot a ggplot object that is the output of APOTCPlot() or vizAPOTC()
```

Value

A ggplot object of the APackOfTheClones clonal expansion plot of the seurat object. There is an additional 10th element in the object named "APackOfTheClones" used by other functions in this package and shouldn't interfere with any other ggplot functionality. (As far as currently known)

See Also

```
overlayLegend
```

Examples

```
# create an APackOfTheClones plot with a legend
apotc_plot <- vizAPOTC(
    get(data("combined_pbmc")),
    add_size_legend = TRUE,
    verbose = FALSE
)

# remove the legend
apotc_plot <- removeLegend(apotc_plot)
apotc_plot</pre>
```

renameApotcRun

Rename an APackOfTheClones run

Description

[Stable]

A function to rename an APackOfTheClones run identified by its run id in a Seurat object.

Usage

```
renameApotcRun(seurat_obj, old_run_id, new_run_id)
```

Arguments

seurat_obj	A Seurat object containing APackOfTheClones data - the output of RunAPOTC()
old_run_id	Character. The current id of the APackOfTheClones run to be renamed.
new_run_id	Character. The new id to assign to the APackOfTheClones run.

Value

A Seurat object with the APackOfTheClones run renamed.

Examples

```
pbmc <- RunAPOTC(
    seurat_obj = get(data("combined_pbmc")),
    reduction_base = "umap",
    clonecall = "strict",
    run_id = "run1",
    verbose = FALSE
)

pbmc <- renameApotcRun(pbmc, "run1", "new_run")
# Now "run1" has been renamed to "new_run"</pre>
```

RunAPOTC

Run the APackOfTheClones method on a combined Seurat object for downstream visualization of clonal expansion

Description

[Stable]

Computes necessary information for an APackOfTheClones clonal expansion plot (APOTCPlot()) and stores it in the seurat object. Gets sizes of unique clones and utilizes a circle-packing algorithm to pack circles representing individual clones in approximately the same dimensional reduction (reduction_base) coordinates based on some cell ident (defaults to the active ident).

The parameter extra_filter along with an unlimited number of additional keyword arguments can be used to filter the cells by certain conditions in the metadata, and new results will be stored in addition to other runs the users may have done.

Each APackOfTheClones run is uniquely identified by the parameters reduction_base, clonecall, extra_filter, and any additional keywords passed to filter the metadata. Each distinct run result is stored in the seurat object and has an associated Id generated from the aforementioned parameters. To view the id of the latest run, call getLastApotcDataId. To view all the ids of previous runs, call getApotcDataIds. To work further with a specific run (most importantly, plotting), the user can use this id in the arguments with is slightly more convenient than passing in the original RunAPOTC parameters again but both ways work.

If the user wishes to manually customize/fix the expansion plot generated, the circular packing information can be modified with the AdjustAPOTC function.

Usage

```
RunAPOTC(
  seurat_obj,
  reduction_base = "umap",
```

```
clonecall = "strict",
  extra_filter = NULL,
  alt_ident = NULL,
  run_id = NULL,
  clone_scale_factor = "auto",
  rad_scale_factor = 0.95,
 order_clones = TRUE,
  try_place = FALSE,
  repulse = TRUE,
  repulsion_threshold = 1,
  repulsion_strength = 1,
 max_repulsion_iter = 20L,
 override = FALSE,
  verbose = TRUE
)
```

Arguments

seurat_obj

Seurat object with one or more dimension reductions and already have been integrated with a TCR/BCR library with scRepertoire::combineExpression.

reduction_base character. The seurat reduction to base the clonal expansion plotting on. Defaults to 'umap' but can be any reduction present within the reductions slot of the input seurat object, including custom ones. If "pca", the cluster coordinates will be based on PC1 and PC2. However, generally APackOfTheClones is used for displaying UMAP and occasionally t-SNE versions to intuitively highlight clonal expansion.

clonecall

character. The column name in the seurat object metadata to use. See scRepertoire documentation for more information about this parameter that is central to both packages.

. . .

additional "subsetting" keyword arguments indicating the rows corresponding to elements in the seurat object metadata that should be filtered by. E.g., seurat_clusters = c(1, 9, 10) will filter the cells to those in the seurat_clusters column with any of the values 1, 9, and 10. Unfortunately, column names in the seurat object metadata cannot conflict with the keyword arguments. MAJOR NOTE if any subsetting keyword arguments are a prefix of any preceding argument names (e.g. a column named reduction is a prefix of the reduction_base argument) R will interpret it as the same argument unless *both* arguments are named. Additionally, this means any subsequent arguments must be named.

extra_filter

character. An additional string that should be formatted exactly like a statement one would pass into dplyr::filter that does additional filtering to cells in the seurat object - on top of the other keyword arguments - based on the metadata. This means that it will be logically AND'ed with any keyword argument filters. This is a more flexible alternative / addition to the filtering keyword arguments. For example, if one wanted to filter by the length of the amino acid sequence of TCRs, one could pass in something like extra_filter = "nchar(CTaa) - 1 > 10". When involving characters, ensure to enclose with single quotes.

alt_ident character. By default, cluster identity is assumed to be whatever is in Idents(seurat_obj),

and clones will be grouped by the active ident. However, alt_ident could be set as the name of some column in the meta data of the seurat object to be grouped by. This column is meant to have been a product of Seurat::StashIdent or manually added.

manually added.

run_id character. This will be the ID associated with the data of a run, and will be used

by other important functions like APOTCPlot() and AdjustAPOTC. Defaults to NULL, in which case the ID will be generated in the following format: reduction_base; clonecall; keyword_arguments; extra_filter

where if keyword arguments and extra_filter are underscore characters if there was no input for the . . . and extra_filter parameters.

clone_scale_factor

Dictates how much to scale each circle(between 0,1) radius when converting from clonotype counts into circles that represent individual clonotypes. The argument defaults to the character "auto", and if so, the most visually pleasing

factor will be estimated.

rad_scale_factor

numeric between 0 and 1. This value decreases the radius of the smallest clones by this scale factor. And the absolute value of this decrease will be applied to all packed circles, effectively shrinking all circles on the spot, and introduce more

constant spacing in between.

order_clones logical. Decides if the largest clone circles should be near cluster centroids.

This is highly recommended to be set to TRUE for increased intuitiveness of the visualization, as resulting plots tend to give an improved impression of the proportion of expanded clones. If FALSE, will randomly scramble the positions of each circle. For the sake of being replicable, a random seed is recommended

to be set with set.seed.

try_place If TRUE, always minimizes distance from a newly placed circle to the origin in

the circle packing algorithm.

repulse If TRUE, will attempt to push overlapping clusters away from each other.

repulsion_threshold

numeric. The radius that clonal circle clusters overlap is acceptable when re-

pulsing.

repulsion_strength

numeric. The smaller the value the less the clusters repulse each other per itera-

tion, and vice versa.

max_repulsion_iter

integer. The number of repulsion iterations.

override logical. If TRUE, will override any existing APackOfTheClones run data with

the same run_id.

verbose logical. Decides if visual cues are displayed to the R console of the progress.

Details

Note that the subsetting arguments ... and extra_filter are only a quick convenience to subset based on metadata, and the subset S3 method defined in Seurat is much more mature are has more

features. Additionally, users need to work with data subsets are recommended to and likely already are working with seurat objects subsetted/split with Seurat::SplitObject.

All APackOfTheClones run data is stored in the Seurat object under seurat_object@misc\$APackOfTheClones, which is a list of S4 objects of the type "ApotcData", with each element corresponding to a unique run. The id of each run is the name of each element in the list. The user **really shouldn't** manually modify anything in the list as it may cause unexpected behavior with many other functions.

Additionally, it logs a seurat command associated with the run in the seurat_object@commands slot as a "SeuratCommand" object (from Seurat), where the name of the object in the list is formatted as RunAPOTC.run_id.

Value

A modified version of the input seurat object, which harbors data necessary for visualizing the clonal expansion of the cells with APOTCPlot() and has a friendly user interface to modify certain attributes with AdjustAPOTC.

Cluster labelling

For the ident that was used to cluster the clones, labels for each cluster are inferred and stored in the run so that they can be used by other functions and optionally overlaid on the plot over clusters. If the levels of the ident used is a naturally ordered integer sequence, then the labels generated would be "C1", "C2", "C3" ..., else they would be the actual ident levels themselves.

See Also

```
APOTCPlot(), AdjustAPOTC, getApotcDataIds
```

Examples

```
data("combined_pbmc")
# this is the recommended approach to use a custom run_id with default params
combined_pbmc <- RunAPOTC(combined_pbmc, run_id = "default", verbose = FALSE)</pre>
# here's a seperate run with some filters to the meta data, where
# `orig.ident` is a custom column in the example data. Notice that it is not
# a `RunAPOTC()` parameter but a user keyword argument
combined_pbmc <- RunAPOTC(</pre>
    combined_pbmc, run_id = "sample17", orig.ident = c("P17B", "P17L"),
    verbose = FALSE
)
# the exact same thing can be achieved with the `extra_filter` parameter
combined_pbmc <- RunAPOTC(</pre>
    combined_pbmc,
    run_id = "sample17",
    extra_filter = "substr(orig.ident, 2, 3) == '17'",
    override = TRUE,
    verbose = FALSE
)
```

showCloneHighlight

showCloneHighlight

Highlight specific clones on an APackOfTheClones ggplot

Description

[Experimental]

This is an analogue for scRepertoire::highlightClones that can highlight certain clonotypes on an APackOfTheClones clonal expansion plot. For most combinations of the arguments, there will be a ggplot fill legend on the right side that correspond to each (existing) clonotype.

Usage

```
showCloneHighlight(
  apotc_ggplot,
  clonotype,
  color_each = TRUE,
  default_color = "#808080",
  scale_bg = 1,
  fill_legend = TRUE
)
```

Arguments

apotc_ggplot

A ggplot object that is the output of APOTCPlot() or vizAPOTC() of an APack-

OfTheClones plot to be highlighted on.

clonotype

character vector of the sequence(s) to highlight. Note that it must be of the clonecall of the code that created the plot. A warning will be shown if any of .

the sequences are not present.

color_each

Either a logical of length 1, or a character(s). It is TRUE by default, which assigns a unique default ggplot color to each highlighted clone. If FALSE, each highlighted clone will retain its current color and no legend based on color is shown. A possible application here is to simply gauge the distribution of any shared clone. It can also indicate the uniform color of each highlighted clone: if it is a character of length 1, all highlighted clones will be of that color. Else it must be a character vector of the same length as clonotype, with each color corresponding to the clone. Here is a suitable place to use any palette function from the many other CRAN palette packages such as "viridis" or "RColorBrewer". Note that currently, the user must ensure clonotype contains only unique characters.

acters.

default_color

A character of length 1 or NULL indicating the color of non-highlighted clones. If NULL, all un-highlighted sequences will retain their original color in sc.data. Else, if it is a character, it should be a valid color that all un-highlighted clones are. Defaults to the hex code for gray.

scale_bg

A positive numeric. Scales the brightness value of each color of the non-highlighted clones by itself as a scaling factor. Defaults to 1 which will not alter the current

brightness. Note that if color_each = FALSE and default_color = NULL, this is equivalent to not highlighting any clones - in this case, it may be useful to alter scale_bg slightly so that the non-highlighted clones are darkened/brightened.

fill_legend

logical indicating whether a ggplot legend of the "fill" of each clonotype should be displayed.

Details

Under the hood, this function simply mutates the plotting data.frame under \$data in the ggplot object, and operates on a column named color.

Note that if color_each = FALSE and default_color = NULL, this is equivalent to simply not high-lighting anything and a warning will be shown.

Value

A ggplot object with the data modified to the highlighted colors

Examples

vizAPOTC

Directly visualize clonal expansion of a combined seurat object

Description

[Stable]

This function combines the functionality of both RunAPOTC() and APOTCPlot(). Given a Seurat object, it first runs the APackOfTheClones method (RunAPOTC()) to compute clonal expansion information, and then generates a ggplot2 object of the clonal expansion plot with a circle size legend. (APOTCPlot())

Usage

```
vizAPOTC(
  seurat_obj,
  reduction_base = "umap",
  clonecall = "strict",
  . . . ,
  extra_filter = NULL,
  alt_ident = NULL,
  clone_scale_factor = "auto",
  rad_scale_factor = 0.95,
  order_clones = TRUE,
  try_place = FALSE,
  repulse = TRUE,
  repulsion_threshold = 1,
  repulsion_strength = 1,
  max_repulsion_iter = 20L,
  show_shared = NULL,
  only_link = NULL,
  clone_link_width = "auto",
  clone_link_color = "black",
  clone_link_alpha = 0.5,
  res = 360L,
  linetype = "blank",
  use_default_theme = TRUE,
  retain_axis_scales = FALSE,
  alpha = 1,
  show_labels = FALSE,
  label_size = 5,
  add_size_legend = TRUE,
  legend_sizes = "auto",
  legend_position = "auto",
  legend_buffer = 0.2,
  legend_color = "#808080",
  legend_spacing = "auto",
  legend_label = "Clone sizes",
  legend_text_size = 5,
  add_legend_background = TRUE,
  add_legend_centerspace = 0,
  detail = TRUE,
  verbose = TRUE
)
```

Arguments

seurat_obj A seurat object that has been integrated with clonotype data with scRepertoire::combineExpression.

reduction_base character. The seurat reduction to base the clonal expansion plotting on. Defaults to 'umap' but can be any reduction present within the reductions slot of the input seurat object, including custom ones. If ''pca'", the cluster coordinates

will be based on PC1 and PC2. However, generally APackOfTheClones is used for displaying UMAP and occasionally t-SNE versions to intuitively highlight clonal expansion.

clonecall

character. The column name in the seurat object metadata to use. See scRepertoire documentation for more information about this parameter that is central to both packages.

. . .

additional "subsetting" keyword arguments indicating the rows corresponding to elements in the seurat object metadata that should be filtered by. E.g., seurat_clusters = c(1, 9, 10) will filter the cells to those in the seurat_clusters column with any of the values 1, 9, and 10. Unfortunately, column names in the seurat object metadata cannot conflict with the keyword arguments. **MAJOR NOTE** if any subsetting keyword arguments are a *prefix* of any preceding argument names (e.g. a column named reduction is a prefix of the reduction_base argument) R will interpret it as the same argument unless *both* arguments are named. Additionally, this means any subsequent arguments *must* be named.

extra_filter

character. An additional string that should be formatted *exactly* like a statement one would pass into dplyr::filter that does *additional* filtering to cells in the seurat object - on top of the other keyword arguments - based on the metadata. This means that it will be logically AND'ed with any keyword argument filters. This is a more flexible alternative / addition to the filtering keyword arguments. For example, if one wanted to filter by the length of the amino acid sequence of TCRs, one could pass in something like extra_filter = "nchar(CTaa) - 1 > 10". When involving characters, ensure to enclose with single quotes.

alt_ident

character. By default, cluster identity is assumed to be whatever is in Idents(seurat_obj), and clones will be grouped by the active ident. However, alt_ident could be set as the name of some column in the meta data of the seurat object to be grouped by. This column is meant to have been a product of Seurat::StashIdent or manually added.

clone_scale_factor

Dictates how much to scale each circle(between 0,1) radius when converting from clonotype counts into circles that represent individual clonotypes. The argument defaults to the character "auto", and if so, the most visually pleasing factor will be estimated.

rad_scale_factor

numeric between 0 and 1. This value decreases the radius of the smallest clones by this scale factor. And the absolute value of this decrease will be applied to all packed circles, effectively shrinking all circles on the spot, and introduce more constant spacing in between.

 $order_clones$

logical. Decides if the largest clone circles should be near cluster centroids. This is highly recommended to be set to TRUE for increased intuitiveness of the visualization, as resulting plots tend to give an improved impression of the proportion of expanded clones. If FALSE, will randomly scramble the positions of each circle. For the sake of being replicable, a random seed is recommended to be set with set.seed.

try_place

If TRUE, always minimizes distance from a newly placed circle to the origin in the circle packing algorithm.

cxtru_riitter

repulse If TRUE, will attempt to push overlapping clusters away from each other.

repulsion_threshold

numeric. The radius that clonal circle clusters overlap is acceptable when repulsing.

repulsion_strength

numeric. The smaller the value the less the clusters repulse each other per iteration, and vice versa.

max_repulsion_iter

integer. The number of repulsion iterations.

show_shared The output of getSharedClones can be inputted here, and the resulting plot will

overlay lines between clone circles if that clonotype is common between clusters. Note that the input **must** be generated from data in the correct APackOfTheClones run, and the behavior is undefined otherwise and will likely error. The next 4

arguments allow for aesthetic customization of these line links.

only_link Optional integer indicating to only display clone links originating from this clus-

ter if showing shared clones.

clone_link_width

numeric. The width of the lines that connect shared clones. Defaults to "auto" which will estimate a reasonable value depending on circle sizes.

clone_link_color

character. The color of the lines that connect shared clones. Defaults to "blend" which will use the average colors of the two connected clones. Else, any hex color or valid color string input will work, and the corresponding color will be applied on all links.

clone_link_alpha

numeric. The alpha of the lines that connect shared clones.

res The number of points on the generated path per full circle. From plot viewers,

if circles seem slightly too pixelated, it is recommended to first try to export the plot as an .svg before increasing res due to increased plotting times from

ggforce::geom_circle.

linetype The type of outline each circle should have. defaults to "blank meaning no outline. More information is in the function documentation of ggforce::geom_circle.

use_default_theme

logical that defaults to TRUE. If TRUE, the resulting plot will have the same theme as the seurat reference reduction plot. Else, the plot will simply have a blank

background.

retain_axis_scales

If TRUE, approximately maintains the axis scales of the original reduction plot. However, it will only attempt to extend the axes and never shorten. Users are recommended to set this to TRUE especially if working with subsetted versions of the clonal data to better preserve the geometric relation to the original dimen-

sional reduction.

alpha numeric. The alpha of the circles in (0, 1]. Defaults to 1.

show_labels If TRUE, will label each circle cluster at the centroid, defaulting to "C0, C1, ...".

label_size The text size of labels if shown. Defaults to 5.

add_size_legend

If TRUE, adds a legend to the plot visualizing the relative sizes of clones. Note that it is simply an overlay and not a real ggplot2 legend.

legend_sizes

numeric vector. Indicates the circle sizes to be displayed on the legend, and will always be sorted from smallest to greatest. Defaults to "auto" which estimate a reasonable range of sizes to display.

legend_position

character or numeric. Can be set to either "top_left", "top_right", "bottom_left", "bottom_right" and places the legend roughly in the corresponding position.

Otherwise, can be a numeric vector of length 2 indicating the x and y position of the *topmost* (*smallest*) *circle* of the legend.

legend_buffer numeric. Indicates how much to "push" the legend towards the center of the plot

from the selected corner. If negative, will push away

legend_color charac

character. Indicates the hex color of the circles displayed on the legend. Defaults to the hex code for a gray tone

legend_spacing

numeric. Indicates the horizontal distance between each stacked circle on the size legend. Defaults to "auto" which will use an estimated value depending on plot size

legend_label cha

character. The title of the legend, which defaults to "clone sizes.

legend_text_size

numeric. The text size of the letters and numbers on the legend

add_legend_background

logical. If TRUE, will add a border around the legend and fill the background to be white, overlaying anything else.

add_legend_centerspace

numeric. An additional amount of distance changed between the circle sizes on the left side of the legend and the numbers on the right. Useful to set to around 0.5 (or more / less) when there are particularly large clone sizes that may cover the numbers.

uic ii

detail logical. If FALSE, will only plot entire clusters as one large circle, which may

be useful in cases where there are a high number of clones resulting in a large number of circles on the resulting ggplot, which has increased plotting times, and certain aspects of the plot needs to be finely adjusted with AdjustAPOTC or simply inspected. This should not be set to FALSE for the actual clonal expansion

plot.

verbose logical. Decides if visual cues are displayed to the R console of the progress.

Details

Note that the subsetting arguments ... and extra_filter are only a quick convenience to subset based on metadata, and the subset S3 method defined in Seurat is much more mature are has more features. Additionally, users need to work with data subsets are recommended to and likely already are working with seurat objects subsetted/split with Seurat::SplitObject.

Value

A ggplot object of the APackOfTheClones clonal expansion plot of the seurat object. There is an additional 10th element in the object named "APackOfTheClones" used by other functions in this package and shouldn't interfere with any other ggplot functionality. (As far as currently known)

Cluster labelling

For the ident that was used to cluster the clones, labels for each cluster are inferred and stored in the run so that they can be used by other functions and optionally overlaid on the plot over clusters. If the levels of the ident used is a naturally ordered integer sequence, then the labels generated would be "C1", "C2", "C3" ..., else they would be the actual ident levels themselves.

See Also

AdjustAPOTC

Examples

```
data("combined_pbmc")

# plot with default parameters
vizAPOTC(combined_pbmc, verbose = FALSE)

# use arguments from RunAPOTC and APOTCPlot
vizAPOTC(
    combined_pbmc, try_place = TRUE, show_labels = TRUE, verbose = FALSE
)
```

Index

```
* datasets
    combined_pbmc, 10
AdjustAPOTC, 2, 3, 6, 7, 9, 15, 18, 24, 26, 27,
         33, 34
APOTCPlot, 6
APOTCPlot(), 2, 3, 7, 15, 18, 20, 21, 23, 24,
         26-29
combined_pbmc, 10
containsApotcRun, 11
countCloneSizes, 12, 20
deleteApotcData, 13
dplyr::filter, 3, 7, 12, 18, 25, 31
getApotcDataIds, 14, 24, 27
getLastApotcDataId, 15, 24
getReductionCentroids, 16
getSharedClones, 7, 17, 32
ggforce::geom_circle, 8, 22, 32
mergeCloneSizes, 13, 19
overlayLegend, 20, 23
removeLegend, 20, 22, 22
renameApotcRun, 23
RunAPOTC, 24
RunAPOTC(), 2, 6, 7, 15, 17, 23, 29
set.seed, 26, 31
showCloneHighlight, 28
vizAPOTC, 29
vizAPOTC(), 20, 21, 23, 28
```