Package ‘FlexRL’

January 20, 2025
Title A Flexible Model for Record Linkage
Version 0.1.0

Description Implementation of the Stochastic Expectation Maximisation (StEM) ap-
proach to Record Linkage described in the pa-
per by K. Robach, S. L. van der Pas, M. A. van de Wiel and M. H. Hof (2024, <doi:10.48550/arXiv.2407.06835>); see 'ci-
tation(" " FlexRL")' for details. This is a record linkage method, for finding the com-
mon set of records among 2 data sources based on Partially Identifying Variables (PIVs) avail-
able in both sources. It includes modelling of dynamic Partially Identifying Vari-
ables (e.g. postal code) that may evolve over time and registration errors (missing val-
ues and mistakes in the registration). Low memory footprint.

License GPL (>=3)
Encoding UTF-8
RoxygenNote 7.3.2
Depends R (>=4.4.0)

Imports Matrix (>= 1.7), progress(>= 1.2.3), testit(>= 0.13), Rcpp(>=
1.0.13)

LinkingTo Rcpp

Suggests knitr, rmarkdown

VignetteBuilder knitr

NeedsCompilation yes

Author Kayané ROBACH [aut, cre, cph] (<https://orcid.org/0000-0002-5725-623X>)
Maintainer Kayané ROBACH <k.c.robach@amsterdamumc.nl>

Repository CRAN

Date/Publication 2024-12-09 13:20:02 UTC

Contents
cartesianProduct L e 2
createDataAlpha 3
DataCreation e 4
Deltafind e 6

https://doi.org/10.48550/arXiv.2407.06835
https://orcid.org/0000-0002-5725-623X

2 cartesianProduct
ExpandGrid e e e 6
B2 e 7
B33 e 7
FlexRL e 8
GENETateSEqUENCE v v vt e e e e e e e e e e e e e e e e 11
initDeltaMap e e e 11
launchNaive o e e e 12
loglik . . . o . e e 13
loglikSurvival o e 15
logPossibleConfig 16
sampleD e 17
sampleH L 18
sampleL L 19
sampleNL e e 20
simulateD L 20
simulateH 24
SSPASIE2 e e e e e e e e 27
StEM . . e e 28
SurvivalUnstable L 31

Index 33

cartesianProduct cartesianProduct
Description
cartesianProduct
Usage

cartesianProduct(vecl, vec2)

Arguments
vecl first IntegerVector of values to compute the cartesian product
vec2 second IntegerVector of values to compute the cartesian product
Value

IntegerMatrix: of 2 columns with the cartesian product of vecl and vec2

createDataAlpha 3

createDataAlpha createDataAlpha

Description

createDataAlpha

Usage

createDataAlpha(nCoefUnstable, stable)

Arguments

nCoefUnstable Aninteger value with the number of covariates (including the intercept): number
of cov from A + number of cov from B + 1.

stable A boolean value indicating whether the Partially Identifying Variable (PIV) con-
cerned is stable.

Value

An empty data frame (if stable=FALSE) with nCoefUnstable + 2 columns for book keeping of the
elements necessary to update the parameter for instability. There are nCoefUnstable + 2 of those
elements: number of cov from A + number of cov from B + intercept + boolean vector indicating
where the true values of the records (for the concerned PIV) are equal, vector of time gaps between

records
Examples
PIVs_config = list(V1 = list(stable = TRUE),
V2 = list(stable = TRUE),
V3 = list(stable = TRUE),
V4 = list(stable = TRUE),
V5 = list(stable = FALSE,

conditionalHazard = FALSE,
pSameH.cov.A = c(),
pSameH.cov.B = c()))

PIVs_stable = sapply(PIVs_config, function(x) x$stable)
nCoefUnstable = ¢(0,0,0,0,1)
Valpha = mapply(createDataAlpha,

nCoefUnstable = nCoefUnstable,

stable = PIVs_stable,
SIMPLIFY=FALSE)

DataCreation

DataCreation

DataCreation

Description

This function is used to synthesise data for record linkage. It creates 2 data sources of specific
sizes, with a common set of records of a specific size, with a certain amount of Partially Identifying
Variables (PIVs). For each PIV, we specify the number of unique values, the desired proportion of
mistakes and missing values. They can be stable or evolving over time (e.g. representing the postal
code). For the unstable PIVs, we can specify the parameter(s) to be used in the survival exponential
model that generates changes over time between the records referring to the same entities. When a
PIV is unstable, it is later harder to estimate its parameters (probability of mistake vs. probability
of change across time). Therefore we may want to enforce estimability in the synthetic data, which
we do by enforcing half of the links to have a near-zero time gaps.

Usage

DataCreation(
PIVs_config,
Nval,
NRecords,
Nlinks,
PmistakesA,
PmistakesB,
PmissingA,
PmissingB,

moving_params,
enforceEstimability

Arguments

PIVs_config

Nval

NRecords

Nlinks

A list (of size number of PIVs) where element names are the PIVs and ele-
ment values are lists with elements: stable (boolean for whether the PIV is
stable), conditionalHazard (boolean for whether there are external covariates
available to model instability, only required if stable is FALSE), pSameH.cov.A
and pSameH.covB (vectors with strings corresponding to the names of the co-
variates to use to model instability from file A and file B, only required if stable
is FALSE, empty vectors may be provided if conditionalHazard is FALSE)

A vector (of size number of PIVs) with the number fo unique values per PIVs
(in the order of the PIVs defined in PIVs_config)

A vector (of size 2) with the number of records to be generated in file A and in
file B

An integer with the number of links (record referring to the same entities) to be
generated

DataCreation 5

PmistakesA A vector (of size number of PIVs) with the proportion of mistakes to be gener-
ated per PIVs in file A (in the order of the PIVs defined in PIVs_config)

PmistakesB A vector (of size number of PIVs) with the proportion of mistakes to be gener-
ated per PIVs in file B (in the order of the PIVs defined in PIVs_config)

PmissingA A vector (of size number of PIVs) with the proportion of missing to be generated
per PIVs in file A (in the order of the PIVs defined in PIVs_config)

PmissingB A vector (of size number of PIVs) with the proportion of missing to be generated

per PIVs in file A (in the order of the PIVs defined in PIVs_config)

moving_params A list (of size number of PIVs) where element names are the PIVs and element
values are vectors (of size: 1 + number of covariates to use from A + number of
covariates to use from B) with the log hazards coefficient (1st one: log baseline
hazard, then: the coefficients for conditional hazard covariates from A, then: the
coefficients for conditional hazard covariates from B)

enforceEstimability
A boolean value for whether half of the links should have near-0 time gaps
(useful for modeling instability and avoiding estimability issues as discussed in
the paper)

Details

There are more details to understand the method in our paper, or on the experiments repository of
our paper, or in the vignettes.

Value
A list with generated
 dataframe A (encoded: the categorical values of the PIVs are matched to sets of natural num-
bers),
e dataframe B (encoded),
« vector of Nvalues (Nval),
* vector of TimeDifference (for the links, when thewre is instability),

* matrix proba_same_H (number of links, number fo PIVs) with the proba that true values
coincide (e.g. 1 - proba of moving)

Examples

PIVs_config = list(V1 list(stable = TRUE),

V2 = list(stable = TRUE),

V3 = list(stable = TRUE),

V4 = list(stable = TRUE),

V5 = list(stable = FALSE,
conditionalHazard = FALSE,
pSameH.cov.A = c(),

pSameH.cov.B = c()))

Nval = c(6, 7, 8, 9, 15)
NRecords = c(500, 800)
Nlinks = 300

6 ExpandGrid

[S)
(S

PmistakesA = c(0.02, 2, 0.02, 0.02, 0.02)
PmistakesB = c(0.02, 0.02, 0.02, .02, 0.02)
PmissingA = c(0.007, 0.007, 0.007, 0.007, 0.007)
PmissingB = c(0.007, 0.007, 0.007, 0.007, 0.007)
moving_params = list(Vi=c(),V2=c(),V3=c(),V4=c(),V5=c(0.28))
enforceEstimability = TRUE
DataCreation(PIVs_config,

Nval,

NRecords,

Nlinks,

PmistakesA,

PmistakesB,

PmissingA,

PmissingB,

moving_params,

enforceEstimability)

Deltafind Deltafind()

Description

Deltafind()

Usage
Deltafind()

Value

IntegerMatrix: find the indices of the elements in the cpp map _DeltaMap representing the sparse
linkage matrix Delta.

ExpandGrid ExpandGrid

Description

ExpandGrid

Usage

ExpandGrid(vectorl, vector2)

Arguments

vectorl first IntegerVector of values to compute the cartesian product

vector2 second IntegerVector of values to compute the cartesian product

F2 7

Value

IntegerMatrix: of 2 columns with the cartesian product of vecl and vec2

F2 F2

Description

F2

Usage

F2(U, nvals)

Arguments
u IntegerVector with factor values corresponding to the patterns of Partially Iden-
tifying Variables (PIVs) observed among records in the concerned source
nvals integer for the total number of possible patterns (among all sources)
Value

List: for each pattern in value, count of the records having the pattern in the concerned source

F33 F33

Description

F33

Usage
F33(A, B, nvals)

Arguments
A List with for each pattern in value, count of the records having the pattern in the
concerned source
B List with for each pattern in value, count of the records having the pattern in the

concerned source

nvals integer for the total number of possible patterns (among all sources)

8 FlexRL

Value

IntegerMatrix: nrow=nbr of potential links, ncol = 2, indicates the indices (of records from A,
records from B) of records with matching patterns to be considered in the likelihood as potential
links. It represents the cartesian product of both lists passed as parameters to represent all possible
linked pairs of records.

FlexRL FlexRL

Description

A Flexible Model For Record Linkage

Arguments
data is a list gathering information on the data to be linked
* sources A’ and 'B’,
* avector 'Nvalues’ gathering the number of unique values in each PIV,
* "PIVs_config’ the list of PIVs to use for Record Linkage and details on how
each should be handled by the algorithm,
* potential bounds on the mistakes probabilities for each PIV: ’controlOn-
Mistakes’,
* ’sameMistakes’ whether there should be one parameter for the mistakes in
A and B or whether each source should have its own (in case of small data
sources it is recommended to set sameMistakes=TRUE)
* whether the parameters for mistakes should be fixed in case of instability
"phiMistakesAFixed’ and ’phiMistakesBFixed’,
* as well as the values they should be fixed to ’phiForMistakesA’ and ’phi-
ForMistakesB’
StEMIter The total number of iterations of the Stochastic Expectation Maximisation (StEM)
algorithm (including the period to discard as burn-in)
StEMBurnin The number of iterations to discard as burn-in
GibbsIter The total number of iterations of the Gibbs sampler (run in each iteration of the
StEM) (including the period to discard as burn-in)
GibbsBurnin The number of iterations to discard as burn-in
Details

The example below aims to link 2 synthetic data sources, with 5 PIVs (4 stable ones and 1 unstable,
which evolve over time). PIVs may be considered stable if there is not enough information to model
their dynamics. Since we synthesise the data we can model it. We may not give a bound on some
PIVs in real settings, since there may be a lot of disagreements among the links for those variables
(in situations where we would have liked to model their dynamics otherwise but we do not have
enough information for this). Here we bound all the mistakes parameters since we know that the

FlexRL 9

mistakes probabilities are inferior to 10%. For a small example we prefer having one parameter for
the probabilities of mistakes over the 2 data sources. We do need to fix the mistake parameter of the
5th PIV to avoid estimability problems here (since it is an 'unstable’ variable). We know the true
linkage structure in this example so we can compute performances of the method at the end.

There are more details to understand the method in our paper, or on the experiments repository of
our paper, or in the vignettes, or in the documentation of the main algorithm ?FlexRL::StEM.
Value

The Stochastic Expectation Maximisation (StEM) function returns w list with:

* Delta, the (sparse) matrix with the pairs of records linked and their posterior probabilities to
be linked (select the pairs where the proba>0.5 to get a valid set of linked records),

* as well as the model parameters chains:

— gamma,
— eta,
— alpha,
— phi.
Author(s)
Kayané Robach
Examples
PIVs_config = list(V1 = list(stable = TRUE),
V2 = list(stable = TRUE),
V3 = list(stable = TRUE),
V4 = list(stable = TRUE),
V5 = list(stable = FALSE,

conditionalHazard = FALSE,
pSameH.cov.A = c(),
pSameH.cov.B = c()))
PIVs = names(PIVs_config)
PIVs_stable = sapply(PIVs_config, function(x) x$stable)
Nval = c(6, 7, 8, 9, 15)
NRecords = c(500, 800)
Nlinks = 300
PmistakesA = c(0.02, 0.02, 0.02, 0.02, 0.02)
PmistakesB = c(0.02, 0.02, 0.02, 0.02, 0.02)
PmissingA = c(0.007, 0.007, 0.007, 0.007, 0.007)
PmissingB = c(0.007, 0.007, 0.007, 0.007, 0.007)
moving_params = list(V1=c(),V2=c(),V3=c(),V4=c(),V5=c(0.28))
enforceEstimability = TRUE
DATA = DataCreation(PIVs_config,
Nval,
NRecords,
Nlinks,
PmistakesA,
PmistakesB,

10

FlexRL
PmissingA,
PmissingB,
moving_params,
enforceEstimability)
A = DATAS$A
B = DATA$B
Nvalues = DATA$Nvalues
TimeDifference = DATA$TimeDifference

proba_same_H

DATA$proba_same_H

the first 1:Nlinks records of each files created are links
TrueDelta = base::data.frame(matrix(@, nrow=@, ncol=2))

for (i in 1:Nlinks)

TrueDelta = rbind(TrueDelta, cbind(rownames(A[i,]),rownames(B[i,]1)))

true_pairs = do.call(paste, c(TrueDelta, list(sep="_")))

{
3
encodedA = A
encodedB = B

encodedA[,PIVs][is.na(encodedA[,PIVs])]
encodedB[,PIVs][is.na(encodedB[,PIVs]) 1]

data = list(A
B
Nvalues
PIVs_config
controlOnMistakes
sameMistakes
phiMistakesAFixed
phiMistakesBFixed
phiForMistakesA
phiForMistakesB

)

fit = FlexRL::stEM(data

StEMIter
StEMBurnin
GibbsIter
GibbsBurnin
musicOn
newDirectory
savelnfolter

)

DeltaResult = fit$Delta

1o
(SIS

encodedA,

encodedB,

Nvalues,

PIVs_config,

c(TRUE, TRUE, TRUE, TRUE, TRUE),
TRUE,

TRUE,

TRUE,

c(NA, NA, NA, NA, @),

c(NA, NA, NA, NA, @)

= data,
= 59,
= 30,
= 50,
= 30,
= TRUE,
= NULL,
= FALSE

colnames(DeltaResult) = c("idxA","idxB","probaLink")
DeltaResult = DeltaResult[DeltaResult$probalLink>0.5,]

results = base::data.frame(Results=matrix(NA, nrow=6, ncol=1))
rownames(results) = c("tp”,"fp”,"fn","flscore”,"fdr","sens.")

if(nrow(DeltaResult)>1){

generateSequence 11
linked_pairs = do.call(paste, c(DeltaResult[,c("idxA","idxB")], list(sep="_")))
truepositive = length(intersect(linked_pairs, true_pairs))
falsepositive = length(setdiff(linked_pairs, true_pairs))
falsenegative = length(setdiff(true_pairs, linked_pairs))
precision = truepositive / (truepositive + falsepositive)
fdr = 1 - precision
sensitivity = truepositive / (truepositive + falsenegative)
fl1score = 2 * (precision * sensitivity) / (precision + sensitivity)
results[,"FlexRL"] = c(truepositive,falsepositive,falsenegative,flscore,fdr,sensitivity)

}

generateSequence generateSequence

Description

generateSequence
Usage

generateSequence(n)
Arguments

n integer superior to 1
Value

IntegerVector: with n values from 1 to n

initDeltaMap initDeltaMap

Description

initDeltaMap

Usage
initDeltaMap()

Value

void: Initialise the cpp map _DeltaMap representing the sparse linkage matrix Delta.

12 launchNaive

launchNaive launchNaive

Description

launchNaive

Usage

launchNaive(PIVs, encodedA, encodedB)

Arguments
PIVs A vector of size the number of Partially Identifying Variables (PIVs) with their
names (as columns names in the data sources).
encodedA One data source (encoded: the categorical values of the PIVs have to be mapped
to sets of natural numbers and missing values are encoded as 0).
encodedB The other data source (encoded).
Value

The linkage set, a dataframe of 2 columns with indices from the first data source (A) and the second
one (B) for which all the PIVs (when non-missing) matches in their values. When a PIV is missing,
this method will match the record to all the records in the other file for which all other values of
the PIVs match. Therefore, this 'naive’ (or ’simplistic’) method does not enforce the one-to-one
assignment constraint of record linkage (one record in one file can at most be linked to one record
in the other file). This method should only be used to judge the difficulty of the record linkage task:
it gives information about the amount of duplicates between files and the discriminative power of
all the PIVs together as a way to link the records.

Examples

PIVs_config = list(V1 list(stable = TRUE),

V2 = list(stable = TRUE),
V3 = list(stable = TRUE),
V4 = list(stable = TRUE),
V5 = list(stable = FALSE,

conditionalHazard = FALSE,
pSameH.cov.A = c(),
pSameH.cov.B = c()))

PIVs = names(PIVs_config)

PIVs_stable = sapply(PIVs_config, function(x) x$stable)

Nval = c(6, 7, 8, 9, 15)

NRecords = c(500, 800)

Nlinks = 300

PmistakesA = c(0.02, 0.02, 0.02, 0.02, 0.02)

PmistakesB = c(0.02, 0.02, 0.02, 0.02, 0.02)

PmissingA = c(0.007, 0.007, 0.007, 0.007, 0.007)

loglik 13

PmissingB = c(0.007, 0.007, 0.007, 0.007, 0.007)
moving_params = list(Vi=c(),V2=c(),V3=c(),V4=c(),V5=c(0.28))
enforceEstimability = TRUE
DATA = DataCreation(PIVs_config,

Nval,

NRecords,

Nlinks,

PmistakesA,

PmistakesB,

PmissingA,

PmissingB,

moving_params,

enforceEstimability)
A = DATAS$A
B = DATA$B
Nvalues = DATA$Nvalues
TimeDifference = DATA$TimeDifference
proba_same_H = DATA$proba_same_H

TrueDelta = base::data.frame(matrix(@, nrow=0, ncol=2))
for (i in 1:Nlinks)

{
TrueDelta = rbind(TrueDelta, cbind(rownames(A[i,]),rownames(B[i,1)))
3
true_pairs = do.call(paste, c(TrueDelta, list(sep="_")))
encodedA = A
encodedB = B
encodedA[,PIVs][is.na(encodedA[,PIVs])] = 0@
encodedB[,PIVs][is.na(encodedB[,PIVs])] = @

DeltaResult = launchNaive(PIVs, encodedA, encodedB)

results = base::data.frame(Results=matrix(NA, nrow=6, ncol=1))
rownames (results) = c("tp","fp","fn","f1score”,"fdr","sens.")
if(nrow(DeltaResult)>1){

linked_pairs = do.call(paste, c(DeltaResult[,c("idxA","idxB")], list(sep="_")))
truepositive = length(intersect(linked_pairs, true_pairs))
falsepositive = length(setdiff(linked_pairs, true_pairs))
falsenegative = length(setdiff(true_pairs, linked_pairs))
precision = truepositive / (truepositive + falsepositive)
fdr = 1 - precision
sensitivity = truepositive / (truepositive + falsenegative)
f1score = 2 * (precision * sensitivity) / (precision + sensitivity)
results[,"Naive"] = c(truepositive,falsepositive,falsenegative,fliscore,fdr,sensitivity)
3
results

loglik loglik

14 loglik
Description

Log(likelihood) of the linkage matrix.

Usage

loglik(LLL, LLA, LLB, links, sumRowD, sumColD, gamma)

Arguments
LLL A (sparse) matrix with contributions to the complete likelihood of the linked
records.
LLA A vector with contributions to the complete likelihood of the non linked records
from A.
LLB A vector with contributions to the complete likelihood of the non linked records
from B.
links A matrix of 2 columns with indices of the linked records.
sumRowD A boolean vector indicating, for each row of the linkage matrix, i.e. for each
record in the smallest file A, whether the record has a link in B or not.
sumColD A boolean vector indicating, for each column of the linkage matrix, i.e. for each
record in the largest file B, whether the record has a link in A or not.
gamma The proportion of linked records as a fraction of the smallest file.
Value

The Log(likelihood) of the linkage matrix.

Examples

LLL = Matrix::Matrix(@, nrow=13, ncol=15, sparse=TRUE)

LLA = c(0.001,0.001,0.001,0.001,1.43,0.02,0.007,0.001,2.1,0.0003,1.67,1.5,10)

LLB = c(0.001,0.001,0.001,0.001,1.22,0.008,0.01,0.04,3.9,0.0002,1.99,0,2.4,0.009,12)

linksR = as.matrix(base::data.frame(list(idxA=c(5,9,11,12,13), idxB=c(5,9,11,13,15))))

LLL[1inksR] = @.67

sumRowD = ¢(0,0,0,0,1,0,0,0,1,0,1,1,1)

sumColD = c(0,90,0,0,1,0,0,0,1,0,1,0,1,0,1)

gamma = 0.5

LL® = loglik(LLL=LLL, LLA=LLA, LLB=LLB, links=linksR, sumRowD=sumRowD, sumColD=sumColD,
gamma=gamma)

loglikSurvival

15

loglikSurvival

The log likelihood of the survival function with exponential model (-)

Description

Log(likelihood) of the survival function with exponential model (as proposed in our paper), repre-
senting the probability that true values of a pair of records referring to the same entity coincide. See
7FlexRL::SurvivalUnstable. This function is only used if the PIV is unstable and evolve over time.
If so the true values of a linked pair of records may not coincide. If you want to use a different
survival function to model instability, you can change the function *SurvivalUnstable’ as well as
this function ’loglikSurvival’.

Usage

loglikSurvival(alphas, X, times, Hequal)

Arguments

alphas

times

Hequal

Details

A vector of size 1+cov in A+cov in B with coefficients of the hazard (baseline
hazard and conditional hazard)

A matrix with number of linked records rows and 1+cov in A+cov in B columns
(first column: intercept, following columns: covariates from A and then from
B to model instability) (used for optimisation: X concatenate the X obtained in
each iteration of the Gibbs sampler)

A vector of size number of linked records with the time gaps between the record
from each sources (used for optimisation: times concatenate the times vectors
obtained in each iteration of the Gibbs sampler)

A vector of size number of linked records with boolean values indicating wether
the values in A and in B coincide (used for optimisation: times concatenate the
times vectors obtained in each iteration of the Gibbs sampler)

In our Stochastic Expectation Maximisation (StEM) algorithm (see ?FlexRL::StEM) we minimise
- log(likelihood), which is equivalent to maximise log(likelihood). Therefore this function actually
returns (and should return if you create your own) the opposite (-) of the log(likelihood) associated
with the survival function defining the probabilities that true values coincide.

Value

The value of the opposite (-) of the log(likelihood) associated with the survival function defin-
ing the probabilities that true values coincide (as defined in the paper) (the algorithm minimises
-log(likelihood) i.e. maximises the log(likelihood)).

16 logPossibleConfig

Examples

nCoefUnstable = 1

alphalnit = rep(-0.05, nCoefUnstable)

Valpha = base::data.frame(list(cov=c(2,2.1,3.4,2.5,2.9),
times=c(0.001,0.2,1.3,1.5,2),
Hequal=c(TRUE, TRUE, TRUE, FALSE, FALSE)))

X = Valpha[,1:nCoefUnstable]

times = Valpha$times

Hequal = Valpha$Hequal

optim = stats::nlminb(alphalnit, loglikSurvival, control=list(trace=FALSE),

X=X, times=times, Hequal=Hequal)
alpha = optim$par

logPossibleConfig logPossibleConfig

Description

This function helps calculating the number of possible designs for Delta given by nB!/(nB-nLinks)!
Needed to compute the log likelihood of the linkage matrix.

Usage

logPossibleConfig(Brecords, sumD)

Arguments

Brecords Number of records in data source B (the largest).

sumD Number of linked records (at a specific time point of the algorithm).
Value

The sum of logs of the vector going from nB - nLinks + 1 to nB.

Examples

sumColD = c(90,0,0,0,1,0,0,0,1,0,1,0,1,0,1)
links = base::data.frame(list(idxA=c(5,9,11,12,13), idxB=c(5,9,11,13,15)))
possconfig = logPossibleConfig(length(sumColD),nrow(links))

sampleD

17

sampleD

sampleD

Description

sampleD

Usage

sampleD(S, LLA, LLB, LLL, gamma, loglik, nlinkrec, sumRowD, sumColD)

Arguments

S

LLA

LLB

LLL

gamma

loglik
nlinkrec

sumRowD

sumColD

Value

List:

IntegerMatrix where each row correspond to the indices (from source A and
source B) of records for which the true values matches (representing the poten-
tial links)

NumericVector gives the likelihood contribution of each non linked record from
A

NumericVector gives the likelihood contribution of each non linked record from
B

NumericVector gives the likelihood contribution of each potential linked records
(from select)

NumericVector repeats the value of the parameter gamma (proportion of linked
records) number of potential linked records (nrow of S) times

double for the value of the current complete log likelihood of the model
integer for the current number of linked records

A LogicalVector vector indicating, for each row of the linkage matrix, i.e. for
each record in the smallest file A, whether the record has a link in B or not.

A LogicalVector vector indicating, for each column of the linkage matrix, i.e.
for each record in the largest file B, whether the record has a link in A or not.

* new set of links

¢ new sumRowD

e new sumColD

* new value of the complete log likelihood

¢ new number fo linked records

18 sampleH

sampleH sampleH

Description

sampleH

Usage

sampleH(
nA,
nB,
links,
survivalpSameH,
pivs_stable,
pivsA,
pivsB,
nvalues,
nonlinkedA,
nonlinkedB,
eta,
phi

Arguments

nA IntegerVector of dimensions of registered values of the Partially Identifying
Variables (PIVs) in A

nB IntegerVector of dimensions of registered values of the PIVs in B
links IntegerMatrix of 2 columns with the indices of the linked records

survivalpSameH NumericMatrix with for each PIV the probability that true values coincide (if
stable: filled with 1)

pivs_stable Logical Vector indicating for each PIV whether it is stable of not (if not we ex-
pect survivalpSameH for that same element to not be filled with 1 but with lower
values)

pivsA List ith registered data from A

pivsB List with registered data from B

nvalues IntegerVector with number of unique values of each PIV

nonlinkedA Logical Vector indicating for all records in A whether they are linked or not

nonlinkedB Logical Vector indicating for all records in B whether they are linked or not

eta List parameters of the PIVs distributions

phi List parameters of the PIVs registration errors

sampleL

Value

List:

19

* truePIVsA, true values underlying data in A

* truePIVsB, true values underlying data in B

samplelL

sampleNL

Description

sampleNL

Usage

samplel (
GA,
GB,

survivalpSameH,

choice_set,

choice_equal,

nval,
phikA,
phikB,
eta

Arguments

GA

GB
survivalpSameH

choice_set
choice_equal

nval
phikA
phikB
eta

Value

IntegerVector of registered values for a certain Partially Identifying Variable
(PIV) for linked records from A

IntegerVector of registered values for a certain PIV for linked records from B

NumericVector of probabilities that the concerned PIV values coincide between
file A and file B

IntegerMatrix of 2 columns (for A and for B) with possible joint true values
underlying GA and GB

IntegerVector of booleans indicating whether the 2 true values (from A and B)
in the choice set are equal

integer for the number of unique values in the PIV concerned
NumericVector parameter for the registration errors in A for the PIV concerned
NumericVector parameter for the registration errors in B for the PIV concerned

NumericVector parameter for the distribution of the PIV concerned

IntegerVector: of indices from the joint latent true values choice set underlying GA and GB

20 simulateD

sampleNL sampleNL

Description

sampleNL

Usage

sampleNL (G, eta, phi)

Arguments
G IntegerVector of registered values for a certain Partially Identifying Variable
(PIV) for non linked records
eta NumericVector parameter for the distribution of the PIV concerned
phi NumericVector parameter for the registration errors for the PIV concerned
Value

IntegerVector: of latent true values underlying G

simulateD simulateD

Description

simulateD

Usage

simulateD(
data,
linksR,
sumRowD,
sumColD,
truepivsA,
truepivsB,
gamma,
eta,
alpha,
phi

simulateD 21

Arguments

data A list with elements:

* A: the smallest data source (encoded: the categorical values of the PIVs
have to be mapped to sets of natural numbers and missing values are en-
coded as 0).

* B: the largest data source (encoded).

* Nvalues: A vector (of size number of PIVs) with the number fo unique
values per PIVs (in the order of the PIVs defined in PIVs_config).

* PIVs_config: A list (of size number of PIVs) where element names are
the PIVs and element values are lists with elements: stable (boolean for
whether the PIV is stable), conditionalHazard (boolean for whether there
are external covariates available to model instability, only required if stable
is FALSE), pSameH.cov.A and pSameH.covB (vectors with strings corre-
sponding to the names of the covariates to use to model instability from
file A and file B, only required if stable is FALSE, empty vectors may be
provided if conditionalHazard is FALSE).

¢ controlOnMistakes: A vector (of size number of PIVs) of booleans indicat-
ing potential bounds on the mistakes probabilities for each PIV. For each
PIV, if TRUE there will be control on mistake and the mistake probability
will not go above 10%. If FALSE there is no bound on the probability of
mistake. WATCH OUT, if you suspect that a variable is unstable but you
do not have data to model its dynamics the boolean value should be set to
FALSE to allow the parameter for mistake to adapt for the instability. How-
ever if you model this instability, the boolean value should be set to TRUE
to help the algorithm differenciate the mistakes from the changes over time.

* sameMistakes: A boolean value for whether there should be one param-
eter for the mistakes in A and B or whether each source should have its
own parameter. Setting sameMistakes=TRUE is recommended in case of
small data sources; the estimation with 2 parameters in that case will fail to
capture the mistakes correctly while 1 parameter will be more adapted.

» phiMistakesAFixed A vector (of size number of PIVs) of booleans indicat-
ing whether the parameters for mistakes should be fixed in case of instabil-
ity. It should be FALSE, except for unstable PIVs for which it may be set
to TRUE in order to avoid estimability problems between the parameter for
mistake and the parameter for changes across time.

* phiMistakesBFixed A vector (of size number of PIVs) of booleans indicat-
ing whether the parameters for mistakes should be fixed in case of instabil-
ity. It should be FALSE, except for unstable PIVs for which it may be set
to TRUE in order to avoid estimability problems between the parameter for
mistake and the parameter for changes across time.

* phiForMistakesA A vector (of size number of PIVs) of NA or fixed values
for the parameters for mistakes. It should be NA, except for unstable PIVs
for which one wants to fix the parameter to avoid estimability problem (as
indicated with the boolean values in phiMistakesAFixed). In that case it
should be set the the expected value for the probability of mistake. If you
have no idea: you can put it to 0, the algorithm is quite robust to wrongly
fixed parameters.

22

linksR

sumRowD

sumColD

truepivsA

truepivsB

gamma
eta

alpha

phi

Value

A list with:

simulateD

* phiForMistakesB A vector (of size number of PIVs) of NA or fixed values
for the parameters for mistakes. It should be NA, except for unstable PIVs
for which one wants to fix the parameter to avoid estimability problem (as
indicated with the boolean values in phiMistakesBFixed). In that case it
should be set the the expected value for the probability of mistake. If you
have no idea: you can put it to 0, the algorithm is quite robust to wrongly
fixed parameters.

A matrix of 2 columns with indices of the linked records.

A boolean vector indicating, for each row of the linkage matrix, i.e. for each
record in the smallest file A, whether the record has a link in B or not.

A boolean vector indicating, for each column of the linkage matrix, i.e. for each
record in the largest file B, whether the record has a link in A or not.

A matrix of the shape of data source A, representing the true values of the PIVs
underlying the registered values present in A.

A matrix of the shape of data source B, representing the true values of the PIVs
underlying the registered values present in B.

The proportion of linked records as a fraction of the smallest file.
The distribution weights for the PIVs.

The parameter involved in the survival model for the probability of true values
to coincide (parameter for instability).

The proportion of mistakes and missing for the PIVs.

¢ new set of links

¢ new sumRowD

¢ new sumColD

* new value of the complete log likelihood

¢ new number fo linked records

Examples

PIVs_config = list(V1 = list(stable = TRUE),

V2 = list(stable = TRUE),
V3 = list(stable = TRUE),
V4 = list(stable = TRUE),

V5 = list(stable = FALSE,
conditionalHazard = FALSE,
pSameH.cov.A = c(),
pSameH.cov.B = c()))

PIVs = names(PIVs_config)
PIVs_stable = sapply(PIVs_config, function(x) x$stable)
Nval = c(6, 7, 8, 9, 15)

NRecords =

c(13, 15)

simulateD
Nlinks = 6
PmistakesA = c(0.02, 0.02, 0.02, 0.02, ©.02)

PmistakesB = c(0.02, 0.02, 0.02, 0.02, 0.02)

PmissingA = c(0.007, 0.007, 0.007, 0.007, 0.007)

PmissingB = c(0.007, 0.007, 0.007, 0.007, 0.007)
moving_params = list(Vi=c(),V2=c(),V3=c(),V4=c(),V5=c(0.28))

enforceEstimability = TRUE

DATA = DataCreation(PIVs_config,
Nval,
NRecords,
Nlinks,
PmistakesA,
PmistakesB,
PmissingA,
PmissingB,
moving_params,
enforceEstimability)

A = DATASA

B DATAS$B

Nvalues DATA$Nvalues

1
>

encodedA
encodedB

1
o)

encodedA[,PIVs][is.na(encodedA[,PIVs])]
encodedB[,PIVs][is.na(encodedB[,PIVs])]

dataForStEM = list(A
B
Nvalues
PIVs_config
controlOnMistakes
sameMistakes
phiMistakesAFixed
phiMistakesBFixed
phiForMistakesA
phiForMistakesB

)

initDeltaMap()

linksR = base::matrix(90,90,2)

linksCpp = linksR

sumRowD = rep(@, nrow(dataForStEM$A))
sumColD = rep(@, nrow(dataForStEM$B))
nlinkrec = @

survivalpSameH = base::matrix(1, nrow(linksR), length(dataForStEM$Nvalues))

gamma = 0.5

encodedA,

encodedB,

Nvalues,

PIVs_config,

c(TRUE, TRUE, TRUE, TRUE, TRUE),
TRUE,

TRUE,

TRUE,

c(NA, NA, NA, NA, @),

c(NA, NA, NA, NA, 0)

eta = lapply(dataForStEM$Nvalues, function(x) rep(1/x,x))
phi = lapply(dataForStEM$Nvalues, function(x) ¢(0.9,0.9,0.1,0.1))
nCoefUnstable = lapply(seq_along(PIVs_stable),

function(idx)

if (PIVs_stablel[idx]1){ @ }

else{

23

24 simulateH

ncol (dataForStEM$A[, dataForStEM$PIVs_config[[idx]]$pSameH.cov.A,
drop=FALSE]) +
ncol (dataForStEM$B[, dataForStEM$PIVs_config[[idx]]$pSameH.cov.B,
drop=FALSE]) +
13D
alpha = lapply(seq_along(PIVs_stable),
function(idx) if(PIVs_stable[idx]){ c(-Inf) }else{
rep(log(0.05), nCoefUnstable[[idx]]) })
newTruePivs = simulateH(data=dataForStEM, links=1linksCpp, survivalpSameH=survivalpSameH,
sumRowD=sumRowD, sumColD=sumColD, eta=eta, phi=phi)
truepivsA = newTruePivs$truepivsA
truepivsB = newTruePivs$truepivsB
Dsample = simulateD(data=dataForStEM, linksR=linksR, sumRowD=sumRowD, sumColD=sumColD,
truepivsA=truepivsA, truepivsB=truepivsB,
gamma=gamma, eta=eta, alpha=alpha, phi=phi)
linksCpp = Dsample$links
linksR = linksCpp + 1

simulateH simulateH

Description

simulateH

Usage

simulateH(data, links, survivalpSameH, sumRowD, sumColD, eta, phi)

Arguments

data A list with elements:

* A: the smallest data source (encoded: the categorical values of the PIVs

have to be mapped to sets of natural numbers and missing values are en-
coded as 0).

* B: the largest data source (encoded).

* Nvalues: A vector (of size number of PIVs) with the number fo unique
values per PIVs (in the order of the PIVs defined in PIVs_config).

* PIVs_config: A list (of size number of PIVs) where element names are
the PIVs and element values are lists with elements: stable (boolean for
whether the PIV is stable), conditionalHazard (boolean for whether there
are external covariates available to model instability, only required if stable
is FALSE), pSameH.cov.A and pSameH.covB (vectors with strings corre-
sponding to the names of the covariates to use to model instability from
file A and file B, only required if stable is FALSE, empty vectors may be
provided if conditionalHazard is FALSE).

simulateH

links

survivalpSameH

sumRowD

sumColD

25

¢ controlOnMistakes: A vector (of size number of PIVs) of booleans indicat-
ing potential bounds on the mistakes probabilities for each PIV. For each
PIV, if TRUE there will be control on mistake and the mistake probability
will not go above 10%. If FALSE there is no bound on the probability of
mistake. WATCH OUT, if you suspect that a variable is unstable but you
do not have data to model its dynamics the boolean value should be set to
FALSE to allow the parameter for mistake to adapt for the instability. How-
ever if you model this instability, the boolean value should be set to TRUE
to help the algorithm differenciate the mistakes from the changes over time.

* sameMistakes: A boolean value for whether there should be one param-
eter for the mistakes in A and B or whether each source should have its
own parameter. Setting sameMistakes=TRUE is recommended in case of
small data sources; the estimation with 2 parameters in that case will fail to
capture the mistakes correctly while 1 parameter will be more adapted.

 phiMistakesAFixed A vector (of size number of PIVs) of booleans indicat-
ing whether the parameters for mistakes should be fixed in case of instabil-
ity. It should be FALSE, except for unstable PIVs for which it may be set
to TRUE in order to avoid estimability problems between the parameter for
mistake and the parameter for changes across time.

» phiMistakesBFixed A vector (of size number of PIVs) of booleans indicat-
ing whether the parameters for mistakes should be fixed in case of instabil-
ity. It should be FALSE, except for unstable PIVs for which it may be set
to TRUE in order to avoid estimability problems between the parameter for
mistake and the parameter for changes across time.

* phiForMistakesA A vector (of size number of PIVs) of NA or fixed values
for the parameters for mistakes. It should be NA, except for unstable PIVs
for which one wants to fix the parameter to avoid estimability problem (as
indicated with the boolean values in phiMistakesAFixed). In that case it
should be set the the expected value for the probability of mistake. If you
have no idea: you can put it to 0, the algorithm is quite robust to wrongly
fixed parameters.

* phiForMistakesB A vector (of size number of PIVs) of NA or fixed values
for the parameters for mistakes. It should be NA, except for unstable PIVs
for which one wants to fix the parameter to avoid estimability problem (as
indicated with the boolean values in phiMistakesBFixed). In that case it
should be set the the expected value for the probability of mistake. If you
have no idea: you can put it to 0, the algorithm is quite robust to wrongly
fixed parameters.

A matrix of 2 columns with indices of the linked records.
a matrix of size (nrow=number of linked records, ncol=number of PIVs), filled
for each PIV in column, with 1 if the PIV is stable and with the probability for

true values of the records to coincide as calculate by survival function if the PIV
is unstable.

A boolean vector indicating, for each row of the linkage matrix, i.e. for each
record in the smallest file A, whether the record has a link in B or not.

A boolean vector indicating, for each column of the linkage matrix, i.e. for each
record in the largest file B, whether the record has a link in A or not.

26 simulateH

eta The distribution weights for the PIVs.
phi The proportion of mistakes and missing for the PIVs.
Value

A list with 2 matrices of the shapes of both data sources, representing the true values of the PIVs
underlying the registered values present in the data sources.

Examples

PIVs_config = list(V1 = list(stable = TRUE),

V2 = list(stable = TRUE),
V3 = list(stable = TRUE),
V4 = list(stable = TRUE),
V5 = list(stable = FALSE,

conditionalHazard = FALSE,
pSameH.cov.A = c(),
pSameH.cov.B = c()))

PIVs = names(PIVs_config)

PIVs_stable = sapply(PIVs_config, function(x) x$stable)

Nval = c(6, 7, 8, 9, 15)

NRecords = c(13, 15)

Nlinks = 6

PmistakesA = c(0.02, 2, 0.02, 0.02, 0.02)

PmistakesB = c(0.02, 2, 0.02, 0.02, 0.02)

PmissingA = c(0.007, 0.007, 0.007, 0.007, 0.007)

PmissingB = c(0.007, 0.007, 0.007, 0.007, 0.007)

moving_params = list(Vi=c(),V2=c(),V3=c(),V4=c(),V5=c(0.28))

enforceEstimability = TRUE

DATA = DataCreation(PIVs_config,

Nval,
NRecords,
Nlinks,
PmistakesA,
PmistakesB,
PmissingA,
PmissingB,
moving_params,
enforceEstimability)
A = DATASA
B = DATAS$B
Nvalues = DATA$Nvalues
encodedA = A
encodedB = B
encodedA[,PIVs][is.na(encodedA[,PIVs])] = 0@
encodedB[,PIVs][is.na(encodedB[,PIVs])] = @
dataForStEM = list(A = encodedA,
B = encodedB,

Nvalues = Nvalues,

sspaste2 27

PIVs_config = PIVs_config,
controlOnMistakes = ¢(TRUE, TRUE, TRUE, TRUE, TRUE),
sameMistakes = TRUE,
phiMistakesAFixed = TRUE,
phiMistakesBFixed = TRUE,
phiForMistakesA = c(NA, NA, NA, NA, @),
phiForMistakesB = c(NA, NA, NA, NA, 0)
)
initDeltaMap()

linksR = base::matrix(90,0,2)
linksCpp = linksR
sumRowD = rep(@, nrow(dataForStEM$A))
sumColD = rep(@, nrow(dataForStEM$B))
nlinkrec = @
survivalpSameH = base::matrix(1, nrow(linksR), length(dataForStEM$Nvalues))
gamma = 0.5
eta = lapply(dataForStEM$Nvalues, function(x) rep(1/x,x))
phi = lapply(dataForStEM$Nvalues, function(x) ¢(0.9,0.9,0.1,0.1))
nCoefUnstable = lapply(seq_along(PIVs_stable),

function(idx)

if(PIVs_stable[idx]1){ @ }

else{

ncol(dataForStEM$AL, dataForStEM$PIVs_config[[idx]]1$pSameH.cov.A,
drop=FALSE]) +
ncol (dataForStEM$B[, dataForStEM$PIVs_config[[idx]]$pSameH.cov.B,
drop=FALSE]) +

13D

alpha = lapply(seq_along(PIVs_stable),
function(idx) if(PIVs_stable[idx]){ c(-Inf) }else{
rep(log(@.05), nCoefUnstable[[idx]]) })

newTruePivs = simulateH(data=dataForStEM, links=1inksCpp, survivalpSameH=survivalpSameH,

sumRowD=sumRowD, sumColD=sumColD, eta=eta, phi=phi)
truepivsA = newTruePivs$truepivsA
truepivsB = newTruePivs$truepivsB

sspaste2 sspaste2

Description

sspaste2

Usage

sspaste2(A)

Arguments

A IntegerMatrix with values to form patterns

28

Value

StEM

CharacterVector: "sspaste2(A)" is a faster version in Rcpp of "do.call(paste, c(as.data.frame(A),

list(sep="_")))"

stEM

Stochastic Expectation Maximisation (StEM) for Record Linkage

Description

Stochastic Expectation Maximisation (StEM) for Record Linkage

Usage

stEM(
data,
StEMIter,
StEMBurnin,
GibbsIter,
GibbsBurnin,
musicOn = TRUE,

newDirectory = NULL,

savelnfolter =

Arguments

FALSE

data A list with elements:

* A: the smallest data source (encoded: the categorical values of the Partially
Identifying Variables (PIVs) have to be mapped to sets of natural numbers
and missing values are encoded as 0).

* B: the largest data source (encoded).

* Nvalues: A vector (of size number of PIVs) with the number fo unique
values per PIVs (in the order of the PIVs defined in PIVs_config).

* PIVs_config: A list (of size number of PIVs) where element names are
the PIVs and element values are lists with elements: stable (boolean for
whether the PIV is stable), conditionalHazard (boolean for whether there
are external covariates available to model instability, only required if stable
is FALSE), pSameH.cov.A and pSameH.covB (vectors with strings corre-
sponding to the names of the covariates to use to model instability from
file A and file B, only required if stable is FALSE, empty vectors may be
provided if conditionalHazard is FALSE).

¢ controlOnMistakes: A vector (of size number of PIVs) of booleans indicat-
ing potential bounds on the mistakes probabilities for each PIV. For each
PIV, if TRUE there will be control on mistake and the mistake probability
will not go above 10%. If FALSE there is no bound on the probability of
mistake. WATCH OUT, if you suspect that a variable is unstable but you

stEM

StEMIter

StEMBurnin
GibbsIter

GibbsBurnin

musicOn

newDirectory

29

do not have data to model its dynamics the boolean value should be set to
FALSE to allow the parameter for mistake to adapt for the instability. How-
ever if you model this instability, the boolean value should be set to TRUE
to help the algorithm differenciate the mistakes from the changes over time.

» sameMistakes: A boolean value for whether there should be one param-
eter for the mistakes in A and B or whether each source should have its
own parameter. Setting sameMistakes=TRUE is recommended in case of
small data sources; the estimation with 2 parameters in that case will fail to
capture the mistakes correctly while 1 parameter will be more adapted.

 phiMistakesAFixed A vector (of size number of PIVs) of booleans indicat-
ing whether the parameters for mistakes should be fixed in case of instabil-
ity. It should be FALSE, except for unstable PIVs for which it may be set
to TRUE in order to avoid estimability problems between the parameter for
mistake and the parameter for changes across time.

» phiMistakesBFixed A vector (of size number of PIVs) of booleans indicat-
ing whether the parameters for mistakes should be fixed in case of instabil-
ity. It should be FALSE, except for unstable PIVs for which it may be set
to TRUE in order to avoid estimability problems between the parameter for
mistake and the parameter for changes across time.

* phiForMistakesA A vector (of size number of PIVs) of NA or fixed values
for the parameters for mistakes. It should be NA, except for unstable PIVs
for which one wants to fix the parameter to avoid estimability problem (as
indicated with the boolean values in phiMistakesAFixed). In that case it
should be set the the expected value for the probability of mistake. If you
have no idea: you can put it to 0, the algorithm is quite robust to wrongly
fixed parameters.

* phiForMistakesB A vector (of size number of PIVs) of NA or fixed values
for the parameters for mistakes. It should be NA, except for unstable PIVs
for which one wants to fix the parameter to avoid estimability problem (as
indicated with the boolean values in phiMistakesBFixed). In that case it
should be set the the expected value for the probability of mistake. If you
have no idea: you can put it to 0, the algorithm is quite robust to wrongly
fixed parameters.

An integer with the total number of iterations of the Stochastic EM algorithm
(including the period to discard as burn-in)

An integer with the number of iterations to discard as burn-in

An integer with the total number of iterations of the Gibbs sampler (done in each
iteration of the StEM) (including the period to discard as burn-in)

An integer with the number of iterations to discard as burn-in

A boolean value, if TRUE the algorithm will play music at the end of the algo-
rithm, useful if you have to wait for the record linkage to run and to act as an
alarm when record linkage is done

A NULL value or: A string with the name of (or path to) the directory (which
should already exist) where to save the environment variables at the end of each
iteration (useful when record linkage is very long, to not loose everything and
not restart from scratch in case your computer shut downs before record linkage
is finished)

30

StEM

savelnfolter A boolean value to indicate whether you want the environment variables to be

Value

saved at the end of each iteration (useful when record linkage is very long, to not
loose everything and not restart from scratch in case your computer shut downs
before record linkage is finished)

A list with:

Delta, the summarry of a sparse matrix, i.e. a dataframe with 3 columns: the indices from the
first data source A, the indices from the second data source B, the non-zero probability that
the records associated with this pair of indices are linked (i.e. the posterior probabilities to be
linked). One has to select the pairs where this proba>0.5 to get a valid set of linked records,
(this threshold on the linkage probability is necessary to ensure the one-to-one assignment
constraint of record linkage stating that one record in one file can at most be linked to one
record in the other file).

gamma, a vector with the chain of the parameter gamma representing the proportion of linked
records as a fraction of the smallest file,

eta, a vector with the chain of the parameter eta representing the distribution of the PIVs,

alpha, a vector with the chain of the parameter alpha representing the hazard coefficient of the
model for instability,

phi, a vector with the chain of the parameter phi representing the registration errors parame-
ters).

There are more details to understand the method in our paper, or on the experiments repository of
our paper, or in the vignettes.

Examples

PIVs_config = list(V1

PIVs

list(stable = TRUE),

V2 = list(stable = TRUE),
V3 = list(stable = TRUE),
V4 = list(stable = TRUE),
V5 = list(stable = FALSE,

conditionalHazard = FALSE,
pSameH.cov.A = c(),
pSameH.cov.B = c()))

= names(PIVs_config)

PIVs_stable = sapply(PIVs_config, function(x) x$stable)

Nval

=c(6, 7, 8, 9, 15)

NRecords = c(500, 800)

Nlinks = 300

PmistakesA = c(0.092, 0.02, 0.02, .02, 0.02)

PmistakesB = c(0.02, 0.02, 0.02, 0.02, 0.02)

PmissingA = c(0.007, 0.007, 0.007, 0.007, 0.007)

PmissingB = c(0.007, 0.007, 0.007, 0.007, 0.007)
moving_params = list(Vi=c(),V2=c(),V3=c(),V4=c(),V5=c(0.28))
enforceEstimability = TRUE

DATA

= DataCreation(PIVs_config,
Nval,

SurvivalUnstable 31

NRecords,
Nlinks,
PmistakesA,
PmistakesB,
PmissingA,
PmissingB,
moving_params,
enforceEstimability)
A = DATAS$A
B = DATAS$B
Nvalues = DATA$Nvalues
encodedA = A
encodedB = B
encodedA[,PIVs][is.na(encodedA[,PIVs])] = 0@
encodedB[,PIVs][is.na(encodedB[,PIVs]) 1 =0

data = list(A = encodedA,
B = encodedB,
Nvalues = Nvalues,
PIVs_config = PIVs_config,
controlOnMistakes = c(TRUE, TRUE,FALSE,FALSE,FALSE),
sameMistakes = TRUE,
phiMistakesAFixed = FALSE,
phiMistakesBFixed = FALSE,
phiForMistakesA = c(NA,NA,NA ;NA ,NA),
phiForMistakesB = c(NA,NA,NA,;NA /NA))

fit = stEM(data = data,

StEMIter = 50,
StEMBurnin = 30,
GibbsIter = 50,
GibbsBurnin = 30,
musicOn = TRUE,
newDirectory = NULL,
saveInfolter = FALSE)

SurvivalUnstable The survival function with exponential model

Description

The survival function with exponential model (as proposed in our paper) is representing the proba-
bility that true values of a pair of records referring to the same entity coincide. For a linked pair of
record (i,j) from sources A, B respectively, P(HAik = HBjk | t_ij, ...) = exp(- exp(X.ALPHA) t_ij
). This function is only used if the PIV is unstable and evolve over time. If so the true values of a
linked pair of records may not coincide. If you want to use a different survival function to model
instability, you can change this function ’SurvivalUnstable’ as well as the associated log(likelihood)
function ’loglikSurvival’. Also see ?FlexRL::loglikSurvival.

32 SurvivalUnstable

Usage
SurvivalUnstable(Xlinksk, alphask, times)

Arguments
X1linksk A matrix with number of linked records rows and 1+cov in A+cov in B columns,
with a first column filled with 1 (intercept), and following columns filled with
the values of the covariates useful for modelling instability for the linked records
alphask A vector of size 1+cov in A+cov in B, with as first element the baseline hazard
and following elements being the coefficient of the conditional hazard associated
with the covariates given in X
times A vector of size number of linked records with the time gaps between the record
from each sources
Details

The simplest model (without covariates) just writes P(HAik = HBjk | t_ij, ...) = exp(- exp(alpha)
. t_ij) The more complex model (with covariates) writes P(HAik = HBjk | t_ij, ...) = exp(-
exp(X.ALPHA) . t_ij) and uses a matrix X (nrow=nbr of linked records, ncol=1 + nbr of cov from
A + nbr of cov from B) where the first column is filled with 1 (intercept) and the subsequent columns
are the covariates values from source A and/or from source B to be used. The ALPHA in this case
is a vector of parameters, the first one being associated with the intercept is the same one than for
the simplest model, the subsequent ones are associated with the covariates from A and/or from B.

Value

A vector (for an unstable PIV) of size number of linked records with the probabilities that true
values coincide (e.g. 1 - proba to move if the PIV is postal code) defined according to the survival
function with exponential model proposed in the paper

Examples

nCoefUnstable = 1

intercept = rep(1,5)

cov_k = cbind(intercept)

times = ¢(0.001,0.2,1.3,1.5,2)

survivalpSameH = SurvivalUnstable(cov_k, log(@.28), times)

Index

cartesianProduct, 2
createDataAlpha, 3

DataCreation, 4
Deltafind, 6

ExpandGrid, 6

F2,7
F33,7
FlexRL, 8

generateSequence, 11
initDeltaMap, 11

launchNaive, 12
loglik, 13
loglikSurvival, 15
logPossibleConfig, 16

sampleD, 17
sampleH, 18
samplel, 19
sampleNL, 20
simulateD, 20
simulateH, 24
sspaste2, 27

stEM, 28
SurvivalUnstable, 31

33

	cartesianProduct
	createDataAlpha
	DataCreation
	Deltafind
	ExpandGrid
	F2
	F33
	FlexRL
	generateSequence
	initDeltaMap
	launchNaive
	loglik
	loglikSurvival
	logPossibleConfig
	sampleD
	sampleH
	sampleL
	sampleNL
	simulateD
	simulateH
	sspaste2
	stEM
	SurvivalUnstable
	Index

