Package ‘CAISEr’

January 20, 2025
Type Package
Title Comparison of Algorithms with Iterative Sample Size Estimation
Version 1.0.17
Date 2022-11-16

Description Functions for performing experimental comparisons of algorithms
using adequate sample sizes for power and accuracy. Implements the
methodology originally presented in Campelo and Takahashi (2019)
<doi:10.1007/s10732-018-9396-7>
for the comparison of two algorithms, and later generalised in
Campelo and Wanner (Submitted, 2019) <arxiv:1908.01720>.

License GPL-2
Depends R (>=3.5.0)

Imports assertthat (>=0.2.1), parallel (>= 3.5.1), pbmcapply (>=
1.4.1), ggplot2 (>=3.1.1), gridExtra (>= 2.3)

Suggests smoof, knitr, rmarkdown, car, dplyr, pkgdown
Encoding UTF-8

RoxygenNote 7.0.2

VignetteBuilder knitr

URL https://fcampelo.github.io/CAISEr/

BugReports https://github.com/fcampelo/CAISEr/issues
NeedsCompilation no

Author Felipe Campelo [aut, cre],
Fernanda Takahashi [ctb],
Elizabeth Wanner [ctb]

Maintainer Felipe Campelo <fcampelo@gmail.com>
Repository CRAN
Date/Publication 2022-11-16 21:10:02 UTC

https://doi.org/10.1007/s10732-018-9396-7
https://arxiv.org/abs/1908.01720
https://fcampelo.github.io/CAISEr/
https://github.com/fcampelo/CAISEr/issues

2 boot_sdm

Contents
boot_sdm e 2
CcalC_INStANCES v o o e e e e 3
CalC_MIEPS . . . o o e e e e 6
calc_Se e e 10
consolidate_partial_results oL 12
dummyalgo e e e 12
dummyinstance e e e e e e e 14
example_SANN L 15
EL_ODSEIVationS e e e e e e e e 16
plot.CAISEr e 17
plotnreps 18
print.CAISEr e 19
TUN_EXPEriMENt vttt ettt e e e e e e e e 20
SE_DOOL e e 25
SE_PATAML e e e e e e e e e e e e e e 26
summary.CAISEr o 27
SUMMATY.NTEPS + « . v v v v e 29
TSPdist e 29

Index 30

boot_sdm Bootstrap the sampling distribution of the mean
Description
Bootstraps the sampling distribution of the means for a given vector of observations

Usage

boot_sdm(x, boot.R = 999, ncpus = 1, seed = NULL)
Arguments

X vector of observations

boot.R number of bootstrap resamples

ncpus number of cores to use

seed seed for the PRNG
Value

vector of bootstrap estimates of the sample mean

calc_instances 3

References

* A.C. Davison, D.V. Hinkley: Bootstrap methods and their application. Cambridge University
Press (1997)

» F. Campelo, F. Takahashi: Sample size estimation for power and accuracy in the experimental
comparison of algorithms. Journal of Heuristics 25(2):305-338, 2019.

Author(s)

Felipe Campelo (<fcampelo@ufmg.br>, <f.campelo@aston.ac.uk>)

Examples

X <= rnorm(15, mean = 4, sd = 1)
my.sdm <- boot_sdm(x)
hist(my.sdm, breaks = 30)
ggnorm(my.sdm, pch = 20)

X <= runif(12)
my.sdm <- boot_sdm(x)
ggnorm(my.sdm, pch = 20)

Convergence of the SDM to a Normal distribution as sample size is increased
X <- rchisq(1000, df = 3)

x1 <- rchisq(10, df = 3)
x2 <- rchisq(20, df = 3)
x3 <- rchisq(40, df = 3)

par(mfrow = c(2, 2))
plot(density(X), main = "Estimated pop distribution”);
hist(boot_sdm(x1), breaks = 25, main = "SDM, n = 10")
hist(boot_sdm(x2), breaks = 25, main = "SDM, n = 20")
hist(boot_sdm(x3), breaks = 25, main = "SDM, n = 40")
par(mfrow = c(1, 1))

calc_instances Calculates number of instances for the comparison of multiple algo-
rithms

Description

Calculates either the number of instances, or the power(s) of the comparisons of multiple algo-
rithms.

Usage

calc_instances(
ncomparisons,
d,
ninstances = NULL,

4 calc_instances

power = NULL,

sig.level = 0.05,
alternative.side = "two.sided”,
test = "t.test",

power.target = "mean”

Arguments

ncomparisons number of comparisons planned

d minimally relevant effect size (MRES, expressed as a standardized effect size,
i.e., "deviation from HO" / "standard deviation")

ninstances the number of instances to be used in the experiment.
power target power for the comparisons (see Details)
sig.level desired family-wise significance level (alpha) for the experiment

alternative.side
type of alternative hypothesis to be performed ("two.sided" or "one.sided")

test type of test to be used ("t.test", "wilcoxon" or "binomial")

non

power.target which comparison should have the desired power? Accepts "mean", "median",
or "worst.case" (this last one is equivalent to the Bonferroni correction).

Details

The main use of this routine uses the closed formula of the t-test to calculate the number of instances
required for the comparison of pairs of algorithms, given a desired power and standardized effect
size of interest. Significance levels of each comparison are adjusted using Holm’s step-down cor-
rection (the default). The routine also takes into account whether the desired statistical power refers
to the mean power (the default), median, or worst-case (which is equivalent to designing the experi-
ment for the more widely-known Bonferroni correction). See the reference by Campelo and Wanner
for details.

Value

a list object containing the following items:

e ninstances - number of instances

* power - the power of the comparison

d - the effect size
* sig.level - significance level
* alternative.side - type of alternative hypothesis

* test - type of test

calc_instances 5

Sample Sizes for Nonparametric Methods

If the parameter test is set to either Wilcoxon or Binomial, this routine approximates the number
of instances using the ARE of these tests in relation to the paired t.test, using the formulas (see
reference by Campelo and Takahashi for details):

n.wilcox = n.ttest/0.86 = 1.163 n.ttest
n.binom = n.ttest/0.637 = 1.570 * n.ttest

Author(s)

Felipe Campelo (<fcampelo@ufmg.br>, <f.campelo@aston.ac.uk>)

References

» P. Mathews. Sample size calculations: Practical methods for engineers and scientists. Math-
ews Malnar and Bailey, 2010.

» F. Campelo, F. Takahashi: Sample size estimation for power and accuracy in the experimental
comparison of algorithms. Journal of Heuristics 25(2):305-338, 2019.

» F. Campelo, E. Wanner: Sample size calculations for the experimental comparison of multiple
algorithms on multiple problem instances. Submitted, Journal of Heuristics, 2019.

Examples

Calculate sample size for mean-case power
K <- 10 # number of comparisons
alpha <- 0.05 # significance level

power <- 0.9 # desired power

d <- 0.5 # MRES

out <- calc_instances(K, d,
power = power,
sig.level = alpha)

Plot power of each comparison to detect differences of magnitude d
plot(1:K, out$power,

type = "b", pch = 20, las = 1, ylim = c(@, 1), xlab = "comparison”,

ylab = "power"”, xaxs = "i", xlim = c(0, 11))
grid(11, NA)
points(c(@, K+1), c(power, power), type = "1", col = 2, 1ty = 2, 1lwd = .5)
text(1, 0.93, sprintf("Mean power = %2.2f for N = %d",

out$mean.power, out$ninstances), adj = 0)

Check sample size if planning for Wilcoxon tests:
calc_instances(K, d,

power = power,

sig.level = alpha,

test = "wilcoxon”)$ninstances

6 calc_nreps

Calculate power profile for predefined sample size
N <- 45
out2 <- calc_instances(K, d, ninstances = N, sig.level = alpha)

points(1:K, out2$power, type = "b", pch = 19, col = 3)
text(6, .7, sprintf(”"Mean power = %2.2f for N = %d",
out2$mean.power, out2$ninstances), adj = 0)

Sample size for worst-case (Bonferroni) power of 0.8, using Wilcoxon
out3 <- calc_instances(K, d, power = 0.9, sig.level = alpha,

test = "wilcoxon”, power.target = "worst.case")
out3$ninstances

For median power:
out4 <- calc_instances(K, d, power = 0.9, sig.level = alpha,

test = "wilcoxon”, power.target = "median”)
out4$ninstances
out4$power
calc_nreps Determine sample sizes for a set of algorithms on a single problem
instance
Description

Iteratively calculates the required sample sizes for K algorithms on a given problem instance, so
that the standard errors of the estimates of the pairwise differences in performance is controlled at
a predefined level.

Usage

calc_nreps(
instance,
algorithms,
se.max,
dif = "simple”,
comparisons = "all.vs.all",
method = "param”,
nstart 20,
nmax = 1000,
seed = NULL,
boot.R = 499,
ncpus = 1,
force.balanced = FALSE,
load.folder = NA,
save.folder = NA

calc_nreps 7

Arguments

instance a list object containing the definitions of the problem instance. See Section
Instance for details.

algorithms a list object containing the definitions of all algorithms. See Section Algorithms
for details.

se.max desired upper limit for the standard error of the estimated difference between
pairs of algorithms. See Section Pairwise Differences for details.

dif type of difference to be used. Accepts "perc" (for percent differences) or "sim-
ple" (for simple differences)

comparisons type of comparisons being performed. Accepts "all.vs.first" (in which cases
the first object in algorithms is considered to be the reference algorithm) or
"all.vs.all" (if there is no reference and all pairwise comparisons are desired).

method method to use for estimating the standard errors. Accepts "param" (for paramet-
ric) or "boot" (for bootstrap)

nstart initial number of algorithm runs for each algorithm. See Section Initial Number of Observations
for details.

nmax maximum total allowed number of runs to execute. Loaded results (see 1oad. folder
below) do not count towards this total.

seed seed for the random number generator

boot.R number of bootstrap resamples to use (if method == "boot")

ncpus number of cores to use

force.balanced logical flag to force the use of balanced sampling for the algorithms on each
instance

"

load.folder name of folder to load results from. Use either "" or "./" for the current working
directory. Accepts relative paths. Use NA for not saving. calc_nreps() will
look for a .RDS file with the same name

save.folder name of folder to save the results. Use either "" or "./" for the current working
directory. Accepts relative paths. Use NA for not saving.

Value
a list object containing the following items:

* instance - alias for the problem instance considered
* Xk - list of observed performance values for all algorithms
* Nk - vector of sample sizes generated for each algorithm

* Diffk - data frame with point estimates, standard errors and other information for all algorithm
pairs of interest

* seed - seed used for the PRNG
» dif - type of difference used
* method - method used ("param" / "boot")

* comparisons - type of pairings ("all.vs.all" / "all.vs.first")

8 calc_nreps

Instance

Parameter instance must be a named list containing all relevant parameters that define the problem
instance. This list must contain at least the field instance$FUN, with the name of the function
implementing the problem instance, that is, a routine that calculates y = f(x). If the instance requires
additional parameters, these must also be provided as named fields.

Algorithms

Object algorithms is a list in which each component is a named list containing all relevant pa-
rameters that define an algorithm to be applied for solving the problem instance. In what follows
algorithm[[k1] refers to any algorithm specified in the algorithms list.

algorithm[[k]] must contain an algorithm[[kJ]$FUN field, which is a character object with
the name of the function that calls the algorithm; as well as any other elements/parameters that
algorithm[[k]J$FUN requires (e.g., stop criteria, operator names and parameters, etc.).

The function defined by the routine algorithm[[k]]$FUN must have the following structure: sup-
posing that the listin algorithm[[k]] has fields algorithm[[k]J$FUN = "myalgo”, algorithm[[k]]$par
="a" and algorithm$par2 =5, then:

myalgo <- function(parl, par2, instance, ...){
do stuff
...
return(results)

3

That is, it must be able to run if called as:

remove '$FUN' and '$alias' fields from list of arguments
and include the problem definition as field 'instance'
myargs <- algorithm[names(algorithm) != "FUN"]
myargs <- myargs[names(myargs) != "alias"]
myargs$instance <- instance

call function
do.call(algorithm$FUN,
args = myargs)

The algorithm$FUN routine must return a list containing (at least) the performance value of the
final solution obtained, in a field named value (e.g., result$value) after a given run.

Initial Number of Observations

In the general case the initial number of observations per algorithm (nstart) should be relatively
high. For the parametric case we recommend between 10 and 20 if outliers are not expected, or
between 30 and 50 if that assumption cannot be made. For the bootstrap approach we recommend
using at least 20. However, if some distributional assumptions can be made - particularly low

calc_nreps 9

skewness of the population of algorithm results on the test instances), then nstart can in principle
be as small as 5 (if the output of the algorithms were known to be normal, it could be 1).

In general, higher sample sizes are the price to pay for abandoning distributional assumptions. Use
lower values of nstart with caution.

Pairwise Differences

Parameter dif informs the type of difference in performance to be used for the estimation (y, and
1, represent the mean performance of any two algorithms on the test instance, and mu represents
the grand mean of all algorithms given in algorithms):

o If dif == "perc” and comparisons == "all.vs.first", the estimated quantity is ¢, =
(1 = o)/ =1 = (pp/).

e Ifdif == "perc” and comparisons == "all.vs.all", the estimated quantity is ¢op = (e —
)/ -

e Ifdif == "simple” it estimates o, — fp.

Author(s)

Felipe Campelo (<fcampelo@gmail.com>)

References
* F. Campelo, F. Takahashi: Sample size estimation for power and accuracy in the experimental
comparison of algorithms. Journal of Heuristics 25(2):305-338, 2019.

* P. Mathews. Sample size calculations: Practical methods for engineers and scientists. Math-
ews Malnar and Bailey, 2010.

* A.C. Davison, D.V. Hinkley: Bootstrap methods and their application. Cambridge University
Press (1997)

E.C. Fieller: Some problems in interval estimation. Journal of the Royal Statistical Society.
Series B (Methodological) 16(2), 175-185 (1954)

* V.Franz: Ratios: A short guide to confidence limits and proper use (2007). https://arxiv.org/pdf/0710.2024v1.pdf

* D.C. Montgomery, C.G. Runger: Applied Statistics and Probability for Engineers, 6th ed.
Wiley (2013)

Examples

Example using dummy algorithms and instances. See ?dummyalgo for details.
We generate dummy algorithms with true means 15, 10, 30, 15, 20; and true
standard deviations 2, 4, 6, 8, 10.

algorithms <- mapply(FUN = function(i, m, s){

list(FUN = "dummyalgo”,
alias = paste@("algo”, i),
distribution.fun = "rnorm”,

distribution.pars = list(mean = m, sd = s))J},
i =c(algl =1, alg2 = 2, alg3 = 3, alg4 = 4, alg5 = 5),
c(15, 10, 30, 15, 20),
c(2, 4, 6, 8, 10),

10 calc_se

SIMPLIFY = FALSE)

Make a dummy instance with a centered (zero-mean) exponential distribution:

instance = list(FUN = "dummyinstance"”, distr = "rexp"”, rate = 5, bias = -1/5)

Explicitate all other parameters (just this one time:

most have reasonable default values)

myreps <- calc_nreps(instance = instance,
algorithms = algorithms,
se.max = 0.05, # desired (max) standard error
dif = "perc", # type of difference
comparisons = "all.vs.all”, # differences to consider
method = "param”, # method ("param”, "boot")
nstart = 15, # initial number of samples
nmax = 1000, # maximum allowed sample size
seed = 1234, # seed for PRNG

boot.R = 499, # number of bootstrap resamples (unused)

ncpus =1, # number of cores to use
force.balanced = FALSE, # force balanced sampling?
load.folder = NA, # file to load results from
save.folder = NA) # folder to save results

summary (myreps)

plot(myreps)

calc_se Calculates the standard error for simple and percent differences
Description

Calculates the sample standard error for the estimator differences between multiple algorithms on a

given instance.

Usage
calc_se(
Xk,
dif = "simple”,
comparisons = "all.vs.all”,
method = "param”,
boot.R = 999
)
Arguments
Xk list object where each position contains a vector of observations of algorithm k
on a given problem instance.
dif name of the difference for which the SEs are desired. Accepts "perc” (for percent

differences) or "simple" (for simple differences)

calc_se 11

comparisons standard errors to be calculated. Accepts "all.vs.first" (in which cases the first
object in algorithms is considered to be the reference algorithm) or "all.vs.all"
(if there is no reference and all pairwise SEs are desired).

method method used to calculate the interval. Accepts "param" (using parametric for-
mulas based on normality of the sampling distribution of the means) or "boot"
(for bootstrap).
boot.R (optional) number of bootstrap resamples (if method == "boot")
Details
o If dif == "perc” it returns the standard errors for the sample estimates of pairs (mu2 —

mul)/mu, where mul, mu2 are the means of the populations that generated sample vec-
tors 1, 22, and

o Ifdif == "simple” it returns the SE for sample estimator of (mu2 — mul)

Value
a list object containing the following items:

* Phi.est - estimated values of the statistic of interest for each pair of algorithms of inter-
est (all pairs if comparisons == "all.vs.all", or all pairs containing the first algorithm if
comparisons == "all.vs.first").

¢ se - standard error estimates

References
» F. Campelo, F. Takahashi: Sample size estimation for power and accuracy in the experimental
comparison of algorithms. Journal of Heuristics 25(2):305-338, 2019.
Author(s)

Felipe Campelo (<fcampelo@ufmg.br>, <f.campelo@aston.ac.uk>)

Examples

three vectors of normally distributed observations
set.seed(1234)
Xk <- list(rnorm(1@, 5, 1), # mean =5, sd =1

rnorm(20, 10, 2), # mean = 10, sd = 2,

rnorm(50, 15, 5)) # mean = 15, sd = 3
calc_se(Xk, dif = "simple"”, comparisons = "all.vs.all”, method = "param")
calc_se(Xk, dif = "simple"”, comparisons = "all.vs.all”, method = "boot")
calc_se(Xk, dif = "perc"”, comparisons = "all.vs.first"”, method = "param")
calc_se(Xk, dif = "perc”, comparisons = "all.vs.first”, method = "boot")
calc_se(Xk, dif = "perc"”, comparisons = "all.vs.all”, method = "param")

calc_se(Xk, dif = "perc"”, comparisons = "all.vs.all”, method = "boot")

12 dummyalgo

consolidate_partial_results
Consolidate results from partial files

Description

Consolidates results from a set of partial files (each generated by an individual call to calc_nreps())
into a single output structure, similar (but not identical) to the output of run_experiment(). This
is useful e.g., to consolidate the results from interrupted experiments.

Usage

consolidate_partial_results(Configuration, folder = "./nreps_files")

Arguments

Configuration a named list containing all parameters required in a call to run_experiment()
except instances and algorithms. See the parameter list and default values
in run_experiment (). Notice that this is always returned as part of the output
structure of run_experiment(), so it generally easier to just retrieve it from
previously saved results.

folder folder where the partial files are located.

Value
a list object containing the following fields:

* data.raw - data frame containing all observations generated
* data.summary - data frame summarizing the experiment.

* N - number of instances sampled

* total.runs - total number of algorithm runs performed

* instances.sampled - names of the instances sampled

dummyalgo Dummy algorithm routine to test the sampling procedures

Description

This is a dummy algorithm routine to test the sampling procedures, in combination with dummyinstance().
dummyalgo() receives two parameters that determine the distribution of performances it will exhibit

on a hypothetical problem class: distribution.fun (with the name of a random number genera-

tion function, e.g. rnorm, runif, rexp etc.); and distribution.pars, anamed list of parameters to

be passed on to distribution. fun. The third parameter is an instance object (see calc_nreps()

for details), which is a named list with the following fields:

dummyalgo 13

* FUN = "dummyinstance” - must always be "dummyinstance" (will be ignored otherwise).

e distr - the name of a random number generation function.

e ... - other named fields with parameters to be passed down to the function in distr.
Usage
dummyalgo(
distribution.fun = "rnorm”,
distribution.pars = list(mean = @, sd = 1),
instance = list(FUN = "dummyinstance”, distr = "rnorm”, mean = @, sd = 1)
)
Arguments

distribution.fun
name of a function that generates random values according to a given distribu-
tion, e.g., "rnorm", "runif", "rexp" etc.

distribution.pars
list of named parameters required by the function in distribution.fun. Pa-
rameter n (number of points to generate) is unnecessary (this routine always
forcesn=1).

instance instance parameters (see Details).

Details

distribution.fun and distribution.pars regulate the mean performance of the dummy algo-
rithm on a given (hypothetical) problem class, and the between-instances variance of performance.
The instance specification in instance regulates the within-instance variability of results. Ideally
the distribution parameters passed to the instance should result in a within-instance distribution of
values with zero mean, so that the mean of the values returned by dummyalgo is regulated only by
distribution.fun and distribution.pars.

The value returned by dummyalgo is sampled as follows:

offset <- do.call(distribution.fun, args = distribution.pars)
y <- offset + do.call(”"dummyinstance”, args = instance)

Value

a list object with a single field $value, containing a scalar numerical value distributed as described
at the end of Details.

Author(s)

Felipe Campelo (<fcampelo@ufmg.br>, <f.campelo@aston.ac.uk>)

See Also

dummyinstance()

14 dummyinstance

Examples

Make a dummy instance with a centered (zero-mean) exponential distribution:
instance = list(FUN = "dummyinstance”, distr = "rexp”, rate = 5, bias = -1/5)

Simulate a dummy algorithm that has a uniform distribution of expected
performance values, between -25 and 50.
dummyalgo(distribution.fun = "runif”,

distribution.pars = list(min = -25, max = 50),

instance = instance)

dummyinstance Dummy instance routine to test the sampling procedures

Description

This is a dummy instance routine to test the sampling procedures, in combination with dummyalgo().
dummyinstance() receives a parameter distr containing the name of a random number generation
function (e.g. rnorm, runif, rexp etc.), plus a variable number of arguments to be passed down to
the function in distr.

Usage
dummyinstance(distr, ..., bias = 0)
Arguments
distr name of a function that generates random values according to a given distribu-
tion, e.g., "rnorm", "runif", "rexp" etc.
additional parameters to be passed down to the function in distr. Parameter n
(number of points to generate) is unnecessary (this routine always forces n = 1).
bias a bias term to add to the results of the distribution function (e.g., to set the mean
to zero).
Value

a single numeric value sampled from the desired distribution.

Author(s)

Felipe Campelo (<fcampelo@ufmg.br>, <f.campelo@aston.ac.uk>)

See Also

dummyalgo()

example_SANN 15

Examples

dummyinstance(distr = "rnorm”, mean = 10, sd = 1)

Make a centered (zero-mean) exponential distribution:
lambda = 4

10000 observations

set.seed(1234)

y <= numeric(10000)

for (i in 1:10000) y[i] <- dummyinstance(distr = "rexp"”, rate = lambda,
bias = -1/lambda)

mean(y)

hist(y, breaks = 50, xlim = c(-0.5, 2.5))

example_SANN Simulated annealing (for testing/examples)

Description

Adapted from stats::optim(). Check their documentation / examples for details.

Usage

example_SANN(Temp, budget, instance)

Arguments
Temp controls the "SANN" method. It is the starting temperature for the cooling
schedule.
budget stop criterion: number of function evaluations to execute
instance an instance object (see calc_nreps() for details)
Examples
Not run:

instance <- list(FUN = "TSP.dist”, mydist = datasets::eurodist)
example_SANN(Temp = 2000, budget = 10000, instance = instance)

End(Not run)

16 get_observations

get_observations Run an algorithm on a problem.

Description

Call algorithm routine for the solution of a problem instance

Usage

get_observations(algo, instance, n = 1)

Arguments
algo a list object containing the definitions of the algorithm. See calc_nreps() for
details.
instance a list object containing the definitions of the problem instance. See calc_nreps()
for details.
n number of observations to generate.
Value

vector of observed performance values

Author(s)

Felipe Campelo (<fcampelo@ufmg.br>, <f.campelo@aston.ac.uk>)

See Also

calc_nreps()

Examples

Make a dummy instance with a centered (zero-mean) exponential distribution:
instance <- 1list(FUN = "dummyinstance”, distr = "rexp”, rate = 5, bias = -1/5)

Simulate a dummy algorithm that has a uniform distribution of expected
performance values, between -25 and 50.
algorithm <- list(FUN = "dummyalgo”,
distribution.fun = "runif”,
distribution.pars = list(min = -25, max = 50))
x <- get_observations(algorithm, instance, n = 1000)
hist(x)

plot. CAISEr 17

plot.CAISEr plot. CAISEr

Description

S3 method for plotting CAISEr objects output by run_experiment().

Usage

S3 method for class 'CAISEr'
plot(

X7

y = NULL,

latex = FALSE,

reorder = FALSE,

show.text = TRUE,

digits = 3,
layout = NULL
)
Arguments
X list object of class CAISEr.
y unused. Included for consistency with generic plot method.
other parameters to be passed down to specific plotting functions (currently un-
used)
latex logical: should labels be formatted for LaTeX? (useful for later saving using
library TikzDevice)
reorder logical: should the comparisons be reordered alphabetically?
show. text logical: should text be plotted?
digits how many significant digits should be used in text?
layout optional parameter to override the layout of the plots (see gridExtra: :arrangeGrobs()
for details. The default layoutis lay = rbind(c(1,1,1,1,1,1), c(1,1,1,1,1,1),
C(2’2)2)3)3)3))
Value

list containing (1) a list of of ggplot2 objects generated, and (2) a list of data frames used for the
creation of the plots.

18 plot.nreps
plot.nreps plot.nreps
Description
S3 method for plotting nreps objects output by calc_nreps()).
Usage
S3 method for class 'nreps'’
plot(
X,
y = NULL,
instance.name = NULL,
latex = FALSE,
show.SE = TRUE,
show.CI = TRUE,
sig.level = 0.05,
show.text = TRUE
)
Arguments
X list object of class nreps (generated by calc_nreps()) or of class CAISEr (in
which case an instance.name must be provided).
y unused. Included for consistency with generic plot method.
other parameters to be passed down to specific plotting functions (currently un-
used)
instance.name name for instance to be plotted if object is of class CAISEr. Ignored otherwise.
latex logical: should labels be formatted for LaTeX? (useful for later saving using
library TikzDevice)
show. SE logical: should standard errors be plotted?
show.CI logical: should confidence intervals be plotted?
sig.level significance level for the confidence interval. 0 < sig.level < 1
show. text logical: should text be plotted?
Value

ggplot object (invisibly)

print. CAISEr 19

print.CAISEr print. CAISEr

Description

S3 method for printing CAISEr objects (the output of run_experiment()).

Usage
S3 method for class 'CAISEr'
print(x, ..., echo = TRUE, digits = 4, right = TRUE, breakrows = FALSE)
Arguments
X list object of class CAISEr (generated by run_experiment())
other parameters to be passed down to specific summary functions (currently
unused)
echo logical flag: should the print method actually print to screen?
digits the minimum number of significant digits to be used. See print.default().
right logical, indicating whether or not strings should be right-aligned.
breakrows logical, indicating whether to "widen" the output table by placing the bottom

half to the right of the top half.

Value

data frame object containing the summary table (invisibly)

Examples

Example using four dummy algorithms and 100 dummy instances.

See [dummyalgo()] and [dummyinstance()] for details.

Generating 4 dummy algorithms here, with means 15, 10, 30, 15 and standard
deviations 2, 4, 6, 8.

algorithms <- mapply(FUN = function(i, m, s){

list(FUN = "dummyalgo”,
alias = paste@("algo"”, i),
distribution.fun = "rnorm”,

distribution.pars = list(mean = m, sd = s))},
i = c(algl =1, alg2 = 2, alg3 = 3, algd = 4),
m = c(15, 10, 30, 15),
s =c(2, 4, 6, 8),
SIMPLIFY = FALSE)

Generate 100 dummy instances with centered exponential distributions
instances <- lapply(1:100,
function(i) {rate <- runif(1, 1, 10)
list(FUN = "dummyinstance”,

20

alias = pasteo("Inst.”, i),
distr = "rexp"”, rate = rate,

bias = -1/ rate)})

my.results <- run_experiment(instances, algorithms,

my.results

d=1, se.max = .1,

power = .9, sig.level = .05,
power.target = "mean”,

dif = "perc”, comparisons = "all.vs.all"”,

seed = 1234, ncpus = 1)

run_experiment

run_experiment

ple instances

Run a full experiment for comparing multiple algorithms using multi-

Description

Design and run a full experiment - calculate the required number of instances, run the algorithms on
each problem instance using the iterative approach based on optimal sample size ratios, and return
the results of the experiment. This routine builds upon calc_instances() and calc_nreps(), so
refer to the documentation of these two functions for details.

Usage

run_experiment(
instances,
algorithms,
d,
se.max,
power = 0.8,
sig.level = 0.05,

power.target = "mean’

dif = "simple”,

1
’

comparisons = "all.vs.all"”,
alternative = "two.sided”,

test = "t.test",
method = "param”,
nstart = 20,

nmax = 100 x length(algorithms),

force.balanced = FALSE,

ncpus = 2,
boot.R = 499,
seed = NULL,

save.partial.results
load.partial.results

NA,
NA,

run_experiment

21

save.final.result = NA

Arguments

instances

algorithms

se.Mmax

power

sig.level

power. target

dif

comparisons

alternative

test
method

nstart

nmax

force.balanced

ncpus
boot.R

seed

list object containing the definitions of the available instances. This list may (or
may not) be exhausted in the experiment. To estimate the number of required in-
stances, see calc_instances(). For more details, see Section Instance List.

a list object containing the definitions of all algorithms. See Section Algorithms
for details.

minimally relevant effect size (MRES), expressed as a standardized effect size,
i.e., "deviation from HO" / "standard deviation". See calc_instances() for
details.

desired upper limit for the standard error of the estimated difference between
pairs of algorithms. See Section Pairwise Differences for details.

(desired) test power. See calc_instances() for details. Any value equal
to or greater than one will force the method to use all available instances in
Instance.list.

family-wise significance level (alpha) for the experiment. See calc_instances()
for details.

non

which comparison should have the desired power? Accepts "mean", "median",
or "worst.case" (this last one is equivalent to the Bonferroni correction).

type of difference to be used. Accepts "perc” (for percent differences) or "sim-
ple" (for simple differences)

type of comparisons being performed. Accepts "all.vs.first" (in which cases
the first object in algorithms is considered to be the reference algorithm) or
"all.vs.all" (if there is no reference and all pairwise comparisons are desired).

type of alternative hypothesis ("two.sided" or "less" or "greater"). See calc_instances()

for details.

"non

type of test to be used ("t.test", "wilcoxon" or "binomial")

method to use for estimating the standard errors. Accepts "param" (for paramet-
ric) or "boot" (for bootstrap)

initial number of algorithm runs for each algorithm. See Section Initial Number of Observations

for details.

maximum number of runs to execute on each instance (see calc_nreps()).
Loaded results (see load.partial.results below) do not count towards this
maximum.

logical flag to force the use of balanced sampling for the algorithms on each
instance

number of cores to use
number of bootstrap resamples to use (if method == "boot")

seed for the random number generator

22

run_experiment

save.partial.results
should partial results be saved to files? Can be either NA (do not save) or a
character string pointing to a folder. File names are generated based on the
instance aliases. Existing files with matching names will be overwritten.
run_experiment () uses .RDS files for saving and loading.
load.partial.results
should partial results be loaded from files? Can be either NA (do not save)
or a character string pointing to a folder containing the file(s) to be loaded.
run_experiment () will use .RDS file(s) with a name(s) matching instance
aliases. run_experiment() uses .RDS files for saving and loading.
save.final.result
should the final results be saved to file? Can be either NA (do not save) or a
character string pointing to a folder where the results will be saved on a .RDS
file starting with CAISEr_results_ and ending with 12-digit datetime tag in the
format YYYYMMDDhhmmss.

Value

a list object containing the following fields:

* Configuration - the full input configuration (for reproducibility)
* data.raw - data frame containing all observations generated

* data.summary - data frame summarizing the experiment.

* N - number of instances sampled

* N.star - number of instances required

* total.runs - total number of algorithm runs performed

* instances.sampled - names of the instances sampled

* Underpowered - flag: TRUE if N < N.star

Instance List

Parameter instances must contain a list of instance objects, where each field is itself a list, as
defined in the documentation of function calc_nreps(). In short, each element of instances is an
instance, i.e., a named list containing all relevant parameters that define the problem instance. This
list must contain at least the field instance$FUN, with the name of the problem instance function,
that is, a routine that calculates y = f(x). If the instance requires additional parameters, these must
also be provided as named fields. An additional field, "instance$alias", can be used to provide the
instance with a unique identifier (e.g., when using an instance generator).

Algorithm List

Object algorithms is a list in which each component is a named list containing all relevant pa-
rameters that define an algorithm to be applied for solving the problem instance. In what follows
algorithms[[k]] refers to any algorithm specified in the algorithms list.

algorithms[[k]] must contain an algorithms[[k]]$FUN field, which is a character object with
the name of the function that calls the algorithm; as well as any other elements/parameters that
algorithms[[k]JI$FUN requires (e.g., stop criteria, operator names and parameters, etc.).

run_experiment 23

The function defined by the routine algorithms[[k]1J$FUN must have the following structure: sup-
posing that the listin algorithms[[k]] has fields algorithm[[k]1$FUN = "myalgo”, algorithms[[k]J$par
="a" and algorithms[[k]]$par2 =5, then:

myalgo <- function(parl, par2, instance, ...){
#
<do stuff>
#
return(results)
}

That is, it must be able to run if called as:

remove '$FUN' and '$alias' field from list of arguments
and include the problem definition as field 'instance'
myargs <- algorithm[names(algorithm) != "FUN"]
myargs <- myargs[names(myargs) != "alias"]
myargs$instance <- instance

call function
do.call(algorithm$FUN,
args = myargs)

The algorithm$FUN routine must return a list containing (at least) the performance value of the
final solution obtained, in a field named value (e.g., result$value) after a given run. In general it
is easier to write a small wrapper function around existing implementations.

Initial Number of Observations

In the general case the initial number of observations / algorithm / instance (nstart) should be
relatively high. For the parametric case we recommend 10~15 if outliers are not expected, and
30~40 (at least) if that assumption cannot be made. For the bootstrap approach we recommend
using at least 15 or 20. However, if some distributional assumptions can be made - particularly low
skewness of the population of algorithm results on the test instances), then nstart can in principle
be as small as 5 (if the output of the algorithm were known to be normal, it could be 1).

In general, higher sample sizes are the price to pay for abandoning distributional assumptions. Use
lower values of nstart with caution.

Pairwise Differences

Parameter dif informs the type of difference in performance to be used for the estimation (y, and
Ly represent the mean performance of any two algorithms on the test instance, and mu represents
the grand mean of all algorithms given in algorithms):

o If dif == "perc” and comparisons == "all.vs.first", the estimated quantity is: ¢ =
(1 = po) /i =1 = (/).

24 run_experiment

* Ifdif == "perc"” and comparisons == "all.vs.all", the estimated quantity is: ¢ap = (pta—
1)/ b
o Ifdif == "simple” it estimates t, — L.

Sample Sizes for Nonparametric Methods

If the parameter “ is set to either Wilcoxon or ‘Binomial‘, this routine approximates the number of
instances using the ARE of these tests in relation to the paired t.test:

* n.wilcox=n.ttest /0.86=1.163 *n.ttest

* n.binom=n.ttest /0.637=1.570 * n.ttest

Author(s)

Felipe Campelo (<fcampelo@ufmg.br>, <f.campelo@aston.ac.uk>)

References

» F. Campelo, F. Takahashi: Sample size estimation for power and accuracy in the experimental
comparison of algorithms. Journal of Heuristics 25(2):305-338, 2019.

» P. Mathews. Sample size calculations: Practical methods for engineers and scientists. Math-
ews Malnar and Bailey, 2010.

* A.C. Davison, D.V. Hinkley: Bootstrap methods and their application. Cambridge University
Press (1997)

E.C. Fieller: Some problems in interval estimation. Journal of the Royal Statistical Society.
Series B (Methodological) 16(2), 175-185 (1954)

* V.Franz: Ratios: A short guide to confidence limits and proper use (2007). https://arxiv.org/pdf/0710.2024v1.pdf

* D.C. Montgomery, C.G. Runger: Applied Statistics and Probability for Engineers, 6th ed.
Wiley (2013)

e D.J. Sheskin: Handbook of Parametric and Nonparametric Statistical Procedures, 4th ed.,
Chapman & Hall/CRC, 1996.

Examples

Example using four dummy algorithms and 100 dummy instances.

See [dummyalgo()] and [dummyinstance()] for details.

Generating 4 dummy algorithms here, with means 15, 10, 30, 15 and standard
deviations 2, 4, 6, 8.

algorithms <- mapply(FUN = function(i, m, s){

list(FUN = "dummyalgo”,
alias = paste@("algo"”, i),
distribution.fun = "rnorm”,

distribution.pars = list(mean = m, sd = s))},
i = c(algl =1, alg2 = 2, alg3 = 3, algd = 4),
m = c(15, 10, 30, 15),
s = c(2, 4, 6, 8),
SIMPLIFY = FALSE)

se_boot 25

Generate 100 dummy instances with centered exponential distributions
instances <- lapply(1:100,
function(i) {rate <- runif(1, 1, 10)

list(FUN = "dummyinstance”,
alias = paste@("Inst.”, i),
distr = "rexp”, rate = rate,
bias = -1/ rate)})

my.results <- run_experiment(instances, algorithms,

d= .5 se.max = .1,

power = .9, sig.level = .05,
power.target = "mean”,

dif = "perc"”, comparisons = "all.vs.all”,

ncpus = 1, seed = 1234)

Take a look at the results
summary (my.results)
plot(my.results)

se_boot Bootstrap standard errors

Description

Calculates the standard errors of a given statistic using bootstrap

Usage
se_boot(Xk, dif = "simple”, comparisons = "all.vs.all”, boot.R = 999, ...)
Arguments
Xk list object where each position contains a vector of observations of algorithm k
on a given problem instance.
dif name of the difference for which the SEs are desired. Accepts "perc” (for percent
differences) or "simple" (for simple differences)
comparisons standard errors to be calculated. Accepts "all.vs.first" (in which cases the first
object in algorithms is considered to be the reference algorithm) or "all.vs.all"
(if there is no reference and all pairwise SEs are desired).
boot.R (optional) number of bootstrap resamples (if method == "boot")
other parameters (used only for compatibility with calls to se_param(), unused
in this function)
Value

Data frame containing, for each pair of interest, the estimated difference (column "Phi") and the
sample standard error (column "SE")

26 se_param

References

* A.C. Davison, D.V. Hinkley: Bootstrap methods and their application. Cambridge University
Press (1997)

» F. Campelo, F. Takahashi: Sample size estimation for power and accuracy in the experimental
comparison of algorithms. Journal of Heuristics 25(2):305-338, 2019.

Author(s)

Felipe Campelo (<fcampelo@ufmg.br>, <f.campelo@aston.ac.uk>)

Examples

three vectors of normally distributed observations
set.seed(1234)
Xk <- list(rnorm(10, 5, 1), # mean

5, sd =1

rnorm(20, 10, 2), # mean = 10, sd = 2,
rnorm(20, 15, 5)) # mean = 15, sd = 3
se_boot(Xk, dif = "simple”, comparisons = "all.vs.all")
se_boot(Xk, dif = "perc”, comparisons = "all.vs.first")
se_boot(Xk, dif = "perc”, comparisons = "all.vs.all")
se_param Parametric standard errors

Description

Calculates the standard errors of a given statistic using parametric formulas

Usage
se_param(Xk, dif = "simple", comparisons = "all.vs.all”, ...)
Arguments
Xk list object where each position contains a vector of observations of algorithm k
on a given problem instance.
dif name of the difference for which the SEs are desired. Accepts "perc"” (for percent
differences) or "simple" (for simple differences)
comparisons standard errors to be calculated. Accepts "all.vs.first" (in which cases the first

object in algorithms is considered to be the reference algorithm) or "all.vs.all"
(if there is no reference and all pairwise SEs are desired).

other parameters (used only for compatibility with calls to se_boot (), unused
in this function)

summary.CAISEr 27

Value

Data frame containing, for each pair of interest, the estimated difference (column "Phi") and the
sample standard error (column "SE")

References

* E.C. Fieller: Some problems in interval estimation. Journal of the Royal Statistical Society.
Series B (Methodological) 16(2), 175-185 (1954)

* V. Franz: Ratios: A short guide to confidence limits and proper use (2007). https://arxiv.org/pdf/0710.2024v1.pdf

* D.C. Montgomery, C.G. Runger: Applied Statistics and Probability for Engineers, 6th ed.
Wiley (2013)

» F. Campelo, F. Takahashi: Sample size estimation for power and accuracy in the experimental
comparison of algorithms. Journal of Heuristics 25(2):305-338, 2019.

Author(s)

Felipe Campelo (<fcampelo@ufmg.br>, <f.campelo@aston.ac.uk>)

Examples

three vectors of normally distributed observations

set.seed(1234)

Xk <- list(rnorm(10, 5, 1), # mean =5, sd =1,
rnorm(20, 10, 2), # mean = 10, sd = 2,
rnorm(20, 15, 5)) # mean = 15, sd = 3

se_param(Xk, dif = "simple”, comparisons = "all.vs.all")

se_param(Xk, dif = "perc"”, comparisons = "all.vs.first")

se_param(Xk, dif = "perc"”, comparisons = "all.vs.all")
summary .CAISEr summary.CAISEr

Description

S3 method for summarizing CAISEr objects output by run_experiment()). Input parameters test,
alternative and sig.level can be used to override the ones used in the call to run_experiment ().

Usage

S3 method for class 'CAISEr'
summary(object, test = NULL, alternative = NULL, sig.level = NULL, ...)

28 summary.CAISEr

Arguments
object list object of class CAISEr (generated by run_experiment())
test type of test to be used ("t.test", "wilcoxon" or "binomial")
alternative type of alternative hypothesis ("two.sided" or "less" or "greater"). See calc_instances()
for details.
sig.level desired family-wise significance level (alpha) for the experiment
other parameters to be passed down to specific summary functions (currently
unused)
Value

A list object is returned invisibly, containing the details of all tests performed as well as information
on the total number of runs dedicated to each algorithm.

Examples

Example using four dummy algorithms and 100 dummy instances.

See [dummyalgo()] and [dummyinstance()] for details.

Generating 4 dummy algorithms here, with means 15, 10, 30, 15 and standard
deviations 2, 4, 6, 8.

algorithms <- mapply(FUN = function(i, m, s){

list(FUN = "dummyalgo”,
alias = paste0@("algo"”, i),
distribution.fun = "rnorm”,

distribution.pars = list(mean = m, sd = s))},
i = c(algl =1, alg2 = 2, alg3 = 3, algd = 4),
m = c(15, 10, 30, 15),
s = c(2, 4, 6, 8),
SIMPLIFY = FALSE)

Generate 100 dummy instances with centered exponential distributions
instances <- lapply(1:100,
function(i) {rate <- runif(1, 1, 10)

list(FUN = "dummyinstance”,
alias = paste@("Inst.”, i),
distr = "rexp”, rate = rate,
bias = -1/ rate)})

my.results <- run_experiment(instances, algorithms,

d=1, se.max = .1,

power = .9, sig.level = .05,

power.target = "mean”,

dif = "perc"”, comparisons = "all.vs.all”,

seed = 1234, ncpus = 1)
summary(my.results)

You can override some defaults if you want:
summary(my.results, test = "wilcoxon”)

summary.nreps 29

summary.nreps summary.nreps

Description

S3 method for summarizing nreps objects output by calc_nreps()).

Usage
S3 method for class 'nreps'
summary (object, ...)
Arguments
object list object of class nreps (generated by calc_nreps())
other parameters to be passed down to specific summary functions (currently
unused)
TSP.dist TSP instance generator (for testing/examples)

Description

Adapted from stats::optim(). Check their documentation / examples for details.

Usage
TSP.dist(x, mydist)

Arguments

X a valid closed route for the TSP instance

mydist object of class dist defining the TSP instance

Index

boot_sdm, 2

calc_instances, 3
calc_instances(), 20, 21, 28
calc_nreps, 6
calc_nreps(), 12, 15, 16, 18, 20-22, 29
calc_se, 10
consolidate_partial_results, 12

dummyalgo, 12
dummyalgo(), 14
dummyinstance, 14
dummyinstance(), 12, 13

example_SANN, 15
get_observations, 16

plot.CAISEr, 17
plot.nreps, 18
print.CAISEr, 19
print.default(), 719

run_experiment, 20
run_experiment(), 12, 17,19, 27, 28

se_boot, 25
se_boot(), 26
se_param, 26
se_param(), 25
summary.CAISEr, 27
summary.nreps, 29

TSP.dist, 29

30

	boot_sdm
	calc_instances
	calc_nreps
	calc_se
	consolidate_partial_results
	dummyalgo
	dummyinstance
	example_SANN
	get_observations
	plot.CAISEr
	plot.nreps
	print.CAISEr
	run_experiment
	se_boot
	se_param
	summary.CAISEr
	summary.nreps
	TSP.dist
	Index

