Package 'IVPP'

May 26, 2025

Type Package

Title Invariance Partial Pruning Test

Version 1.1.1

Description An implementation of the Invariance Partial Pruning (IVPP) approach described in Du, X., Johnson, S. U., Epskamp, S. (2025) The Invariance Partial Pruning Approach to The Network Comparison in Longitudinal Data. IVPP is a two-step method that first test for global network structural difference with invariance test and then inspect specific edge difference with partial pruning.

License GPL (>= 3)

Encoding UTF-8

Depends R (>= 4.3.0)

Imports bootnet, clusterGeneration, dplyr, mvtnorm, psychonetrics, graphicalVAR, lifecycle, future.apply, future

BugReports https://github.com/xinkaidupsy/IVPP/issues

URL https://github.com/xinkaidupsy/IVPP

RoxygenNote 7.3.2

NeedsCompilation no

Author Xinkai Du [aut, cre, cph] (ORCID: https://orcid.org/0000-0002-4158-7878>)

Maintainer Xinkai Du <xinkai.du.xd@gmail.com>

Repository CRAN

Date/Publication 2025-05-26 14:40:11 UTC

Contents

gen_panelGVAR	2
gen_tsGVAR	3
IVPP_panelgvar	4
IVPP_tsgvar	7
sim_panelGVAR	9
sim_tsGVAR	11

gen_panelGVAR Gener

Generate a (multi-group) panelGVAR model

Description

This function generates a (multi-group) panel GVAR model. Currently generating temporal and contemporaneous networks

Usage

```
gen_panelGVAR(
  n_node = 6,
  p_rewire_temp = 0.5,
  p_rewire_cont = 0.5,
  n_group = 1
)
```

Arguments

n_node	an integer denoting the number of nodes
p_rewire_temp	a numeric value between 0-1 denoting the extent of group difference in the temporal network
p_rewire_cont	a numeric value between 0-1 denoting the extent of group difference in the con- temporaneous network
n_group	an integer denoting the number of groups

Details

beta can be transposed to obtain the temporal network; PDC is the partial directed correlation matrix, which is a standardized version of temporal network; kappa is the precision matrix denoting conditional (in)dependence, which is a inverse of covariance matrix denoting the (dependence) among variables; kappa can be further standardized to the contemporaneous networks (omega_zeta_within)

Value

A list of beta, PDC, kappa and contemporaneous networks

Author(s)

Xinkai Du Maintainer: Xinkai Du xinkai.du.xd@gmail.com

gen_tsGVAR

Examples

gen_tsGVAR	Generate time-series GVAR model for multiple (heterogeneous) indi-
	viduals

Description

This function generates time-series GVAR model for multiple individuals that demonstrates difference or simularity. Currently generating temporal and contemporaneous networks

Usage

gen_tsGVAR(n_node = 6, p_rewire_temp = 0.5, p_rewire_cont = 0.5, n_persons = 1)

Arguments

n_node	an integer denoting the number of nodes
p_rewire_temp	a numeric value between 0-1 denoting the extent of individual difference in the temporal network
p_rewire_cont	a numeric value between 0-1 denoting the extent of individual difference in the contemporaneous network
n_persons	an integer denoting the number of individuals to generate tsGVAR for

Details

beta can be transposed to obtain the temporal network; PDC is the partial directed correlation matrix, which is a standardized version of temporal network; kappa is the precision matrix denoting conditional (in)dependence, which is a inverse of covariance matrix denoting the (dependence) among variables; kappa can be further standardized to the contemporaneous networks (omega_zeta_within)

Value

A list of beta, PDC, kappa and contemporaneous networks

Author(s)

Xinkai Du Maintainer: Xinkai Du xinkai.du.xd@gmail.com

Examples

library(IVPP)

```
IVPP_panelgvar
```

The invariance partial pruning (IVPP) algorithm for panel GVAR models

Description

This function implements the IVPP algorithm to compare networks in the multi-group panelGVAR models. The IVPP algorithm is a two-step procedure that first conducts an global invariance test of network difference and then performs partial pruning for the specific edge-level differences. Currently supports the comparison of temporal and contemporaneous networks.

Usage

```
IVPP_panelgvar(
  data,
  vars,
  idvar,
  beepvar,
  groups,
 global = TRUE,
 g_test_net = c("both", "temporal", "contemporaneous"),
  net_type = c("sparse", "saturated"),
  output_equal = FALSE,
  partial_prune = FALSE,
  prune_net = c("both", "temporal", "contemporaneous"),
 prune_alpha = 0.01,
 p_prune_alpha = 0.01,
 estimator = "FIML",
  standardize = c("none", "z", "quantile"),
  ncores = 1,
  . . .
)
```

Arguments

data	A data frame containing the long-formatted panel data
vars	A character vector of variable names
idvar	A character string specifying subject IDs

beepvar	A character string specifying the name of wave (time) variable
groups	A character string specifying the name of group variable
global	A logical value default to TRUE. If FALSE, the global invariance test is skipped.
g_test_net	A character vector specifying the network you want to test group-equality on in the global invariance test. Specify "both" if you want to test on both temporal or contemporaneous networks. Specify "temporal" if you want to test only on the temporal network. Specify "contemporaneous" if you want to test only on the contemporaneous network. See the Details section for more information.
net_type	A character vector specifying the type of networks to be compared in the global test. Specify "saturated" if you want to estimate and compare the saturated networks. Specify "sparse" if you want to estimate and compare the pruned networks.
output_equal	Whether to output the networks that are constrained equal across groups. De- fault to FALSE. Can set to TRUE if the global tests rejects heterogeneity.
partial_prune	A logical value specifying whether to conduct partial pruning test or not.
prune_net	A character vector specifying the network you want to partial prune on. Only works when partial_prune = TRUE.
prune_alpha	A numeric value specifying the alpha level for the pruning (if net_type = "sparse").
p_prune_alpha	A numeric value specifying the alpha level for the partial pruning (if partial_prune = TRUE).
estimator	A character string specifying the estimator to be used. Must be "FIML"
standardize	A character string specifying the type of standardization to be used. "none" (de- fault) for no standardization, "z" for z-scores, and "quantile" for a non-parametric transformation to the quantiles of the marginal standard normal distribution.
ncores	A numeric value specifying the number of cores you want to use to run the analysis. Default to 1.
	Additional arguments to be passed to the dlvm1 function

Details

The comparison between the fully unconstrained (free) model and tempEq model is a test for group equality in temporal networks. The comparison between fully constrained model (bothEq) and tempEq is a test for group equality in contemporaneous networks. Similarly, the comparison between the free model and contEq model is a test for group equality in contemporaneous networks, and the comparison between bothEq and contEq is a test for group equality in temporal networks.

Value

A list containing the results of IVPP and networks of all groups.

Author(s)

Xinkai Du Maintainer: Xinkai Du xinkai.du.xd@gmail.com

Examples

```
library(IVPP)
# Generate the network
net_ls <- gen_panelGVAR(n_node = 6,</pre>
                         p_rewire_temp = 0.5,
                         p_rewire_cont = 0.5,
                         n_{group} = 2)
# Generate the data
data <- sim_panelGVAR(temp_base_ls = net_ls$temporal,</pre>
                       cont_base_ls = net_ls$omega_zeta_within,
                       n_{person} = 200,
                       n_time = 3,
                       n_{group} = 2,
                       n_n = 6
# global test on both nets
omnibus_both <- IVPP_panelgvar(data,</pre>
                                vars = paste0("V", 1:6),
                                 idvar = "subject",
                                beepvar = "time",
                                groups = "group",
                                g_test_net = "both",
                                net_type = "sparse",
                                partial_prune = FALSE,
                                ncores = 1)
# global test on temporal
omnibus_temp <- IVPP_panelgvar(data,</pre>
                                vars = paste0("V",1:6),
                                idvar = "subject",
                                beepvar = "time",
                                groups = "group",
                                g_test_net = "temporal",
                                net_type = "sparse",
                                partial_prune = FALSE,
                                ncores = 1)
# global test on cont
omnibus_cont <- IVPP_panelgvar(data,</pre>
                                vars = paste0("V",1:6),
                                idvar = "subject",
                                beepvar = "time",
                                groups = "group",
                                g_test_net = "contemporaneous",
                                net_type = "sparse",
                                partial_prune = FALSE,
                                ncores = 1)
# partial prune on both networks
```

pp_both <- IVPP_panelgvar(data,</pre>

```
vars = paste0("V",1:6),
idvar = "subject",
beepvar = "time",
groups = "group",
global = FALSE,
partial_prune = TRUE,
prune_net = "both",
ncores = 1)
```

IVPP_tsgvar

The invariance partial pruning (IVPP) algorithm for idiographic GVAR models

Description

This function implements the IVPP algorithm to compare networks in the multi-group panelGVAR models. The IVPP algorithm is a two-step procedure that first conducts an global invariance test of network difference and then performs partial pruning for the specific edge-level differences. Currently supports the comparison of temporal and contemporaneous networks.

Usage

```
IVPP_tsgvar(
  data,
  vars,
  idvar,
  dayvar,
  beepvar,
  global = TRUE,
  g_test_net = c("both", "temporal", "contemporaneous"),
  net_type = c("sparse", "saturated"),
  output_equal = FALSE,
  partial_prune = FALSE,
  prune_net = c("both", "temporal", "contemporaneous"),
  prune_alpha = 0.01,
  p_prune_alpha = 0.01,
  estimator = "FIML",
  standardize = c("none", "z", "quantile"),
  ncores = 1,
  . . .
)
```

Arguments

data	A data frame containing the long-formatted panel data
vars	A character vector of variable names

idvar	A character string specifying the IDs of subjects you want to compare
dayvar	A character string specifying the name of day variable
beepvar	A character string specifying the name of variable indicating the measurement number at each day
global	A logical value default to TRUE. If FALSE, the global invariance test is skipped.
g_test_net	A character vector specifying the network you want to test group-equality on in the global invariance test. Specify "both" if you want to test on both temporal or contemporaneous networks. Specify "temporal" if you want to test only on the temporal network. Specify "contemporaneous" if you want to test only on the contemporaneous network. See the Details section for more information.
net_type	A character vector specifying the type of networks to be compared in the global test. Specify "saturated" if you want to estimate and compare the saturated networks. Specify "sparse" if you want to estimate and compare the pruned networks.
output_equal	Whether to output the networks that are constrained equal across groups. De- fault to FALSE. Can set to TRUE if the global tests rejects heterogeneity.
partial_prune	A logical value specifying whether to conduct partial pruning test or not.
prune_net	A character vector specifying the network you want to partial prune on. Only works when partial_prune = TRUE.
prune_alpha	A numeric value specifying the alpha level for the pruning (if net_type = "sparse").
p_prune_alpha	A numeric value specifying the alpha level for the partial pruning (if partial_prune = TRUE).
estimator	A character string specifying the estimator to be used. Must be "FIML"
standardize	A character string specifying the type of standardization to be used. "none" (de- fault) for no standardization, "z" for z-scores, and "quantile" for a non-parametric transformation to the quantiles of the marginal standard normal distribution.
ncores	A numeric value specifying the number of cores you want to use to run the analysis. Default to 1.
	Additional arguments to be passed to the dlvm1 function

Details

The comparison between the fully unconstrained (free) model and tempEq model is a test for group equality in temporal networks. The comparison between fully constrained model (bothEq) and tempEq is a test for group equality in contemporaneous networks. Similarly, the comparison between the free model and contEq model is a test for group equality in contemporaneous networks, and the comparison between bothEq and contEq is a test for group equality in temporal networks.

Value

A list containing the results of IVPP and networks of all groups.

Author(s)

Xinkai Du Maintainer: Xinkai Du xinkai.du.xd@gmail.com

sim_panelGVAR

Examples

```
library(IVPP)
```

```
# Generate the network
net_ls <- gen_tsGVAR(n_node = 6,</pre>
                      p_rewire_temp = 0.5,
                      p_rewire_cont = 0.5,
                      n_{persons} = 2)
# Generate the data
data <- sim_tsGVAR(beta_base_ls = net_ls$beta,</pre>
                    kappa_base_ls = net_ls$kappa,
                    # n_person = 2,
                    n_time = 100)
# global test on temporal
omnibus_temp <- IVPP_tsgvar(data,</pre>
                              vars = paste0("V", 1:6),
                             idvar = "id",
                              g_test_net = "temporal",
                              net_type = "sparse",
                              partial_prune = FALSE,
                              ncores = 1)
# global test on cont
omnibus_cont <- IVPP_tsgvar(data,</pre>
                              vars = paste0("V",1:6),
                              idvar = "id",
                              g_test_net = "contemporaneous",
                              net_type = "sparse",
                              partial_prune = FALSE,
                              ncores = 1)
# partial prune on both networks
pp_both <- IVPP_tsgvar(data,</pre>
                        vars = paste0("V", 1:6),
                        idvar = "id",
                        global = FALSE,
                        partial_prune = TRUE,
                        prune_net = "both",
                        ncores = 1)
```

sim_panelGVAR

Simulate data for a (multi-group) panelGVAR model

Description

This function generates data for the input (multi-group) panelGVAR model

Usage

```
sim_panelGVAR(
   temp_base_ls,
   beta_base_ls,
   cont_base_ls,
   n_node,
   n_person = 500,
   n_time = 3,
   n_group,
   mean_trend = 0,
   p_rewire_temp = 0,
   p_rewire_cont = 0,
   save_nets = FALSE
)
```

Arguments

<pre>temp_base_ls</pre>	a list of temporal networks of all groups
beta_base_ls	a list of beta matrices of all groups
cont_base_ls	a list of contemporaneous networks of all groups
n_node	number of nodes
n_person	an integer denoting the sample size of each group, default to 500
n_time	number of waves, default to 3
n_group	number of groups
mean_trend	a numeric value indicating the extent of mean trends in data, default to 0
p_rewire_temp	a numeric value between 0 and 1 indicating the extent of non-stationarity in temporal networks, default to 0 $$
p_rewire_cont	a numeric value between 0 and 1 indicating the extent of non-stationarity in contemporaneous networks, default to 0
save_nets	a logical value indicating whether to save the data-generating networks, default to FALSE

Value

A list of temporal and contemporaneous networks

Author(s)

Xinkai Du Maintainer: Xinkai Du xinkai.du.xd@gmail.com

Examples

```
sim_tsGVAR
```

Simulate data for a (multi-group) N = 1 GVAR model

Description

This function generates data for the input (multi-group) N = 1 GVAR model

Usage

```
sim_tsGVAR(
   temp_base_ls,
   beta_base_ls,
   cont_base_ls,
   kappa_base_ls,
   n_node,
   n_time = 50,
   n_person,
   save_nets = FALSE
)
```

Arguments

<pre>temp_base_ls</pre>	a list of temporal networks of all individuals
beta_base_ls	a list of beta matrices of all individuals
cont_base_ls	a list of contemporaneous networks of all individuals
kappa_base_ls	a list of precision matricies of all individuals
n_node	number of nodes
n_time	number of measurements per person, default to 50
n_person	number of individuals to generate data for
save_nets	a logical value indicating whether to save the data-generating networks, default to FALSE

Value

A list of temporal and contemporaneous networks

Author(s)

Xinkai Du Maintainer: Xinkai Du xinkai.du.xd@gmail.com

Examples

Index

dlvm1, 5, 8

gen_panelGVAR, 2
gen_tsGVAR, 3

IVPP_panelgvar,4 IVPP_tsgvar,7

sim_panelGVAR,9
sim_tsGVAR,11