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antColony Ant Colony Optimization (Advanced Binary Ant Colony Optimization)
Description

Generates a search function based on the ant colony optimization. This function is called inter-
nally within the searchAlgorithm function. The Ant Colony Optimization (Advanced Binary Ant
Colony Optimization) (Kashef and Nezamabadi-pour 2015) algorithm consists of generating in each
iteration a random population of individuals (ants) according to the values of a pheromone matrix
(which is updated each iteration according to the paths most followed by the ants) and a heuristic
(which determines how good is each path to follow by the ants). The evaluation measure is calcu-
lated for each individual. The algorithm ends once the established number of iterations has been
reached

Usage

antColony(
population = 10,
iter = 10,
a =1
b =1
p=20.2,
q=1
to =
tmin
tmax
mode ,
verbose = FALSE

N o -

- s N

Arguments

population The number of ants population
iter The number of iterations

a Parameter to control the influence of the pheromone (If a=0, no pheromone in-
formation is used)

b Parameter to control the influence of the heuristic (If b=0, the attractiveness of
the movements is not taken into account)

p Rate of pheromone evaporation



t0o
tmin
tmax

mode

verbose

Value

antColony

Constant to determine the amount of pheromone deposited by the best ant. This
amount is determined by the Q/F equation (for minimization) where F is the cost
of the solution (F/Q for maximization)

Initial pheromone level
Minimum pheromone value
Maximum pheromone value

Heuristic information measurement. 1 -> min redundancy (by default). 2->
max-relevance and min-redundancy. 3-> feature-feature. 4-> based on F-score

Print the partial results in each iteration

Returns a search function that is used to guide the feature selection process.

Author(s)

Francisco Aragén Royon

References

Kashef S, Nezamabadi-pour H (2015). “An advanced ACO algorithm for feature subset selection.”
Neurocomputing, 147, 271 - 279. ISSN 0925-2312, doi:10.1016/j.neucom.2014.06.067, Advances
in Self-Organizing Maps Subtitle of the special issue: Selected Papers from the Workshop on Self-
Organizing Maps 2012 (WSOM 2012), https://www.sciencedirect.com/science/article/
abs/pii/S0925231214008601.

Examples

## The direct application of this function is an advanced use that consists of using this
# function directly and performing a search process in a feature space
## Classification problem

# Generates the filter evaluation function with ACO
filter_evaluator <- filterEvaluator('IEConsistency')

# Generates the search function
aco_search <- antColony()
# Performs the search process directly (parameters: dataset, target variable and evaluator)

aco_search(iris,

'Species', filter_evaluator)


https://doi.org/10.1016/j.neucom.2014.06.067
https://www.sciencedirect.com/science/article/abs/pii/S0925231214008601
https://www.sciencedirect.com/science/article/abs/pii/S0925231214008601
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binaryConsistency Binary consistency measure

Description

Generates an evaluation function that calculates the binary consistency, also known as "Sufficiency
test" from FOCUS (Almuallim and Dietterich 1991) (set measure). This function is called internally
within the filterEvaluator function.

Usage

binaryConsistency()

Value
Returns a function that is used to generate an evaluation set measure using the binary consistency
value for the selected features.

Author(s)

Adan M. Rodriguez

References

Almuallim H, Dietterich TG (1991). “Learning With Many Irrelevant Features.” In In Proceedings
of the Ninth National Conference on Artificial Intelligence, 547-552.

Examples

## The direct application of this function is an advanced use that consists of using this
# function directly to evaluate a set of features
## Classification problem

data("Titanic")
titanic <- as.data.frame(Titanic)

# A discrete dataset is used (in this case we use only several discrete columns)
titanic_subset <- titanic[, c("Class”, "Sex", "Age", "Survived")]

# Generate the evaluation function with Binary Consistency

bc_evaluator <- binaryConsistency()

# Evaluate the features (parameters: dataset, target variable and features)
bc_evaluator(titanic_subset, "Survived”, c("Class”, "Sex", "Age"))
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breadthFirst Breadth First Search (exhaustive search)

Description

Generates a search function based on the breadth first search. This function is called internally
within the searchAlgorithm function. Breadth First Search searches the whole features subset in
breadth first order (Kozen 1992).

Usage

breadthFirst()

Value

Returns a search function that is used to guide the feature selection process.

Author(s)

Adan M. Rodriguez

Francisco Aragén Royo6n

References

Kozen DC (1992). Depth-First and Breadth-First Search. Springer New York, New York, NY.
ISBN 978-1-4612-4400-4, doi:10.1007/9781461244004_4.

Examples

## The direct application of this function is an advanced use that consists of using this
# function directly and performing a search process in a feature space
## Classification problem

# Generates the filter evaluation function
filter_evaluator <- filterEvaluator('IEConsistency')

# Generates the search function with Breadth first

bfs_search <- breadthFirst()

# Performs the search process directly (parameters: dataset, target variable and evaluator)
bfs_search(iris, 'Species', filter_evaluator)


https://doi.org/10.1007/978-1-4612-4400-4_4
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chiSquared Chi squared measure

Description

Generates an evaluation function that calculates the Chi squared value (F.R.S. 1900), evaluating
the selected features individually (individual measure). This function is called internally within the
filterEvaluator function.

Usage
chiSquared()

Value

Returns a function that is used to generate an individual evaluation measure using chi squared.

References

FR.S. KP (1900). “X. On the criterion that a given system of deviations from the probable in the

case of a correlated system of variables is such that it can be reasonably supposed to have arisen from

random sampling.” The London, Edinburgh, and Dublin Philosophical Magazine and Journal of
Science, 50(302), 157-175. doi:10.1080/14786440009463897, https://doi.org/10.1080/14786440009463897,
https://doi.org/10.1080/14786440009463897.

Examples

## The direct application of this function is an advanced use that consists of using this
# function directly to individually evaluate a set of features
## Classification problem

# Generate the evaluation function with Chi squared

chiSquared_evaluator <- chiSquared()

# Evaluate the features (parameters: dataset, target variable and features)
chiSquared_evaluator(iris, 'Species',c('Sepal.Length'))

cramer Cramer V measure

Description

Generates an evaluation function that calculates Cramer’s V value (Cramer 1946), evaluating fea-
tures individually (individual measure). This function is called internally within the filterEvaluator
function.


https://doi.org/10.1080/14786440009463897
https://doi.org/10.1080/14786440009463897
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Usage

cramer ()

Value

Returns a function that is used to generate an individual evaluation measure using Cramer V.

References

Cramer H (1946). Mathematical methods of statistics / by Harald Cramer. Princeton University
Press Princeton. ISBN ISBN 0-691-08004-6.

Examples

## The direct application of this function is an advanced use that consists of using this
# function directly to individually evaluate a set of features
## Classification problem

# Generate the evaluation function with Cramer

cramer_evaluator <- cramer()

# Evaluate the features (parameters: dataset, target variable and features)
cramer_evaluator(iris, 'Species',c('Sepal.Length'))

deepFirst Deep First Search (exhaustive search)

Description

Generates a search function based on the deep first search. This function is called internally within
the searchAlgorithm function. Deep First Search searches the whole features subset in deep first
order (Kozen 1992).

Usage

deepFirst()

Value

Returns a search function that is used to guide the feature selection process.

Author(s)

Francisco Aragén Royon
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References

Kozen DC (1992). Depth-First and Breadth-First Search. Springer New York, New York, NY.
ISBN 978-1-4612-4400-4, doi:10.1007/9781461244004_4.

Examples

## The direct application of this function is an advanced use that consists of using this
# function directly and performing a search process in a feature space
## Classification problem

# Generates the filter evaluation function
filter_evaluator <- filterEvaluator('IEConsistency')

# Generates the search function with Deep first

dfs_search <- deepFirst()

# Performs the search process directly (parameters: dataset, target variable and evaluator)
dfs_search(iris, 'Species', filter_evaluator)

determinationCoefficient
R Squared, to continous features

Description

Generates an evaluation function that calculates the determinantion coefficient (Dodge 2008) of
continuous features (set measure). This function is called internally within the filterEvaluator
function.

Usage

determinationCoefficient()

Value
Returns a function that is used to generate an evaluation set measure using the R squared value for
the selected features.

Author(s)
Adan M. Rodriguez

References

Dodge Y (2008). Coefficient of Determination. Springer New York, New York, NY. ISBN 978-0-
387-32833-1, doi:10.1007/9780387328331_62.


https://doi.org/10.1007/978-1-4612-4400-4_4
https://doi.org/10.1007/978-0-387-32833-1_62

10 directFeatureSelection

Examples

## The direct application of this function is an advanced use that consists of using this
# function directly to evaluate a set of features
## Classification problem

# Generate the evaluation function with Determination Coefficient
dc_evaluator <- determinationCoefficient()

# Evaluate the features (parameters: dataset, target variable and features)
dc_evaluator(longley, 'Employed', c('GNP', 'Population', 'Year'))

directFeatureSelection
Direct Feature Selection Proccess

Description

Performs the direct feature selection process. Given a direct search algorithm and an evaluation
method, it uses the direct search algorithm in combination with the evaluation results to guide the
feature selection process to an optimal subset.

Usage

directFeatureSelection(data, class, directSearcher, evaluator)

Arguments

data A data.frame with the input dataset where the examples are in the rows and the
features and the target variable are in the columns. The dataset should be discrete
(feature columns are expected to be factors) if the following filter methods are
used as evaluation methods: Rough Set Consistency, Binary Consistency, IE
Consistency, IEP Consistency, Mutual Information, Gain Ratio, Symmetrical
Uncertain, Gini Index or MDLC. The Jd and F-Score filter methods only work
on classification problems with 2 classes in the target variable.

class The name of the dependent variable
directSearcher The algorithm to conduct the direct feature search. See directSearchAlgorithm.

evaluator The evaluation method to obtain a measure of the features. The evaluation
method can be a filter (see filterEvaluator) or a wrapper method (see wrapperEvaluator).
Value

A list is returned with the results of the direct feature selection process:

bestFeatures A vector with all features. Selected features are marked with 1, unselected features
are marked with 0.
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featuresSelected The names of the returned features sorted according to the result of the evaluation
measure

valuePerFeature The evaluation measures of the returned features
evaluationType Type of evaluation based on how the features have been evaluated.
evaluationMethod Evaluation method used.

searchMethod Search method used during the feature selection process.

target A character indicating if the objective of the process is to minimize or maximize the evalu-
ation measure.

numFeatures Number of features in the problem.
xNames Name of the features.
yNames Name of the dependent variable.

time Value of class "proc_time’ containing the user time, system time, and total time of the feature
selection process.

Author(s)

Francisco Aragén Royon

References

There are no references for Rd macro \insertAllCites on this help page.
Examples

## Examples of the direct feature selection process
## Classification problem with filter

# Generates the filter evaluation function

filter_evaluator <- filterEvaluator('ReliefFeatureSetMeasure')

# Generates the direct search function

direct_search_method <- directSearchAlgorithm('selectKBest')

# Runs the direct feature selection process

res <- directFeatureSelection(iris, 'Species', direct_search_method, filter_evaluator)

## Classification problem with wrapper

# Generates the wraper evaluation function

wrapper_evaluator <- wrapperEvaluator('knn")

# Generates the direct search function

direct_search_method <- directSearchAlgorithm('selectKBest"')

# Runs the direct feature selection process

res <- directFeatureSelection(iris, 'Species', direct_search_method, wrapper_evaluator)

## Examples of the direct feature selection process (with parameters)
## Regression problem with filter
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# Generates the filter evaluation function

filter_evaluator <- filterEvaluator('relief', list(neighbours.count = 4))

# Generates the direct search function

direct_search_method <- directSearchAlgorithm('selectkBest', list(k=2))

# Runs the direct feature selection process

res <- directFeatureSelection(mtcars, 'mpg', direct_search_method, filter_evaluator)

## Regression problem with wrapper

# Values for the caret trainControl function (resampling parameters)

resamplingParams <- list(method = "cv", repeats = 5)
# Values for the caret train function (fitting parameters)
fittingParams <- list(preProc = c("center”, "scale"), metric="RMSE",

tuneGrid = expand.grid(k = c(1:12)))
# Generates the wraper evaluation function
wrapper_evaluator <- wrapperEvaluator('knn', resamplingParams, fittingParams)
# Generates the direct search function
direct_search_method <- directSearchAlgorithm('selectkBest',list(k=2))
# Runs the direct feature selection process
res <- directFeatureSelection(mtcars, 'mpg', direct_search_method, wrapper_evaluator)

directSearchAlgorithm Direct search algorithm generator

Description

Generates a direct search function. This function in combination with the evaluator composes the
feature selection process. Specifically, the result of calling this function is another function that is
passed on as a parameter to the directFeatureSelection function. However, you can run this
function directly to perform a direct search process.

Usage

directSearchAlgorithm(directSearcher, params = list())

Arguments

directSearcher Name of the direct search algorithm. The available direct search algorithms are:
selectKBest See selectKBest
selectPercentile See selectPercentile
selectThreshold See selectThreshold
selectThresholdRange See selectThresholdRange
selectDifference See selectDifference
selectSlope See selectSlope

params List with the parameters of each direct search method. For more details see each
method. Default: empty list.
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Value

Returns a direct search function that is used in the feature selection process.

Author(s)

Francisco Aragén Royon

References

There are no references for Rd macro \insertAllCites on this help page.

Examples

## Examples of a direct search algorithm generation

direct_search_method_1 <- directSearchAlgorithm('selectKBest')
direct_search_method_2 <- directSearchAlgorithm('selectPercentile')
direct_search_method_3 <- directSearchAlgorithm('selectThreshold')

## Examples of a direct search algorithm generation (with parameters)

direct_search_method_1 <- directSearchAlgorithm('selectKBest', list(k=2))
direct_search_method_2 <- directSearchAlgorithm('selectPercentile', list(percentile=25))
direct_search_method_3 <- directSearchAlgorithm('selectThreshold', list(threshold=0.55))

## The direct application of this function is an advanced use that consists of using this
# function directly to perform a direct search process
## Classification problem

# Generates the filter evaluation function
filter_evaluator <- filterEvaluator('IEConsistency')

# Generates the direct search function

direct_search_method <- directSearchAlgorithm('selectKBest')

# Performs the diret search process directly (parameters: dataset, target variable and evaluator)
direct_search_method(iris, 'Species', filter_evaluator)

featureSelection Feature Selection Proccess

Description

Performs the feature selection process. Given a search algorithm and an evaluation method, it uses
the search algorithm in combination with the evaluation results to guide the feature selection process
to an optimal subset.
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Usage

featureSelection(data, class, searcher, evaluator)

Arguments
data A data.frame with the input dataset where the examples are in the rows and the
features and the target variable are in the columns. The dataset should be dis-
crete (feature columns are expected to be factors) if the following filter methods
are used as evaluation methods: Rough Set Consistency, Binary Consistency,
IE Consistency, IEP Consistency, Mutual Information, Gain Ratio, Symmetri-
cal Uncertain, Gini Index or MDLC. If Ant Colony Optimization is used as a
search strategy, the dataset must be numerical since heuristics only work with
continuous values. The Jd and F-Score filter methods only work on classification
problems with 2 classes in the target variable.
class The name of the dependent variable
searcher The algorithm to guide the search in the feature space. See searchAlgorithm.
evaluator The evaluation method to obtain a measure of the features. The evaluation
method can be a filter (see filterEvaluator) or a wrapper method (see wrapperEvaluator).
Value

A list is returned with the results of the feature selection process:

bestFeatures A vector with all features. Selected features are marked with 1, unselected features
are marked with 0.

bestValue Evaluation measure obtained with the feature selection.

evaluationType Type of evaluation based on how the features have been evaluated.

evaluationMethod Evaluation method used.

measureType Type of evaluation measure.

searchMethod Search method used during the feature selection process.

target A character indicating if the objective of the process is to minimize or maximize the evalu-
ation measure.

numFeatures Number of features in the problem.
xNames Name of the features.
yNames Name of the dependent variable.

time Value of class "proc_time’ containing the user time, system time, and total time of the feature
selection process.

Author(s)

Francisco Aragéon Royén

References

There are no references for Rd macro \insertAllCites on this help page.
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Examples

## Examples of the feature selection process
## Classification problem with filter

# Generates the filter evaluation function

filter_evaluator <- filterEvaluator('ReliefFeatureSetMeasure')

# Generates the search function

search_method <- searchAlgorithm('hillClimbing')

# Runs the feature selection process

res <- featureSelection(iris, 'Species', search_method, filter_evaluator)

## Classification problem with wrapper

# Generates the wraper evaluation function

wrapper_evaluator <- wrapperEvaluator('knn")

# Generates the search function

search_method <- searchAlgorithm('hillClimbing"')

# Runs the feature selection process

res <- featureSelection(iris, 'Species', search_method, wrapper_evaluator)

## Examples of the feature selection process (with parameters)
## Regression problem with filter

# Generates the filter evaluation function

filter_evaluator <- filterEvaluator('ReliefFeatureSetMeasure', list(iterations = 10))
# Generates the search function

search_method <- searchAlgorithm('hillClimbing', list(repeats=2))

# Runs the feature selection process

res <- featureSelection(mtcars, 'mpg', search_method, filter_evaluator)

## Regression problem with wrapper

# Values for the caret trainControl function (resampling parameters)

resamplingParams <- list(method = "cv", repeats = 5)
# Values for the caret train function (fitting parameters)
fittingParams <- list(preProc = c("center”, "scale"), metric="RMSE",

tuneGrid = expand.grid(k = c(1:12)))
# Generates the wraper evaluation function
wrapper_evaluator <- wrapperEvaluator('knn', resamplingParams, fittingParams)
# Generates the search function
search_method <- searchAlgorithm('geneticAlgorithm', list(popSize=10, maxiter=25, verbose=TRUE))
# Runs the feature selection process
res <- featureSelection(mtcars, 'mpg', search_method, wrapper_evaluator)
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filterEvaluator Filter measure generator

Description

Generates a filter function to be used as an evaluator in the feature selection proccess. More specif-
ically, the result of calling this function is another function that is passed on as a parameter to
the featureSelection function. However, you can also run this function directly to generate an
evaluation measure.

Usage

filterEvaluator(filter, params = list())

Arguments
filter Name of the filter method. The available filter methods are:
binaryConsistency Binary consistency measure. See binaryConsistency
chiSquared Chi squared measure. See chiSquared
cramer Cramer V measure. See cramer
determinationCoefficient R Squared, to continous features. See determinationCoefficient
fscore F-score measure. See fscore
gainRatio The gain ratio measure. See gainRatio
ginilndex Gini index measure. See giniIndex
IEConsistency Inconsistent Examples consistency measure. See IEConsistency
IEPConsistency Inconsistent Examples Pairs consistency measure. See chiSquared
Jd Jd evaluation measure. See Jd
MDLC MDLC evaluation measure. See MDLC
mutuallnformation The mutual information measure. See mutualInformation
roughsetConsistency Rough Set consistency measure. See roughsetConsistency
relief Relief. See relief
ReliefFeatureSetMeasure Relief Feature Set Measure evaluation measure. See
ReliefFeatureSetMeasure
symmetricalUncertain Symmetrical uncertain measure. See symmetricalUncertain
params List with the parameters of each filter method. For more details see each method.
Default: empty list.
Value

Returns a filter method that is used to generate an evaluation measure.

Author(s)

Francisco Aragén Royon
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References

There are no references for Rd macro \insertAllCites on this help page.

Examples

## Examples of a filter evaluator generation

filter_evaluator_1 <- filterEvaluator('cramer')
filter_evaluator_2 <- filterEvaluator('gainRatio')
filter_evaluator_3 <- filterEvaluator('MDLC")

## Examples of a filter evaluator generation (with parameters)

filter_evaluator_1 <- filterEvaluator('relief', list(neighbours.count=4, sample.size=15))
filter_evaluator_2 <- filterEvaluator('ReliefFeatureSetMeasure', list(iterations = 10))

## The direct application of this function is an advanced use that consists of using this
# function directly to evaluate a set of features
## Classification problem

# Generates the filter evaluation function

filter_evaluator <- filterEvaluator('ReliefFeatureSetMeasure')

# Evaluates features directly (parameters: dataset, target variable and features)
filter_evaluator(iris, 'Species',c('Sepal.Length', 'Sepal.Width', 'Petal.Length', 'Petal.Width'))

fscore F-score measure

Description
Generates an evaluation function that calculates the F-score approach defined in (Wang et al. 2018)
(individual measure). This function is called internally within the filterEvaluator function.
Usage

fscore()

Value

Returns a function that is used to generate an individual evaluation measure using the F-score.
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References

Wang D, Zhang Z, Bai R, Mao Y (2018). “A hybrid system with filter approach and multiple
population genetic algorithm for feature selection in credit scoring.” Journal of Computational
and Applied Mathematics, 329, 307-321. ISSN 0377-0427, doi:10.1016/j.cam.2017.04.036, The
International Conference on Information and Computational Science, 2—-6 August 2016, Dalian,
China, https://www.sciencedirect.com/science/article/abs/pii/S0377042717302078.

Examples

## The direct application of this function is an advanced use that consists of using this
# function directly to individually evaluate a set of features
## Classification problem

# Generate the evaluation function with F-Score

fscore_evaluator <- fscore()

# Evaluate the features (parameters: dataset, target variable and features)
fscore_evaluator(ToothGrowth, 'supp', c('len'))

gainRatio The gain ratio measure

Description

Generates an evaluation function that calculates the gain ratio value (Quinlan 1986), using the in-
formation theory (set measure). This function is called internally within the filterEvaluator
function.

Usage

gainRatio()

Value
Returns a function that is used to generate an evaluation set measure using the gain ratio value for
the selected features.

Author(s)

Adan M. Rodriguez

References

Quinlan JR (1986). “Induction of decision trees.” Machine Learning, 1(1), 81-106. ISSN 1573-
0565, doi:10.1007/BF00116251.


https://doi.org/10.1016/j.cam.2017.04.036
https://www.sciencedirect.com/science/article/abs/pii/S0377042717302078
https://doi.org/10.1007/BF00116251
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Examples

## The direct application of this function is an advanced use that consists of using this
# function directly to evaluate a set of features

## Classification problem

data("Titanic")

titanic <- as.data.frame(Titanic)

# A discrete dataset is used (in this case we use only several discrete columns)
titanic_subset <- titanic[, c(”"Class”, "Sex", "Age", "Survived")]

# Generate the evaluation function with Gain Ratio
gr_evaluator <- gainRatio()
# Evaluate the features (parameters: dataset, target variable and features)

gr_evaluator(titanic_subset, "Survived”, c(”"Class”, "Sex", "Age"))
geneticAlgorithm Genetic Algorithm
Description

Generates a search function based on a genetic algorithm. This function is called internally within
the searchAlgorithm function. The geneticAlgorithm method (Yang and Honavar 1998) starts
with an initial population of solutions and at each step applies a series of operators to the individuals
in order to obtain new and better population of individuals. These operators are selection, crossing
and mutation methods. This method uses the GA package implementation (Scrucca 2013) (Scrucca
2017).

Usage

geneticAlgorithm(
popSize = 20,
pcrossover = 0.8,
pmutation = 0.1,
maxiter = 100,
run = 100,
verbose = FALSE

)
Arguments
popSize The popuplation size
pcrossover The probability of crossover between individuals
pmutation The probability of mutation between individuals

maxiter The number of iterations
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run Number of consecutive iterations without fitness improvement to stop the algo-
rithm
verbose Print the partial results in each iteration. This functionality is not available if the

objective of the evaluation method is to minimize the target value (e.g. regres-
sion methods)
Value

Returns a search function that is used to guide the feature selection process.

Author(s)

Francisco Aragén Royo6n

References

Scrucca L (2013). “GA: A Package for Genetic Algorithms in R.” Journal of Statistical Software,
53(4), 1-37. https://www. jstatsoft.org/article/view/v0531i04.

Scrucca L (2017). “On some extensions to GA package: hybrid optimisation, parallelisation and
islands evolution.” The R Journal, 9(1), 187-206. https://journal.r-project.org/articles/
RJ-2017-008/.

Yang J, Honavar V (1998). “Feature subset selection using a genetic algorithm.” In Feature ex-
traction, construction and selection, 117-136. Springer.

Examples

## The direct application of this function is an advanced use that consists of using this
# function directly and performing a search process in a feature space
## Classification problem

# Generates the filter evaluation function
filter_evaluator <- filterEvaluator('IEConsistency')

# Generates the search function with Genetic algorithm

ga_search <- geneticAlgorithm()

# Performs the search process directly (parameters: dataset, target variable and evaluator)
ga_search(iris, 'Species', filter_evaluator)

giniIndex Gini index measure

Description

Generates an evaluation function that calculates the gini index (Ceriani and Verme 2012) of discrete
features (set measure). This function is called internally within the filterEvaluator function.


https://www.jstatsoft.org/article/view/v053i04
https://journal.r-project.org/articles/RJ-2017-008/
https://journal.r-project.org/articles/RJ-2017-008/
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Usage

giniIndex()

Value
Returns a function that is used to generate an evaluation set measure using the Gini index value for
the selected features.

Author(s)
Adan M. Rodriguez

References

Ceriani L, Verme P (2012). “The origins of the Gini index: extracts from Variabilita e Mutabilita
(1912) by Corrado Gini.” The Journal of Economic Inequality, 10(3), 421-443. ISSN 1573-8701,
doi:10.1007/s108880119188x.

Examples

## The direct application of this function is an advanced use that consists of using this
# function directly to evaluate a set of features
## Classification problem

data("Titanic")
titanic <- as.data.frame(Titanic)

# A discrete dataset is used (in this case we use only several discrete columns)
titanic_subset <- titanic[, c(”"Class”, "Sex", "Age", "Survived")]

# Generate the evaluation function with Gini Index
giniIndex_evaluator <- ginilndex()
# Evaluate the features (parameters: dataset, target variable and features)

giniIndex_evaluator(titanic_subset, "Survived”, c("Class"”, "Sex", "Age"))
hillClimbing Hill-Climbing
Description

Generates a search function based on the hill climbing method. This function is called internally
within the searchAlgorithm function. The Hill-Climbing (Russell and Norvig 2009) method starts
with a certain set of features and in each iteration it searches among its neighbors to advance towards
a better solution. The method ends as soon as no better solutions are found.


https://doi.org/10.1007/s10888-011-9188-x
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Usage

hillClimbing

hillClimbing(start = NULL, nneigh = NULL, repeats = 1, verbose = FALSE)

Arguments

start

nneigh

repeats

verbose

Value

Binary vector with the set of initial features

Number of neighbors to evaluate in each iteration of the algorithm. By default:
all posibles. It is important to note that a high value of this parameter consider-
ably increases the computation time.

Number of repetitions of the algorithm

Print the partial results in each iteration

Returns a search function that is used to guide the feature selection process.

Author(s)

Francisco Aragén Roy6n

References

Russell S, Norvig P (2009). Artificial Intelligence: A Modern Approach, 3rd edition. Prentice Hall
Press, Upper Saddle River, NJ, USA. ISBN 0136042597, 9780136042594.

Examples

## The direct application of this function is an advanced use that consists of using this
# function directly and performing a search process in a feature space
## Classification problem

# Generates the filter evaluation function
filter_evaluator <- filterEvaluator('IEConsistency')

# Generates the search function with Hill-Climbing
hc_search <- hillClimbing()
# Performs the search process directly (parameters: dataset, target variable and evaluator)

hc_search(iris,

'Species', filter_evaluator)
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hybridFeatureSelection
Hybrid Feature Selection Proccess

Description

Performs the hybrid feature selection process. Given a hybrid search algorithm and an two evalua-
tion methods, it uses the hybrid search algorithm in combination with the evaluation results to guide
the feature selection process to an optimal subset.

Usage

hybridFeatureSelection(data, class, hybridSearcher, evaluator_1, evaluator_2)

Arguments

data A data.frame with the input dataset where the examples are in the rows and the
features and the target variable are in the columns. The dataset should be discrete
(feature columns are expected to be factors) if the following filter methods are
used as evaluation methods: Rough Set Consistency, Binary Consistency, IE
Consistency, IEP Consistency, Mutual Information, Gain Ratio, Symmetrical
Uncertain, Gini Index or MDLC. The Jd and F-Score filter methods only work
on classification problems with 2 classes in the target variable.

class The name of the dependent variable
hybridSearcher The algorithm to guide the hybrid search in the feature space. See hybridSearchAlgorithm.

evaluator_1 The first evaluation method. This method can be a filter (see filterEvaluator)
or a wrapper method (see wrapperEvaluator).

evaluator_2 The second evaluation method. This method can be a filter (see filterEvaluator)
or a wrapper method (see wrapperEvaluator). If the LCC algorithm is used,
the measure must evaluate feature sets.

Value
A list is returned with the results of the hybrid feature selection process:
bestFeatures A vector with all features. Selected features are marked with 1, unselected features
are marked with 0.
bestValue Evaluation measure obtained with the feature selection.
evaluationType_1 Type of evaluation based on how the features have been evaluated.
evaluationMethod_1 Evaluation method used for the first evaluator.
measureType_1 Type of evaluation measure for the first evaluator.

evaluationType_2 Type of evaluation based on how the features have been evaluated for the first
evaluator.

evaluationMethod_2 Evaluation method used for the second evaluator.
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measureType_2 Type of evaluation measure for the second evaluator.
searchMethod Search method used during the feature selection process for the second evaluator.

target A character indicating if the objective of the process is to minimize or maximize the evalu-
ation measure.

numFeatures Number of features in the problem.
xNames Name of the features.
yNames Name of the dependent variable.

time Value of class "proc_time’ containing the user time, system time, and total time of the feature
selection process.

Author(s)

Francisco Aragén Roy6n

References

There are no references for Rd macro \insertAllCites on this help page.

Examples

## Examples of the hybrid feature selection process
## Classification problem with filter

# Generates the first filter evaluation function (individual or set measure)

f_evaluator_1 <- filterEvaluator('determinationCoefficient')

# Generates the second filter evaluation function (mandatory set measure)

f_evaluator_2 <- filterEvaluator('ReliefFeatureSetMeasure')

# Generates the hybrid search function

hybrid_search_method <- hybridSearchAlgorithm('LCC")

# Runs the hybrid feature selection process

res <- hybridFeatureSelection(iris, 'Species',hybrid_search_method, f_evaluator_1,f_evaluator_2)

## Classification problem with wrapper

# Generates the first wrapper evaluation function (individual or set measure)

w_evaluator_1 <- wrapperEvaluator('rf')

# Generates the second wrapper evaluation function (mandatory set measure)

w_evaluator_2 <- wrapperEvaluator('knn")

# Generates the hybrid search function

hybrid_search_method <- hybridSearchAlgorithm('LCC")

# Runs the hybrid feature selection process

res <- hybridFeatureSelection(iris, 'Species', hybrid_search_method,w_evaluator_1,w_evaluator_2)

## Classification problem mixed (with filter & wrapper)

# Generates the first filter evaluation function (individual or set measure)
f_evaluator <- filterEvaluator('determinationCoefficient')
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# Generates the second wrapper evaluation function (mandatory set measure)

w_evaluator <- wrapperEvaluator('knn')

# Generates the hybrid search function

hybrid_search_method <- hybridSearchAlgorithm('LCC")

# Runs the hybrid feature selection process

res <- hybridFeatureSelection(iris, 'Species', hybrid_search_method, f_evaluator, w_evaluator)

hybridSearchAlgorithm Hybrid search algorithm generator

Description

Generates a hybrid search function. This function in combination with the evaluator guides the
feature selection process. Specifically, the result of calling this function is another function that is
passed on as a parameter to the featureSelection function. However, you can run this function
directly to perform a search process in the features space.

Usage

hybridSearchAlgorithm(hybridSearcher, params = list())

Arguments

hybridSearcher Name of the hybrid search algorithm. The available hybrid search algorithms
are:

LCC Linear Consistency-Constrained algorithm (LCC). See LCC

params List with the parameters of each hybrid search method. For more details see
each method. Default: empty list.

Value

Returns a hybrid search function that is used to guide the feature selection process.

Author(s)

Francisco Aragén Royon

References

There are no references for Rd macro \insertAllCites on this help page.
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Examples

## Examples of a hybrid search algorithm generation

hybrid_search_method <- hybridSearchAlgorithm('LCC")

## Examples of a hybrid search algorithm generation (with parameters)

hybrid_search_method <- hybridSearchAlgorithm('LCC', list(threshold = 0.8))

## The direct application of this function is an advanced use that consists of using this
# function directly to perform a hybrid search process on a feature space
## Classification problem

# Generates the first filter evaluation function (individual or set measure)
filter_evaluator_1 <- filterEvaluator('determinationCoefficient')

# Generates the second filter evaluation function (mandatory set measure)
filter_evaluator_2 <- filterEvaluator('ReliefFeatureSetMeasure')

# Generates the hybrid search function

hybrid_search_method <- hybridSearchAlgorithm('LCC")

# Run the search process directly (params: dataset, target variable, evaluatorl & evaluator2)
hybrid_search_method(iris, 'Species', filter_evaluator_1, filter_evaluator_2)

IEConsistency Inconsistent Examples consistency measure

Description

Generates an evaluation function that calculates the inconsistent examples consistency value (Dash
and Liu 2003), using hash tables (set measure). This function is called internally within the
filterEvaluator function.

Usage

IEConsistency()

Value
Returns a function that is used to generate an evaluation set measure using the inconsistent examples
consistency value for the selected features.

Author(s)
Adan M. Rodriguez
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References

Dash M, Liu H (2003). “Consistency-based Search in Feature Selection.” Artif. Intell., 151(1-2),
155-176. ISSN 0004-3702, doi:10.1016/S00043702(03)000791, http://dx.doi.org/10.1016/
S0004-3702(03)00079-1.

Examples

## The direct application of this function is an advanced use that consists of using this
# function directly to evaluate a set of features
## Classification problem

data("Titanic")
titanic <- as.data.frame(Titanic)

# A discrete dataset is used (in this case we use only several discrete columns)
titanic_subset <- titanic[, c(”"Class”, "Sex", "Age", "Survived")]

# Generate the evaluation function with Binary Consistency
IEC_evaluator <- IEConsistency()
# Evaluate the features (parameters: dataset, target variable and features)

IEC_evaluator(titanic_subset, "Survived”, c("Class”, "Sex", "Age"))
IEPConsistency Inconsistent Examples Pairs consistency measure
Description

Generates an evaluation function that calculates the inconsistent examples pairs consistency value,
using hash tables (Arauzo-Azofra et al. 2007) (set measure). This function is called internally
within the filterEvaluator function.

Usage

IEPConsistency()

Value
Returns a function that is used to generate an evaluation set measure using the inconsistent examples
pairs consistency value for the selected features.

Author(s)

Adan M. Rodriguez


https://doi.org/10.1016/S0004-3702%2803%2900079-1
http://dx.doi.org/10.1016/S0004-3702(03)00079-1
http://dx.doi.org/10.1016/S0004-3702(03)00079-1
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References

Arauzo-Azofra A, Benitez JM, Castro JL (2007). “Consistency measures for feature selection.”
Journal of Intelligent Information Systems, 30(3), 273-292. ISSN 1573-7675, doi:10.1007/s10844-
00700370, http://dx.doi.org/10.1007/s10844-007-0037-0

Examples

## The direct application of this function is an advanced use that consists of using this
# function directly to evaluate a set of features
## Classification problem

data("Titanic")
titanic <- as.data.frame(Titanic)

# A discrete dataset is used (in this case we use only several discrete columns)
titanic_subset <- titanic[, c(”"Class”, "Sex", "Age", "Survived")]

# Generate the evaluation function with Binary Consistency
IEPC_evaluator <- IEPConsistency()
# Evaluate the features (parameters: dataset, target variable and features)

IEPC_evaluator(titanic_subset, "Survived”, c("Class”, "Sex", "Age"))
is.discrete is.discrete(collection)
Description

Estimate if a collection contains discrete values

Usage

is.discrete(collection)

Arguments

collection ¢ A collection of values

Value

¢ True if the collecion is discrete, False otherwise

Author(s)

Alfonso Jiménez Vilchez


https://doi.org/10.1007/s10844-007-0037-0
https://doi.org/10.1007/s10844-007-0037-0
http://dx.doi.org/10.1007/s10844-007-0037-0
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Examples

is.discrete(mtcarss$gear)
is.discrete(iris$Sepal.Length)

isDataframeContinuous isDataframeContinuous(dataframe)

Description

Estimate if all variables in a data frame are continuous

Usage

isDataframeContinuous(dataframe)

Arguments

dataframe e A data frame

Value

¢ True if all variables are continuous, False otherwise

Author(s)

Alfonso Jiménez Vilchez

Examples

isDataframeContinuous(mtcars)
isDataframeContinuous(iris)

isDataframeDiscrete isDataFrameDiscrete(dataframe)

Description

Estimate if all variables in a data frame are discrete

Usage

isDataframeDiscrete(dataframe)

Arguments

dataframe e A data frame
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Value

¢ True if all variables are discrete, False otherwise

Author(s)

Alfonso Jiménez Vilchez

Examples

isDataframeDiscrete(mtcars)
isDataframeDiscrete(iris)

Jd Jd evaluation measure

Description

Generates an evaluation function that applies the discriminant function designed by Narendra and
Fukunaga (Narendra and Fukunaga 1977) to generate an evaluation measure for a set of features
(set measure). This function is called internally within the filterEvaluator function.

Usage
JdO

Value

Returns a function that is used to generate an evaluation set measure using the Jd.

Author(s)

Alfonso Jiménez-Vilchez

References

Narendra P, Fukunaga K (1977). “A Branch and Bound Algorithm for Feature Subset Selection.”
IEEE Transactions on Computers, 26(9), 917-922. ISSN 0018-9340, doi:10.1109/TC.1977.1674939.

Examples

## Not run:

## The direct application of this function is an advanced use that consists of using this
# function directly to evaluate a set of features
## Classification problem

# Generate the evaluation function with JD
Jd_evaluator <- Jd()
# Evaluate the features (parametes: dataset, target variable and features)


https://doi.org/10.1109/TC.1977.1674939
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Jd_evaluator(ToothGrowth, 'supp',c('len', 'dose'))

## End(Not run)

LasVegas Las Vegas

Description

Generates a search function based on Las Vegas algorithm. This function is called internally within
the searchAlgorithm function. The LasVegas method (Liu and Setiono 1996) starts with a certain
set of features and in each step a new set is randomly generated, if the new set is better it is saved
as the best solution. The algorithm ends when there are no improvements in a certain number of
iterations.

Usage

LasVegas(start = NULL, K = 50, verbose = FALSE)

Arguments
start Binary vector with the set of initial features (1: selected and 0: unselected) for
the algorithm
K The maximum number of iterations without improvement to finalize the algo-
rithm
verbose Print the partial results in each iteration
Value

Returns a search function that is used to guide the feature selection process.

Author(s)

Francisco Aragéon Royén

References

Liu H, Setiono R (1996). “Feature Selection And Classification - A Probabilistic Wrapper Ap-
proach.” In in Proceedings of the 9th International Conference on Industrial and Engineering
Applications of Al and ES, 419—-424.
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Examples

## The direct application of this function is an advanced use that consists of using this
# function directly and performing a search process in a feature space

## Classification problem

# Generates the filter evaluation function
filter_evaluator <- filterEvaluator('IEConsistency')

# Generates the search function with Las Vegas
LV_search <- LasVegas()

# Performs the search process directly (parameters: dataset, target variable and evaluator)
LV_search(iris, 'Species', filter_evaluator)

LCC Linear Consistency-Constrained algorithm

Description

Generates a hybrid search function based on Linear Consistency-Constrained algorithm described
in (Shin and Xu 2009). The algorithm combines two evaluation measures, the first evaluates each
feature individually, and the second measure evaluate feature sets.

Usage

LCC(threshold = 0.9)

Arguments

threshold Threshold

Value

Returns a hybrid search function that is used to guide the feature selection process.

Author(s)

Alfonso Jiménez-Vilchez

References

Shin K, Xu XM (2009). “Consistency-Based Feature Selection.” In Veldsquez JD, Rios SA, Howlett
RJ, Jain LC (eds.), Knowledge-Based and Intelligent Information and Engineering Systems, 342—
350. ISBN 978-3-642-04595-0.
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Examples

## The direct application of this function is an advanced use that consists of using this
# function directly and performing a hybrid search process in a feature space
## Classification problem

# Generates the first filter evaluation function (individual or set measure)
filter_evaluator_1 <- filterEvaluator('determinationCoefficient')

# Generates the second filter evaluation function (mandatory set measure)
filter_evaluator_2 <- filterEvaluator('ReliefFeatureSetMeasure')

# Generates the hybrid search function with LCC

LCC_hybrid_search <- LCC()

# Run the search process directly (params: dataset, target variable, evaluatorl & evaluator2)
LCC_hybrid_search(iris, 'Species', filter_evaluator_1, filter_evaluator_2)

MDLC MDLC evaluation measure

Description

Generates an evaluation function that applies the Minimum-Description_Length-Criterion (MDLC)
(Sheinvald et al. 1990) to generate an evaluation measure for a set of features (set measure). This
function is called internally within the filterEvaluator function.

Usage

MDLC()

Value
Returns a function that is used to generate an evaluation set measure using MDLC value for the
selected features

Author(s)

Alfonso Jiménez-Vilchez

References

Sheinvald J, Dom B, Niblack W (1990). “A modeling approach to feature selection.” In [1990] Pro-
ceedings. 10th International Conference on Pattern Recognition, volume i, 535-539 vol. doi:10.1109/
ICPR.1990.118160.


https://doi.org/10.1109/ICPR.1990.118160
https://doi.org/10.1109/ICPR.1990.118160
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Examples

## The direct application of this function is an advanced use that consists of using this
# function directly to evaluate a set of features
## Classification problem

# Generate the evaluation function with Binary Consistency

MDLC_evaluator <- MDLC()

# Evaluate the features (parameters: dataset, target variable and features)
MDLC_evaluator(iris, "Species”, c("Sepal.Length”,"Sepal.Width"))

mutualInformation The mutual information measure

Description

Generates an evaluation function that calculates the mutual information value, using the infor-
mation theory (Qian and Shu 2015) (set measure). This function is called internally within the
filterEvaluator function.

Usage

mutualInformation()

Value
Returns a function that is used to generate an evaluation set measure using the mutual information
value for the selected features.

Author(s)
Adan M. Rodriguez

References

Qian W, Shu W (2015). “Mutual information criterion for feature selection from incomplete data.”
Neurocomputing, 168, 210-220. ISSN 18728286, doi:10.1016/j.neucom.2015.05.105, http: //dx.
doi.org/10.1016/j.neucom.2015.05.105.

Examples

## The direct application of this function is an advanced use that consists of using this
# function directly to evaluate a set of features

## Classification problem

data("Titanic")

titanic <- as.data.frame(Titanic)


https://doi.org/10.1016/j.neucom.2015.05.105
http://dx.doi.org/10.1016/j.neucom.2015.05.105
http://dx.doi.org/10.1016/j.neucom.2015.05.105
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# A discrete dataset is used (in this case we use only several discrete columns)
titanic_subset <- titanic[, c("Class”, "Sex", "Age", "Survived")]

# Generate the evaluation function with Mutual Information
mi_evaluator <- mutualInformation()
# Evaluate the features (parameters: dataset, target variable and features)

mi_evaluator(titanic_subset, "Survived”, c("Class"”, "Sex", "Age"))
normalizedRelief Normalized Relief
Description

Generates an evaluation function that calculates a measure of the set of features between 0 and
1 with relief (individual measure). The relief algorithm (Kira and Rendell 1992) finds weights
of continous and discrete attributes basing on a distance between instances. Adapted from Piotr
Romanski’s Fselector package (Romanski and Kotthoff 2018). This function is called internally
within the filterEvaluator function.

Usage

normalizedRelief (neighbours.count = 5, sample.size = 10)

Arguments

neighbours.count
* number of neighbours to find for every sampled instance

sample.size * number of instances to sample

Details

relief classification and regression continous and discrete data

Value

Returns a function that is used to generate an individual evaluation measure using relief

Author(s)

Alfonso Jiménez-Vilchez

References

Kira K, Rendell LA (1992). “A practical approach to feature selection.” In Machine Learning Pro-
ceedings 1992, 249-256. Elsevier.

Romanski P, Kotthoff L (2018). FSelector: Selecting Attributes. R package version 0.31, https:
//CRAN.R-project.org/package=FSelector.


https://CRAN.R-project.org/package=FSelector
https://CRAN.R-project.org/package=FSelector
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Examples

## The direct application of this function is an advanced use that consists of using this
# function directly to individually evaluate a set of features
## Classification problem

# Generate the evaluation function with Cramer

relief_evaluator <- normalizedRelief()

# Evaluate the features (parameters: dataset, target variable and features)
relief_evaluator(iris, 'Species',c('Sepal.Length'))

normalizedReliefFeatureSetMeasure
Relief Feature Set Measure evaluation measure

Description

Generates an evaluation function that applies Feature set measure based on Relief (set measure). De-
scribed in (Arauzo-Azofra et al. 2004). This function is called internally within the filterEvaluator
function.

Usage

normalizedReliefFeatureSetMeasure(iterations = 5, kNeightbours = 4)

Arguments

iterations Number of iterations

kNeightbours  Number of neighbours

Value
Returns a function that is used to generate an evaluation set measure (between -1 and 1) using
RFSM value for the selected features.

Author(s)

Alfonso Jiménez-Vilchez

References

Arauzo-Azofra A, Benitez J, Castro J (2004). “A feature set measure based on Relief.” Proceedings
of the 5th International Conference on Recent Advances in Soft Computing.
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Examples

## The direct application of this function is an advanced use that consists of using this
# function directly to evaluate a set of features
## Classification problem

# Generate the evaluation function with Cramer

RFSM_evaluator <- ReliefFeatureSetMeasure()

# Evaluate the features (parameters: dataset, target variable and features)
RFSM_evaluator(iris, 'Species',c('Sepal.Length', 'Sepal.Width', 'Petal.Length', 'Petal.Width'))

relief Relief

Description

Generates an evaluation function that calculates a measure of the set of features with relief (individ-
ual measure). The relief algorithm (Kira and Rendell 1992) finds weights of continous and discrete
attributes basing on a distance between instances. Adapted from Piotr Romanski’s Fselector pack-
age (Romanski and Kotthoff 2018). This function is called internally within the filterEvaluator
function.

Usage

relief(neighbours.count = 5, sample.size = 10)

Arguments

neighbours.count
* number of neighbours to find for every sampled instance

sample.size * number of instances to sample

Details

relief classification and regression continous and discrete data

Value

Returns a function that is used to generate an individual evaluation measure using relief

Author(s)

Alfonso Jiménez-Vilchez
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References

Kira K, Rendell LA (1992). “A practical approach to feature selection.” In Machine Learning Pro-
ceedings 1992, 249-256. Elsevier.

Romanski P, Kotthoff L (2018). FSelector: Selecting Attributes. R package version 0.31, https:
//CRAN.R-project.org/package=FSelector.

Examples

## The direct application of this function is an advanced use that consists of using this
# function directly to individually evaluate a set of features
## Classification problem

# Generate the evaluation function with Cramer

relief_evaluator <- relief()

# Evaluate the features (parameters: dataset, target variable and features)
relief_evaluator(iris, 'Species',c('Sepal.Length'))

ReliefFeatureSetMeasure
Relief Feature Set Measure evaluation measure

Description

Generates an evaluation function that applies Feature set measure based on Relief (set measure). De-
scribed in (Arauzo-Azofra et al. 2004). This function is called internally within the filterEvaluator
function.

Usage

ReliefFeatureSetMeasure(iterations = 5, kNeightbours = 4)

Arguments

iterations Number of iterations

kNeightbours  Number of neighbours

Value

Returns a function that is used to generate an evaluation set measure (between -1 and 1) using
RFSM value for the selected features.

Author(s)

Alfonso Jiménez-Vilchez


https://CRAN.R-project.org/package=FSelector
https://CRAN.R-project.org/package=FSelector
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References

Arauzo-Azofra A, Benitez J, Castro J (2004). “A feature set measure based on Relief.” Proceedings
of the 5th International Conference on Recent Advances in Soft Computing.

Examples

## The direct application of this function is an advanced use that consists of using this
# function directly to evaluate a set of features
## Classification problem

# Generate the evaluation function with Cramer

RFSM_evaluator <- ReliefFeatureSetMeasure()

# Evaluate the features (parameters: dataset, target variable and features)
RFSM_evaluator(iris, 'Species',c('Sepal.Length', 'Sepal.Width', 'Petal.Length', 'Petal.Width'))

roughsetConsistency Rough Set consistency measure

Description

Generates an evaluation function that calculates the rough sets consistency value (Pawlak 1982)
(Pawlak 1991), using hash tables (set measure). This function is called internally within the filterEvaluator
function.

Usage

roughsetConsistency()

Value
Returns a function that is used to generate an evaluation set measure using the rough sets consistency
value for the selected features.

Author(s)
Adan M. Rodriguez

References

Pawlak Z (1982). “Rough sets.” International Journal of Computer & Information Sciences,
11, 341-356. ISSN 0091-7036, doi:10.1007/BF01001956, https://www.sciencedirect.com/
science/article/abs/pii/S0377042717302078.

Pawlak Z (1991). Rough sets: Theoretical aspects of reasoning about data, volume 9(1). Springer,
Dordrecht. doi:10.1007/9789401135344, http://dx.doi.org/10.1007/978-94-011-3534-4.


https://doi.org/10.1007/BF01001956
https://www.sciencedirect.com/science/article/abs/pii/S0377042717302078
https://www.sciencedirect.com/science/article/abs/pii/S0377042717302078
https://doi.org/10.1007/978-94-011-3534-4
http://dx.doi.org/10.1007/978-94-011-3534-4
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Examples

## The direct application of this function is an advanced use that consists of using this
# function directly to evaluate a set of features
## Classification problem

data("Titanic")
titanic <- as.data.frame(Titanic)

# A discrete dataset is used (in this case we use only several discrete columns)
titanic_subset <- titanic[, c("Class”, "Sex", "Age", "Survived")]

# Generate the evaluation function with Rough Set Consistency
rsc_evaluator <- roughsetConsistency()
# Evaluate the features (parameters: dataset, target variable and features)

rsc_evaluator(titanic_subset, "Survived”, c("Class”, "Sex", "Age"))
searchAlgorithm Search algorithm generator
Description

Generates a search function. This function in combination with the evaluator guides the feature
selection process. Specifically, the result of calling this function is another function that is passed
on as a parameter to the featureSelection function. However, you can run this function directly
to perform a search process in the features space.

Usage

searchAlgorithm(searcher, params = list())

Arguments

searcher Name of the search algorithm. The available search algorithms are:

antColony Ant colony optimization (ACO). See antColony

breadthFirst Breadth first search. See breadthFirst

deepFirst Deep first search. See deepFirst

geneticAlgorithm Genetic algorithm (GA). See geneticAlgorithm

hillClimbing Hill-Climbing (HC). See hil1Climbing

LasVegas Las Vegas (LV). See LasVegas

sequentialBackwardSelection Sequential backward selection (sbs). See sequentialBackwardSelecti

sequentialFloatingForwardSelection Sequential floating forward selection (sffs).
See sequentialFloatingForwardSelection

sequentialFloatingBackwardSelection Sequential floating backward selection
(stbs). See sequentialFloatingBackwardSelection
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Value
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sequentialForwardSelection Sequential forward selection (sfs). See sequentialForwardSelection
simulatedAnnealing Simulated annealing (SA). See simulatedAnnealing

tabu Tabu search (TS). See tabu

whaleOptimization Whale optimization algorithm (WOA). See whaleOptimization

List with the parameters of each search method. For more details see each
method. Default: empty list.

Returns a search function that is used to guide the feature selection process

Author(s)

Francisco Aragén Royon

References

There are no references for Rd macro \insertAllCites on this help page.

Examples

## Examples of a search algorithm generation

search_method_1 <- searchAlgorithm('antColony")
search_method_2 <- searchAlgorithm('sequentialBackwardSelection')
search_method_3 <- searchAlgorithm('tabu')

## Examples of a search algorithm generation (with parameters)

search_method_1 <- searchAlgorithm('antColony', list(population=25, iter=50, verbose=TRUE))
search_method_2 <- searchAlgorithm('sequentialBackwardSelection', list(stop=TRUE))
search_method_3 <- searchAlgorithm('tabu', list(intensification=1, iterIntensification=25))

## The direct application of this function is an advanced use that consists of using this
# function directly to perform a search process on a feature space
## Classification problem

# Generates the filter evaluation function
filter_evaluator <- filterEvaluator('IEConsistency')

# Generates the search function

search_method <- searchAlgorithm('hillClimbing"')

# Performs the search process directly (parameters: dataset, target variable and evaluator)
search_method(iris, 'Species', filter_evaluator)
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selectDifference Select difference

Description

Generates a direct search function that selects features (in descending order from the best evaluation
measure to the lowest) until evaluation difference is over a threshold (The features evaluation is
individual). This function is called internally within the directSearchAlgorithm function.

Usage

selectDifference(d.threshold = 0.2)

Arguments

d.threshold * Number between 0 and 1, to calculate the slope

Value

Returns a direct search function that is used in the feature selection process.

Author(s)

Adan M. Rodriguez

Francisco Aragén Royon

Examples

## The direct application of this function is an advanced use that consists of using this
# function directly and performing a direct search process
## Classification problem

# Generates the filter evaluation function
filter_evaluator <- filterEvaluator('IEConsistency')

# Generates the direct search function with difference

sd_direct_search <- selectDifference()

# Performs the direct search process directly (parameters: dataset, target variable and evaluator)
sd_direct_search(iris, 'Species', filter_evaluator)
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selectKBest Select K best

Description

Generates a direct search function that takes the ’k’ features with the greatest evaluations (The fea-
tures evaluation is individual). This function is called internally within the directSearchAlgorithm
function.

Usage

selectkBest(k = 1)

Arguments

k Number (positive integer) of returned features

Value

Returns a direct search function that is used in the feature selection process.

Author(s)

Adan M. Rodriguez

Francisco Aragén Royon

Examples

## The direct application of this function is an advanced use that consists of using this
# function directly and performing a direct search process
## Classification problem

# Generates the filter evaluation function
filter_evaluator <- filterEvaluator('IEConsistency')

# Generates the direct search function with k-best

skb_direct_search <- selectKBest()

# Performs the direct search process directly (parameters: dataset, target variable and evaluator)
skb_direct_search(iris, 'Species', filter_evaluator)
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selectPercentile Select Percentile

Description

Generates a direct search function that selects a fraction, given as a percentage, of the total number
of available features (The features evaluation is individual). This function is called internally within
the directSearchAlgorithm function.

Usage

selectPercentile(percentile = 80)

Arguments

percentile Number (positive integer) between 0 and 100

Value

Returns a direct search function that is used in the feature selection process.

Author(s)

Adan M. Rodriguez

Francisco Aragén Royon

Examples

## The direct application of this function is an advanced use that consists of using this
# function directly and performing a direct search process
## Classification problem

# Generates the filter evaluation function
filter_evaluator <- filterEvaluator('IEConsistency')

# Generates the direct search function with percentile

sp_direct_search <- selectPercentile()

# Performs the direct search process directly (parameters: dataset, target variable and evaluator)
sp_direct_search(iris, 'Species', filter_evaluator)
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selectSlope Select slope

Description

Generates a direct search function that selects features (in descending order from the best evaluation
measure to the lowest) until the slope to the next feature is over a threshold (The features evaluation
is individual). The slope is calculated as: (s.threshold) / (number of features). This function is
called internally within the directSearchAlgorithm function.

Usage

selectSlope(s.threshold = 1.5)

Arguments

s.threshold ¢ Number between 0 and 1

Value

Returns a direct search function that is used in the feature selection process.

Author(s)

Adan M. Rodriguez

Examples

## The direct application of this function is an advanced use that consists of using this
# function directly and performing a direct search process
## Classification problem

# Generates the filter evaluation function
filter_evaluator <- filterEvaluator('IEConsistency')

# Generates the direct search function with slope

ss_direct_search <- selectSlope()

# Performs the direct search process directly (parameters: dataset, target variable and evaluator)
ss_direct_search(iris, 'Species', filter_evaluator)
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selectThreshold Select threshold

Description

Generates a direct search function that selects the features whose evaluation is over/under a user
given threshold (It depends on the method that generates the evaluation measure. For example:
under for regression methods, over for classification methods, etc.)(The features evaluation is indi-
vidual). Features that do not satisfy the threshold, will be removed. This function is called internally
within the directSearchAlgorithm function.

Usage

selectThreshold(threshold = 0.1)

Arguments

threshold e Number between 0 and 1

Value

Returns a direct search function that is used in the feature selection process.

Author(s)

Adan M. Rodriguez

Francisco Aragén Royon
Examples

## The direct application of this function is an advanced use that consists of using this
# function directly and performing a direct search process
## Classification problem

# Generates the filter evaluation function
filter_evaluator <- filterEvaluator('IEConsistency')

# Generates the direct search function with threshold

st_direct_search <- selectThreshold()

# Performs the direct search process directly (parameters: dataset, target variable and evaluator)
st_direct_search(iris, 'Species', filter_evaluator)
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selectThresholdRange  Select threshold range

Description

Generates a direct search function that selects the features whose evaluation is over a threshold,
where this threshold is given as: (((min - max) * p.threshold) + max)(The features evaluation is
individual). This function is called internally within the directSearchAlgorithm function.

Usage

selectThresholdRange(p.threshold = 9.8)

Arguments

p.threshold ¢ Number between 0 and 1

Value

Returns a direct search function that is used in the feature selection process.

Author(s)

Adan M. Rodriguez

Francisco Aragén Royon

Examples

## The direct application of this function is an advanced use that consists of using this
# function directly and performing a direct search process
## Classification problem

# Generates the filter evaluation function
filter_evaluator <- filterEvaluator('IEConsistency')

# Generates the direct search function with threshold range

str_direct_search <- selectThresholdRange()

# Performs the direct search process directly (parameters: dataset, target variable and evaluator)
str_direct_search(iris, 'Species', filter_evaluator)



48 sequentialBackwardSelection

sequentialBackwardSelection
Sequential Backward Selection

Description

Generates a search function based on sequential backward selection. This function is called inter-
nally within the searchAlgorithm function. The SBS method (Marill and Green 1963) starts with
all the features and removes a single feature at each step with a view to improving the evaluation of
the set.

Usage

sequentialBackwardSelection(stopCriterion = -1, stop = FALSE)

Arguments

stopCriterion Define a maximum number of iterations. Disabled if the value is -1 (default: -1

)

stop If true, the function stops if next iteration does not improve current results (de-
fault: FALSE)
Value

Returns a search function that is used to guide the feature selection process.

Author(s)
Adan M. Rodriguez

Alfonso Jiménez-Vilchez

Francisco Aragén Royon

References

Marill T, Green D (1963). “On the effectiveness of receptors in recognition systems.” Informa-
tion Theory, IEEE Transactions on, 9(1), 11-17. doi:10.1109/TIT.1963.1057810, http: //dx.doi.
org/10.1109/TIT.1963.1057810.

Examples

## The direct application of this function is an advanced use that consists of using this
# function directly and performing a search process in a feature space
## Classification problem

# Generates the filter evaluation function with sbs
filter_evaluator <- filterEvaluator('IEConsistency')


https://doi.org/10.1109/TIT.1963.1057810
http://dx.doi.org/10.1109/TIT.1963.1057810
http://dx.doi.org/10.1109/TIT.1963.1057810
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# Generates the search function

sbs_search <- sequentialBackwardSelection()

# Performs the search process directly (parameters: dataset, target variable and evaluator)
sbs_search(iris, 'Species', filter_evaluator)

sequentialFloatingBackwardSelection
Sequential Floating Backward Selection

Description

Generates a search function based on sequential floating backward selection. This function is called
internally within the searchAlgorithm function. The sfbs method (Pudil et al. 1994) starts with
all the features and removes a single feature at each step with a view to improving the evaluation of
the set. In addition, it checks whether adding any of the removed features, improve the value of the
set.

Usage

sequentialFloatingBackwardSelection()

Value

Returns a search function that is used to guide the feature selection process.

Author(s)
Adan M. Rodriguez

Francisco Aragén Royoén

References
Pudil P, Novovicovd J, Kittler J (1994). “Floating search methods in feature selection.” Pattern
recognition letters, 15(11), 1119-1125.

Examples

## The direct application of this function is an advanced use that consists of using this
# function directly and performing a search process in a feature space
## Classification problem

# Generates the filter evaluation function
filter_evaluator <- filterEvaluator('IEConsistency')

# Generates the search function with sfbs
sfbs_search <- sequentialFloatingBackwardSelection()
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# Performs the search process directly (parameters: dataset, target variable and evaluator)
sfbs_search(iris, 'Species', filter_evaluator)

sequentialFloatingForwardSelection
Sequential Floating Forward Selection

Description

Generates a search function based on sequential floating forward selection. This function is called
internally within the searchAlgorithm function. The sffs method (Pudil et al. 1994) starts with an
empty set of features and add a single feature at each step with a view to improving the evaluation
of the set. In addition, it checks whether removing any of the included features, improve the value
of the set.

Usage

sequentialFloatingForwardSelection()

Value

Returns a search function that is used to guide the feature selection process.

Author(s)

Adan M. Rodriguez
Francisco Aragén Royon

Alfonso Jiménez Vilchez

References

Pudil P, Novovicovd J, Kittler J (1994). “Floating search methods in feature selection.” Pattern
recognition letters, 15(11), 1119-1125.

Examples

## The direct application of this function is an advanced use that consists of using this
# function directly and performing a search process in a feature space
## Classification problem

# Generates the filter evaluation function
filter_evaluator <- filterEvaluator('IEConsistency')

# Generates the search function with sffs

sffs_search <- sequentialFloatingForwardSelection()

# Performs the search process directly (parameters: dataset, target variable and evaluator)
sffs_search(iris, 'Species', filter_evaluator)
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sequentialForwardSelection
Sequential Forward Selection

Description

Generates a search function based on sequential forward selection. This function is called internally

within the searchAlgorithm function. The SFS method (Whitney 1971) starts with an empty set

of features and add a single feature at each step with a view to improving the evaluation of the set.
Usage

sequentialForwardSelection(stopCriterion = -1, stop = FALSE)

Arguments

stopCriterion Define a maximum number of iterations. Disabled if the value is -1 (default: -1

)

stop If true, the function stops if next iteration does not improve current results (de-
fault: FALSE)
Value

Returns a search function that is used to guide the feature selection process.

Author(s)
Adan M. Rodriguez

Alfonso Jiménez-Vilchez

Francisco Aragén Roy6n

References

Whitney AW (1971). “A Direct Method of Nonparametric Measurement Selection.” IEEE Trans.
Comput., 20(9), 1100-1103. ISSN 0018-9340, doi:10.1109/TC.1971.223410, http://dx.doi.
org/10.1109/T-C.1971.223410.

Examples

## The direct application of this function is an advanced use that consists of using this
# function directly and performing a search process in a feature space
## Classification problem

# Generates the filter evaluation function with sfs
filter_evaluator <- filterEvaluator('IEConsistency')


https://doi.org/10.1109/T-C.1971.223410
http://dx.doi.org/10.1109/T-C.1971.223410
http://dx.doi.org/10.1109/T-C.1971.223410
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# Generates the search function

sfs_search <- sequentialForwardSelection()

# Performs the search process directly (parameters: dataset, target variable and evaluator)
sfs_search(iris, 'Species', filter_evaluator)

simulatedAnnealing Simulated Annealing

Description

Generates a search function based on simulated annealing. This function is called internally within
the searchAlgorithm function. The simulatedAnnealing method (Kirkpatrick et al. 1983) starts
with a certain set of features and in each iteration modifies an element of the previous feature vector
and decreases the temperature. If the energy of the new feature vector is better than that of the old
vector, it is accepted and moved towards it, otherwise it is moved towards the new vector according
to an acceptance probability. The algorithm ends when the minimum temperature has been reached.
Additionally, a number of internal iterations can be performed within each iteration of the algorithm.
In this case, the same temperature value of the outer iteration is used for the inner iterations

Usage

simulatedAnnealing(
start = NULL,
temperature = 1,
temperature_min = 0.01,
reduction = 0.6,
innerIter = 1,
verbose = FALSE

)

Arguments
start Binary vector with the set of initial features
temperature Temperature initial

temperature_min
Temperature to stops in the outer loop

reduction Temperature reduction in the outer loop
innerIter Number of iterations of inner loop. By default no inner iterations are established
verbose Print the partial results in each iteration

Value

Returns a search function that is used to guide the feature selection process.
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Author(s)

Francisco Aragén Royon

References

Kirkpatrick S, Gelatt CD, Vecchi MP (1983). “Optimization by simulated annealing.” SCIENCE,
220(4598), 671-680. doi:10.1126/science.220.4598.671, http://dx.doi.org/10.1126/science.
220.4598.671.

Examples

## The direct application of this function is an advanced use that consists of using this
# function directly and performing a search process in a feature space
## Classification problem

# Generates the filter evaluation function
filter_evaluator <- filterEvaluator('IEConsistency')

# Generates the search function with Simulated annealing

sa_search <- simulatedAnnealing()

# Performs the search process directly (parameters: dataset, target variable and evaluator)
sa_search(iris, 'Species', filter_evaluator)

symmetricalUncertain  Symmetrical uncertain measure

Description

Generates an evaluation function that calculates the symmetrical uncertain value (Witten and Frank
2005), using the information theory (set measure). This function is called internally within the
filterEvaluator function.

Usage

symmetricalUncertain()

Value
Returns a function that is used to generate an evaluation set measure using the symmetrical uncertain
value for the selected features.

Author(s)

Adan M. Rodriguez


https://doi.org/10.1126/science.220.4598.671
http://dx.doi.org/10.1126/science.220.4598.671
http://dx.doi.org/10.1126/science.220.4598.671
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References

Witten IH, Frank E (2005). Data Mining: Practical Machine Learning Tools and Techniques, 2nd
edition. Morgan Kaufmann, San Francisco.

Examples

## The direct application of this function is an advanced use that consists of using this
# function directly to evaluate a set of features

## Classification problem

data("Titanic")

titanic <- as.data.frame(Titanic)

# A discrete dataset is used (in this case we use only several discrete columns)
titanic_subset <- titanic[, c("Class”, "Sex", "Age", "Survived")]

# Generate the evaluation function with Symmetrical Uncertain
su_evaluator <- symmetricalUncertain()
# Evaluate the features (parameters: dataset, target variable and features)

su_evaluator(titanic_subset, "Survived”, c("Class”, "Sex", "Age"))
tabu Tabu Search
Description

Generates a search function based on the tabu search. This function is called internally within the
searchAlgorithm function. The Tabu Search(Glover 1986) (Glover 1989) method starts with a
certain set of features and in each iteration it searches among its neighbors to advance towards a
better solution. The method has a memory (tabu list) that prevents returning to recently visited
neighbors. The method ends when a certain number of iterations are performed, or when a certain
number of iterations are performed without improvement, or when there are no possible neighbors.
Once the method is finished, an intensification phase can be carried out that begins in the space
of the best solutions found, or a diversification phase can be carried out in which solutions not
previously visited are explored.

Usage

tabu(
start = NULL,
numNeigh = NULL,
tamTabuList = 5,
iter = 100,
iterNoImprovement = NULL,
intensification = NULL,
iterIntensification = 50,
interPercentaje = 75,
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tamIntermediateMemory = 5,
diversification = NULL,
iterDiversification = 50,
forgetTabulList = TRUE,
verbose = FALSE

)
Arguments
start Binary vector with the set of initial features
numNeigh The number of neighbor to consider in each iteration. By default: all posibles.

It is important to note that a high value of this parameter considerably increases
the computation time.

tamTabuList The size of the tabu list. By default: 5

iter The number of iterations of the algorithm. By default: 100

iterNoImprovement
Number of iterations without improvement to start/reset the intensification/diversification
phase. By default, it is not taken into account (all iterations are performed)

intensification
Number of times the intensification phase is applied. None by default

iterIntensification
Number of iterations of the intensification phase

interPercentaje
Percentage of the most significant features to be taken into account in the inten-
sification phase

tamIntermediateMemory
Number of best solutions saved in the intermediate memory

diversification
Number of times the diversification phase is applied. None by default

iterDiversification
Number of iterations of the diversification phase

forgetTabuList Forget tabu list for intensification/diversification phases. By default: TRUE

verbose Print the partial results in each iteration

Value

Returns a search function that is used to guide the feature selection process.

Author(s)

Francisco Aragén Royon
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References

Glover F (1986). “Future Paths for Integer Programming and Links to Artificial Intelligence.”
Comput. Oper. Res., 13(5), 533-549. ISSN 0305-0548, doi:10.1016/03050548(86)900481, http:
//dx.doi.org/10.1016/0305-0548(86)90048-1.

Glover F (1989). “Tabu Search—Part 1.” ORSA Journal on Computing, 1(3), 190-206. doi:10.1287/
ijoc.1.3.190, https://doi.org/10.1287/ijoc.1.3.190.

Examples

## The direct application of this function is an advanced use that consists of using this
# function directly and performing a search process in a feature space
## Classification problem

# Generates the filter evaluation function
filter_evaluator <- filterEvaluator('IEConsistency')

# Generates the search function wit Tabu search

ts_search <- tabu()

# Performs the search process directly (parameters: dataset, target variable and evaluator)
ts_search(iris, 'Species', filter_evaluator)

whaleOptimization Whale Optimization Algorithm (Binary Whale Optimization Algo-
rithm)

Description

Generates a search function based on the whale optimization algorithm. This function is called
internally within the searchAlgorithm function. Binary Whale Optimization Algorithm (Kumar
and Kumar 2018) is an algorithm that simulates the social behavior of humpback whales. This
algorithm employs a binary version of the bubble-net hunting strategy. The algorithm starts with an
initial population of individuals, and in each iteration updates the individuals according to several
possible actions: Encircling prey, Bubble-net attacking or Search for prey

Usage

whaleOptimization(population = 10, iter = 10, verbose = FALSE)

Arguments
population The number of whales population
iter The number of iterations of the algorithm

verbose Print the partial results in each iteration


https://doi.org/10.1016/0305-0548%2886%2990048-1
http://dx.doi.org/10.1016/0305-0548(86)90048-1
http://dx.doi.org/10.1016/0305-0548(86)90048-1
https://doi.org/10.1287/ijoc.1.3.190
https://doi.org/10.1287/ijoc.1.3.190
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Value

Returns a search function that is used to guide the feature selection process.

Author(s)

Francisco Aragén Royo6n

References

Kumar V, Kumar D (2018). “Binary whale optimization algorithm and its application to unit com-
mitment problem.” Neural Computing and Applications. ISSN 1433-3058, doi:10.1007/s00521-
01837963.

Examples

## The direct application of this function is an advanced use that consists of using this
# function directly and performing a search process in a feature space
## Classification problem

# Generates the filter evaluation function
filter_evaluator <- filterEvaluator('IEConsistency')

# Generates the search function with WOA

woa_search <- whaleOptimization()

# Performs the search process directly (parameters: dataset, target variable and evaluator)
woa_search(iris, 'Species', filter_evaluator)

wrapperEvaluator Wrapper measure generator

Description

Generates a wrapper function to be used as an evaluator (Kohavi and John 1997) in the feature
selection proccess, given a learner algorithm and related customizable parameters (from Jed Wing
et al. 2018). More specifically, the result of calling this function is another function that is passed
on as a parameter to the featureSelection function. However, you can also run this function
directly to generate an evaluation measure.

Usage

wrapperEvaluator(learner, resamplingParams = list(), fittingParams = list())


https://doi.org/10.1007/s00521-018-3796-3
https://doi.org/10.1007/s00521-018-3796-3
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Arguments
learner Learner to be used. The models available are the models available in caret:
http://topepo.github.io/caret/available-models.html
resamplingParams

Control parameters for evaluating the impact of model tuning parameters. The
arguments are the same as those of the caret trainControl function. By default
an empty list. In this case the default caret values are used for resampling and
fitting.

fittingParams Control parameters for choose the best model across the parameters. The argu-
ments are the same as those of the caret train function (minus the parameters: x,
y, form, data, method and trainControl). By default an empty list. In this case
the default caret values are used for resampling and fitting.

Details

generaWrapper

Value

Returns a wrapper function that is used to generate an evaluation measure

Author(s)

Alfonso Jiménez-Vilchez

Francisco Aragén Royoén

References

Kohavi R, John GH (1997). “Wrappers for feature subset selection.” Artificial intelligence, 97(1-2),
273-324.

from Jed Wing MKC, Weston S, Williams A, Keefer C, Engelhardt A, Cooper T, Mayer Z, Kenkel
B, the R Core Team, Benesty M, Lescarbeau R, Ziem A, Scrucca L, Tang Y, Candan C, Hunt.
T (2018). caret: Classification and Regression Training. R package version 6.0-80, https:
//CRAN.R-project.org/package=caret.

Examples

## Examples of a wrapper evaluator generation
wrapper_evaluator_1 <- wrapperEvaluator('knn')
wrapper_evaluator_2 <- wrapperEvaluator('mlp')
wrapper_evaluator_3 <- wrapperEvaluator('randomForest')

## Examples of a wrapper evaluator generation (with parameters)

# Values for the caret trainControl function (resampling parameters)


https://CRAN.R-project.org/package=caret
https://CRAN.R-project.org/package=caret
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resamplingParams <- list(method = "repeatedcv”, repeats = 3)

# Values for the caret train function (fitting parameters)

fittingParams <- list(preProc = c("center”, "scale"”), metric="Accuracy”,
tuneGrid = expand.grid(k = c(1:12)))

wrapper_evaluator <- wrapperEvaluator('knn', resamplingParams, fittingParams)

## The direct application of this function is an advanced use that consists of using this
# function directly to evaluate a set of features
## Classification problem

# Generates the wrapper evaluation function

wrapper_evaluator <- wrapperEvaluator('knn')

# Evaluates features directly (parameters: dataset, target variable and features)
wrapper_evaluator(iris, 'Species',c('Sepal.Length', 'Sepal.Width', 'Petal.Length', 'Petal.Width'))
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