
Package ‘OpenMx’
October 19, 2024

Encoding UTF-8

Date 2024-10-18

Title Extended Structural Equation Modelling

URL http://openmx.ssri.psu.edu, https://github.com/OpenMx/OpenMx

BugReports http://openmx.ssri.psu.edu/forums

Description Create structural equation models that can be manipulated programmatically.
Models may be specified with matrices or paths (LISREL or RAM)
Example models include confirmatory factor, multiple group, mixture
distribution, categorical threshold, modern test theory, differential
Fit functions include full information maximum likelihood, maximum likeli-
hood, and weighted least squares.
equations, state space, and many others.

Support and advanced package binaries available at <http://openmx.ssri.psu.edu>.
The software is described in Neale, Hunter, Pritikin, Zahery, Brick,
Kirkpatrick, Estabrook, Bates, Maes, & Boker (2016) <doi:10.1007/s11336-014-9435-8>.

SystemRequirements GNU make, C++17

ByteCompile yes

Language en-US

License Apache License (== 2.0)

LinkingTo Rcpp, RcppEigen (>= 0.3.3.9.4), RcppParallel, StanHeaders
(>= 2.10.0.2), BH (>= 1.69.0-1), rpf (>= 0.45), Matrix

Imports digest, MASS, Matrix (>= 1.2-16), methods, Rcpp, RcppParallel,
parallel, lifecycle

Depends R (>= 3.5.0)

Suggests mvtnorm, numDeriv, roxygen2 (>= 6.1), rpf (>= 0.45),
snowfall, lme4, covr, testthat, umx, ifaTools, knitr, markdown,
rmarkdown, reshape2, ggplot2

VignetteBuilder knitr

LazyLoad yes

LazyData yes

1

http://openmx.ssri.psu.edu
https://github.com/OpenMx/OpenMx
http://openmx.ssri.psu.edu/forums
http://openmx.ssri.psu.edu
https://doi.org/10.1007/s11336-014-9435-8

2

Collate '0ClassUnion.R' 'cache.R' 'MxBaseNamed.R' 'MxData.R'
'MxDataWLS.R' 'DefinitionVars.R' 'MxReservedNames.R'
'MxNamespace.R' 'MxSearchReplace.R' 'MxFlatSearchReplace.R'
'MxUntitled.R' 'MxAlgebraFunctions.R' 'MxExponential.R'
'MxMatrix.R' 'DiagMatrix.R' 'FullMatrix.R' 'IdenMatrix.R'
'LowerMatrix.R' 'SdiagMatrix.R' 'StandMatrix.R' 'SymmMatrix.R'
'UnitMatrix.R' 'ZeroMatrix.R' 'MxMatrixFunctions.R'
'MxAlgebra.R' 'MxCycleDetection.R' 'MxDependencies.R'
'MxAlgebraConvert.R' 'MxSquareBracket.R' 'MxEval.R'
'MxRename.R' 'MxPath.R' 'MxObjectiveMetaData.R'
'MxExpectation.R' 'MxExpectationNormal.R' 'MxExpectationRAM.R'
'MxExpectationLISREL.R' 'MxFitFunction.R'
'MxFitFunctionAlgebra.R' 'MxFitFunctionML.R'
'MxFitFunctionMultigroup.R' 'MxFitFunctionRow.R'
'MxFitFunctionWLS.R' 'MxRAMObjective.R' 'MxLISRELObjective.R'
'MxFIMLObjective.R' 'MxMLObjective.R' 'MxRowObjective.R'
'MxAlgebraObjective.R' 'MxBounds.R' 'MxConstraint.R'
'MxInterval.R' 'MxTypes.R' 'MxCompute.R' 'MxModel.R'
'MxRAMModel.R' 'MxLISRELModel.R' 'MxModelDisplay.R'
'MxFlatModel.R' 'MxMultiModel.R' 'MxModelFunctions.R'
'MxModelParameters.R' 'MxUnitTesting.R' 'MxApply.R' 'MxRun.R'
'MxRunHelperFunctions.R' 'MxSummary.R' 'MxCompare.R'
'MxSwift.R' 'MxOptions.R' 'MxThreshold.R' 'OriginalMx.R'
'MxGraph.R' 'MxGraphviz.R' 'MxDeparse.R' 'MxCommunication.R'
'MxRestore.R' 'MxVersion.R' 'MxPPML.R' 'MxRAMtoML.R'
'MxErrorHandling.R' 'MxDetectCores.R' 'MxSaturatedModel.R'
'omxBrownie.R' 'omxConstrainThresholds.R' 'omxGetNPSOL.R'
'MxFitFunctionR.R' 'MxRObjective.R'
'MxExpectationHiddenMarkov.R' 'MxExpectationMixture.R'
'MxExpectationStateSpace.R' 'MxExpectationBA81.R'
'MxFitFunctionGREML.R' 'MxExpectationGREML.R' 'MxMI.R'
'MxFactorScores.R' 'MxRobustSE.R' 'MxAvailableOptimizers.R'
'MxTryHard.R' 'MxSE.R' 'MxAutoStart.R' 'MxRetro.R'
'MxPenalty.R' 'MxMMI.R' 'omxReadGRMBin.R' 'MxPredict.R' 'zzz.R'

RdMacros lifecycle

Biarch true

Version 2.21.13

RoxygenNote 7.3.2

NeedsCompilation yes

Author Steven M. Boker [aut],
Michael C. Neale [aut],
Hermine H. Maes [aut],
Michael J. Wilde [ctb],
Michael Spiegel [aut],
Timothy R. Brick [aut],
Ryne Estabrook [aut],
Timothy C. Bates [aut],

Contents 3

Paras Mehta [ctb],
Timo von Oertzen [ctb],
Ross J. Gore [aut],
Michael D. Hunter [aut],
Daniel C. Hackett [ctb],
Julian Karch [ctb],
Andreas M. Brandmaier [ctb],
Joshua N. Pritikin [aut],
Mahsa Zahery [aut],
Robert M. Kirkpatrick [aut, cre],
Yang Wang [ctb],
Ben Goodrich [ctb],
Charles Driver [ctb],
Massachusetts Institute of Technology [cph],
S. G. Johnson [cph],
Association for Computing Machinery [cph],
Dieter Kraft [cph],
Stefan Wilhelm [cph],
Sarah Medland [cph],
Carl F. Falk [cph],
Matt Keller [cph],
Manjunath B G [cph],
The Regents of the University of California [cph],
Lester Ingber [cph],
Wong Shao Voon [cph],
Juan Palacios [cph],
Jiang Yang [cph],
Gael Guennebaud [cph],
Jitse Niesen [cph]

Maintainer Robert M. Kirkpatrick <robert.kirkpatrick@vcuhealth.org>

Repository CRAN

Date/Publication 2024-10-19 08:40:03 UTC

Contents
as.statusCode . 10
BaseCompute-class . 11
Bollen . 12
cvectorize . 13
demoOneFactor . 13
demoTwoFactor . 14
diag2vec . 15
DiscreteBase-class . 16
dzfData . 16
dzmData . 18
dzoData . 19
eigenvec . 21

4 Contents

example1 . 22
example2 . 23
expm . 24
factorExample1 . 24
factorScaleExample1 . 25
factorScaleExample2 . 26
genericFitDependencies,MxBaseFitFunction-method 27
HS.ability.data . 28
imxAddDependency . 30
imxAutoOptionValue . 30
imxCheckMatrices . 31
imxCheckVariables . 31
imxConDecMatrixSlots . 32
imxConstraintRelations . 32
imxConvertIdentifier . 32
imxConvertLabel . 33
imxConvertSubstitution . 33
imxCreateMatrix . 34
imxDataTypes . 35
imxDefaultGetSlotDisplayNames . 35
imxDeparse . 36
imxDependentModels . 36
imxDetermineDefaultOptimizer . 36
imxDmvnorm . 37
imxEvalByName . 37
imxExtractMethod . 38
imxExtractNames . 38
imxExtractReferences . 38
imxExtractSlot . 39
imxFlattenModel . 39
imxFreezeModel . 40
imxGenerateLabels . 40
imxGenerateNamespace . 40
imxGenericModelBuilder . 41
imxGenSwift . 41
imxGentleResize . 42
imxGetNumThreads . 42
imxGetSlotDisplayNames . 43
imxHasConstraint . 43
imxHasDefinitionVariable . 44
imxHasNPSOL . 44
imxHasOpenMP . 44
imxHasThresholds . 45
imxHasWLS . 45
imxIdentifier . 45
imxIndependentModels . 46
imxInitModel . 46
imxIsDefinitionVariable . 46

Contents 5

imxIsMultilevel . 47
imxIsPath . 47
imxIsStateSpace . 47
imxLocateFunction . 48
imxLocateIndex . 48
imxLocateLabel . 49
imxLog . 49
imxLookupSymbolTable . 49
imxModelBuilder . 50
imxModelTypes . 51
imxMpiWrap . 51
imxOriginalMx . 51
imxPenaltyTypes . 52
imxPPML . 53
imxPPML.Test.Battery . 53
imxPPML.Test.Test . 54
imxPreprocessModel . 55
imxReplaceMethod . 55
imxReplaceModels . 55
imxReplaceSlot . 56
imxReportProgress . 56
imxReservedNames . 57
imxReverseIdentifier . 57
imxRobustSE . 58
imxRowGradients . 59
imxSameType . 59
imxSeparatorChar . 60
imxSfClient . 60
imxSimpleRAMPredicate . 60
imxSparseInvert . 61
imxSquareMatrix . 61
imxSymmetricMatrix . 61
imxTypeName . 62
imxUntitledName . 62
imxUntitledNumber . 62
imxUntitledNumberReset . 63
imxUpdateModelValues . 63
imxVariableTypes . 64
imxVerifyMatrix . 64
imxVerifyModel . 64
imxVerifyName . 65
imxVerifyReference . 65
imxWlsChiSquare . 66
imxWlsStandardErrors . 67
jointdata . 68
latentMultipleRegExample1 . 69
latentMultipleRegExample2 . 70
lazarsfeld . 71

6 Contents

logm . 72
LongitudinalOverdispersedCounts . 72
multiData1 . 73
mxAlgebra . 74
MxAlgebra-class . 79
MxAlgebraFormula-class . 80
mxAlgebraFromString . 80
mxAlgebraObjective . 81
mxAutoStart . 82
mxAvailableOptimizers . 84
MxBaseExpectation-class . 84
MxBaseFitFunction-class . 85
MxBaseNamed-class . 85
MxBaseObjectiveMetaData-class . 85
mxBootstrap . 86
mxBootstrapEval . 88
mxBootstrapStdizeRAMpaths . 90
mxBounds . 92
MxBounds-class . 94
MxCharOrList-class . 94
MxCharOrLogical-class . 95
MxCharOrNumber-class . 95
mxCheckIdentification . 95
mxCI . 98
MxCI-class . 101
mxCompare . 102
MxCompare-class . 106
MxCompute-class . 106
mxComputeBootstrap . 106
mxComputeCheckpoint . 107
mxComputeConfidenceInterval . 109
mxComputeDefault . 110
mxComputeEM . 111
mxComputeGenerateData . 113
mxComputeGradientDescent . 113
mxComputeHessianQuality . 115
mxComputeIterate . 116
mxComputeJacobian . 116
mxComputeLoadContext . 117
mxComputeLoadData . 118
mxComputeLoadMatrix . 120
mxComputeLoop . 121
mxComputeNelderMead . 122
mxComputeNewtonRaphson . 126
mxComputeNothing . 127
mxComputeNumericDeriv . 128
mxComputeOnce . 129
mxComputePenaltySearch . 130

Contents 7

mxComputeReportDeriv . 131
mxComputeReportExpectation . 132
mxComputeSequence . 132
mxComputeSetOriginalStarts . 133
mxComputeSimAnnealing . 133
mxComputeStandardError . 135
mxComputeTryCatch . 135
mxComputeTryHard . 136
mxConstraint . 137
MxConstraint-class . 139
mxData . 141
MxData-class . 145
mxDataDynamic . 146
MxDataStatic-class . 147
mxDataWLS . 147
mxDescribeDataWLS . 149
MxDirectedGraph-class . 150
mxEval . 151
mxEvaluateOnGrid . 152
MxExpectation-class . 153
mxExpectationBA81 . 154
mxExpectationGREML . 157
MxExpectationGREML-class . 159
mxExpectationHiddenMarkov . 161
mxExpectationLISREL . 163
mxExpectationMixture . 168
mxExpectationNormal . 170
mxExpectationRAM . 172
mxExpectationStateSpace . 175
mxExpectationStateSpaceContinuousTime . 180
mxFactor . 186
mxFactorScores . 188
mxFIMLObjective . 190
MxFitFunction-class . 192
mxFitFunctionAlgebra . 193
mxFitFunctionGREML . 195
MxFitFunctionGREML-class . 197
mxFitFunctionML . 198
mxFitFunctionMultigroup . 201
mxFitFunctionR . 204
mxFitFunctionRow . 205
mxFitFunctionWLS . 207
MxFlatModel-class . 210
mxGenerateData . 211
mxGetExpected . 214
mxGREMLDataHandler . 216
MxInterval-class . 218
mxJiggle . 218

8 Contents

mxKalmanScores . 220
MxLISRELModel-class . 222
mxLISRELObjective . 222
MxListOrNull-class . 226
mxMakeNames . 226
mxMarginalNegativeBinomial . 227
mxMarginalPoisson . 228
mxMatrix . 229
MxMatrix-class . 232
mxMI . 234
mxMLObjective . 236
mxModel . 238
MxModel-class . 241
mxModelAverage . 244
mxNormalQuantiles . 248
mxOption . 249
MxOptionalChar-class . 253
MxOptionalCharOrNumber-class . 253
MxOptionalDataFrame-class . 253
MxOptionalDataFrameOrMatrix-class . 253
MxOptionalInteger-class . 253
MxOptionalLogical-class . 254
MxOptionalMatrix-class . 254
MxOptionalNumeric-class . 254
mxParametricBootstrap . 254
mxPath . 256
mxPearsonSelCov . 259
mxPenalty . 261
MxPenalty-class . 262
mxPenaltyElasticNet . 262
mxPenaltyLASSO . 263
mxPenaltyRidge . 264
mxPenaltySearch . 265
mxPenaltyZap . 266
mxPowerSearch . 266
MxRAMGraph-class . 270
MxRAMModel-class . 270
mxRAMObjective . 271
mxRename . 273
mxRestore . 274
mxRetro . 276
mxRObjective . 277
mxRowObjective . 278
mxRun . 280
mxSave . 283
mxSE . 284
mxSetDefaultOptions . 286
mxSimplify2Array . 287

Contents 9

mxStandardizeRAMpaths . 287
mxThreshold . 290
mxTryHard . 292
mxTypes . 296
mxVersion . 296
MxVersionType-class . 297
myAutoregressiveData . 297
myFADataRaw . 298
myGrowthKnownClassData . 299
myGrowthMixtureData . 300
myLongitudinalData . 301
myRegData . 302
myRegDataRaw . 303
myTwinData . 304
mzfData . 305
mzmData . 306
Named-entity . 308
nhanesDemo . 308
nuclear_twin_design_data . 309
numHess1 . 310
numHess2 . 310
omxAllInt . 311
omxApply . 313
omxAssignFirstParameters . 313
omxAugmentDataWithWLSSummary . 314
omxBrownie . 315
omxBuildAutoStartModel . 317
omxCheckCloseEnough . 317
omxCheckEquals . 318
omxCheckError . 319
omxCheckIdentical . 320
omxCheckNamespace . 321
omxCheckSetEquals . 321
omxCheckTrue . 322
omxCheckWarning . 323
omxCheckWithinPercentError . 324
omxConstrainMLThresholds . 325
omxDefaultComputePlan . 325
omxDetectCores . 326
omxGetBootstrapReplications . 327
omxGetNPSOL . 327
omxGetParameters . 328
omxGetRAMDepth . 330
omxGraphviz . 330
omxHasDefaultComputePlan . 331
omxLapply . 331
omxLocateParameters . 332
omxLogical . 333

10 as.statusCode

omxManifestModelByParameterJacobian . 334
omxMatrixOperations . 335
omxMnor . 335
omxModelDeleteData . 337
omxNameAnonymousParameters . 337
omxParallelCI . 338
omxQuotes . 340
omxRAMtoML . 340
omxReadGRMBin . 341
omxRMSEA . 342
omxSapply . 343
omxSaturatedModel . 344
omxSelectRowsAndCols . 347
omxSetParameters . 348
omxSymbolTable . 349
OpenMx . 349
ordinalTwinData . 352
Oscillator . 353
predict.MxModel . 354
rvectorize . 355
summary.MxModel . 355
tr . 359
twinData . 360
twin_NA_dot . 361
vec2diag . 363
vech . 363
vech2full . 364
vechs . 365
vechs2full . 366

Index 367

as.statusCode Convert a numeric or character vector into an optimizer status code
factor

Description

Below we provide a brief, technical description of each status code followed by a more colloquial,
less precise desciption.

• 0,‘OK’: Optimization succeeded. Everything seems fine.

• 1,‘OK/green’: Optimization succeeded, but the sequence of iterates has not yet converged (Mx
status GREEN). This condition is only detected by NPSOL. The solution is likely okay. You
might want to re-run the model from its final esimates to resolve this.

• 2,‘infeasible linear constraint’: The linear constraints and bounds could not be satisfied. The
problem has no feasible solution. Right now, it should not be possible obtain this status code,
so call Ripley’s.

BaseCompute-class 11

• 3,‘infeasible non-linear constraint’: The nonlinear constraints and bounds could not be satis-
fied. The problem may have no feasible solution. Sometimes this happens when your starting
values do not satisfy the constraints. Also, optimization could not satisfy the constraints and
get a better fit.

• 4,‘iteration limit’: Optimization was stopped prematurely because the iteration limit was
reached (Mx status BLUE). You might want to rerun: m1 = mxRun(m1) or increase the iter-
ation limit (see mxOption). The optimizer took all the steps it could and did not finish. You
can increase the number of steps or get better starting values.

• 5,‘not convex’: The Hessian at the solution does not appear to be convex (Mx status RED).
There may be more than one solution to the model. See mxCheckIdentification. I would
not trust this solution; it does not appear to be a good one. Perhaps, try mxTryHard.

• 6,‘nonzero gradient’: The model does not satisfy the first-order optimality conditions to the
required accuracy, and no improved point for the merit function could be found during the
final linesearch (Mx status RED). I would not trust this solution; it does not appear to be a
good one. To search nearby, see mxTryHard.

• 7,‘bad deriv’: You have provided analytic derivatives. However, your provided derivatives
differ too much from numerically approximated derivatives. Double check your math.

• 9,‘internal error’: An input parameter was invalid. The most likely cause is a bug in the code.
Please report occurrences to the OpenMx developers.

• 10,‘infeasible start’: Starting values were infeasible. Modify the start values for one or more
parameters. For instance, set means to their measured value, or set variances and covariances
to plausible values. See mxAutoStart and mxTryHard.

Usage

as.statusCode(code)

Arguments

code a character or numeric vector of optimizer status code

See Also

mxBootstrap summary.MxModel

BaseCompute-class BaseCompute

Description

This is an internal class and should not be used directly.

See Also

mxComputeEM, mxComputeGradientDescent, mxComputeHessianQuality, mxComputeIterate, mx-
ComputeNewtonRaphson, mxComputeNumericDeriv

12 Bollen

Bollen Bollen Data on Industrialization and Political Democracy

Description

Data set used in some of OpenMx’s examples, for instance WLS. The data were reported in Bollen
(1989, p. 428, Table 9.4) This set includes data from 75 developing countries each assessed on four
measures of democracy measured twice (1960 and 1965), and three measures of industrialization
measured once (1960).

Usage

data("Bollen")

Format

A data frame with 75 observations on the following 11 numeric variables.

y1 Freedom of the press, 1960
y2 Freedom of political opposition, 1960
y3 Fairness of elections, 1960
y4 Effectiveness of elected legislature, 1960
y5 Freedom of the press, 1965
y6 Freedom of political opposition, 1965
y7 Fairness of elections, 1965
y8 Effectiveness of elected legislature, 1965
x1 GNP per capita, 1960
x2 Energy consumption per capita, 1960
x3 Percentage of labor force in industry, 1960

Details

Variables y1-y4 and y5-y8 are typically used as indicators of the latent trait of “political democracy”
in 1960 and 1965 respectively. x1-x3 are used as indicators of industrialization (1960).

Source

The sem package (in turn, via personal communication Bollen to Fox)

References

Bollen, K. A. (1979). Political democracy and the timing of development. American Sociological
Review, 44, 572-587.

Bollen, K. A. (1980). Issues in the comparative measurement of political democracy. American
Sociological Review, 45, 370-390.

Bollen, K. A. (1989). Structural equation models. New York: Wiley-Interscience.

cvectorize 13

Examples

data(Bollen)
str(Bollen)
plot(y1 ~ y2, data = Bollen)

cvectorize Vectorize By Column

Description

This function returns the vectorization of an input matrix in a column by column traversal of the
matrix. The output is returned as a column vector.

Usage

cvectorize(x)

Arguments

x an input matrix.

See Also

rvectorize, vech, vechs

Examples

cvectorize(matrix(1:9, 3, 3))
cvectorize(matrix(1:12, 3, 4))

demoOneFactor Demonstration data for a one factor model

Description

Data set used in some of OpenMx’s examples.

Usage

data("demoOneFactor")

14 demoTwoFactor

Format

A data frame with 500 observations on the following 5 numeric variables.

x1

x2

x3

x4

x5

Details

Variables x1-x5 are typically used as indicators of the latent trait.

Source

Simulated.

References

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.

Examples

data(demoOneFactor)
cov(demoOneFactor)
cor(demoOneFactor)

demoTwoFactor Demonstration data for a two factor model

Description

Data set used in some of OpenMx’s examples.

Usage

data("demoTwoFactor")

Format

A data frame with 500 observations on the following 10 numeric variables.

x1

x2

x3

x4

https://openmx.ssri.psu.edu/documentation/

diag2vec 15

x5

y1

y2

y3

y4

y5

Details

Variables x1-x5 are typically used as indicators of one latent trait. Variables y1-y5 are typically
used as indicators of another latent trait.

Source

Simulated.

References

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.

Examples

data(demoTwoFactor)
cov(demoTwoFactor)
cor(demoTwoFactor)

diag2vec Extract Diagonal of a Matrix

Description

Given an input matrix, diag2vec returns a column vector of the elements along the diagonal.

Usage

diag2vec(x)

Arguments

x an input matrix.

Details

Similar to the function diag, except that the input argument is always treated as a matrix (i.e.,
it doesn’t have diag()’s functions of returning an Identity matrix from an nrow specification, nor
to return a matrix wrapped around a diagonal if provided with a vector). To get vector2matrix
functionality, call vec2diag.

https://openmx.ssri.psu.edu/documentation/

16 dzfData

See Also

vec2diag

Examples

diag2vec(matrix(1:9, nrow=3))
[,1]
[1,] 1
[2,] 5
[3,] 9

diag2vec(matrix(1:12, nrow=3, ncol=4))
[,1]
[1,] 1
[2,] 5
[3,] 9

DiscreteBase-class An S4 base class for discrete marginal distributions

Description

An S4 base class for discrete marginal distributions

See Also

mxMarginalPoisson, mxMarginalNegativeBinomial

dzfData Example twin extended kinship data: DZ female data

Description

Data for extended twin example ETC88.R

Usage

data("dzfData")

dzfData 17

Format

A data frame with 2007 observations on the following 37 variables.

famid a numeric vector
e1 a numeric vector
e2 a numeric vector
e3 a numeric vector
e4 a numeric vector
e5 a numeric vector
e6 a numeric vector
e7 a numeric vector
e8 a numeric vector
e9 a numeric vector
e10 a numeric vector
e11 a numeric vector
e12 a numeric vector
e13 a numeric vector
e14 a numeric vector
e15 a numeric vector
e16 a numeric vector
e17 a numeric vector
e18 a numeric vector
a1 a numeric vector
a2 a numeric vector
a3 a numeric vector
a4 a numeric vector
a5 a numeric vector
a6 a numeric vector
a7 a numeric vector
a8 a numeric vector
a9 a numeric vector
a10 a numeric vector
a11 a numeric vector
a12 a numeric vector
a13 a numeric vector
a14 a numeric vector
a15 a numeric vector
a16 a numeric vector
a17 a numeric vector
a18 a numeric vector

18 dzmData

Examples

data(dzfData)
str(dzfData)

dzmData Example twin extended kinship data: DZ Male data

Description

Data for extended twin example ETC88.R

Usage

data("dzmData")

Format

A data frame with 1990 observations on the following 37 variables.

famid a numeric vector

e1 a numeric vector

e2 a numeric vector

e3 a numeric vector

e4 a numeric vector

e5 a numeric vector

e6 a numeric vector

e7 a numeric vector

e8 a numeric vector

e9 a numeric vector

e10 a numeric vector

e11 a numeric vector

e12 a numeric vector

e13 a numeric vector

e14 a numeric vector

e15 a numeric vector

e16 a numeric vector

e17 a numeric vector

e18 a numeric vector

a1 a numeric vector

a2 a numeric vector

a3 a numeric vector

dzoData 19

a4 a numeric vector

a5 a numeric vector

a6 a numeric vector

a7 a numeric vector

a8 a numeric vector

a9 a numeric vector

a10 a numeric vector

a11 a numeric vector

a12 a numeric vector

a13 a numeric vector

a14 a numeric vector

a15 a numeric vector

a16 a numeric vector

a17 a numeric vector

a18 a numeric vector

Examples

data(dzmData)
str(dzmData)

dzoData Example twin extended kinship data: DZ opposite sex twins

Description

Data for extended twin example ETC88.R

Usage

data("dzoData")

Format

A data frame with 3981 observations on the following 37 variables.

famid a numeric vector

e1 a numeric vector

e2 a numeric vector

e3 a numeric vector

e4 a numeric vector

e5 a numeric vector

20 dzoData

e6 a numeric vector

e7 a numeric vector

e8 a numeric vector

e9 a numeric vector

e10 a numeric vector

e11 a numeric vector

e12 a numeric vector

e13 a numeric vector

e14 a numeric vector

e15 a numeric vector

e16 a numeric vector

e17 a numeric vector

e18 a numeric vector

a1 a numeric vector

a2 a numeric vector

a3 a numeric vector

a4 a numeric vector

a5 a numeric vector

a6 a numeric vector

a7 a numeric vector

a8 a numeric vector

a9 a numeric vector

a10 a numeric vector

a11 a numeric vector

a12 a numeric vector

a13 a numeric vector

a14 a numeric vector

a15 a numeric vector

a16 a numeric vector

a17 a numeric vector

a18 a numeric vector

Examples

data(dzoData)
str(dzoData)

eigenvec 21

eigenvec Eigenvector/Eigenvalue Decomposition

Description

eigenval computes the real parts of the eigenvalues of a square matrix. eigenvec computes the
real parts of the eigenvectors of a square matrix. ieigenval computes the imaginary parts of the
eigenvalues of a square matrix. ieigenvec computes the imaginary parts of the eigenvectors of
a square matrix. eigenval and ieigenval return nx1 matrices containing the real or imaginary
parts of the eigenvalues, sorted in decreasing order of the modulus of the complex eigenvalue.
For eigenvalues without an imaginary part, this is equivalent to sorting in decreasing order of the
absolute value of the eigenvalue. (See Mod for more info.) eigenvec and ieigenvec return nxn
matrices, where each column corresponds to an eigenvector. These are sorted in decreasing order
of the modulus of their associated complex eigenvalue.

Usage

eigenval(x)
eigenvec(x)
ieigenval(x)
ieigenvec(x)

Arguments

x the square matrix whose eigenvalues/vectors are to be calculated.

Details

Eigenvectors returned by eigenvec and ieigenvec are normalized to unit length.

See Also

eigen

Examples

A <- mxMatrix(values = runif(25), nrow = 5, ncol = 5, name = 'A')
G <- mxMatrix(values = c(0, -1, 1, -1), nrow=2, ncol=2, name='G')

model <- mxModel(A, G, name = 'model')

mxEval(eigenvec(A), model)
mxEval(eigenvec(G), model)
mxEval(eigenval(A), model)
mxEval(eigenval(G), model)
mxEval(ieigenvec(A), model)
mxEval(ieigenvec(G), model)
mxEval(ieigenval(A), model)
mxEval(ieigenval(G), model)

22 example1

example1 Bivariate twin data, wide-format from Classic Mx Manual

Description

Data set used in some of OpenMx’s examples.

Usage

data("example1")

Format

A data frame with 400 observations on the following variables.

IDNum Twin pair ID

Zygosity Zygosity of the twin pair

X1 X variable for twin 1

Y1 Y variable for twin 1

X2 X variable for twin 2

Y2 Y variable for twin 2

Details

Same as example2 but in wide format instead of tall.

Source

Classic Mx Manual.

References

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.

Examples

data(example1)
plot(X2 ~ X1, data = example1)

https://openmx.ssri.psu.edu/documentation/

example2 23

example2 Bivariate twin data, long-format from Classic Mx Manual

Description

Data set used in some of OpenMx’s examples.

Usage

data("example2")

Format

A data frame with 800 observations on the following variables.

IDNum ID number

TwinNum Twin ID number

Zygosity Zygosity of the twin

X X variable for twins 1 and 2

Y Y variable for twins 1 and 2

Details

Same as example1 but in tall format instead of wide.

Source

Classic Mx Manual.

References

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation.

Examples

data(example2)
plot(Y ~ X, data = example2)

24 factorExample1

expm Matrix exponential

Description

Matrix exponential

Usage

expm(x)

Arguments

x matrix

factorExample1 Example Factor Analysis Data

Description

Data set used in some of OpenMx’s examples.

Usage

data("factorExample1")

Format

A data frame with 500 observations on the following variables.

x1

x2

x3

x4

x5

x6

x7

x8

x9

Details

This appears to be a three factor model, but perhaps with an odd loading structure.

factorScaleExample1 25

Source

Simulated

References

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.

Examples

data(factorExample1)
round(cor(factorExample1), 2)

factanal(covmat=cov(factorExample1), factors=3, rotation="promax")

factorScaleExample1 Example Factor Analysis Data for Scaling the Model

Description

Data set used in some of OpenMx’s examples.

Usage

data("factorScaleExample1")

Format

A data frame with 200 observations on the following variables.

X1

X2

X3

X4

X5

X6

X7

X8

X9

X10

X11

X12

https://openmx.ssri.psu.edu/documentation/

26 factorScaleExample2

Details

This appears to be a three factor model with factor 1 loading on X1-X4, factor 2 on X5-X8, and
factor 3 on X9-X12.

Source

Simulated

References

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.

Examples

data(factorScaleExample1)
round(cor(factorScaleExample1), 2)

factorScaleExample2 Example Factor Analysis Data for Scaling the Model

Description

Data set used in some of OpenMx’s examples.

Usage

data("factorScaleExample2")

Format

A data frame with 200 observations on the following variables.

X1

X2

X3

X4

X5

X6

X7

X8

X9

X10

X11

X12

https://openmx.ssri.psu.edu/documentation/

genericFitDependencies,MxBaseFitFunction-method 27

Details

Three-factor data with factor 1 loading on X1-X4, factor 2 on X5-X8, and factor 3 on X9-X12. It
differs from factorScaleExample1 in the scaling of the variables.

Source

Simulated

References

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.

Examples

data(factorScaleExample2)
round(cor(factorScaleExample2), 2)

data(factorScaleExample2)
plot(sapply(factorScaleExample1, var), type='l', ylim=c(0, 6), lwd=3)
lines(1:12, sapply(factorScaleExample2, var), col='blue', lwd=3)

genericFitDependencies,MxBaseFitFunction-method

Add dependencies

Description

If there is an expectation, then the fitfunction should always depend on it. Hence, subclasses that
implement this method must ignore the passed-in dependencies and use "dependencies <- call-
NextMethod()" instead.

Usage

S4 method for signature 'MxBaseFitFunction'
genericFitDependencies(.Object, flatModel, dependencies)

Arguments

.Object fit function object

flatModel flat model that lives with .Object

dependencies accumulated dependency relationships

https://openmx.ssri.psu.edu/documentation/

28 HS.ability.data

HS.ability.data Holzinger & Swineford (1939) Ability in 301 children from 2 schools

Description

This classic data set contains of intelligence-test scores from 301 children on 26 tests of cognitive
ability.

The tests cover mental speed, memory, mathematical-ability, spatial, and verbal ability as listed
below.

The data are also available in the MBESS package.

Usage

data("HS.ability.data")

Format

A data frame comprising 301 observations on 22 variables:

id student ID number (int)

Gender Sex (Factor w/ 2 levels “Female” and “Male”)

grade Grade in school (integer 7 or 8)

agey Age in years (integer)

agem Age in months (integer)

school School attended (Factor w/2 levels “Grant-White” and “Pasteur”)

addition A speed test of addition (numeric)

code A speed test (numeric)

counting A speed test of counting groups of dots (numeric)

straight A speed test discriminating straight and curved capitals (numeric)

wordr A memory subtest of word recognition

numberr A memory subtest of number recognition

figurer A memory subtest of figure recognition

object A memory subtest: object-number test

numberf A memory subtest: number-figure test

figurew A memory subtest: figure-word test

deduct A mathematical subtest of deduction

numeric A mathematical subtest of numerical puzzles

problemr A mathematical subtest of problem reasoning

series A mathematical subtest of series completion

arithmet A mathematical subtest: Woody-McCall mixed fundamentals, form I

HS.ability.data 29

visual A spatial subtest of visual perception

cubes A spatial subtest

paper A spatial subtest paper form board

flags A spatial subtest (also known as lozenges)

paperrev A spatial subtest additional paper form board test (can substitute for paper)

flagssub A spatial subtest additional lozenges test (can substitute for flags)

general A verbal subtest of general information

paragrap A verbal subtest of paragraph comprehension

sentence A verbal subtest of sentence completion

wordc A verbal subtest of word classification

wordm A verbal subtest of word meaning

Details

The data are from children who differ in grade (seventh- and eighth-grade) and are nested in one of
two schools (Pasteur and Grant-White). You will see it in use elsewhere, both in R (lavaan, and
MBESS), and in Joreskog (1969) reporting a CFA on the Grant-White school subject subset.

Some tests are alternate or substitute forms, e.g. paperrev (a paper form board test) can substitute
for paper and flagssub for the lozenges test flags.

Source

Holzinger, K., and Swineford, F. (1939).

References

Holzinger, K., and Swineford, F. (1939). A study in factor analysis: The stability of a bifactor
solution. Supplementary Educational Monograph, no. 48. Chicago: University of Chicago Press.

Joreskog, K. G. (1969). A general approach to confirmatory maximum likelihood factor analysis.
Psychometrika, 34, 183-202.

Examples

data(HS.ability.data)
str(HS.ability.data)
levels(HS.ability.data$school)
plot(flags ~ flagssub, data = HS.ability.data)

30 imxAutoOptionValue

imxAddDependency Add a dependency

Description

The dependency tracking system ensures that algebra and fitfunctions are not recomputed if their
inputs have not changed. Dependency information is computed prior to handing the model off to
the optimizer to reduce overhead during optimization.

Usage

imxAddDependency(source, sink, dependencies)

Arguments

source a character vector of the names of the computation sources (inputs)

sink the name of the computation sink (output)

dependencies the dependency graph

Details

Each free parameter keeps track of all the objects that store that free parameter and the transitive
closure of all algebras and fit functions that depend on that free parameter. Similarly, each definition
variable keeps track of all the objects that store that free parameter and the transitive closure of all
the algebras and fit functions that depend on that free parameter. At each iteration of the optimiza-
tion, when the free parameter values are updated, all of the dependencies of that free parameter are
marked as dirty (see omxFitFunction.repopulateFun). After an algebra or fit function is com-
puted, omxMarkClean() is called to to indicate that the algebra or fit function is updated. Similarly,
when definition variables are populated in FIML, all of the dependencies of the definition vari-
ables are marked as dirty. Particularly for FIML, the fact that non-definition-variable dependencies
remain clean is a big performance gain.

imxAutoOptionValue imxAutoOptionValue

Description

Convert "Auto" placeholders in global mxOptions to actual default values.

Usage

imxAutoOptionValue(optionName, optionList = options()$mxOption)

imxCheckMatrices 31

Arguments

optionName Character string naming the mxOption for which a numeric or integer value is
wanted.

optionList List of options; defaults to list of global mxOptions. imxAutoOptionValue

Details

This is an internal function exported for documentation purposes. Its primary purpose is to convert
the on-load value of "Auto"to valid values for mxOptions ‘Gradient step size’, ‘Gradient iterations’,
and ‘Function precision’–respectively, 1.0e-7, 1L, and 1e-14.

imxCheckMatrices imxCheckMatrices

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxCheckMatrices(model)

Arguments

model model

imxCheckVariables imxCheckVariables

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxCheckVariables(flatModel, namespace)

Arguments

flatModel flatModel

namespace namespace

32 imxConvertIdentifier

imxConDecMatrixSlots Condense/de-condense slots of an MxMatrix

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxConDecMatrixSlots(object)

Arguments

object of class MxMatrix

imxConstraintRelations

imxConstraintRelations

Description

A string vector of valid constraint binary relations.

Usage

imxConstraintRelations

Format

An object of class character of length 3.

imxConvertIdentifier imxConvertIdentifier

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxConvertIdentifier(identifiers, modelname, namespace, strict = FALSE)

imxConvertLabel 33

Arguments

identifiers identifiers

modelname modelname

namespace namespace

strict strict

imxConvertLabel imxConvertLabel

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxConvertLabel(label, modelname, dataname, namespace)

Arguments

label label

modelname modelname

dataname dataname

namespace namespace

imxConvertSubstitution

imxConvertSubstitution

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxConvertSubstitution(substitution, modelname, namespace)

Arguments

substitution substitution

modelname modelname

namespace namespace

34 imxCreateMatrix

imxCreateMatrix Create a matrix

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxCreateMatrix(
.Object,
labels,
values,
free,
lbound,
ubound,
nrow,
ncol,
byrow,
name,
condenseSlots,
joinKey,
joinModel

)

Arguments

.Object the matrix

labels labels

values values

free free

lbound lbound

ubound ubound

nrow nrow

ncol ncol

byrow byrow

name name

condenseSlots condenseSlots

joinKey joinKey

joinModel joinModel

imxDataTypes 35

imxDataTypes Valid types of data that can be contained by MxData

Description

Valid types of data that can be contained by MxData

Usage

imxDataTypes

Format

An object of class character of length 4.

imxDefaultGetSlotDisplayNames

imxDefaultGetSlotDisplayNames

Description

Returns a list of display-friendly object slot names This is an internal function exported for those
people who know what they are doing.

Usage

imxDefaultGetSlotDisplayNames(x, pattern = ".*")

Arguments

x The object from which to get slot names

pattern Initial pattern to match (default of ’.*’ matches any)

36 imxDetermineDefaultOptimizer

imxDeparse Deparse for MxObjects

Description

Deparse for MxObjects

Usage

imxDeparse(object, indent = " ")

Arguments

object object
indent indent

imxDependentModels Are submodels dependence?

Description

Are submodels dependence?

Usage

imxDependentModels(model)

Arguments

model model

imxDetermineDefaultOptimizer

imxDetermineDefaultOptimizer

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxDetermineDefaultOptimizer()

Details

Returns a character, the default optimizer

imxDmvnorm 37

imxDmvnorm A C implementation of dmvnorm

Description

This API is visible to permit testing. Please do not use.

Usage

imxDmvnorm(loc, mean, sigma)

Arguments

loc loc

mean mean

sigma sigma

imxEvalByName imxEvalByName

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxEvalByName(name, model, compute = FALSE, show = FALSE)

Arguments

name name

model model

compute compute

show show

38 imxExtractReferences

imxExtractMethod imxExtractMethod

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxExtractMethod(model, index)

Arguments

model model

index index

imxExtractNames imxExtractNames

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxExtractNames(lst)

Arguments

lst lst

imxExtractReferences imxExtractReferences

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxExtractReferences(lst)

Arguments

lst lst

imxExtractSlot 39

imxExtractSlot imxExtractSlot

Description

Checks for and extracts a slot from the object This is an internal function exported for those people
who know what they are doing.

Usage

imxExtractSlot(x, name)

Arguments

x The object

name the name of the slot

imxFlattenModel Remove hierarchical structure from model

Description

Remove hierarchical structure from model

Usage

imxFlattenModel(model, namespace, unsafe = FALSE)

Arguments

model model

namespace namespace

unsafe whether to skip sanity checks

40 imxGenerateNamespace

imxFreezeModel Freeze model

Description

Remove free parameters and fit function from model.

Usage

imxFreezeModel(model)

Arguments

model model

imxGenerateLabels imxGenerateLabels

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxGenerateLabels(model)

Arguments

model model

imxGenerateNamespace imxGenerateNamespace

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxGenerateNamespace(model)

Arguments

model model

imxGenericModelBuilder 41

imxGenericModelBuilder

imxGenericModelBuilder

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxGenericModelBuilder(
model,
lst,
name,
manifestVars,
latentVars,
productVars,
submodels,
remove,
independent

)

Arguments

model model

lst lst

name name

manifestVars manifestVars

latentVars latentVars

productVars productVars

submodels submodels

remove remove

independent independent

imxGenSwift imxGenSwift

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxGenSwift(tc, sites, sfile)

42 imxGetNumThreads

Arguments

tc tc

sites sites

sfile sfile

imxGentleResize Resize an MxMatrix while preserving entries

Description

Resize an MxMatrix while preserving entries

Usage

imxGentleResize(matrix, dimnames)

Arguments

matrix the MxMatrix to resize

dimnames desired dimnames for the new matrix

Value

a resized MxMatrix

Examples

m1 <- mxMatrix(values=1:9, nrow=3, ncol=3,
dimnames=list(paste0('r',1:3), paste0('c',1:3)))

imxGentleResize(m1, dimnames=list(paste0('r',c(1,3,5)),
paste0('c',c(2,4,6))))

imxGetNumThreads imxGetNumThreads

Description

This is an internal function exported for those people who know what they are doing.

This function hard codes responses to a set of environments, like detecting snowfall, or running
on a cluster where "OMP_NUM_THREADS" is set or otherwise returning 1 or 2 cores to avoid
consuming all the resources on CRAN’s test machines during release cycles.

This makes it not suitable for getting the number of available threads.

To get the number of cores available locally you want omxDetectCores or perhaps the detectCores
function in the parallel package.

imxGetSlotDisplayNames 43

Usage

imxGetNumThreads()

imxGetSlotDisplayNames

imxGetSlotDisplayNames

Description

Returns a list of display-friendly object slot names This is an internal function exported for those
people who know what they are doing.

Usage

imxGetSlotDisplayNames(
object,
pattern = ".*",
slotList = slotNames(object),
showDots = FALSE,
showEmpty = FALSE

)

Arguments

object The object from which to get slot names
pattern Initial pattern to match (default of ’.*’ matches any)
slotList List of slots for which toget display names (default = slotNames(object), i.e.,

all)
showDots Include slots whose names start with ’.’ (default FALSE)
showEmpty Include slots with length-zero contents (default FALSE)

imxHasConstraint imxHasConstraint

Description

This is an internal function exported for those people who know what they are doing. This function
checks if a model (or its submodels) has at least one MxConstraint.

Usage

imxHasConstraint(model)

Arguments

model model

44 imxHasOpenMP

imxHasDefinitionVariable

imxHasDefinitionVariable

Description

This is an internal function exported for those people who know what they are doing. This function
checks if a model (or its submodels) has at least one definition variable.

Usage

imxHasDefinitionVariable(model)

Arguments

model model

imxHasNPSOL imxHasNPSOL

Description

imxHasNPSOL

Usage

imxHasNPSOL()

Value

Returns TRUE if the NPSOL proprietary optimizer is compiled and linked with OpenMx. Other-
wise FALSE.

imxHasOpenMP imxHasOpenMP

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxHasOpenMP()

imxHasThresholds 45

imxHasThresholds imxHasThresholds

Description

This is an internal function exported for those people who know what they are doing. This function
checks if a model (or its submodels) has any thresholds.

Usage

imxHasThresholds(model)

Arguments

model model

imxHasWLS imxHasWLS

Description

This is an internal function exported for those people who know what they are doing. This function
checks if a model uses a fitfunction with WLS units.

Usage

imxHasWLS(model)

Arguments

model model

imxIdentifier imxIdentifier

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxIdentifier(namespace, name)

Arguments

namespace namespace
name name

46 imxIsDefinitionVariable

imxIndependentModels Are submodels independent?

Description

Are submodels independent?

Usage

imxIndependentModels(model)

Arguments

model model

imxInitModel imxInitModel

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxInitModel(model)

Arguments

model model

imxIsDefinitionVariable

imxIsDefinitionVariable

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxIsDefinitionVariable(name)

Arguments

name name

imxIsMultilevel 47

imxIsMultilevel imxIsMultilevel

Description

This is an internal function exported for those people who know what they are doing. If you don’t
know what you’re doing, but want to, here’s a brief description of the function. You give this
function an MxModel. It returns TRUE if the model is multilevel and FALSE otherwise.

Usage

imxIsMultilevel(model)

Arguments

model model

imxIsPath imxIsPath

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxIsPath(value)

Arguments

value value

imxIsStateSpace imxIsStateSpace

Description

This is an internal function exported for those people who know what they are doing. If you don’t
know what you’re doing, but want to, here’s a brief description of the function. You give this
function an MxModel. It returns TRUE if the model is a state space model and FALSE otherwise.

Usage

imxIsStateSpace(model)

Arguments

model model

48 imxLocateIndex

imxLocateFunction imxLocateFunction

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxLocateFunction(function_name)

Arguments

function_name function_name

imxLocateIndex imxLocateIndex

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxLocateIndex(model, name, referant)

Arguments

model model

name name

referant referant

imxLocateLabel 49

imxLocateLabel imxLocateLabel

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxLocateLabel(label, model, parameter)

Arguments

label label
model model
parameter parameter

imxLog Test thread-safe output code

Description

This is the code that the backend uses to write diagnostic information to standard error. This func-
tion should not be called from R. We make it available only for testing.

Usage

imxLog(str)

Arguments

str the character string to output

imxLookupSymbolTable imxLookupSymbolTable

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxLookupSymbolTable(name)

Arguments

name name

50 imxModelBuilder

imxModelBuilder imxModelBuilder

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxModelBuilder(
model,
lst,
name,
manifestVars,
latentVars,
productVars,
submodels,
remove,
independent

)

Arguments

model model

lst lst

name name

manifestVars manifestVars

latentVars latentVars

productVars productVars

submodels submodels

remove remove

independent independent

Details

TODO: It probably makes sense to split this into separate methods. For example, modelAddVari-
ables and modelRemoveVariables could be their own methods. This would reduce some cut&paste
duplication.

imxModelTypes 51

imxModelTypes imxModelTypes

Description

A list of supported model types

Usage

imxModelTypes

Format

An object of class list of length 3.

imxMpiWrap imxMpiWrap

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxMpiWrap(fun)

Arguments

fun fun

imxOriginalMx Run an classic mx script

Description

For this to work, classic mx must be installed, and callable from the command line.

Usage

imxOriginalMx(mx.filename, output.directory)

52 imxPenaltyTypes

Arguments

mx.filename Name of file containing the mx script.

output.directory

Where to write mxo output from the script

Value

processed matrix output.

Examples

Not run:
output = imxOriginalMx(mx.filename = "power1.mx", "~/Desktop")

End(Not run)

imxPenaltyTypes imxPenaltyTypes

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxPenaltyTypes

Format

An object of class character of length 3.

Details

Types of regularization penalties.

imxPPML 53

imxPPML imxPPML

Description

Potentially enable the PPML optimization for the given model.

Usage

imxPPML(model, flag = TRUE)

Arguments

model the MxModel to evaluate

flag whether to potentially enable PPML

imxPPML.Test.Battery imxPPML.Test.Battery

Description

PPML can be applied to a number of special cases. This function will test the given model for all
of these special cases.

Usage

imxPPML.Test.Battery(
model,
verbose = FALSE,
testMissingness = TRUE,
testPermutations = TRUE,
testEstimates = TRUE,
testFakeLatents = TRUE,
tolerances = c(0.001, 0.001, 0.001)

)

Arguments

model the model to test

verbose whether to print diagnostics
testMissingness

try with missingness
testPermutations

try with permutations

54 imxPPML.Test.Test

testEstimates examine estimates
testFakeLatents

try with fake latents

tolerances a vector of tolerances

Details

Requirements for model passed to this function: - Path-specified - Means vector must be present -
Covariance data (with data means vector) - (Recommended) All error variances should be specified
on the diagonal of the S matrix, and not as a latent with a loading only on to that manifest

Function will test across all permutations of: - Covariance vs Raw data - Means vector present vs
Means vector absent - Path versus Matrix specification - All orders of permutations of latents with
manifests

imxPPML.Test.Test imxPPML.Test.Test

Description

Test that PPML solutions match non-PPML solutions.

Usage

imxPPML.Test.Test(
model,
checkLL = TRUE,
checkByName = FALSE,
tolerance = 0.5,
testEstimates = TRUE

)

Arguments

model the MxModel to evaluate

checkLL whether to check log likelihood

checkByName check values using their names

tolerance closeness tolerance for check

testEstimates whether to test for the same parameter estimates

Details

This is an internal function used for comparing PPML and non-PPML solutions. Generally, non-
developers will not use this function.

imxPreprocessModel 55

imxPreprocessModel imxPreprocessModel

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxPreprocessModel(model)

Arguments

model model

imxReplaceMethod imxReplaceMethod

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxReplaceMethod(x, name, value)

Arguments

x the thing
name name
value value

imxReplaceModels Replace parts of a model

Description

Replace parts of a model

Usage

imxReplaceModels(model, replacements)

Arguments

model model
replacements replacements

56 imxReportProgress

imxReplaceSlot imxReplaceSlot

Description

Checks for and replaces a slot from the object This is an internal function exported for those people
who know what they are doing.

Usage

imxReplaceSlot(x, name, value, check = TRUE)

Arguments

x object

name the name of the slot

value replacement value

check Check replacement value for validity (default TRUE)

imxReportProgress Report backend progress

Description

Prints a show status string to the console without emitting a newline.

Usage

imxReportProgress(info, eraseLen)

Arguments

info the character string to print

eraseLen the number of characters to erase

Examples

library(OpenMx)

previousLen <<- 0

easyReportProcess <- function(msg) {
imxReportProgress(msg, previousLen)
previousLen <<- nchar(msg)
}

imxReservedNames 57

demo <- function() {
easyReportProcess("abc123")
Sys.sleep(1)
easyReportProcess("this is much longer")
Sys.sleep(1)
easyReportProcess("this is short")
Sys.sleep(1)
easyReportProcess("almost done")
Sys.sleep(1)
easyReportProcess("")
cat("DONE!", fill=TRUE)
}

demo()

imxReservedNames imxReservedNames

Description

Vector of reserved names

Usage

imxReservedNames

Format

An object of class character of length 7.

imxReverseIdentifier imxReverseIdentifier

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxReverseIdentifier(model, name)

Arguments

model model

name name

58 imxRobustSE

imxRobustSE imxRobustSE

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxRobustSE(model, details = FALSE, dependencyModels = character(0))

Arguments

model An OpenMx model object that has been run.

details Logical. whether to return the full parameter covariance matrix.

dependencyModels

Passed to imxRowGradients().

Details

This function computes robust standard errors via a sandwich estimator. The "bread" of the sand-
wich is the numerically computed inverse Hessian of the likelihood function. This is what is typi-
cally used for standard errors throughout OpenMx. The "meat" of the sandwich is proportional to
the covariance matrix of the numerically computed row derivatives of the likelihood function (i.e.
row gradients).

When details=FALSE, only the standard errors are returned.

When details=TRUE, a list with five named elements is returned. Element SE is the vector of stan-
dard errors that is also returned when details=FALSE. Element cov is the full robust covariance
matrix of the parameter estimates; the square root of the diagonal of cov gives the standard er-
rors. Element bread is the aforementioned "bread"–the naive (non-robust) covariance matrix of the
parameter estimates. Element meat is the aforementioned "meat," proportional to the covariance
matrix of the row gradients. Element TIC is the model’s Takeuchi Information Criterion, which
is a generalization of AIC calculated from the "bread," the "meat," and the loglikelihood at the
maximum-likelihood solution.

This function does not work correctly with multigroup models in which the groups themselves
contain subgroups. This function also does not correctly handle multilevel data.

imxRowGradients 59

imxRowGradients imxRowGradients

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxRowGradients(model, robustSE = FALSE, dependencyModels = character(0))

Arguments

model An OpenMx model object that has been run

robustSE Logical; are the row gradients being requested to calculate robust standard er-
rors?

dependencyModels

Vector of character strings naming submodels that do not contain data, but con-
tain objects to which data-containing models make reference.

Details

This function computes the gradient for each row of data. The returned object is a matrix with the
same number of rows as the data, and the same number of columns as there are free parameters.

imxSameType imxSameType

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxSameType(a, b)

Arguments

a a

b b

60 imxSimpleRAMPredicate

imxSeparatorChar imxSeparatorChar

Description

The character between the model name and the named entity inside the model.

Usage

imxSeparatorChar

Format

An object of class character of length 1.

imxSfClient imxSfClient

Description

As of snowfall 1.84, the snowfall supervisor process stores an internal state information in a variable
named ".sfOption" that is located in the "snowfall" namespace. The snowfall client processes store
internal state information in a variable named ".sfOption" that is located in the global namespace.

Usage

imxSfClient()

Details

As long as the previous statement is true, then the current process is a snowfall client if-and-only-if
exists(".sfOption").

imxSimpleRAMPredicate imxSimpleRAMPredicate

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxSimpleRAMPredicate(model)

Arguments

model model

imxSparseInvert 61

imxSparseInvert Sparse symmetric matrix invert

Description

This API is visible to permit testing. Please do not use.

Usage

imxSparseInvert(mat)

Arguments

mat the matrix to invert

imxSquareMatrix imxSquareMatrix

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxSquareMatrix(.Object)

Arguments

.Object .Object

imxSymmetricMatrix imxSymmetricMatrix

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxSymmetricMatrix(.Object)

Arguments

.Object .Object

62 imxUntitledNumber

imxTypeName imxTypeName

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxTypeName(model)

Arguments

model model

imxUntitledName imxUntitledName

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxUntitledName()

Details

Returns a character, the name of the next untitled entity

imxUntitledNumber imxUntitledNumber

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxUntitledNumber()

Details

Increments the untitled number counter and returns its value

imxUntitledNumberReset 63

imxUntitledNumberReset

imxUntitledNumberReset

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxUntitledNumberReset()

Details

Resets the imxUntitledNumber counter

imxUpdateModelValues imxUpdateModelValues

Description

Deprecated. This function does not handle parameters with equality constraints. Do not use.

Usage

imxUpdateModelValues(model, flatModel, values)

Arguments

model model

flatModel flat model

values values to update

64 imxVerifyModel

imxVariableTypes imxVariableTypes

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxVariableTypes

Format

An object of class character of length 2.

Details

The acceptable variable types

imxVerifyMatrix imxVerifyMatrix

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxVerifyMatrix(.Object)

Arguments

.Object .Object

imxVerifyModel imxVerifyModel

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxVerifyModel(model)

Arguments

model model

imxVerifyName 65

imxVerifyName imxVerifyName

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxVerifyName(name, stackNumber)

Arguments

name name

stackNumber stackNumber

imxVerifyReference imxVerifyReference

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxVerifyReference(reference, stackNumber)

Arguments

reference reference

stackNumber stackNumber

66 imxWlsChiSquare

imxWlsChiSquare Calculate Chi Square for a WLS Model

Description

This is an internal function used to calculate the Chi Square distributed fit statistic for weighted
least squares models.

Usage

imxWlsChiSquare(model, J=NA)

Arguments

model An MxModel object with acov (WLS) data

J Optional pre-computed Jacobian matrix

Details

The Chi Square fit statistic for models fit with maximum likelihood depends on the difference in
model fit in minus two log likelihood units between the saturated model and the more restricted
model under investigation. For models fit with weighted least squares a different expression is
required. If J is the first derivative (Jacobian) of the mapping from the free parameters to the unique
elements of the expected covariance, means, and threholds, Jc is the orthogonal complement of J ,
W is the inverse of the full weight matrix, and e is the difference between the sample-estimated and
model-implied covariance, means, and thresholds, then the Chi Square fit statistic is

χ2 = e′Jc(J
′
cWJc)

−1J ′
ce

with e′ indicating the transpose of e. This Equation 2.20a from Browne (1984) where he showed
that this statistic is chi-square distributed with the conventional degrees of freedom.

Mean and variance adjusted Chi Square statistics are also computed following Asparouhov and
Muthen (2006).

Value

A named list with components

Chi numeric value of the Chi Square fit statistic.

ChiDoF degrees of freedom for the Chi Square fit statistic.

ChiM numeric value of the mean adjusted Chi Square fit statistic

ChiMV numeric value of the mean and variance adjusted Chi Square fit statistic

mAdjust numeric value of the mean adjustment

mvAdjust numeric value of the mean and variance adjustment

dstar adjusted degrees of freedom for the mean and variance adjusted Chi Square fit statistic

imxWlsStandardErrors 67

References

M. W. Browne. (1984). Asymptotically Distribution-Free Methods for the Analysis of Covariance
Structures. British Journal of Mathematical and Statistical Psychology, 37, 62-83.

T. Asparouhov and B. O. Muthen. (2006). Robust Chi Square Difference Testing with Mean and
Variance Adjusted Test Statistics. Mplus Web Notes: No. 10.

imxWlsStandardErrors Calculate Standard Errors for a WLS Model

Description

This is an internal function used to calculate standard errors for weighted least squares models.

Usage

imxWlsStandardErrors(model)

Arguments

model An MxModel object with acov (WLS) data

Details

The standard errors for models fit with maximum likelihood are related to the second deriva-
tive (Hessian) of the likelihood function with respect to the free parameters. For models fit with
weighted least squares a different expression is required. If J is the first derivative (Jacobian) of
the mapping from the free parameters to the unique elements of the expected covariance, means,
and thresholds, V is the weight matrix used, W is the inverse of the full weight matrix, and
U = V J(J ′V J)−1, then the asymptotic covariance matrix of the free parameters is

Acov(θ) = U ′WU

with U ′ indicating the transpose of U .

Value

A named list with components

SE The standard errors of the free parameters
Cov The full covariance matrix of the free parameters. The square root of the diagonal elements of

Cov equals SE.
Jac The Jacobian computed to obtain the standard errors.

References

M. W. Browne. (1984). Asymptotically Distribution-Free Methods for the Analysis of Covariance
Structures. British Journal of Mathematical and Statistical Psychology, 37, 62-83.

F. Yang-Wallentin, K. G. Jöreskog, & H. Luo. (2010). Confirmatory Factor Analysis of Ordinal
Variables with Misspecified Models. Structural Equation Modeling, 17, 392-423.

68 jointdata

jointdata Joint Ordinal and continuous variables to be modeled together

Description

Data set used in some of OpenMx’s examples.

Usage

data("jointdata")

Format

A data frame with 250 observations on the following variables.

z1 Continuous variable

z2 Ordinal variable with 2 levels (0, 1)

z3 Continuous variable

z4 Ordinal variable with 4 levels (0, 1, 2, 3)

z5 Ordinal variable with 3 levels (0, 1, 3)

Details

Data generated to test the joint ML algorithm thoroughly.

Source

Simulated.

References

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.

Examples

data(jointdata)
head(jointdata)

https://openmx.ssri.psu.edu/documentation/

latentMultipleRegExample1 69

latentMultipleRegExample1

Example data for multiple regression among latent variables

Description

Data set used in some of OpenMx’s examples.

Usage

data("latentMultipleRegExample1")

Format

A data frame with 200 observations on the following variables.

X1 Factor 1 indicator

X2 Factor 1 indicator

X3 Factor 1 indicator

X4 Factor 1 indicator

X5 Factor 2 indicator

X6 Factor 2 indicator

X7 Factor 2 indicator

X8 Factor 2 indicator

X9 Factor 3 indicator

X10 Factor 3 indicator

X11 Factor 3 indicator

X12 Factor 3 indicator

Details

Factor 1 strongly predicts factor 3. Factor 2 weakly predicts factor 3.

Source

Simulated.

References

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.

Examples

data(latentMultipleRegExample1)
round(cor(latentMultipleRegExample1), 2)

https://openmx.ssri.psu.edu/documentation/

70 latentMultipleRegExample2

latentMultipleRegExample2

Example data for multiple regression among latent variables

Description

Data set used in some of OpenMx’s examples.

Usage

data("latentMultipleRegExample2")

Format

A data frame with 200 observations on the following variables.

X1 Factor 1 indicator
X2 Factor 1 indicator
X3 Factor 1 indicator
X4 Factor 1 indicator
X5 Factor 2 indicator
X6 Factor 2 indicator
X7 Factor 2 indicator
X8 Factor 2 indicator
X9 Factor 3 indicator
X10 Factor 3 indicator
X11 Factor 3 indicator
X12 Factor 3 indicator

Details

Factor 1 strongly predicts factor 3. Factor 2 weakly predicts factor 3. Very similar to latentMulti-
pleRegExample1.

Source

Simulated.

References

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.

Examples

data(latentMultipleRegExample2)
round(cor(latentMultipleRegExample2), 2)

https://openmx.ssri.psu.edu/documentation/

lazarsfeld 71

lazarsfeld Respondent-soldiers on four dichotomous items

Description

Data set used in some of OpenMx’s examples.

Usage

data("lazarsfeld")

Format

A data frame with 1000 observations on four dichotomous items.

armyrun In general how do you feel the Army is run?
favatt Do you think when you are discharged you will [have] a favorable attitude toward the

Army?
squaredeal In general do you feel you yourself have gotten a square deal from the Army?
welfare Do you feel that the Army is trying its best to look out for the welfare of enlisted men?
frequency Frequency of response pattern.

Details

A straightforward descriptive analysis of these data shows that negative responses are more nu-
merous except on item 1; and that there is a positive association between each pair of items. A
soldier who responds positively to any one item is more likely to respond positively to a second
item. Lazarsfeld’s analysis is based on the assumption that each soldier can be thought of as belong
to one of two latent classes. The probability of positive response to an item is different in one group
than in the other. Most importantly, he is willing to assume that for an individual respondent the
responses to items are statistically independent.

Source

Lazarsfeld, Paul F. (1950b) "Some Latent Structures", Chapter 11 in Stouffer (1950).

References

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.

See Also

http://www.people.vcu.edu/~nhenry/LSA50.htm

Examples

data(lazarsfeld)

https://openmx.ssri.psu.edu/documentation/

72 LongitudinalOverdispersedCounts

logm Matrix logarithm

Description

Matrix logarithm

Usage

logm(x, tol = .Machine$double.eps)

Arguments

x matrix

tol tolerance

LongitudinalOverdispersedCounts

Longitudinal, Overdispersed Count Data

Description

Four-timepoint longitudinal data generated from an arbitrary Monte Carlo simulation, for 1000
simulees. The response variable is a discrete count variable. There are three time-invariant covari-
ates. The data are available in both "wide" and "long" format.

Usage

data("LongitudinalOverdispersedCounts")

Format

The "long" format dataframe, longData, has 4000 rows and the following variables (columns):

1. id: Factor; simulee ID code.

2. tiem: Numeric; represents the time metric, wave of assessment.

3. x1: Numeric; time-invariant covariate.

4. x2: Numeric; time-invariant covariate.

5. x3: Numeric; time-invariant covariate.

6. y: Numeric; the response ("dependent") variable.

The "wide" format dataset, wideData, is a numeric 1000x12 matrix containing the following vari-
ables (columns):

1. id: Simulee ID code.

multiData1 73

2. x1: Time-invariant covariate.

3. x3: Time-invariant covariate.

4. x3: Time-invariant covariate.

5. y0: Response at initial wave of assessment.

6. y1: Response at first follow-up.

7. y2: Response at second follow-up.

8. y3: Response at third follow-up.

9. t0: Time variable at initial wave of assessment (in this case, 0).

10. t1: Time variable at first follow-up (in this case, 1).

11. t2: Time variable at second follow-up (in this case, 2).

12. t3: Time variable at third follow-up (in this case, 3).

Examples

data(LongitudinalOverdispersedCounts)
head(wideData)
str(longData)
#Let's try ordinary least-squares (OLS) regression:
olsmod <- lm(y~tiem+x1+x2+x3, data=longData)
#We will see in the diagnostic plots that the residuals are poorly approximated by normality,
#and are heteroskedastic. We also know that the residuals are not independent of one another,
#because we have repeated-measures data:
plot(olsmod)
#In the summary, it looks like all of the regression coefficients are significantly different
#from zero, but we know that because the assumptions of OLS regression are violated that
#we should not trust its results:
summary(olsmod)

#Let's try a generalized linear model (GLM). We'll use the quasi-Poisson quasilikelihood
#function to see how well the y variable is approximated by a Poisson distribution
#(conditional on time and covariates):
glm.mod <- glm(y~tiem+x1+x2+x3, data=longData, family="quasipoisson")
#The estimate of the dispersion parameter should be about 1.0 if the data are
#conditionally Poisson. We can see that it is actually greater than 2,
#indicating overdispersion:
summary(glm.mod)

multiData1 Data for multiple regression

Description

Data set used in some of OpenMx’s examples.

Usage

data("multiData1")

74 mxAlgebra

Format

A data frame with 500 observations on the following variables.

x1

x2

x3

x4

y

Details

x1-x4 are predictor variables, and y is the outcome.

Source

Simulated.

References

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.

Examples

data(multiData1)
summary(lm(y ~ ., data=multiData1))
#results can be replicated in OpenMx.

mxAlgebra Create MxAlgebra Object

Description

This function creates a new MxAlgebra. The common use is to compute a value in a model: for
instance a standardized value of a parameter, or a parameter which is a function of other values. It
is also used in models with an mxFitFunctionAlgebra objective function.

note: Unless needed in the model objective, algebras are only computed twice: once at the begin-
ning and once at the end of running a model, so adding them doesn’t often add a lot of overhead.

Usage

mxAlgebra(expression, name = NA, dimnames = NA, ..., fixed = FALSE,
joinKey=as.character(NA), joinModel=as.character(NA),

verbose=0L, initial=matrix(as.numeric(NA),1,1),
recompute=c('always','onDemand'))

https://openmx.ssri.psu.edu/documentation/

mxAlgebra 75

Arguments

expression An R expression of OpenMx-supported matrix operators and matrix functions.

name An optional character string indicating the name of the object.

dimnames list. The dimnames attribute for the algebra: a list of length 2 giving the row
and column names respectively. An empty list is treated as NULL, and a list of
length one as row names. The list can be named, and the list names will be used
as names for the dimensions.

... Not used. Forces other arguments to be specified by name.

fixed Deprecated. Use the ‘recompute’ argument instead.

joinKey The name of the column in current model’s raw data that is used as a foreign key
to match against the primary key in the joinModel’s raw data.

joinModel The name of the model that this matrix joins against.

verbose For values greater than zero, enable runtime diagnostics.

initial a matrix. When recompute='onDemand', you must provide this initial algebra
result.

recompute If ‘onDemand’, this algebra will not be recomputed automatically when things
it depends on change. mxComputeOnce can be used to force it to recompute.

Details

The mxAlgebra function is used to create algebraic expressions that operate on one or more MxMa-
trix objects. To evaluate an MxAlgebra object, it must be placed in an MxModel object, along with
all referenced MxMatrix objects and the mxFitFunctionAlgebra function. The mxFitFunctionAlgebra
function must reference by name the MxAlgebra object to be evaluated.

Note: f the result for an MxAlgebra depends upon one or more "definition variables" (see mxMatrix()),
then the value returned after the call to mxRun() will be computed using the values of those defini-
tion variables in the first (i.e., first before any automated sorting is done) row of the raw dataset.

The following operators and functions are supported in mxAlgebra:

Operators

solve() Inversion

t() Transposition

^ Elementwise powering

%^% Kronecker powering

+ Addition

- Subtraction

%*% Matrix Multiplication

* Elementwise product

/ Elementwise division

%x% Kronecker product

%&% Quadratic product: pre- and post-multiply B by A and its transpose t(A), i.e: A %&% B == A
%*% B %*% t(A)

76 mxAlgebra

Functions

cov2cor Convert covariance matrix to correlation matrix

chol Cholesky Decomposition

cbind Horizontal adhesion

rbind Vertical adhesion

colSums Matrix column sums as a column vector

rowSums Matrix row sums as a column vector

det Determinant

tr Trace

sum Sum

mean Arithmetic mean

prod Product

max Maximum

min Min

abs Absolute value

sin Sine

sinh Hyperbolic sine

asin Arcsine

asinh Inverse hyperbolic sine

cos Cosine

cosh Hyperbolic cosine

acos Arccosine

acosh Inverse hyperbolic cosine

tan Tangent

tanh Hyperbolic tangent

atan Arctangent

atanh Inverse hyperbolic tangent

exp Exponent

log Natural Logarithm

mxRobustLog Robust natural logarithm

sqrt Square root

p2z Standard-normal quantile

logp2z Standard-normal quantile from log probabilities

lgamma Log-gamma function

lgamma1p Compute log(gamma(x+1)) accurately for small x

eigenval Eigenvalues of a square matrix. Usage: eigenval(x); eigenvec(x); ieigenval(x); ieigen-
vec(x)

mxAlgebra 77

rvectorize Vectorize by row

cvectorize Vectorize by column

vech Half-vectorization

vechs Strict half-vectorization

vech2full Inverse half-vectorization

vechs2full Inverse strict half-vectorization

vec2diag Create matrix from a diagonal vector (similar to diag)

diag2vec Extract diagonal from matrix (similar to diag)

expm Matrix Exponential

logm Matrix Logarithm

omxExponential Matrix Exponential

omxMnor Multivariate Normal Integration

omxAllInt All cells Multivariate Normal Integration

omxNot Perform unary negation on a matrix

omxAnd Perform binary and on two matrices

omxOr Perform binary or on two matrices

omxGreaterThan Perform binary greater on two matrices

omxLessThan Perform binary less than on two matrices

omxApproxEquals Perform binary equals to (within a specified epsilon) on two matrices

omxSelectRows Filter rows from a matrix

omxSelectCols Filter columns from a matrix

omxSelectRowsAndCols Filter rows and columns from a matrix

mxEvaluateOnGrid Evaluate an algebra on an abscissa grid and collect column results

mpinv Moore-Penrose Inverse

If solve is used on an uninvertible square matrix in R, via mxEval(), it will fail with an error will;
if solve is used on an uninvertible square matrix during runtime, it will fail silently.

mxRobustLog is the same as log except that it returns -745 instead of -Inf for an argument of 0.
The value -745 is less than log(4.94066e-324), a good approximation of negative infinity because
the log of any number represented as a double will be of smaller absolute magnitude.

There are also several multi-argument functions usable in MxAlgebras, which apply themselves
elementwise to the matrix provided as their first argument. These functions have slightly different
usage from their R counterparts. Their result is always a matrix with the same dimensions as that
provided for their first argument. Values must be provided for ALL arguments of these functions,
in order. Provide zeroes as logical values of FALSE, and non-zero numerical values as logical values
of TRUE. For most of these functions, OpenMx cycles over values of arguments other than the first,
by column (i.e., in column-major order), to the length of the first argument. Notable exceptions are
the log, log.p, and lower.tail arguments to probability-distribution-related functions, for which
only the [1,1] element is used. It is recommended that all arguments after the first be either (1)
scalars, or (2) matrices with the same dimensions as the first argument.

78 mxAlgebra

Function Arguments Notes
besselI & besselK x,nu,expon.scaled Note that OpenMx does cycle over the elements of expon.scaled.
besselJ & besselY x,nu

dbeta x,shape1,shape2,ncp,log The algorithm for the non-central beta distribution is used for non-negative values of ncp. Negative ncp values are ignored, and the algorithm for the central beta distribution is used.
pbeta q,shape1,shape2,ncp,lower.tail,log.p Values of ncp are handled as with dbeta().
dbinom x,size,prob,log
pbinom q,size,prob,lower.tail,log.p
dcauchy x,location,scale,log
pcauchy q,location,scale,lower.tail,log.p
dchisq x,df,ncp,log The algorithm for the non-central chi-square distribution is used for non-negative values of ncp. Negative ncp values are ignored, and the algorithm for the central chi-square distribution is used.
pchisq q,df,ncp,lower.tail,log.p Values of ncp are handled as with dchisq().

omxDnbinom x,size,prob,mu,log Exactly one of arguments size, prob, and mu should be negative, and therefore ignored. Otherwise, mu is ignored, possibly with a warning, and the values of size and prob are used, irrespective of whether they are in the parameter space. If only prob is negative, the algorithm for the alternative size-mu parameterization is used. If size is negative, a value for size is calculated as mu*prob/(1-prob), and the algorithm for the size-prob parameterization is used (note that this approach is ill-advised when prob is very close to 0 or 1).
omxPnbinom q,size,prob,mu,lower.tail,log.p Arguments are handled as with omxDnbinom().

dpois x,lambda,log
ppois q,lambda,lower.tail,log.p

Value

Returns a new MxAlgebra object.

References

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.

See Also

MxAlgebra for the S4 class created by mxAlgebra. mxFitFunctionAlgebra for an objective function
which takes an MxAlgebra or MxMatrix object as the function to be minimized. MxMatrix and
mxMatrix for objects which may be entered in the expression argument and the function that
creates them. More information about the OpenMx package may be found here.

Examples

A <- mxMatrix("Full", nrow = 3, ncol = 3, values=2, name = "A")

Simple example: algebra B simply evaluates to the matrix A
B <- mxAlgebra(A, name = "B")

Compute A + B
C <- mxAlgebra(A + B, name = "C")

Compute sin(C)
D <- mxAlgebra(sin(C), name = "D")

Make a model and evaluate the mxAlgebra object 'D'
A <- mxMatrix("Full", nrow = 3, ncol = 3, values=2, name = "A")
model <- mxModel(model="AlgebraExample", A, B, C, D)
fit <- mxRun(model)
mxEval(D, fit)

https://openmx.ssri.psu.edu/documentation/

MxAlgebra-class 79

Numbers in mxAlgebras are upgraded to 1x1 matrices
Example of Kronecker powering (%^%) and multiplication (%*%)
A <- mxMatrix(type="Full", nrow=3, ncol=3, value=c(1:9), name="A")
m1 <- mxModel(model="kron", A, mxAlgebra(A %^% 2, name="KroneckerPower"))
mxRun(m1)$KroneckerPower

Running kron
mxAlgebra 'KroneckerPower'
$formula: A %^% 2
$result:
[,1] [,2] [,3]
[1,] 1 16 49
[2,] 4 25 64
[3,] 9 36 81

MxAlgebra-class MxAlgebra Class

Description

MxAlgebra is an S4 class. An MxAlgebra object is a named entity. New instances of this class can
be created using the function mxAlgebra.

Details

The MxAlgebra class has the following slots:

name - The name of the object
formula - The R expression to be evaluated

result - a matrix with the computation result

The ‘name’ slot is the name of the MxAlgebra object. Use of MxAlgebra objects in the mxConstraint
function or an objective function requires reference by name.

The ‘formula’ slot is an expression containing the expression to be evaluated. These objects are
operated on or related to one another using one or more operations detailed in the mxAlgebra help
file.

The ‘result’ slot is used to hold the results of computing the expression in the ‘formula’ slot. If the
containing model has not been executed, then the ‘result’ slot will hold a 0 x 0 matrix. Otherwise
the slot will store the computed value of the algebra using the final estimates of the free parameters.

Slots may be referenced with the $ symbol. See the documentation for Classes and the examples in
the mxAlgebra document for more information.

References

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.

https://openmx.ssri.psu.edu/documentation/

80 mxAlgebraFromString

See Also

mxAlgebra, mxMatrix, MxMatrix

MxAlgebraFormula-class

MxAlgebraFormula

Description

This is an internal class for the formulas used in mxAlgebra calls.

mxAlgebraFromString Create MxAlgebra object from a string

Description

Create MxAlgebra object from a string

Usage

mxAlgebraFromString(algString, name = NA, dimnames = NA, ...)

Arguments

algString the character string to convert into an R expression

name An optional character string indicating the name of the object.

dimnames list. The dimnames attribute for the algebra: a list of length 2 giving the row
and column names respectively. An empty list is treated as NULL, and a list of
length one as row names. The list can be named, and the list names will be used
as names for the dimensions.

... Forwarded verbatim to mxAlgebra

See Also

mxAlgebra

Examples

A <- mxMatrix(values = runif(25), nrow = 5, ncol = 5, name = 'A')
B <- mxMatrix(values = runif(25), nrow = 5, ncol = 5, name = 'B')
model <- mxModel(A, B, name = 'model',

mxAlgebraFromString("A * (B + A)", name = 'test'))
model <- mxRun(model)
model[['test']]$result
A$values * (B$values + A$values)

mxAlgebraObjective 81

mxAlgebraObjective DEPRECATED: Create MxAlgebraObjective Object

Description

WARNING: Objective functions have been deprecated as of OpenMx 2.0.

Please use MxFitFunctionAlgebra() instead. As a temporary workaround, MxAlgebraObjective
returns a list containing a NULL MxExpectation object and an MxFitFunctionAlgebra object.

All occurrences of

mxAlgebraObjective(algebra, numObs = NA, numStats = NA)

Should be changed to

mxFitFunctionAlgebra(algebra, numObs = NA, numStats = NA)

Arguments

algebra A character string indicating the name of an MxAlgebra or MxMatrix object to
use for optimization.

numObs (optional) An adjustment to the total number of observations in the model.

numStats (optional) An adjustment to the total number of observed statistics in the model.

Details

NOTE: THIS DESCRIPTION IS DEPRECATED. Please change to using mxFitFunctionAlgebra
as shown in the example below.

Fit functions are functions for which free parameter values are chosen such that the value of the ob-
jective function is minimized. While the other fit functions in OpenMx require an expectation func-
tion for the model, the mxAlgebraObjective function uses the referenced MxAlgebra or MxMatrix
object as the function to be minimized.

If a model’s primary objective function is a mxAlgebraObjective objective function, then the ref-
erenced algebra in the objective function must return a 1 x 1 matrix (when using OpenMx’s default
optimizer). There is no restriction on the dimensions of an objective function that is not the primary,
or ‘topmost’, objective function.

To evaluate an algebra objective function, place the following objects in a MxModel object: a
MxAlgebraObjective, MxAlgebra and MxMatrix entities referenced by the MxAlgebraObjective,
and optional MxBounds and MxConstraint entities. This model may then be evaluated using the
mxRun function. The results of the optimization may be obtained using the mxEval function on the
name of the MxAlgebra, after the model has been run.

Value

Returns a list containing a NULL MxExpectation object and an MxFitFunctionAlgebra object.
MxFitFunctionAlgebra objects should be included with models with referenced MxAlgebra and
MxMatrix objects.

82 mxAutoStart

References

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.

See Also

mxAlgebra to create an algebra suitable as a reference function to be minimized. More information
about the OpenMx package may be found here.

Examples

Create and fit a very simple model that adds two numbers using mxFitFunctionAlgebra

library(OpenMx)

Create a matrix 'A' with no free parameters
A <- mxMatrix('Full', nrow = 1, ncol = 1, values = 1, name = 'A')

Create an algebra 'B', which defines the expression A + A
B <- mxAlgebra(A + A, name = 'B')

Define the objective function for algebra 'B'
objective <- mxFitFunctionAlgebra('B')

Place the algebra, its associated matrix and
its objective function in a model
tmpModel <- mxModel(model="Addition", A, B, objective)

Evalulate the algebra
tmpModelOut <- mxRun(tmpModel)

View the results
tmpModelOut$output$minimum

mxAutoStart Automatically set starting values for an MxModel

Description

Automatically set starting values for an MxModel

Usage

mxAutoStart(model, type = c("ULS", "DWLS"))

Arguments

model The MxModel for which starting values are desired

type The type of starting values to obtain, currently unweighted or diagonally weighted
least squares, ULS or DWLS

https://openmx.ssri.psu.edu/documentation/

mxAutoStart 83

Details

This function automatically picks very good starting values for many models (RAM, LISREL,
Normal), including multiple group versions of these. It works for models with algebras. Models
of continuous, ordinal, and joint ordinal-continuous variables are also acceptable. It works for
models with covariance or raw data. However, it does not currently work for models with definition
variables, state space models, item factor analysis models, or multilevel models.

The method used to obtain new starting values is quite simple. The user’s model is changed to an
unweighted least squares (ULS) model. The ULS model is estimated and its final point estimates
are returned as the new starting values. Optionally, diagonally weighted least squares (DWLS) can
be used instead with the type argument.

Please note that ULS is sensitive to the scales of your variables. For example, if you have variables
with means of 20 and variances of 0.001, then ULS will "weight" the means 20,000 times more than
the variances and might result in zero variance estimates. Likewise if one variable has a variance
of 20 and another has a variance of 0.001, the same problem may arise. To avoid this, make sure
your variables are scaled accordingly. You could also use type='DWLS' to have the function use
diagonally weighted least squares to obtain starting values. Of course, using diagonally weighted
least squares will take much much longer and will usually not provide better starting values than
unweighted least squares.

Also note that if model contains a GREML expectation, argument type is ignored, and the function
always uses a form of ULS.

Value

an MxModel with new free parameter values

Examples

Use the frontpage model with negative variances to show better
starting values
library(OpenMx)
data(demoOneFactor)

latents = c("G") # the latent factor
manifests = names(demoOneFactor) # manifest variables to be modeled

m1 <- mxModel("One Factor", type = "RAM",
manifestVars = manifests, latentVars = latents,
mxPath(from = latents, to = manifests),
mxPath(from = manifests, arrows = 2, values=-.2),
mxPath(from = latents, arrows = 2, free = FALSE, values = 1.0),
mxPath(from = "one", to = manifests),
mxData(demoOneFactor, type = "raw")
)

Starting values imply negative variances!
mxGetExpected(m1, 'covariance')

Use mxAutoStart to get much better starting values
m1s <- mxAutoStart(m1)

84 MxBaseExpectation-class

mxGetExpected(m1s, 'covariance')

mxAvailableOptimizers mxAvailableOptimizers

Description

List the Optimizers available in this version, e.g. "SLSQP" "CSOLNP"

Usage

mxAvailableOptimizers()

Details

note for advanced users: Special-purpose optimizers like Newton-Raphson or EM are not included
in this list.

Value

- list of valid Optimizer names

See Also

- mxOption(model, "Default optimizer")

Examples

mxAvailableOptimizers()

MxBaseExpectation-class

MxBaseExpectation

Description

The virtual base class for all expectations. Expectations contain enough information to generate
simulated data. This is an internal class and should not be used directly.

See Also

mxExpectationNormal, mxExpectationRAM, mxExpectationLISREL, mxExpectationStateSpace,
mxExpectationBA81

MxBaseFitFunction-class 85

MxBaseFitFunction-class

MxBaseFitFunction

Description

The virtual base class for all fit functions. This is an internal class and should not be used directly.

See Also

mxFitFunctionAlgebra, mxFitFunctionML, mxFitFunctionMultigroup, mxFitFunctionR, mxFitFunc-
tionWLS, mxFitFunctionRow, mxFitFunctionGREML

MxBaseNamed-class MxBaseNamed

Description

This is an internal class and should not be used directly. It is the base class for named entities. Fit
functions, expectations, and computes contain this class.

MxBaseObjectiveMetaData-class

MxBaseObjectiveMetaData

Description

This is an internal class and should not be used directly. It is the virtual base class for all objective
functions meta-data

86 mxBootstrap

mxBootstrap Repeatedly estimate model using resampling with replacement

Description

Bootstrapping is used to quantify the variability of parameter estimates. A new sample is drawn
from the model data (uniformly sampling the original data with replacement). The model is re-
fitted to this new sample. This process is repeated many times. This yields a series of estimates
from these replications which can be used to assess the variability of the parameters.

note: mxBootstrap only bootstraps free model parameters:

To bootstrap algebras, see mxBootstrapEval

To report bootstrapped standardized paths in RAM models, mxBootstrap the model, and then run
through mxBootstrapStdizeRAMpaths

Usage

mxBootstrap(model, replications=200, ...,
data=NULL, plan=NULL, verbose=0L,
parallel=TRUE, only=as.integer(NA),

OK=mxOption(model, "Status OK"), checkHess=FALSE, unsafe=FALSE)

Arguments

model The MxModel to be run.

replications The number of resampling replications. If available, replications from prior
mxBootstrap invocations will be reused.

... Not used. Forces remaining arguments to be specified by name.

data A character vector of data or model names

plan Deprecated

verbose For levels greater than 0, enables runtime diagnostics

parallel Whether to process the replications in parallel (not yet implemented!)

only When provided, only the given replication from a prior run of mxBootstrap will
be performed. See details.

OK The set of status code that are considered successful

checkHess Whether to approximate the Hessian in each replication

unsafe A boolean indicating whether to ignore errors.

Details

By default, all datasets in the given model are resampled independently. If resampling is desired
from only some of the datasets then the models containing them can be listed in the ‘data’ parameter.

The frequency column in the mxData object is used represent a resampled dataset. When resam-
pling, the original row proportions, as given by the original frequency column, are respected.

mxBootstrap 87

When the model has a default compute plan and ‘checkHess’ is kept at FALSE then the Hessian
will not be approximated or checked. On the other hand, ‘checkHess’ is TRUE then the Hessian
will be approximated by finite differences. This procedure is of some value because it can be
informative to check whether the Hessian is positive definite (see mxComputeHessianQuality).
However, approximating the Hessian is often costly in terms of CPU time. For bootstrapping, the
parameter estimates derived from the resampled data are typically of primary interest.

On occasion, replications will fail. Sometimes it can be helpful to exactly reproduce a failed repli-
cation to attempt to pinpoint the cause of failure. The ‘only’ option facilitates this kind of investi-
gation. In normal operation, mxBootstrap uses the regular R random number generator to generate
a seed for each replication. This seed is used to seed an internal pseudorandom number generator
(currently the Mersenne Twister algorithm). These per-replication seeds are stored as part of the
bootstrap output. When ‘only’ is specified, the associated stored seed is used to seed the internal
random number generator so that identical weights can be regenerated.

mxBootstrap does not currently offer special support for nested, multilevel, or other dependent data
structures. mxBootstrap assumes rows of data are independent. Multilevel models and state space
models violate the independence assumption employed by mxBootstrap. By default the unsafe
argument prevents multilevel and state space models from using mxBootstrap; however, setting
unsafe=TRUE allows multilevel and state space models to use bootstrapping under the – perhaps
foolish – assumption that the user is sufficiently knowledgeable to interpret the results.

Value

The given model is returned with the compute plan modified to consist of mxComputeBootstrap.
Results of the bootstrap replications are stored inside the compute plan. mxSummary can be used to
obtain per-parameter quantiles and standard errors.

See Also

mxBootstrapEval, mxComputeBootstrap, mxSummary, mxBootstrapStdizeRAMpaths, as.statusCode

Examples

library(OpenMx)

data(multiData1)

manifests <- c("x1", "x2", "y")

biRegModelRaw <- mxModel(
"Regression of y on x1 and x2",
type="RAM",
manifestVars=manifests,
mxPath(from=c("x1","x2"), to="y",

arrows=1,
free=TRUE, values=.2, labels=c("b1", "b2")),

mxPath(from=manifests,
arrows=2,
free=TRUE, values=.8,
labels=c("VarX1", "VarX2", "VarE")),

mxPath(from="x1", to="x2",

88 mxBootstrapEval

arrows=2,
free=TRUE, values=.2,
labels=c("CovX1X2")),

mxPath(from="one", to=manifests,
arrows=1, free=TRUE, values=.1,
labels=c("MeanX1", "MeanX2", "MeanY")),

mxData(observed=multiData1, type="raw"))

biRegModelRawOut <- mxRun(biRegModelRaw)

boot <- mxBootstrap(biRegModelRawOut, 10) # start with 10
summary(boot)

Looks good, now do the rest
boot <- mxBootstrap(boot)
summary(boot)

examine replication 3
boot3 <- mxBootstrap(boot, only=3)

print(coef(boot3))
print(boot$compute$output$raw[3,names(coef(boot3))])

mxBootstrapEval Evaluate Values in a bootstrapped MxModel

Description

This function can be used to evaluate an arbitrary R expression that includes named entities from a
MxModel object, or labels from a MxMatrix object.

Usage

mxBootstrapEval(expression, model, defvar.row = 1, ...,
bq=c(.25,.75), method=c('bcbci','quantile'))

mxBootstrapEvalByName(name, model, defvar.row = 1, ...,
bq=c(.25,.75), method=c('bcbci','quantile'))

omxBootstrapEval(expression, model, defvar.row = 1L, ...)

omxBootstrapEvalCov(expression, model, defvar.row = 1L, ...)

omxBootstrapEvalByName(name, model, defvar.row=1L, ...)

Arguments

expression An arbitrary R expression.

name The character name of an object to evaluate.

mxBootstrapEval 89

model The model in which to evaluate the expression.

defvar.row The row to use for definition variables when compute=TRUE (defaults to 1).
When compute=FALSE, values for definition variables are always taken from
the first (i.e., first before any automated sorting is done) row of the raw data.

... Not used. Forces remaining arguments to be specified by name.

bq numeric. A vector of bootstrap quantiles at which to summarize the bootstrap
replication.

method character. One of ‘quantile’ or ‘bcbci’.

Details

The argument ‘expression’ is an arbitrary R expression. Any named entities that are used within the
R expression are translated into their current value from the model. Any labels from the matrices
within the model are translated into their current value from the model. Finally the expression is
evaluated and the result is returned. To enable debugging, the ‘show’ argument has been provided.
The most common mistake when using this function is to include named entities in the model that
are identical to R function names. For example, if a model contains a named entity named ‘c’, then
the following mxEval call will return an error: mxEval(c(A, B, C), model).

The mxEvalByName function is a wrapper around mxEval that takes a character instead of an R
expression.

nb: ‘bcbci’ stands for ‘bias-corrected bootstrap confidence interval’

The default behavior is to use the ‘bcbci’ method, due to its superior theoretical properties.

Value

omxBootstrapEval and omxBootstrapEvalByName return the raw matrix of cvectorize’d results.
omxBootstrapEvalCov returns the covariance matrix of the cvectorize’d results. mxBootstrapEval
and mxBootstrapEvalByName return the cvectorize’d results summarized by method at quantiles
bq.

References

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.

See Also

mxAlgebra to create algebraic expressions inside your model and mxModel for the model object
mxEval looks inside when evaluating. mxBootstrap to create bootstrap data.

Examples

library(OpenMx)
make a unit-weighted 10-row data set of values 1 thru 10
myData = mxData(data.frame(weight=1.0, value=1:10), "raw", weight = "weight")
sum(1:10)

Model sums data$value (sum(1:10)= 55), subtracts "A", squares the result,
and tries to minimize this (achieved by setting A=55)

https://openmx.ssri.psu.edu/documentation/

90 mxBootstrapStdizeRAMpaths

testModel = mxModel(model = "testModel1", myData,
mxMatrix(name = "A", "Full", nrow = 1, ncol = 1, values = 1, free=TRUE),
nb: filteredDataRow is an auto-generated matrix of
non-missing data from the present row.
This is placed into the "rowResults" matrix (also auto-generated)
mxAlgebra(name = "rowAlg", data.weight * filteredDataRow),
Algebra to turn the rowResults into a single number
mxAlgebra(name = "reduceAlg", (sum(rowResults) - A)^2),
mxFitFunctionRow(
rowAlgebra = "rowAlg",
reduceAlgebra = "reduceAlg",
dimnames = "value"
)
no need for an MxExpectation object when using mxFitFunctionRow
)

testModel = mxRun(testModel) # A is estimated at 55, with SE= 1
testBoot = mxBootstrap(testModel)
summary(testBoot) # A is estimated at 55, with SE= 0

Let's compute A^2 (55^2 = 3025)
mxBootstrapEval(A^2, testBoot)
SE 25.0% 75.0%
[1,] 0 3025 3025

mxBootstrapStdizeRAMpaths

Bootstrap distribution of standardized RAM path coefficients

Description

Uses the distribution of a bootstrapped RAM model’s raw parameters to create a bootstrapped esti-
mate of its standardized path coefficients.

note: Model must have already been run through mxBootstrap.

Usage

mxBootstrapStdizeRAMpaths(model, bq= c(.25, .75),
method= c('bcbci','quantile'), returnRaw= FALSE)

Arguments

model An MxModel that uses RAM expectation and has already been run through
mxBootstrap.

bq vector of 2 bootstrap quantiles corresponding to the lower and upper limits of
the desired confidence interval.

method One of ’bcbci’ or ’quantile’.
returnRaw Whether or not to return the raw bootstrapping results (Defaults to FALSE: re-

turning a dataframe summarizing the results).

mxBootstrapStdizeRAMpaths 91

Details

mxBootstrapStdizeRAMpaths applies mxStandardizeRAMpaths to each bootstrap replication, thus
creating a distribution of standardized estimates for each nonzero path coefficient.

The default bq (bootstrap quantiles) of c(.25, .75) correspond to a 50% CI. This default is chosen as
many more bootstraps are required to accurately estimate more extreme quantiles. For a 95% CI,
use bq=c(.025,.0975).

nb: ‘bcbci’ stands for ‘bias-corrected bootstrap confidence interval’ To learn more about bcbci and
quantile methods, see Efron (1982) and Efron and Tibshirani (1994).

note 1: It is possible (though unlikely) that the number of nonzero paths (elements of the A and
S RAM matrices) may vary among bootstrap replications. This precludes a simple summary of
the standardized paths’ bootstrapping results. In this rare case, if returnRaw=TRUE, a raw list of
bootstrapping results is returned, with a warning. Otherwise an error is thrown.

note 2: mxBootstrapStdizeRAMpaths ignores sub-models. To standardize bootstrapped sub-models,
run it on the sub-models directly.

Value

If returnRaw=FALSE (default), it returns a dataframe containing, among other things, the standard-
ized path coefficients as estimated from the real data, their bootstrap SEs, and the lower and upper
limits of a bootstrap confidence interval. If returnRaw=TRUE, typically, a matrix containing the
raw bootstrap results is returned; this matrix has one column per non-zero path coefficient, and one
row for each successfully converged bootstrap replication or, if the number of paths varies between
bootstraps, a raw list of results is returned.

References

Efron B. (1982). The Jackknife, the Bootstrap, and Other Resampling Plans. Philadelphia: Society
for Industrial and Applied Mathematics.

Efron B, Tibshirani RJ. (1994). An Introduction to the Bootstrap. Boca Raton: Chapman &
Hall/CRC.

See Also

mxBootstrap(), mxStandardizeRAMpaths(), mxBootstrapEval, mxSummary

Examples

require(OpenMx)
data(myFADataRaw)
manifests = c("x1","x2","x3","x4","x5","x6")

Build and run 1-factor raw-data CFA
m1 = mxModel("CFA", type="RAM", manifestVars=manifests, latentVars="F1",
Factor loadings
mxPath("F1", to = manifests, values=1),

Means and variances of F1 and manifests

92 mxBounds

mxPath(from="F1", arrows=2, free=FALSE, values=1), # fix var F1 @1
mxPath("one", to= "F1", free= FALSE, values = 0), # fix mean F1 @0

Freely-estimate means and residual variances of manifests
mxPath(from = manifests, arrows=2, free=TRUE, values=1),
mxPath("one", to= manifests, values = 1),

mxData(myFADataRaw, type="raw")
)
m1 = mxRun(m1)
set.seed(170505) # Desirable for reproducibility

==========================
= 1. Bootstrap the model =
==========================

m1_booted = mxBootstrap(m1)

===
= 2. Estimate and accumulate a distribution of =
= standardized values from each bootstrap. =
===

tmp = mxBootstrapStdizeRAMpaths(m1_booted)
name label matrix row col Std.Value Boot.SE 25.0% 75.0%
1 CFA.A[1,7] NA A x1 F1 0.8049842 0.01583737 0.7899938 0.8124311
2 CFA.A[2,7] NA A x2 F1 0.7935255 0.01373320 0.7865666 0.8045558
3 CFA.A[3,7] NA A x3 F1 0.7772050 0.01629684 0.7698374 0.7907878
4 CFA.A[4,7] NA A x4 F1 0.8248493 0.01315534 0.8150299 0.8351416
5 CFA.A[5,7] NA A x5 F1 0.7995083 0.01479210 0.7869158 0.8057788
6 CFA.A[6,7] NA A x6 F1 0.8126734 0.01527586 0.8012809 0.8218805
7 CFA.S[1,1] NA S x1 x1 0.3520004 0.02546392 0.3399556 0.3759097
8 CFA.S[2,2] NA S x2 x2 0.3703173 0.02171159 0.3526899 0.3813130
9 CFA.S[3,3] NA S x3 x3 0.3959524 0.02529583 0.3746547 0.4073505
10 CFA.S[4,4] NA S x4 x4 0.3196237 0.02163979 0.3025384 0.3357263
11 CFA.S[5,5] NA S x5 x5 0.3607865 0.02364008 0.3507206 0.3807635
12 CFA.S[6,6] NA S x6 x6 0.3395619 0.02476480 0.3245124 0.3579489
13 CFA.S[7,7] NA S F1 F1 1.0000000 0.00000000 1.0000000 1.0000000
14 CFA.M[1,1] NA M 1 x1 2.9950397 0.08745209 2.9368758 3.0430917
15 CFA.M[1,2] NA M 1 x2 2.9775235 0.07719970 2.9109289 3.0197492
16 CFA.M[1,3] NA M 1 x3 3.0133665 0.08645522 2.9598062 3.0779683
17 CFA.M[1,4] NA M 1 x4 3.0505604 0.08210810 2.9952130 3.1103674
18 CFA.M[1,5] NA M 1 x5 2.9776983 0.07973619 2.9362410 3.0311999
19 CFA.M[1,6] NA M 1 x6 2.9830050 0.07632118 2.9360469 3.0416504

mxBounds Create MxBounds Object

mxBounds 93

Description

This function creates a new MxBounds object.

Usage

mxBounds(parameters, min = NA, max = NA)

Arguments

parameters A character vector indicating the names of the parameters on which to apply
bounds.

min A numeric value for the lower bound. NA means use default value.

max A numeric value for the upper bound. NA means use default value.

Details

Creates a set of boundaries or limits for a parameter or set of parameters. Parameters may be any
free parameter or parameters from an MxMatrix object. Parameters may be referenced either by
name or by referring to their position in the ’spec’ matrix of an MxMatrix object.

Minima and maxima may be specified as scalar numeric values.

Value

Returns a new MxBounds object. If used as an argument in an MxModel object, the parameters
referenced in the ’parameters’ argument must also be included prior to optimization.

References

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.

See Also

MxBounds for the S4 class created by mxBounds. MxMatrix and mxMatrix for free parameter
specification. More information about the OpenMx package may be found here.

Examples

#Create lower and upper bounds for parameters 'A' and 'B'
bounds <- mxBounds(c('A', 'B'), 3, 5)

#Create a lower bound of zero for a set of variance parameters
varianceBounds <- mxBounds(c('Var1', 'Var2', 'Var3'), 0)

https://openmx.ssri.psu.edu/documentation/

94 MxCharOrList-class

MxBounds-class MxBounds Class

Description

MxBounds is an S4 class. New instances of this class can be created using the function mxBounds.

Details

The MxBounds class has the following slots:

min - The lower bound
max - The upper bound

parameters - The vector of parameter names

The ’min’ and ’max’ slots hold scalar numeric values for the lower and upper bounds on the list of
parameters, respectively.

Parameters may be any free parameter or parameters from an MxMatrix object. Parameters may be
referenced either by name or by referring to their position in the ’spec’ matrix of an MxMatrix ob-
ject. To affect an estimation or optimization, an MxBounds object must be included in an MxModel
object with all referenced MxAlgebra and MxMatrix objects.

Slots may be referenced with the $ symbol. See the documentation for Classes and the examples in
the mxBounds document for more information.

References

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.

See Also

mxBounds for the function that creates MxBounds objects. MxMatrix and mxMatrix for free pa-
rameter specification. More information about the OpenMx package may be found here.

MxCharOrList-class A character, list or NULL

Description

A character, list or NULL

https://openmx.ssri.psu.edu/documentation/

MxCharOrLogical-class 95

MxCharOrLogical-class A character or logical

Description

A character or logical

MxCharOrNumber-class A character or integer

Description

A character or integer

mxCheckIdentification Check that a model is locally identified

Description

Use the dimension of the null space of the Jacobian to determine whether or not a model is identified
local to its current parameter values. The output is a list of the the identification status, the Jacobian,
and which parameters are not identified.

Usage

mxCheckIdentification(model, details=TRUE, nrows=2, exhaustive=FALSE, silent=FALSE)

Arguments

model A MxModel object or list of MxModel objects.

details logical.

nrows numeric. The maximum number of unique definition variable rows used to eval-
uate identification.

exhaustive logical. Whether to use all of nrows (TRUE), or to stop evaluating new rows
once the model is identified (FALSE).

silent logical. Whether or not to print helpful-but-long messages. silent=TRUE does
not print messages.

96 mxCheckIdentification

Details

The mxCheckIdentification function is used to check that a model is identified. That is, the function
will tell you if the model has a unique solution in parameter space. The function is most useful when
applied to either (a) a model that has been run and had some NA standard errors, or (b) a model that
has not been run but has reasonable starting values. In the former situation, mxCheckIdentification
is used as a diagnostic after a problem was indicated. In the latter situation, mxCheckIdentification
is used as a sanity check.

The method uses the Jacobian of the model expected means and the unique elements of the expected
covariance matrix with respect to the free parameters. It is the first derivative of the mapping
between the free parameters and the sufficient statistics for the Normal distribution. The method
does not depend on data, but does depend on the current values of the free parameters. Thus, it
only provides local identification, not global identification. You might get different answers about
model identification depending on the free parameter values. Because the method does not depend
on data, the model still could be empirically unidentified due to missing data.

The Jacobian is evaluated numerically and generally takes a few seconds, but much less than a
minute.

Model identification should be accurate for models with linear or nonlinear equality and inequality
constraints. When there are constraints, mxCheckIdentification uses the Jacobian of the summary
statistics with respect to the free parameters and the Jacobian of the summary statistics with respect
to the constraints. The combined extended Jacobian must have rank equal to the number of free
parameters for the model to be identified. So, a model can be identified with constraints that is not
identified without constraints.

Model identification should also be accurate for multiple group models and models with definition
variables. In the case of multiple groups, the Jacobian is computed for each group and they are
concatenated: summary statistics for each group go down the rows of the Jacobian; the single set of
free parameters go across the columns of the Jacobian. In the case of definition variables, a new set
of summary statistics is computed for each unique set of definition variable values; thus creating a
kind of pseudo-multiple group model for each set of unique definition variable values.

For models using definition variables, the additional arguments ’nrows’ and ’exhaustive’ provide
instruction for how to search for identification. In principle, full model identification for models
with definition variables requires evaluating the Jacobian of the mapping between the free param-
eters and the summary statistics for every unique combination of definition variable values. This
evaluation can take a long time. However, in practice, the vast majority of models are identified
after evaluating one or two definition variable rows. The current defaults attempt to capitalize on
this practical situation. By default ’mxCheckIdentification’ will evaluate up to 2 unique definition
variable rows, but will stop once the model is identified. To keep evaluating unique definition vari-
able values until the model is identified or you run out of rows, set nrows=Inf. To evaluate all
unique definition variable values, set nrows=Inf and exhaustive=TRUE.

When TRUE, the ’details’ argument provides the names of the non-identified parameters. Other-
wise, only the status and Jacobian are returned.

Value

A named list with components

status logical. TRUE if the model is locally identified; otherwise FALSE.

mxCheckIdentification 97

jacobian matrix. The numerically evaluated Jacobian.

non_identified_parameters vector. The free parameter names that are not identified

References

Bekker, P.A., Merckens, A., Wansbeek, T.J. (1994). Identification, Equivalent Models and Com-
puter Algebra. Academic Press: Orlando, FL.

Bollen, K. A. & Bauldry, S. (2010). Model Identification and Computer Algebra. Sociological
Methods & Research, 39, p. 127-156.

See Also

mxModel

Examples

require(OpenMx)

data(demoOneFactor)
manifests <- names(demoOneFactor)
latents <- "G1"
model2 <- mxModel(model="One Factor", type="RAM",

manifestVars = manifests,
latentVars = latents,
mxPath(from = latents[1], to=manifests[1:5]),
mxPath(from = manifests, arrows = 2, lbound=1e-6),
mxPath(from = latents, arrows = 2, free = FALSE, values = 1.0),
mxData(cov(demoOneFactor), type = "cov", numObs=500)

)
fit2 <- mxRun(model2)

id2 <- mxCheckIdentification(fit2)
id2$status
The model is locally identified

Build a model from the solution of the previous one
but now the factor variance is also free
model2n <- mxModel(fit2, name="Non Identified Two Factor",

mxPath(from=latents[1], arrows=2, free=TRUE, values=1)
)

mid2 <- mxCheckIdentification(model2n)
mid2$non_identified_parameters
The factor loadings and factor variance
are not identified.

98 mxCI

mxCI Create mxCI Object

Description

This function creates a new MxCI object, which allows estimation of likelihood-based confidence
intervals in a model (note: to estimate SEs around arbitrary objects, see mxSE)

Usage

mxCI(reference, interval = 0.95, type=c("both", "lower", "upper"), ..., boundAdj=TRUE)

Arguments

reference A character vector of free parameters, mxMatrices, mxMatrix elements and mx-
Algebras on which confidence intervals are to be estimated, listed by name.

interval A scalar numeric value indicating the confidence interval to be estimated. Must
be between 0 and 1. Defaults to 0.95.

type A character string indicating whether the upper, lower or both confidence limits
are returned. Defaults to "both".

... Not used. Forces remaining arguments to be specified by name.

boundAdj Whether to correct the likelihood-based confidence intervals for a lower or upper
bound.

Details

The mxCI function creates MxCI objects, which can be used as arguments in MxModel objects.
When models containing MxCI objects are optimized using mxRun with the ‘intervals’ argument
set to TRUE, likelihood-based confidence intervals are returned. The likelihood-based confidence
intervals calculated by MxCI objects are symmetric with respect to the change in likelihood in
either direction, and are not necessarily symmetric around the parameter estimate. Estimation of
confidence intervals requires both that an MxCI object be included in the model and that the ‘inter-
vals’ argument of the mxRun function is set to TRUE. When estimated, confidence intervals can be
accessed in the model output at $output$confidenceIntervals or by using summary on a fitted
MxModel object.

A typical use case is when a model includes non-linear constraints, and hence, standard errors are
not available. In all cases, a two-sided hypothesis test is assumed. Therefore, the upper bound will
exclude 2.5% (for interval=0.95) even though only one bound is requested. To obtain a one-sided
CI for a one-sided hypothesis test, interval=0.90 will obtain a 95% confidence interval.

When a confidence interval is requested for a free parameter (not an algebra) constrained by a lower
bound or an upper bound (but not both) and boundAdj=TRUE then the Wu & Neale (2012) correction
is used. This improves the accuracy of the confidence interval when the parameter is estimated close
to the bound. For example, this correction will be activated when a variance with a lower bound of
10−6 and no upper bound that is estimated close to the bound. The sample size, or more precisely

mxCI 99

effective sample size for that particular parameter, will determine how close the variance needs to
be to the bound at 10−6 to activate the correction.

The likelihood-based confidence intervals returned using MxCI are obtained by increasing or de-
creasing the value of each parameter until the -2 log likelihood of the model increases by an amount
corresponding to the requested interval. The confidence limit specified by the ‘interval’ argument is
transformed into a corresponding difference in the model -2 log likelihood based on the likelihood
ratio test. Thus, a requested confidence interval for a parameter will first determine the correspond-
ing quantile from the chi-squared distribution with one degree of freedom (a value of 3.841459
when a 95 percent confidence interval is requested). That quantile will be populated into either the
‘lowerdelta’ slot, the ‘upperdelta’ slot, or both in the output MxCI object.

Estimation of likelihood-based confidence intervals begins after optimization has been completed,
with each parameter moved in the direction(s) specified in the ‘type’ argument until the specified
increase in -2 log likelihood is reached. All other free parameters are left free for this stage of
optimization. This process repeats until all confidence intervals have been calculated. The calcu-
lation of likelihood-based confidence intervals can be computationally intensive, and may add a
significant amount of time to model estimation when many confidence intervals are requested.

Multiple parameters, MxMatrices and MxAlgebras may be listed in the ‘reference’ argument. In-
dividual elements of MxMatrices and MxAlgebras may be listed as well, using the syntax “ma-
trix[row,col]” (see Extract for more information). Only scalar numeric values for the ‘interval’
argument are supported. Users requesting different confidence ranges for different parameters must
use separate mxCI statements. MxModel objects can hold multiple MxCI objects, but only one
confidence interval may be requested per named-entity.

Confidence interval estimation may result in model non-convergence at the confidence limit. Sep-
arate optimizer messages may be passed for each confidence limit. This has no impact on the
parameter estimates themselves, but may indicate a problem with the referenced confidence limit.
Model non-convergence for a particular confidence limit may indicate parameter interdependence
or the influence of a parameter boundary.

These error messages and their meanings are listed in the help for mxSummary

The validity of a confidence limit can be checked by running a model with the appropriate parameter
fixed at the confidence limit in question. If the confidence limit is valid, the -2 log likelihoods of
these two models should differ by the specified chi-squared criterion (as set using the ‘lowerdelta’
or ‘upperdelta’ slots in the MxCI object (you can choose which of these to set via the type parameter
of mxCI).

Value

Returns a new MxCI object. If used as an argument in an MxModel object, the parameters, MxMa-
trices and MxAlgebras listed in the ’reference’ argument must also be included prior to optimization.

References

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.
Additional support for mxCI() can be found on the OpenMx wiki at http://openmx.ssri.psu.edu/wiki.

Neale, M. C. & Miller M. B. (1997). The use of likelihood based confidence intervals in genetic
models. Behavior Genetics, 27(2), 113-120.

Pek, J. & Wu, H. (2015). Profile likelihood-based confidence intervals and regions for structural
equation models. Psychometrika, 80(4), 1123-1145.

https://openmx.ssri.psu.edu/documentation/

100 mxCI

Wu, H. & Neale, M. C. (2012). Adjusted confidence intervals for a bounded parameter. Behavior
genetics, 42(6), 886-898.

See Also

mxSE for computing SEs around arbitrary objects. mxComputeConfidenceInterval is the internal
compute plan that implements the algorithm. MxMatrix and mxMatrix for free parameter specifi-
cation. MxCI for the S4 class created by mxCI. More information about the OpenMx package may
be found here.

Examples

library(OpenMx)

generate data
covariance <- matrix(c(1.0, 0.5, 0.5, 1.0),

nrow=2,
dimnames=list(c("a", "b"), c("a", "b")))

data <- mxData(covariance, "cov", numObs=100)

create an expected covariance matrix
expect <- mxMatrix("Symm", 2, 2,

free=TRUE,
values=c(1, .5, 1),
labels=c("var1", "cov12", "var2"),
name="expectedCov")

request 95 percent confidence intervals
ci <- mxCI(c("var1", "cov12", "var2"))

specify the model
model <- mxModel(model="Confidence Interval Example",

data, expect, ci,
mxExpectationNormal("expectedCov", dimnames=c("a", "b")),
mxFitFunctionML())

run the model
results <- mxRun(model, intervals=TRUE)

view confidence intervals
print(summary(results)$CI)

view all results
summary(results)

remove a specific mxCI from a model
model <- mxModel(model, remove=TRUE, model$intervals[['cov12']])
model$intervals

remove all mxCI from a model
model <- mxModel(model, remove=TRUE, model$intervals)

MxCI-class 101

model$intervals

MxCI-class MxCI Class

Description

MxCI is an S4 class. An MxCI object is a named entity. New instances of this class can be created
using the function mxCI. MxCI objects may be used as arguments in the mxModel function.

Details

The MxCI class has the following slots:

reference - The name of the object
lowerdelta - Either a matrix or a data frame
upperdelta - A vector for means, or NA if missing

The reference slot contains a character vector of named free parameters, MxMatrices and MxAlge-
bras on which confidence intervals are desired. Individual elements of MxMatrices and MxAlgebras
may be listed as well, using the syntax “matrix[row,col]” (see Extract for more information).

The lowerdelta and upperdelta slots give the changes in likelihoods used to define the confidence
interval. The upper bound of the likelihood-based confidence interval is estimated by increasing the
parameter estimate, leaving all other parameters free, until the model -2 log likelihood increased
by ‘upperdelta’. The lower bound of the confidence interval is estimated by decreasing the pa-
rameter estimate, leaving all other parameters free, until the model -2 log likelihood increased by
‘lowerdata’.

Likelihood-based confidence intervals may be specified by including one or more MxCI objects
in an MxModel object. Estimation of confidence intervals requires model optimization using the
mxRun function with the ‘intervals’ argument set to TRUE. The calculation of likelihood-based
confidence intervals can be computationally intensive, and may add a significant amount of time to
model estimation when many confidence intervals are requested.

References

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.

See Also

mxCI for creating MxCI objects. More information about the OpenMx package may be found here.

https://openmx.ssri.psu.edu/documentation/

102 mxCompare

mxCompare Likelihood ratio test

Description

Compare the fit of one or more models to that of a reference (base) model or set of reference models.

Usage

mxCompare(base, comparison, ..., all = FALSE,
boot=FALSE, replications=400, previousRun=NULL, checkHess=FALSE)

mxCompareMatrix(models,
diag=c('minus2LL','ep','df','AIC'),
stat=c('p', 'diffLL','diffdf'), ...,

boot=FALSE, replications=400, previousRun=NULL,
checkHess=FALSE, wholeTable=FALSE)

Arguments

base A MxModel object or list of MxModel objects.

comparison A MxModel object or list of MxModel objects.

models A MxModel object or list of MxModel objects.

diag statistic used for diagonal entries

stat statistic used for off-diagonal entries

... Not used.

all Boolean. Whether to compare all base models with all comparison models.
Defaults to FALSE.

boot Whether to use the bootstrap distribution to compute the p-value.

replications How many replications to use to approximate the bootstrap distribution.

previousRun Results to re-use from a previous bootstrap.

checkHess Whether to approximate the Hessian in each replication

wholeTable Return the whole table instead of a matrix shaped summary

Details

mxCompare is used to compare the fit of one or more mxModels to one or more comparison models.
mxCompareMatrix compares all the models provided against each other.

Model comparisons are made by subtracting the fit statistics for the comparison model from the fit
statistics for the base model. Raw fit statistics of each ‘base’ model are also listed in the output
table.

The fit statistics compared depend on the kinds of models compared. Models fit with maximum
likelihood are compared based on their minus two log likelihood values. Under certain regularity
conditions, the difference in minus two log likelihood values from nested models is chi-squared

mxCompare 103

distributed and forms a likelihood ratio test statistic. Models fit with weighted least squares are
compared based on their Satorra-Bentler (2001) scaled difference chi-squared test statistics. Under
full weighted least squares, the Satorra-Bentler chi-squared value is equal to the difference in the
model chi-squared values; however, for unweighted and diagonally weighted least squares, the two
are no longer equal. Satorra and Bentler (2001) showed that that their test statistic behaved well
under a variety of conditions, including small sample sizes. By contrast the much simpler difference
in the chi-squared statistics only behaved well under large sample sizes (e.g., greater than or equal
to 300 rows of data).

Specific to weighted least squares, researchers sometimes use mean-adjusted chi-squared statis-
tics and mean-and-variance scaled chi-squared statistics. Some programs call these WLSM and
WLSMV statistics. In some cases, it is fine to evaluate the total fit of a model using adjusted and
scaled chi-squared statistics. However, never, ever, ever, ..., ever take differences in mean-adjusted
chi-squared statistics, and use them for nested model comparisons. Similarly, never, ever, ever,
..., ever, ever take differences in mean-and-variance scaled chi-squared statistics, and use them for
nested model comparisons. The differences in these adjusted and scaled chi-squared statistics are
not chi-squared distributed and do not form a valid basis for model comparison. So, just don’t do it.

Although not always checked by mxCompare, you should never compare models with different
data sets or that use different variables from the same data set. mxCompare might not stop you
from doing this, so be thoughtful when comparing models. Make sure your models are nested and
use the same data. Weighted least squares models are one case of comparing different data sets
that requires particular care. When comparing WLS models, make sure you are using the same
exogenous covariates for all compared models. Because WLS is a multi-stage estimation approach,
exogenous covariates residualize and change the data fitted in WLS. Consequently, WLS models
with different exogenous covariates actually have different data. By contrast, maximum likelihood
models with different exogenous covariates still use the same data and are valid to compare.

The mxCompare function makes an effort to only make valid comparisons. If a comparison is made
where the comparison model has a higher minus 2 log likelihood (-2LL) than the base model, then
the difference in their -2LLs will be negative. P-values for likelihood ratio tests will not be reported
when either the -2LL or degrees of freedom for the comparison are negative. To ensure that the
differences between models are positive and yield p-values for likelihood ratio tests, models listed
in the ‘base’ argument must be more saturated (i.e., more estimated parameters and fewer degrees
of freedom) than models listed in the ‘comparison’ argument. For mxCompareMatrix only the
comparisons that make sense will be included.

When multiple models are included in both the ‘base’ and ‘comparison’ arguments, then compar-
isons are made between the two lists of models based on the value of the ‘all’ argument. If ‘all’
is set to FALSE (default), then the first model in the ‘base’ list is compared to the first model in
the ‘comparison’ list, second with second, and so on. If there are an unequal number of ‘base’ and
‘comparison’ models, then the shorter list of models is repeated to match the length of the longer
list. For example, comparing base models ‘B1’ and ‘B2’ with comparison models ‘C1’, ‘C2’ and
‘C3’ will yield three comparisons: ‘B1’ with ‘C1’, ‘B2’ with ‘C2’, and ‘B1’ with ‘C3’. Each of
those comparisons are prefaced by a comparison between the base model and a missing comparison
model to present the fit of the base model.

If ‘all’ is set to TRUE, all possible comparisons between base and comparison models are made,
and one entry is made for each base model. All comparisons involving the first model in ‘base’ are
made first, followed by all comparisons with the second ‘base’ model, and so on. When there are
multiple models in either the ‘base’ or ‘comparison’ arguments but not both, then the ‘all’ argument
does not affect the set of comparisons made.

104 mxCompare

The following columns appear in the output for maximum likelihood comparisons:

base Name of the base model.

comparison Name of the comparison model. Is <NA> for the first

ep Estimated parameters of the comparison model.

minus2LL Minus 2*log-likelihood of the comparison model. If the comparison model is <NA>,
then the minus 2*log-likelihood of the base model is given.

df Degrees in freedom of the comparison model. If the comparison model is <NA>, then the
degrees of freedom of the base model is given.

AIC Akaike’s Information Criterion for the comparison model. If the comparison model is <NA>,
then the AIC of the base model is given.

diffLL Difference in minus 2*log-likelihoods of the base and comparison models. Will be positive
when base model -2LL is higher than comparison model -2LL.

diffdf Difference in degrees of freedoms of the base and comparison models. Will be positive
when base model DF is lower than comparison model DF (base model estimated parameters
is higher than comparison model estimated parameters)

p P-value for likelihood ratio test based on diffLL and diffdf values.

Weighted least squares reports a similar set of columns with four substitutions:

chisq Replaces the minus2LL column. This is the comparison model’s chi-squared statistic from
Browne (1984, Equation 2.20a), accounting for some misspecification of the weight matrix.

AIC Although this has the same name as that in maximum likelihood, it is really a pseudo-AIC
using the comparison model chi-squared and the number of estimated parameters. It is the
chi-squared value plus two times the number of free parameters.

SBchisq Replaces the diffLL column. This is the Satorra-Bentler (2001, p. 511) scaled difference
chi-squared statisic between the base model and the comparison model. If your models use
full weighted least squares, then this will be the same as the difference between the individual
model chi-squared statistics. However, for unweighted and diagonally weighted least square,
the SB chisq will not be equal to the difference between the component model chi-squared
statistics.

p p-value for the Satorra-Bentler chi-squared statistic.

In addition to the particular columns for maximum likelihood and weighted least squares, there are
three general columns that are not printed but are accessible via the $ and [extractors.

fit The individual model fit value: m2ll for maximum likelihood models, chisq for WLS models.

fitUnits The units of the fit function: "-2LL" for ML models, "r'Wr" for WLS models.

diffFit The difference in fit values between the base and comparison models: diffLL for ML
models, SBchisq for WLS models.

mxCompare will give a p-value for any comparison in which both ‘diffLL’ and ‘diffdf’ are non-
negative. However, this p-value is based on the assumptions of the likelihood ratio test, specifically
that the two models being compared are nested. The likelihood ratio test and associated p-values
are not valid when the comparison model is not nested in the referenced base model. For a more
accurate p-value, the empirical bootstrap distribution can be computed (‘boot=TRUE’). However,
‘replications’ must be set high enough for an accurate approximation. The Monte Carlo SE of

mxCompare 105

a proportion for B replications is
√
(p ∗ (1 − p)/B), but this will be zero if p is zero, which is

nonsense. Note that a parametric-bootstrap p-value of zero must be interpreted as p < 1/B, which,
depending on B and the desired Type I error rate, may not be "statistically significant."

When ‘boot=TRUE’, the model has a default compute plan, and ‘checkHess’ is kept at FALSE then
the Hessian will not be approximated or checked. On the other hand, ‘checkHess’ is TRUE then the
Hessian will be approximated by finite differences. This procedure is of some value because it can
be informative to check whether the Hessian is positive definite (see mxComputeHessianQuality).
However, approximating the Hessian is often costly in terms of CPU time. For bootstrapping, the
parameter estimates derived from the resampled data are typically of primary interest.

note: The mxCompare function does not directly accept a digits argument, and depends on the value
of the ’digits’ option. To set the minimum number of significant digits printed, use options(’digits’
= N) (see example).

Value

Returns a new MxCompare object. If you want something more like a table of results, use as.data.frame()
on the returned MxCompare object.

See Also

mxPowerSearch; mxModel; options (use options(’mxOptions’) to see all the OpenMx-specific op-
tions)

Examples

data(demoOneFactor)
manifests <- names(demoOneFactor)
latents <- "G1"
model1 <- mxModel(model="One Factor", type="RAM",

manifestVars = manifests,
latentVars = latents,
mxPath(from = latents, to=manifests),
mxPath(from = manifests, arrows = 2),
mxPath(from = latents, arrows = 2, free = FALSE, values = 1.0),
mxData(cov(demoOneFactor), type = "cov", numObs = 500)

)

fit1 <- mxRun(model1)

latents <- c("G1", "G2")
model2 <- mxModel(model="One factor Rasch equated", type="RAM",

manifestVars = manifests,
latentVars = latents,
mxPath(from = latents[1], to=manifests[1:5], labels='raschEquated'),

mxPath(from = manifests, arrows = 2),
mxPath(from = latents, arrows = 2, free = FALSE, values = 1.0),
mxData(cov(demoOneFactor), type = "cov", numObs=500)

)
fit2 <- mxRun(model2)

106 mxComputeBootstrap

mxCompare(fit1, fit2) # Rasch equated is significantly worse

Vary precision (rounding) of the table
oldPrecision = as.numeric(options('digits'))
options('digits' = 1)
mxCompare(fit1, fit2)
options('digits' = oldPrecision)

MxCompare-class The MxCompare Class

Description

The MxCompare Class

Details

This is an internal class structure. You should not use it directly. Use mxCompare instead.

MxCompute-class MxCompute

Description

This is an internal class and should not be used directly.

mxComputeBootstrap Repeatedly estimate model using resampling with replacement

Description

This is a low-level compute plan object to perform resampling with replacement.

Usage

mxComputeBootstrap(data, plan, replications=200, ...,
verbose=0L, parallel=TRUE, freeSet=NA_character_,

OK=c("OK", "OK/green"), only=NA_integer_)

mxComputeCheckpoint 107

Arguments

data A vector of dataset or model names.

plan The compute plan used to optimize the model for each data set.

replications The number of resampling replications. If available, replications from prior
mxBootstrap invocations will be reused.

... Not used. Forces remaining arguments to be specified by name.

verbose For levels greater than 0, enables runtime diagnostics

parallel Whether to process the replications in parallel

freeSet names of matrices containing free variables

OK The set of status code that are considered successful

only When provided, only the given replication from a prior run of mxBootstrap will
be performed. See details.

Details

The ‘only’ option facilitates investigation of a single replication attempt.

Value

Output is stored in the compute object’s output slot. Specifically, model$compute$output$raw
contains a data frame with parameters in columns and replications in rows. In addition to parame-
ters, the seed, fit, and statusCode of the replication is also included.

When ‘only’ is set to a particular replications, the weight vectors (one per dataset) are also returned
in the compute object’s output slot. model$compute$output$weight is a character vector (by
dataset name) of numeric vectors (the weights). These weights can be used to recreate a model
identical to the model used in the given replication.

See Also

mxBootstrap, as.statusCode

mxComputeCheckpoint Log parameters and state to disk or memory

Description

Captures the current state of the backend. When path is set, the state is written to disk in a single
row. When toReturn is set, the state is recorded in memory and returned after mxRun.

108 mxComputeCheckpoint

Usage

mxComputeCheckpoint(
what = NULL,
...,
path = NULL,
append = FALSE,
header = TRUE,
toReturn = FALSE,
parameters = TRUE,
loopIndices = TRUE,
fit = TRUE,
counters = TRUE,
status = TRUE,
standardErrors = FALSE,
gradient = FALSE,
vcov = FALSE,
vcovFilter = c(),
sampleSize = FALSE,
vcovWLS = FALSE,
useVcovFilter = FALSE

)

Arguments

what a character vector of algebra names to include in each checkpoint

... Not used. Forces remaining arguments to be specified by name

path a character vector of where to write the checkpoint file

append if FALSE, truncates the checkpoint file upon open. If TRUE, existing data is
preserved and checkpoints are appended.

header whether to write the header that describes the content of each column

toReturn logical. Whether to store the checkpoint in memory and return it after the model
is run

parameters logical. Whether to include the parameter vector

loopIndices logical. Whether to include the loop indices

fit logical. Whether to include the fit value

counters logical. Whether to include counters (number of evaluations and iterations)

status logical. Whether to include the status code

standardErrors logical. Whether to include the standard errors

gradient logical. Whether to include the gradients

vcov logical. Whether to include the vcov in half-vectorized order

vcovFilter character vector. Vector of parameters indicating which parameter covariances
to include. Only the variance is included for those parameters not mentioned.

sampleSize logical. Whether to include the sample size of the mxData. [Experimental]

mxComputeConfidenceInterval 109

vcovWLS logical. Whether to include the vcov from WLS residualizing regressions in
half-vectorized order

useVcovFilter logical. Whether to use the vcovFilter (TRUE) or include all entries (FALSE)

See Also

mxComputeLoadData, mxComputeLoadMatrix, mxComputeLoadContext, mxComputeLoop

Other model state: mxRestore(), mxSave()

Examples

library(OpenMx)

m1 <- mxModel(
"poly22", # Eqn 22 from Tsallis & Stariolo (1996)
mxMatrix(type='Full', values=runif(4, min=-1e6, max=1e6),

ncol=1, nrow=4, free=TRUE, name='x'),
mxAlgebra(sum((x*x-8)^2) + 5*sum(x) + 57.3276, name="fit"),
mxFitFunctionAlgebra('fit'))

plan <- mxComputeLoop(list(
mxComputeSetOriginalStarts(),
mxComputeSimAnnealing(method="tsallis1996",

control=list(tempEnd=1)),
mxComputeCheckpoint(path = "result.log")),

i=1:4)

m1 <- mxRun(mxModel(m1, plan)) # see the file 'result.log'

mxComputeConfidenceInterval

Find likelihood-based confidence intervals

Description

There are various equivalent ways to pose the optimization problems required to estimate confi-
dence intervals. Most accurate solutions are achieved when the problem is posed using non-linear
constraints. However, the available optimizers (CSOLNP, SLSQP, and NPSOL) often have diffi-
culty with non-linear constraints.

Usage

mxComputeConfidenceInterval(
plan,
...,
freeSet = NA_character_,
verbose = 0L,
engine = NULL,

110 mxComputeDefault

fitfunction = "fitfunction",
tolerance = NA_real_,
constraintType = "none"

)

Arguments

plan compute plan to optimize the model

... Not used. Forces remaining arguments to be specified by name.

freeSet names of matrices containing free variables

verbose integer. Level of run-time diagnostic output. Set to zero to disable

engine [Deprecated]

fitfunction the name of the deviance function

tolerance [Deprecated]

constraintType one of c(’ineq’, ’none’)

References

Neale, M. C. & Miller M. B. (1997). The use of likelihood based confidence intervals in genetic
models. Behavior Genetics, 27(2), 113-120.

Pek, J. & Wu, H. (2015). Profile likelihood-based confidence intervals and regions for structural
equation models. Psychometrika, 80(4), 1123-1145.

Wu, H. & Neale, M. C. (2012). Adjusted confidence intervals for a bounded parameter. Behavior
genetics, 42(6), 886-898.

mxComputeDefault Default compute plan

Description

This is an empty placeholder for the default compute plan. To create an actual plan, use omxDe-
faultComputePlan.

Usage

mxComputeDefault(freeSet = NA_character_)

Arguments

freeSet names of matrices containing free variables

mxComputeEM 111

mxComputeEM Fit a model using DLR’s (1977) Expectation-Maximization (EM) al-
gorithm

Description

The EM algorithm constitutes the following steps: Start with an initial parameter vector. Predict the
missing data to form a completed data model. Optimize the completed data model to obtain a new
parameter vector. Repeat these steps until convergence criteria are met.

Usage

mxComputeEM(
expectation = NULL,
predict = NA_character_,
mstep,
observedFit = "fitfunction",
...,
maxIter = 500L,
tolerance = 1e-09,
verbose = 0L,
freeSet = NA_character_,
accel = "varadhan2008",
information = NA_character_,
infoArgs = list(),
estep = NULL

)

Arguments

expectation a vector of expectation names [Deprecated]
predict what to predict from the observed data [Deprecated]
mstep a compute plan to optimize the completed data model

observedFit the name of the observed data fit function (defaults to "fitfunction")

... Not used. Forces remaining arguments to be specified by name.

maxIter maximum number of iterations

tolerance optimization is considered converged when the maximum relative change in fit
is less than tolerance

verbose integer. Level of run-time diagnostic output. Set to zero to disable

freeSet names of matrices containing free variables

accel name of acceleration method ("varadhan2008" or "ramsay1975")

information name of information matrix approximation method

infoArgs arguments to control the information matrix method

estep a compute plan to perform the expectation step

112 mxComputeEM

Details

The arguments to this function have evolved. The old style mxComputeEM(e,p,mstep=m) is equiv-
alent to the new style mxComputeEM(estep=mxComputeOnce(e,p), mstep=m). This change allows
the API to more closely match the literature on the E-M method. You might use mxAlgebra(...,
recompute='onDemand') to contain the results of the E-step and then cause this algebra to be
recomputed using mxComputeOnce.

This compute plan does not work with any and all expectations. It requires a special kind of expec-
tation that can predict its missing data to create a completed data model.

The EM algorithm does not produce a parameter covariance matrix for standard errors. The Oakes
(1999) direct method and S-EM, an implementation of Meng & Rubin (1991), are included.

Ramsay (1975) was recommended in Bock, Gibbons, & Muraki (1988).

References

Bock, R. D., Gibbons, R., & Muraki, E. (1988). Full-information item factor analysis. Applied
Psychological Measurement, 6(4), 431-444.

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data
via the EM algorithm. Journal of the Royal Statistical Society. Series B (Methodological), 1-38.

Meng, X.-L. & Rubin, D. B. (1991). Using EM to obtain asymptotic variance-covariance matrices:
The SEM algorithm. Journal of the American Statistical Association, 86 (416), 899-909.

Oakes, D. (1999). Direct calculation of the information matrix via the EM algorithm. Journal of
the Royal Statistical Society: Series B (Statistical Methodology), 61(2), 479-482.

Ramsay, J. O. (1975). Solving implicit equations in psychometric data analysis. Psychometrika, 40
(3), 337-360.

Varadhan, R. & Roland, C. (2008). Simple and globally convergent methods for accelerating the
convergence of any EM algorithm. Scandinavian Journal of Statistics, 35, 335-353.

See Also

MxAlgebra, mxComputeOnce

Examples

library(OpenMx)
set.seed(190127)

N <- 200
x <- matrix(c(rnorm(N/2,0,1),

rnorm(N/2,3,1)),ncol=1,dimnames=list(NULL,"x"))
data4mx <- mxData(observed=x,type="raw")

class1 <- mxModel("Class1",
mxMatrix(type="Full",nrow=1,ncol=1,free=TRUE,values=0,name="Mu"),
mxMatrix(type="Full",nrow=1,ncol=1,free=TRUE,values=4,name="Sigma"),
mxExpectationNormal(covariance="Sigma",means="Mu",dimnames="x"),
mxFitFunctionML(vector=TRUE))

mxComputeGenerateData 113

class2 <- mxRename(class1, "Class2")

mm <- mxModel(
"Mixture", data4mx, class1, class2,
mxAlgebra((1-Posteriors) * Class1.fitfunction, name="PL1"),
mxAlgebra(Posteriors * Class2.fitfunction, name="PL2"),
mxAlgebra(PL1 + PL2, name="PL"),
mxAlgebra(PL2 / PL, recompute='onDemand',

initial=matrix(runif(N,.4,.6), nrow=N, ncol = 1), name="Posteriors"),
mxAlgebra(-2*sum(log(PL)), name="FF"),
mxFitFunctionAlgebra(algebra="FF"),
mxComputeEM(

estep=mxComputeOnce("Mixture.Posteriors"),
mstep=mxComputeGradientDescent(fitfunction="Mixture.fitfunction")))

mm <- mxOption(mm, "Max minutes", 1/20) # remove this line to find optimum
mmfit <- mxRun(mm)
summary(mmfit)

mxComputeGenerateData Generate data

Description

Generate data specified by the model expectations.

Usage

mxComputeGenerateData(expectation = "expectation")

Arguments

expectation a character vector of expectations to generate data for

mxComputeGradientDescent

Optimize parameters using a gradient descent optimizer

Description

This optimizer does not require analytic derivatives of the fit function. The fully open-source CRAN
version of OpenMx offers 2 choices, CSOLNP and SLSQP (from the NLOPT collection). The
OpenMx Team’s version of OpenMx offers the choice of three optimizers: CSOLNP, SLSQP, and
NPSOL.

114 mxComputeGradientDescent

Usage

mxComputeGradientDescent(
freeSet = NA_character_,
...,
engine = NULL,
fitfunction = "fitfunction",
verbose = 0L,
tolerance = NA_real_,
useGradient = deprecated(),
warmStart = NULL,
nudgeZeroStarts = mxOption(NULL, "Nudge zero starts"),
maxMajorIter = NULL,
gradientAlgo = deprecated(),
gradientIterations = deprecated(),
gradientStepSize = deprecated()

)

Arguments

freeSet names of matrices containing free parameters.

... Not used. Forces remaining arguments to be specified by name.

engine specific ’CSOLNP’, ’SLSQP’, or ’NPSOL’

fitfunction name of the fitfunction (defaults to ’fitfunction’)

verbose integer. Level of run-time diagnostic output. Set to zero to disable

tolerance how close to the optimum is close enough (also known as the optimality toler-
ance)

useGradient [Soft-deprecated]
warmStart a Cholesky factored Hessian to use as the NPSOL Hessian starting value (pre-

conditioner)
nudgeZeroStarts

whether to nudge any zero starting values prior to optimization (default TRUE)

maxMajorIter maximum number of major iterations

gradientAlgo [Soft-deprecated]
gradientIterations

[Soft-deprecated]
gradientStepSize

[Soft-deprecated]

Details

All three optimizers can use analytic gradients, and only NPSOL uses warmStart. To customize
more options, see mxOption.

References

Luenberger, D. G. & Ye, Y. (2008). Linear and nonlinear programming. Springer.

mxComputeHessianQuality 115

Examples

data(demoOneFactor)
factorModel <- mxModel(name ="One Factor",

mxMatrix(type="Full", nrow=5, ncol=1, free=FALSE, values=0.2, name="A"),
mxMatrix(type="Symm", nrow=1, ncol=1, free=FALSE, values=1, name="L"),
mxMatrix(type="Diag", nrow=5, ncol=5, free=TRUE, values=1, name="U"),
mxAlgebra(expression=A %*% L %*% t(A) + U, name="R"),

mxExpectationNormal(covariance="R", dimnames=names(demoOneFactor)),
mxFitFunctionML(),

mxData(observed=cov(demoOneFactor), type="cov", numObs=500),
mxComputeSequence(steps=list(
mxComputeGradientDescent(),
mxComputeNumericDeriv(),
mxComputeStandardError(),
mxComputeHessianQuality()
)))

factorModelFit <- mxRun(factorModel)
factorModelFit$output$conditionNumber # 29.5

mxComputeHessianQuality

Compute the quality of the Hessian

Description

Tests whether the Hessian is positive definite (model$output$infoDefinite) and, if so, computes the
approximate condition number (model$output$conditionNumber). See Luenberger & Ye (2008)
Second Order Test (p. 190) and Condition Number (p. 239).

Usage

mxComputeHessianQuality(freeSet = NA_character_, ..., verbose = 0L)

Arguments

freeSet names of matrices containing free variables

... Not used. Forces remaining arguments to be specified by name.

verbose integer. Level of run-time diagnostic output. Set to zero to disable

Details

The condition number is approximated by norm(H) ∗ norm(H−1) where H is the Hessian. The
norm is either the 1- or infinity-norm (both obtain the same result due to symmetry).

References

Luenberger, D. G. & Ye, Y. (2008). Linear and nonlinear programming. Springer.

116 mxComputeJacobian

mxComputeIterate Repeatedly invoke a series of compute objects until change is less than
tolerance

Description

One step (typically the last) must compute the fit or maxAbsChange.

Usage

mxComputeIterate(
steps,
...,
maxIter = 500L,
tolerance = 1e-09,
verbose = 0L,
freeSet = NA_character_,
maxDuration = as.numeric(NA)

)

Arguments

steps a list of compute objects
... Not used. Forces remaining arguments to be specified by name.
maxIter the maximum number of iterations
tolerance iterates until maximum relative change is less than tolerance
verbose integer. Level of run-time diagnostic output. Set to zero to disable
freeSet Names of matrices containing free variables.
maxDuration the maximum amount of time (in seconds) to iterate

mxComputeJacobian Numerically estimate the Jacobian with respect to free parameters

Description

When algebra names are given, all algebras must belong to the same model.

When expectations are given, the Jacobian is taken with respect to the manifest model. The manifest
model excludes any latent variables or processes. For RAM and LISREL models, the manifest
model contains only the manifest variables with free means, covariance, and thresholds. Ordinal
manifest variables are standardized.

Usage

mxComputeJacobian(freeSet=NA_character_, ..., of = "expectation",
defvar.row=as.integer(NA), data='data')

mxComputeLoadContext 117

Arguments

freeSet names of matrices containing free variables

... Not used. Forces remaining arguments to be specified by name.

of a character vector of expectations or algebra names

defvar.row A row index. Which row to load for definition variables.

data From which data to load definition variables.

See Also

omxManifestModelByParameterJacobian, mxGetExpected

mxComputeLoadContext Load contextual data to supplement checkpoint

Description

[Experimental]

Usage

mxComputeLoadContext(
method = c("csv"),
path = c(),
column,
...,
sep = " ",
verbose = 0L,
header = TRUE,
col.names = NULL

)

Arguments

method name of the conduit used to load the columns.

path the path to the file containing the data

column a character vector. The column names to log.

... Not used. Forces remaining arguments to be specified by name.

sep the field separator character. Values on each line of the file are separated by this
character.

verbose integer. Level of run-time diagnostic output. Set to zero to disable

header logical. Whether the first row contains column headers.

col.names character vector. Column names

118 mxComputeLoadData

Details

Currently, this only supports comma separated value format and no row names. If header=TRUE
and col.names are provided, the col.names take precedence. If header=FALSE and no col.names
are provided then the column names consist of the file name and column offset.

An originalDataIsIndexOne option is not offered. You’ll need to add an extra line at the start on
your file if you wish to make use of originalDataIsIndexOne in mxComputeLoad*.

See Also

mxComputeCheckpoint, mxComputeLoadData, mxComputeLoadMatrix

mxComputeLoadData Load columns into an MxData object

Description

[Experimental]

Usage

mxComputeLoadData(
dest,
column,
method = c("csv", "data.frame"),
...,
path = c(),
originalDataIsIndexOne = FALSE,
byrow = TRUE,
row.names = c(),
col.names = c(),
skip.rows = 0,
skip.cols = 0,
verbose = 0L,
cacheSize = 100L,
checkpointMetadata = TRUE,
na.strings = c("NA"),
observed = NULL,
rowFilter = c()

)

Arguments

dest the name of the model where the columns will be loaded

column a character vector. The column names to replace.

method name of the conduit used to load the columns.

... Not used. Forces remaining arguments to be specified by name.

mxComputeLoadData 119

path the path to the file containing the data

originalDataIsIndexOne

logical. Whether to use the initial data for index 1

byrow logical. Whether the data columns are stored in rows.

row.names optional integer. Column containing the row names.

col.names optional integer. Row containing the column names.

skip.rows integer. Number of rows to skip before reading data.

skip.cols integer. Number of columns to skip before reading data.

verbose integer. Level of run-time diagnostic output. Set to zero to disable

cacheSize integer. How many columns to cache per scan through the data. Only used when
byrow=FALSE.

checkpointMetadata

logical. Whether to add per record metadata to the checkpoint

na.strings character vector. A vector of strings that denote a missing value.

observed data frame. The reservoir of data for method='data.frame'.

rowFilter logical vector. Whether to skip the source row.

Details

The purpose of this compute step is to help quickly perform many similar analyses. For example,
if we are given a sample of people with a few million SNPs (single-nucleotide polymorphism) per
person then we could fit a separate model for each SNP by iterating over the SNP data.

The column names given in the column parameter must already exist in the model’s MxData object.
Pre-existing data is assumed to be a placeholder and is not used unless originalDataIsIndexOne
is set to TRUE.

For method='csv', the highest performance arrangement is byrow=TRUE because entire columns
are stored in single chunks (rows) on the disk and can be easily loaded. For byrow=FALSE, the data
requires transposition. To load a single column of observed data, it is necessary to read through
the whole file. This can be slow for large files. To amortize the cost of transposition, cacheSize
columns are loaded on every pass through the file.

After mxRun returns, the dest mxData object will contain the most recently loaded data. Hence,
any single analysis of a series can be reproduced by issuing mxComputeLoadData with the sin-
gle index associated with a particular dataset, replacing the compute plan with something like
omxDefaultComputePlan, and then passing the model back through mxRun. This can be a help-
ful approach when investigating unexpected results.

See Also

mxComputeLoadMatrix, mxComputeCheckpoint, mxRun, omxDefaultComputePlan

120 mxComputeLoadMatrix

mxComputeLoadMatrix Load data from CSV files directly into the backend

Description

THIS INTERFACE IS EXPERIMENTAL AND SUBJECT TO CHANGE.

For method=’csv’, the file must be formatted in a specific way. The number of columns must match
the number of entries available in the mxMatrix. Matrix types (e.g., symmetric or diagonal) are
respected (see mxMatrix). For example, a Full 2x2 matrix will require 4 entries, but a diagonal
matrix of the same size will only require 2 entries. CSV data must be stored space separated and
without row or column names. The destination mxMatrix can have free parameters, but cannot have
square bracket populated entries.

If originalDataIsIndexOne is TRUE then this compute step does nothing when the loop index
is 1. The purpose of originalDataIsIndexOne is to permit usage of the dataset that was initially
included with the model.

Usage

mxComputeLoadMatrix(dest, method=c('csv','data.frame'), ...,
path=NULL, originalDataIsIndexOne=FALSE,
row.names=FALSE, col.names=FALSE, observed=NULL)

Arguments

dest a character vector of matrix names

method name of the conduit used to load the data.

... Not used. Forces remaining arguments to be specified by name.

path a character vector of paths
originalDataIsIndexOne

logical. Whether to use the initial data for index 1

row.names logical. Whether row names are present

col.names logical. Whether column names are present

observed data frame. The reservoir of data for method='data.frame'

See Also

mxComputeLoadData, mxComputeCheckpoint

Examples

library(OpenMx)

dir <-tempdir() # safe place to create files

Cov <- rWishart(4, 20, toeplitz(c(2,1)/20))

mxComputeLoop 121

write.table(t(apply(Cov, 3, vech)),
file=file.path(dir, "cov.csv"),
col.names=FALSE, row.names=FALSE)

Mean <- matrix(rnorm(8),4,2)
write.table(Mean, file=file.path(dir, "mean.csv"),

col.names=FALSE, row.names=FALSE)

m1 <- mxModel(
"test1",
mxMatrix("Full", 1,2, values=0, name="mean"),
mxMatrix("Symm", 2,2, values=diag(2), name="cov"),
mxMatrix("Full", 1,2, values=-1, name="lbound"),
mxMatrix("Full", 1,2, values=1, name="ubound"),
mxAlgebra(omxMnor(cov,mean,lbound,ubound), name="area"),
mxFitFunctionAlgebra("area"),
mxComputeLoop(list(
mxComputeLoadMatrix(c('mean', 'cov'),

path=file.path(dir, c('mean.csv', 'cov.csv'))),
mxComputeOnce('fitfunction', 'fit'),
mxComputeCheckpoint(path=file.path(dir, "loadMatrix.csv"))

), i=1:4))

m1 <- mxRun(m1)

mxComputeLoop Repeatedly invoke a series of compute objects

Description

When i is given then these values are iterated over instead of the sequence 1 to the number of
iterations.

Usage

mxComputeLoop(
steps,
...,
i = NULL,
maxIter = as.integer(NA),
freeSet = NA_character_,
maxDuration = as.numeric(NA),
verbose = 0L,
startFrom = 1L

)

Arguments

steps a list of compute objects

... Not used. Forces remaining arguments to be specified by name.

122 mxComputeNelderMead

i the values to iterate over

maxIter the maximum number of iterations

freeSet Names of matrices containing free variables.

maxDuration the maximum amount of time (in seconds) to iterate

verbose integer. Level of run-time diagnostic output. Set to zero to disable

startFrom When i=NULL, permits starting from an index greater than 1.

mxComputeNelderMead Optimize parameters using a variation of the Nelder-Mead algorithm.

Description

OpenMx includes a flexible, options-rich implementation of the Nelder-Mead algorithm.

Usage

mxComputeNelderMead(
freeSet=NA_character_, fitfunction="fitfunction", verbose=0L,
nudgeZeroStarts=mxOption(NULL,"Nudge zero starts"),
maxIter=NULL,...,
alpha=1, betao=0.5, betai=0.5, gamma=2, sigma=0.5, bignum=1e35,
iniSimplexType=c("regular","right","smartRight","random"),
iniSimplexEdge=1, iniSimplexMat=NULL, greedyMinimize=FALSE,
altContraction=FALSE, degenLimit=0, stagnCtrl=c(-1L,-1L),
validationRestart=TRUE,
xTolProx=1e-8, fTolProx=1e-8,
doPseudoHessian=TRUE,
ineqConstraintMthd=c("soft","eqMthd"),
eqConstraintMthd=c("GDsearch","soft","backtrack","l1p"),
backtrackCtrl=c(0.5,5),
centerIniSimplex=FALSE)

Arguments

freeSet Character-string names of MxMatrices containing free parameters.

fitfunction Character-string name of the fitfunction; defaults to ’fitfunction’.

verbose Integer level of reporting printed to terminal at runtime; defaults to 0.
nudgeZeroStarts

Should free parameters with start values of zero be "nudged" to 0.1 at runtime?
Defaults to the current global value of mxOption "Nudge zero starts". May be a
logical value, or one of character strings "Yes" or "No".

maxIter Integer maximum number of iterations. Value of NULL is accepted, in which case
the value used at runtime will be 10 times the number of iterations specified by
the effective value of mxOption "Major iterations".

mxComputeNelderMead 123

... Not used. Forces remaining arguments to be specified by name.

alpha Numeric reflection coefficient. Must be positive. Defaults to 1.0.

betao, betai Numeric outside- and inside-contraction coefficients, respectively. Both must
be within unit interval (0,1). Both default to 0.5.

gamma Numeric expansion coefficient. If positive, must be greater than alpha. If non-
positive, expansion transformations will not be carried out. Defaults to 2.0.

sigma Numeric shrink coefficient. Cannot exceed 1.0. If non-positive, shrink transfor-
mations will not be carried out, and failed contractions will instead be followed
by a simplex restart. Defaults to 0.5.

bignum Numeric value with which the fitfunction value is to be replaced if the fit is
non-finite or is evaluated at infeasible parameter values. Defaults to 1e35.

iniSimplexType Character string naming the method by which to construct the initial simplex
from the free-parameter start values. Defaults to "regular".

iniSimplexEdge Numeric edge-length of the initial simplex. Defaults to 1.0.

iniSimplexMat Optional numeric matrix providing the vertices of the initial simplex. The matrix
must have as many columns as there are free parameters in the MxModel. The
matrix’s number of rows must be no less than the number of free parameters
minus the number of degrees-of-freedom gained from equality MxConstraints,
if any. If a non-NULL value is provided, argument iniSimplexEdge is ignored,
and argument iniSimplexType is only used in the case of a restart.

greedyMinimize Logical; should the optimizer use "greedy minimization?" Defaults to FALSE.
See below for details.

altContraction Logical; should the optimizer use an "alternate contraction" transformation? De-
faults to FALSE. See below for details.

degenLimit Numeric "degeneracy limit;" defaults to 0. If positive, the simplex will be
restarted if the measure of the angle between any two of its edges is within 0
or pi by less than degenLimit.

stagnCtrl "Stagnation control;" integer vector of length 2; defaults to c(-1L,-1L). See
below for details.

validationRestart

Logical; defaults to TRUE.

xTolProx Numeric "domain-convergence" criterion; defaults to 1e-8. See below for de-
tails.

fTolProx Numeric "range-convergence" criterion; defaults to 1e-8. See below for details.

doPseudoHessian

Logical; defaults to TRUE.

ineqConstraintMthd

"Inequality constraint method;" character string. Defaults to "soft".

eqConstraintMthd

"Equality constraint method;" character string. Defaults to "GDsearch".

backtrackCtrl Numeric vector of length two. See below for details.

124 mxComputeNelderMead

centerIniSimplex

Logical. If FALSE (default), the MxModel’s start values are used as the "first"
vertex of the initial simplex. If TRUE, the initial simplex is re-centered so that
the MxModel’s start values are its eucentroid. However, if iniSimplexMat is
non-NULL or if iniSimplexType="smartRight", a value of TRUE is treated as
FALSE.

Details

The state of a Nelder-Mead optimization problem is represented by a simplex (polytope) of n + 1
vertices in the space of the free parameters, where n is the number of free parameters minus the
number of degrees-of-freedom gained from equality MxConstraints. An iteration of the algorithm
first sorts the n+ 1 vertices by their corresponding fitfunction values (i.e., the values of the fitfunc-
tion when evaluated at each vertex), in ascending order (i.e., from "best" fit to "worst" fit). Then,
the "subcentroid," which is the centroid of the "best" n vertices, is calculated. Then, the algorithm
attempts to improve upon the worst fit by transforming the simplex; see Singer & Nelder (2009) for
details.

Argument iniSimplexType dictates how the initial simplex will be constructed from the start val-
ues if argument iniSimplexMat is NULL, and how the simplex will be re-initialized in the case of
a restart. In all four cases, the vector of start values constitutes the "starting vertex" of the initial
simplex. If iniSimplexType="regular", the initial simplex is merely a regular simplex with edge
length equal to iniSimplexEdge. A "right" simplex is constructed by incrementing each free pa-
rameter by iniSimplexEdge from its starting value; thus, all the edges that intersect at the starting
vertex do so at right angles. A "smartRight" simplex is constructed similarly, except that each free
parameter is both incremented and decremented by iniSimplexEdge, and of those two points the
one with the smaller fitfunction value is retained as a vertex. A "random" simplex is constructed
by randomly perturbing the start values, in a manner similar to the default for mxTryHard(), to
generate the coordinates of the other vertices. The user is advised that bounds on the free param-
eters may keep the initial simplex from having the requested regularity or edge-length, and that
iniSimplexType is at best a suggestion in the presence of equality MxConstraints.

Note that if argument iniSimplexMat has nonzero length, the actual start values of the MxModel’s
free parameters are not used as a vertex of the initial simplex (unless one of the rows of iniSimplexMat
happens to contain those start values).

If the simplex is restarted, a new simplex is constructed per argument iniSimplexType, with edge
length equal to the distance between the current best and second-best vertices, and with the current
best vertex used as the "first" vertex.

If greedyMinimize=FALSE, "greedy expansion" (Singer & Singer, 2004) is used: if the expansion
point and reflection point both have smaller fitfunction values than the best vertex, the expansion
point is accepted. If greedyMinimize=TRUE, "greedy minimization" (Singer & Singer, 2004) is
used: if the expansion point and the reflection point both have smaller fitfunction values than the
best vertex, the better of the two new points is accepted.

If argument altContraction=TRUE, the "modified contraction step" of Gill et al. (1982, Chap-
ter 4) is used, and the candidate point is contracted toward the best vertex instead of toward the
subcentroid.

If positive, the first element of argument stagnCtrl sets a threshold for the number of successive
iterations in which the best vertex of the simplex does not change, after which the algorithm is said
to be "stagnant" (in a sense similar to that of Kelley, 1999). To attempt to remedy the stagnation, the

http://www.scholarpedia.org/article/Nelder-Mead_algorithm

mxComputeNelderMead 125

simplex is restarted. If positive, the second element of argument stagnCtrl sets threshold for the
number of restarts conducted, beyond which stagnation no longer triggers a restart. The rationale
for the second element is that the best vertex may not change for many iterations when the optimizer
is close to convergence, under which circumstances restarting would be counterproductive, and in
any event would require additional fitfunction evaluations.

If argument validationRestart=TRUE, then when the optimizer has successfully converged, it
will restart the simplex and attempt to improve upon the tentative solution it already found. This
validation restart (Gill et al., 1982, Chapter 4) always re-initializes the simplex as a regular simplex,
centered on the best vertex of the tentative solution, with edge-length equal to the distance between
the best and worst vertices of the tentative solution. Optimization proceeds until convergence to a
solution with a better fit value, or 2n iterations have elapsed.

The Nelder-Mead optimizer is considered to have successfully converged if (1) the largest l-infinity
norm of the vector-differences between the best vertex and the other vertices is less than argument
xTolProx, or (2) if the largest absolute difference in fit value between the best vertex and the other
vertices is less than fTolProx.

If argument doPseudoHessian=TRUE, there are no equality MxConstraints, and the "l1p" method
(see below) is not in use for inequality MxConstraints, then OpenMx will attempt to calculate the
"pseudo-Hessian" or "curvature" matrix as described in the appendix to Nelder & Mead (1965). If
successful, this matrix will be stored in the ’output’ slot of the post-run MxComputeNelderMead
object. Although crude, its inverse can be used as an estimate of the repeated-sampling covariance
matrix of the free parameters when the usual finite-differences Hessian is unreliable.

OpenMx’s implementation of Nelder-Mead can handle nonlinear inequality MxConstraints rea-
sonably well. Its default method for doing so, with argument ineqConstraintMthd="soft", im-
poses a "soft" feasibility constraint by assigning a fitfunction value of bignum to points that vi-
olate the constraints by more than mxOption ’Feasibility tolerance’. Alternately, with argument
ineqConstraintMthd="eqMthd", inequality MxConstraints can be handled by the same method
provided to argument eqConstraintMthd, whether or not equality MxConstraints are present.

OpenMx’s implementation of Nelder-Mead respects equality MxConstraints, but does not han-
dle them especially well. Its effectiveness at handling equalities may be improved by providing
a matrix to argument iniSimplexMat that ensures all of the initial vertices are feasible. Users
are warned that this Nelder-Mead implementation will not work correctly with MxModels con-
taining redundant equality MxConstraints, and presently has no way of detecting whether any are
present. If argument eqConstraintMthd="GDsearch" (the default), then whenever Nelder-Mead
evaluates the fitfunction at an infeasible point, it initiates a subsidiary optimization that uses SLSQP
to find the nearest (in squared Euclidean distance) feasible point, and replaces that feasible point
for the infeasible one. The user should note that the function evaluations that occur during this
subsidiary optimization are counted toward the total number of fitfunction evaluations during the
call to mxRun(). The effectiveness of the ’GDsearch’ method is often improved by setting mx-
Option ’Feasibility tolerance’ to a stricter (smaller) value than the on-load default. The method
specified by eqConstraintMthd="soft" is described in the preceding paragraph. If argument
eqConstraintMthd="backtrack", then the optimizer attempts to backtrack from an infeasible
point to a feasible point in a manner similar to that of Ghiasi et al. (2008), except that it used with
all new points, and not just those encountered via reflection, expansion and contraction. In this case,
the displacement from the prior point to the candidate point is reduced by the proportion provided as
the first element of argument backtrackCtrl, and thus a new candidate point is considered. This
process is repeated until feasibility of the candidate point is restored, or the number of attempts
exceeds the second element of argument backtrackCtrl. If argument eqConstraintMthd="l1p",

126 mxComputeNewtonRaphson

Nelder-Mead is used as part of an l1-penalty algorithm. When using "l1p", the simplex gradient
(Kelley, 1999) and "pseudo-Hessian" are never calculated.

Value

Returns an object of class ’MxComputeNelderMead’.

References

Ghiasi, H., Pasini, D., & Lessard, L. (2008). Constrained globalized Nelder-Mead method for
simultaneous structural and manufacturing optimization of a composite bracket. Journal of Com-
posite Materials, 42(7), p. 717-736. doi: 10.1177/0021998307088592

Gill, P. E., Murray, W., & Wright, M. H. (1982). Practical Optimization. Bingley, UK: Emerald
Group Publishing Ltd.

Kelley, C. T. (1999). Detection and remediation of stagnation in the Nelder-Mead algorithm using
a sufficient decrease condition. SIAM Journal of Optimization 10(1), p. 43-55.

Nelder, J. A., & Mead, R. (1965) . A simplex method for function minimization. The Computer
Journal, 7, p. 308-313.

Singer, S., & Nelder, J. (2009). Nelder-Mead algorithm. Scholarpedia, 4(7):2928., revision #91557.
http://www.scholarpedia.org/article/Nelder-Mead_algorithm .

Singer, S., & Singer, S. (2004). Efficient implementation of the Nelder-Mead search algorithm. Ap-
plied Numerical Analysis & Computational Mathematics Journal, 1(2), p. 524-534. doi: 10.1002/anac.200410015

Examples

foo <- mxComputeNelderMead()
str(foo)

mxComputeNewtonRaphson

Optimize parameters using the Newton-Raphson algorithm

Description

This optimizer requires analytic 1st and 2nd derivatives of the fit function. Box constraints are
supported. Parameters can approach box constraints but will not leave the feasible region (even by
some small epsilon>0). Non-finite fit values are interpreted as soft feasibility constraints. That is,
when a non-finite fit is encountered, line search is continued after the step size is multiplied by 10%.
Comprehensive diagnostics are available by increasing the verbose level.

mxComputeNothing 127

Usage

mxComputeNewtonRaphson(
freeSet = NA_character_,
...,
fitfunction = "fitfunction",
maxIter = 100L,
tolerance = 1e-12,
verbose = 0L

)

Arguments

freeSet names of matrices containing free variables

... Not used. Forces remaining arguments to be specified by name.

fitfunction name of the fitfunction (defaults to ’fitfunction’)

maxIter maximum number of iterations

tolerance optimization is considered converged when the maximum relative change in fit
is less than tolerance

verbose integer. Level of run-time diagnostic output. Set to zero to disable

References

Luenberger, D. G. & Ye, Y. (2008). Linear and nonlinear programming. Springer.

mxComputeNothing Compute nothing

Description

Note that this compute plan actually does nothing whereas mxComputeOnce("expectation", "nothing")
may remove the prediction of an expectation.

Usage

mxComputeNothing()

128 mxComputeNumericDeriv

mxComputeNumericDeriv Numerically estimate Hessian using Richardson extrapolation

Description

For N free parameters, Richardson extrapolation requires (iterations * (N^2 + N)) function evalua-
tions. The implementation is closely based on the numDeriv R package.

Usage

mxComputeNumericDeriv(
freeSet = NA_character_,
...,
fitfunction = "fitfunction",
parallel = TRUE,
stepSize = imxAutoOptionValue("Gradient step size"),
iterations = 4L,
verbose = 0L,
knownHessian = NULL,
checkGradient = TRUE,
hessian = TRUE,
analytic = TRUE

)

Arguments

freeSet names of matrices containing free variables

... Not used. Forces remaining arguments to be specified by name.

fitfunction name of the fitfunction (defaults to ’fitfunction’)

parallel whether to evaluate the fitfunction in parallel (defaults to TRUE)

stepSize starting set size (defaults to 0.0001)

iterations number of Richardson extrapolation iterations (defaults to 4L)

verbose integer. Level of run-time diagnostic output. Set to zero to disable

knownHessian an optional matrix of known Hessian entries

checkGradient whether to check the first order convergence criterion (gradient is near zero)

hessian whether to estimate the Hessian. If FALSE then only the gradient is estimated.

analytic Use the analytic Hessian, if available.

Details

In addition to an estimate of the Hessian, forward, central, and backward estimates of the gradient
are made available in this compute plan’s output slot.

mxComputeOnce 129

When checkGradient=TRUE, the central difference estimate of the gradient is used to determine
whether the first order convergence criterion is met. In addition, the forward and backward differ-
ence estimates of the gradient are compared for symmetry. When sufficient asymmetry is detected,
the standard error is flagged. In the case, profile likelihood confidence intervals should be used for
inference instead of standard errors (see mxComputeConfidenceInterval).

If provided, the square matrix knownHessian should have dimnames set to the names of some
subset of the free parameters. Entries of the matrix set to NA will be estimated numerically while
entries containing finite values will be copied to the Hessian result.

Examples

library(OpenMx)
data(demoOneFactor)
factorModel <- mxModel(name ="One Factor",
mxMatrix(type = "Full", nrow = 5, ncol = 1, free = FALSE, values = .2, name = "A"),
mxMatrix(type = "Symm", nrow = 1, ncol = 1, free = FALSE, values = 1 , name = "L"),
mxMatrix(type = "Diag", nrow = 5, ncol = 5, free = TRUE , values = 1 , name = "U"),
mxAlgebra(A %*% L %*% t(A) + U, name = "R"),
mxExpectationNormal(covariance = "R", dimnames = names(demoOneFactor)),
mxFitFunctionML(),
mxData(cov(demoOneFactor), type = "cov", numObs = 500),
mxComputeSequence(
list(mxComputeNumericDeriv(), mxComputeReportDeriv())
)
)
factorModelFit <- mxRun(factorModel)
factorModelFit$output$hessian

mxComputeOnce Compute something once

Description

Some models are optimized for a sparse Hessian. Therefore, it can be much more efficient to
compute the inverse Hessian in comparison to computing the Hessian and then inverting it.

Usage

mxComputeOnce(
from,
what = NULL,
how = NULL,
...,
freeSet = NA_character_,
verbose = 0L,
.is.bestfit = FALSE

)

130 mxComputePenaltySearch

Arguments

from the object to perform the computation (a vector of expectation or fit function
names)

what what to compute

how to compute it (optional)

... Not used. Forces remaining arguments to be specified by name.

freeSet names of matrices containing free variables

verbose integer. Level of run-time diagnostic output. Set to zero to disable

.is.bestfit do not use; for backward compatibility

Details

The information matrix is only valid when parameters are at the maximum likelihood estimate. The
information matrix is returned in model$output$hessian. You cannot request both the information
matrix and the Hessian. The information matrix is invariant to the sign of the log likelihood scale
whereas the Hessian is not. Use the how parameter to specify which approximation to use (one of
"default", "hessian", "sandwich", "bread", and "meat").

Examples

data(demoOneFactor)
factorModel <- mxModel(name ="One Factor",

mxMatrix(type="Full", nrow=5, ncol=1, free=TRUE, values=0.2, name="A"),
mxMatrix(type="Symm", nrow=1, ncol=1, free=FALSE, values=1, name="L"),
mxMatrix(type="Diag", nrow=5, ncol=5, free=TRUE, values=1, name="U"),
mxAlgebra(expression=A %*% L %*% t(A) + U, name="R"),
mxFitFunctionML(),mxExpectationNormal(covariance="R", dimnames=names(demoOneFactor)),
mxData(observed=cov(demoOneFactor), type="cov", numObs=500),
mxComputeOnce('fitfunction', 'fit'))

factorModelFit <- mxRun(factorModel)
factorModelFit$output$fit # 972.15

mxComputePenaltySearch

Regularize parameter estimates

Description

Add a penalty to push some subset of the parameter estimates toward zero.

mxComputeReportDeriv 131

Usage

mxComputePenaltySearch(
plan,
...,
freeSet = NA_character_,
verbose = 0L,
fitfunction = "fitfunction",
approach = "EBIC",
ebicGamma = 0.5

)

Arguments

plan compute plan to optimize the model

... Not used. Forces remaining arguments to be specified by name.

freeSet names of matrices containing free variables

verbose integer. Level of run-time diagnostic output. Set to zero to disable

fitfunction the name of the deviance function

approach what fit function to use to compare regularized models? Currently only EBIC is
available

ebicGamma what Gamma value to use for EBIC? Must be between 0 and 1

References

Jacobucci, R., Grimm, K. J., & McArdle, J. J. (2016). Regularized structural equation modeling.
<i>Structural equation modeling: a multidisciplinary journal, 23</i>(4), 555-566.

mxComputeReportDeriv Report derivatives

Description

Copy the internal gradient and Hessian back to R.

Usage

mxComputeReportDeriv(freeSet = NA_character_)

Arguments

freeSet names of matrices containing free variables

132 mxComputeSequence

mxComputeReportExpectation

Report expectation

Description

Copy the internal model expectations back to R.

Usage

mxComputeReportExpectation(freeSet = NA_character_)

Arguments

freeSet names of matrices containing free variables

mxComputeSequence Invoke a series of compute objects in sequence

Description

Invoke a series of compute objects in sequence

Usage

mxComputeSequence(
steps = list(),
...,
freeSet = NA_character_,
independent = FALSE

)

Arguments

steps a list of compute objects

... Not used; forces argument ’freeSet’ to be specified by name.

freeSet Names of matrices containing free parameters.

independent Whether the steps could be executed out-of-order.

mxComputeSetOriginalStarts 133

mxComputeSetOriginalStarts

Reset parameter starting values

Description

Sets the current parameter vector back to the original starting values.

Usage

mxComputeSetOriginalStarts(freeSet = NA_character_)

Arguments

freeSet names of matrices containing free variables

mxComputeSimAnnealing Optimization using generalized simulated annealing

Description

Performs simulated annealing to minimize the fit function. If the original starting values are outside
of the feasible set, a few attempts are made to find viable starting values.

Usage

mxComputeSimAnnealing(freeSet=NA_character_, ..., fitfunction='fitfunction',
plan=mxComputeOnce('fitfunction','fit'),
verbose=0L, method=c("tsallis1996", "ingber2012"), control=list(),
defaultGradientStepSize=imxAutoOptionValue("Gradient step size"),
defaultFunctionPrecision=imxAutoOptionValue("Function precision"))

Arguments

freeSet names of matrices containing free variables
... Not used. Forces remaining arguments to be specified by name.
fitfunction name of the fitfunction (defaults to ’fitfunction’)
plan compute plan to optimize the model
verbose level of debugging output
method which algorithm to use
control control parameters specific to the chosen method
defaultGradientStepSize

the default gradient step size
defaultFunctionPrecision

the default function precision

134 mxComputeSimAnnealing

Details

For method ‘tsallis1996’, the number of function evaluations are determined by the tempStart
and tempEnd parameters. There is no provision to stop early because there is no way to determine
whether the algorithm has converged. The Markov step is implemented by cycling through each
parameters in turn and considering a univariate jump (like a Gibbs sampler).

Control parameters include qv to control the shape of the visiting distribution, qaInit to control
the shape of the initial acceptance distribution, lambda to reduce the probability of acceptance
in time, tempStart to specify starting temperature, tempEnd to specify ending temperature, and
stepsPerTemp to set the number of Markov steps per temperature step.

Non-linear constraints are accommodated by a penalty function. Inequality constraints work rea-
sonably well, but equality constraints do not work very well. Constrained optimization will likely
require increasing stepsPerTemp.

Classical simulated annealing (CSA) can be obtained with qv=qa=1 and lambda=0. Fast simulated
annealing (FSA) can be obtained with qv=2, qa=1, and lambda=0. FSA is faster than CSA, but GSA
is faster than FSA. GenSA default parameters are set to those identified in Xiang, Sun, Fan & Gong
(1997).

Method ‘ingber2012’ has spawned a cultural tradition over more than 30 years that is documented
in Aguiar e Oliveira et al (2012). Options are specified using the traditional option names in the
control list. However, there are a few option changes to make ASA fit better with OpenMx. In-
stead of option Curvature_0, use mxComputeNumericDeriv. ASA_PRINT output is directed to
/dev/null by default. To direct ASA_PRINT output to console use control=list('Asa_Out_File'=
'/dev/fd/1'). ASA’s option to control the finite differences gradient step size, Delta_X, defaults
to mxOption’s ‘Gradient step size’ instead of ASA’s traditional 0.001. Similarly, Cost_Precision
defaults to mxOption’s ‘Function Precision’ instead of ASA’s traditional 1e-18.

References

Aguiar e Oliveira, H., Ingber, L., Petraglia, A., Petraglia, M. R., & Machado, M. A. S. (2012).
Stochastic global optimization and its applications with fuzzy adaptive simulated annealing. Springer
Publishing Company, Incorporated.

Tsallis, C., & Stariolo, D. A. (1996). Generalized simulated annealing. Physica A: Statistical
Mechanics and its Applications, 233(1-2), 395-406.

Xiang, Y., Sun, D. Y., Fan, W., & Gong, X. G. (1997). Generalized simulated annealing algorithm
and its application to the Thomson model. Physics Letters A, 233(3), 216-220.

See Also

mxComputeTryHard

Examples

library(OpenMx)
m1 <- mxModel(
"poly22", # Eqn 22 from Tsallis & Stariolo (1996)
mxMatrix(type='Full', values=runif(4, min=-1e6, max=1e6),
ncol=1, nrow=4, free=TRUE, name='x'),
mxAlgebra(sum((x*x-8)^2) + 5*sum(x) + 57.3276, name="fit"),

mxComputeStandardError 135

mxFitFunctionAlgebra('fit'),
mxComputeSimAnnealing())

m1 <- mxRun(m1)
summary(m1)

mxComputeStandardError

Compute standard errors

Description

When the fit is in -2 log likelihood units, the SEs are derived from the diagonal of the Hessian or
inverse Hessian. The Hessian (in some form) must already be available.

Usage

mxComputeStandardError(freeSet = NA_character_, fitfunction = "fitfunction")

Arguments

freeSet names of matrices containing free variables

fitfunction name of the fitfunction (defaults to ’fitfunction’)

Details

If there are active MxConstraints and the fit is in -2logL units, the SEs are derived from the Hessian
and the Jacobian of the constraint functions (see references).

References

Moore T & Sadler B. (2006). Maximum-Likelihood Estimation and Scoring Under Parametric
Constraints. Army Research Laboratory report ARL-TR-3805. Schoenberg R. (1997). Constrained
maximum likelihood. Computational Economics, 10, p. 251-266.

mxComputeTryCatch Execute a sub-compute plan, catching errors

Description

[Experimental] Any error will be recorded in a subsequent checkpoint. After execution, the context
will be reset to continue computation as if no errors has occurred.

Usage

mxComputeTryCatch(plan, ..., freeSet = NA_character_)

136 mxComputeTryHard

Arguments

plan compute plan to optimize the model

... Not used. Forces remaining arguments to be specified by name.

freeSet names of matrices containing free variables

See Also

mxComputeCheckpoint

mxComputeTryHard Repeatedly attempt a compute plan until successful

Description

The provided compute plan is run until the status code indicates success (0 or 1). It gives up after a
small number of retries.

Usage

mxComputeTryHard(
plan,
...,
freeSet = NA_character_,
verbose = 0L,
location = 1,
scale = 0.25,
maxRetries = 3L

)

Arguments

plan compute plan to optimize the model

... Not used. Forces remaining arguments to be specified by name.

freeSet names of matrices containing free variables

verbose integer. Level of run-time diagnostic output. Set to zero to disable

location location of the perturbation distribution

scale scale of the perturbation distribution

maxRetries maximum number of plan evaluations per invocation (including the first evalua-
tion)

mxConstraint 137

Details

Upon failure, start values are randomly perturbed. Currently only the uniform distribution is im-
plemented. The distribution is parameterized by arguments location and scale. The location
parameter is the distribution’s median. For the uniform distribution, scale is the absolute differ-
ence between its median and extrema (i.e., half the width of the rectangle). Each start value is
multiplied by a random draw and then added to a random draw from a distribution with the same
scale but with a median of zero.

References

Shanno, D. F. (1985). On Broyden-Fletcher-Goldfarb-Shanno method. Journal of Optimization
Theory and Applications, 46(1), 87-94.

See Also

mxTryHard

mxConstraint Create MxConstraint Object

Description

This function creates a new MxConstraint object.

Usage

mxConstraint(expression, name=NA, ..., jac=character(0), verbose=0L, strict=TRUE)

Arguments

expression The MxAlgebra-like expression representing the constraint function.

name An optional character string indicating the name of the object.

... Not used. Helps OpenMx catch bad input to argument expression, and requires
argument jac–meant for advanced users–to be specified by name.

jac An optional character string naming the MxAlgebra or MxMatrix representing
the Jacobian for the constraint function.

verbose For values greater than zero, enable runtime diagnostics.

strict Whether to require that all Jacobian entries reference free parameters.

138 mxConstraint

Details

The mxConstraint() function defines relationships between two MxAlgebra or MxMatrix objects.
They are used to affect the estimation of free parameters in the referenced objects. The constraint
relation is written identically to how a MxAlgebra expression would be written. The outermost
operator in this relation must be either ‘<’, ‘==’ or ‘>’. To affect an estimation or optimization, an
MxConstraint object must be included in an MxModel object with all referenced MxAlgebra and
MxMatrix objects.

Usage Note: Use of mxConstraint() should be avoided where it is possible to achieve the con-
straint by equating free parameters by label or position in an MxMatrix or MxAlgebra object. In-
cluding mxConstraints in an mxModel will disable standard errors and the calculation of the final
Hessian, and thus should be avoided when standard errors are of importance. Constraints also add
computational overhead. If one labels two parameters the same, the optimizer has one fewer pa-
rameter to optimize. However, if one uses mxConstraint to do the same thing, both parameters
remain estimated and a Lagrangian multiplier is added to maintain the constraint. This constraint
also has to have its gradients computed and the order of the Hessian grows as well. So while both
approaches should work, the mxConstraint() will take longer to do so.

Alternatives to mxConstraints include using labels, lbound or ubound arguments or algebras. Free
parameters in the same MxModel may be constrained to equality by giving them the same name in
their respective ’labels’ matrices. Similarly, parameters may be fixed to an individual element in a
MxModel object or the result of an MxAlgebra object through labeling. For example, assigning a
label of “name[1,1]“ fixes the value of a parameter at the value in first row and first column of the
matrix or algebra “name“. The mxConstraint function should be used to enforce inequalities that
cannot be conveyed using other methods.

Note that constraints should not depend on definition variables. This mode of operation is not
supported.

Argument jac is used to provide the name of an MxMatrix or MxAlgebra that equals the matrix of
first derivatives–the Jacobian–of the constraint function with respect to the free parameters. Here,
the "constraint function" refers to the constraint expression in canonical form: an arbitrary matrix
expression on the left-hand side of the comparator, and a matrix of zeroes with the same dimensions
on the right-hand side. The rows of the Jacobian correspond to elements of the matrix result of the
right-hand side, in column-major order. Each row of the Jacobian is the vector of first partial
derivatives, with respect to the free parameters of the MxModel, of its corresponding element. Each
column of the Jacobian corresponds to a free parameter of the MxModel; each column must be
named with the label of the corresponding free parameter. All the gradient-descent optimizers are
able to take advantage of user-supplied Jacobians. To verify the analytic Jacobian against the same
values estimated by finite differences, use ‘verbose=3’.

In the past, OpenMx has relied on NPSOL’s finite differences algorithm to fill in unknown Jacobian
entries. When analytic Jacobians are used, OpenMx no longer relies on NPSOL’s finite differences
algorithm. Any missing entries are taken care of by OpenMx’s finite differences algorithm. Whether
NPSOL or OpenMx conducts finite differences, the results should be very similar.

Value

Returns an MxConstraint object.

MxConstraint-class 139

References

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.

See Also

MxConstraint for the S4 class created by mxConstraint.

Examples

library(OpenMx)

#Create a constraint between MxMatrices 'A' and 'B'
constraint <- mxConstraint(A > B, name = 'AdominatesB')

Constrain matrix 'K' to be equal to matrix 'limit'

model <- mxModel(model="con_test",
mxMatrix(type="Full", nrow=2, ncol=2, free=TRUE, name="K"),
mxMatrix(type="Full", nrow=2, ncol=2, free=FALSE, name="limit", values=1:4),
mxConstraint(K == limit, name = "Klimit_equality"),
mxAlgebra(min(K), name="minK"),
mxFitFunctionAlgebra("minK")

)

fit <- mxRun(model)
fit$matrices$K$values

[,1] [,2]
[1,] 1 3
[2,] 2 4

Constrain both free parameters of a matrix to equality using labels (both are set to "eq")
equal <- mxMatrix("Full", 2, 1, free=TRUE, values=1, labels="eq", name="D")

Constrain a matrix element in to be equal to the result of an algebra
start <- mxMatrix("Full", 1, 1, free=TRUE, values=1, labels="param", name="F")
alg <- mxAlgebra(log(start), name="logP")

Force the fixed parameter in matrix G to be the result of the algebra
end <- mxMatrix("Full", 1, 1, free=FALSE, values=1, labels="logP[1,1]", name="G")

MxConstraint-class Class "MxConstraint"

Description

MxConstraint is an S4 class. An MxConstraint object is a named entity. New instances of this class
can be created using the function mxConstraint().

https://openmx.ssri.psu.edu/documentation/

140 MxConstraint-class

Details

Slots may be referenced with the $ symbol. See the documentation for Classes and the examples in
the mxConstraint document for more information.

Slots

name: Character string; the name of the object.

formula: Object of class "MxAlgebraFormula". The MxAlgebra-like expression representing the
constraint function.

alg1: Object of class "MxCharOrNumber". For internal use.

alg2: Object of class "MxCharOrNumber". For internal use.

relation: Object of class "MxCharOrNumber". For internal use.

jac: Object of class "MxCharOrNumber". Identifies the MxAlgebra representing the Jacobian for
the constraint function.

linear: Logical. For internal use.

strict: Logical. Whether to require that all Jacobian entries reference free parameters.

verbose: integer. For values greater than zero, enable runtime diagnostics.

Methods

$<- signature(x = "MxConstraint")

$ signature(x = "MxConstraint")

imxDeparse signature(object = "MxConstraint")

names signature(x = "MxConstraint")

print signature(x = "MxConstraint")

show signature(object = "MxConstraint")

References

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.

See Also

mxConstraint() for the function that creates MxConstraint objects.

Examples

showClass("MxConstraint")

https://openmx.ssri.psu.edu/documentation/

mxData 141

mxData Create MxData Object

Description

This function creates a new MxData object. This can be used all forms of analysis (including WLS:
see mxFitFunctionWLS). It packages observed data (e.g. a dataframe, matrix, or cov or cor matrix)
into an object with additional information allowing it to be processed in an mxModel.

Usage

mxData(observed=NULL, type="none", means = NA, numObs = NA, acov=NA, fullWeight=NA,
thresholds=NA, ..., observedStats=NA, sort=NA, primaryKey = as.character(NA),

weight = as.character(NA), frequency = as.character(NA),
verbose = 0L, .parallel=TRUE, .noExoOptimize=TRUE,

minVariance=sqrt(.Machine$double.eps), algebra=c(),
warnNPDacov=TRUE, warnNPDuseWeight=TRUE, exoFree=NULL,
naAction=c("pass","fail","omit","exclude"),
fitTolerance=sqrt(as.numeric(mxOption(key="Optimality tolerance"))),
gradientTolerance=1e-2)

Arguments

observed A matrix or data.frame which provides data to the MxData object. Can be NULL
when summary data are provided via ‘observedStats’.

type A character string defining the type of data in the ‘observed’ argument. Must be
one of “raw”, “cov”, “cor”, or “acov”. If no observed data are provided then use
“none”.

means An optional vector of means for use when ‘type’ is “cov”, or “cor”.

numObs The number of observations in the data supplied in the ‘observed’ argument.
Required unless ‘type’ equals “raw”.

... Not used. Forces remaining arguments to be specified by name.

observedStats A list containing observed statistics for weighted least squares estimation. See
details for contents

sort Whether to sort raw data prior to use (default NA).

primaryKey The column name of the primary key used to uniquely identify rows (default
NA)

weight The column name containing row weights.

frequency The column name containing row frequencies.

verbose level of diagnostic output.

.parallel logical. Whether to compute observed summary statistics in parallel.

.noExoOptimize logical. Whether to use math short-cuts for the case of no exogenous predictors.

minVariance numeric. The minimum acceptable variance for ‘observedStats$cov’.

142 mxData

acov Deprecated in favor of the acov element of observedStats.

fullWeight Deprecated in favor of the fullWeight element of observedStats.

thresholds Deprecated in favor of the thresholds element of observedStats.

algebra character vector. Names of algebras used to fill in calculated columns of raw
data. [Experimental]

warnNPDacov [Deprecated]
warnNPDuseWeight

logical. Whether to warn when the asymptotic covariance matrix is non-positive
definite.

exoFree logical matrix of observed manifests by exogenous predictors. Defaults to all
TRUE, but you can fix some regression coefficients in the observedStats slope
matrix to zero by setting entries to FALSE. [Experimental]

naAction Specify treatment of missing data. See details. [Maturing]

fitTolerance fit tolerance used for WLS summary statistics [Experimental]
gradientTolerance

gradient tolerance used for WLS summary statistics [Experimental]

Details

The mxData function creates MxData objects used in mxModels. The ‘observed’ argument may
take either a data frame or a matrix, which is then described with the ‘type’ argument. Data types
describe compatibility and usage with expectation functions in MxModel objects. Three data types
are supported (acov is deprecated).

raw The contents of the ‘observed’ argument are treated as raw data. Missing values are permitted
and must be designated as the system missing value. The ‘means’ and ‘numObs’ arguments
cannot be specified, as the ‘means’ argument is not relevant and the ‘numObs’ argument is
automatically populated with the number of rows in the data. Data of this type may use fit
functions such as mxFitFunctionML or mxFitFunctionWLS. mxFitFunctionML will automat-
ically use use full-information maximum likelihood for raw data.

cov The contents of the ‘observed’ argument are treated as a covariance matrix. The ‘means’
argument is not required, but may be included for estimations involving means. The ‘numObs’
argument is required, which should reflect the number of observations or rows in the data
described by the covariance matrix. Cov data typically use the mxFitFunctionML fit function,
depending on the specified model.

acov This type was used for WLS data as created by mxDataWLS. Unless you are using summary
data, its use is deprecated. Instead, use type =‘raw’ and an mxFitFunctionWLS. If type ‘acov’
is set, the ‘observed’ argument will (usually) contain raw data and the ‘observedStats’ slot
contain a list of observed statistics.

cor The contents of the ‘observed’ argument are treated as a correlation matrix. The ‘means’
argument is not required, but may be included for estimations involving means. The ‘numObs’
argument is required, which should reflect the number of observations or rows in the data
described by the covariance matrix. Models with cor data typically use the mxFitFunctionML
fit function.

mxData 143

Note on data handling: OpenMx uses the names of variables to map them onto other elements
of your model, such as expectation functions. Thus for data provided as a data.frame, ensure the
columns have appropriate names. Covariance and correlation matrices need to have both the row and
column names set and these must be identical, for instance by using dimnames = list(varNames,
varNames).

Correlation data
To obtain accurate parameter estimates and standard errors, it is necessary to constrain the model
implied covariance matrix to have unit variances. This constraint is added automatically if you use
an mxModel with type='RAM' or type='LISREL'. Otherwise, you will need to add this constraint
yourself.

WLS data
The observedStats contains the following named objects: cov, slope, means, asymCov, useWeight,
and thresholds.

‘cov’ The (polychoric) covariance matrix of raw data variables. An error is raised if any variance is
smaller minVariance.

‘slope’ The regression coefficients from all exogenous predictors to all observed variables. Required
for exogenous predictors.

‘means’ The means of the data variables. Required for estimations involving means.

‘thresholds’ Thresholds of ordinal variables. Required for models including ordinal variables.

‘asymCov’ The asymptotic covariance matrix (all entries non-zero). This matrix is sample size
independent. Lavaan’s NACOV is comparable to asymCov multiplied by N^2.

‘useWeight’ (optional) The weight matrix used in the mxFitFunctionWLS. Can be dense or diagonal
for diagonally weighted least squares. This matrix is scaled by the sample size. Lavaan’s WLS.V is
comparable to useWeight.

A simple Newton Raphson optimizer is used to obtain the summary statistics from the raw data.
There are two parameters that control the accuracy of the optimization. In a first pass, the fit
function is optimized to ‘fitTolerance’. However, fit function becomes imprecise as the amount of
data increases due to catastrophic cancellation. To fine-tune the fit, the gradient is optimized to
‘gradientTolerance’.

note: WLS data typically use the mxFitFunctionWLS function.

IMPORTANT: The WLS interface is under heavy development to support both very fast backend
processing of raw data while continuing to support modeling applications which require direct ac-
cess to the object in the front end. Some user-interface changes should be expected as we optimize
both these workflows.

Missing values
For raw data, the ‘naAction’ option controls the treatment of missing values. When set to ‘pass’,
the data is passed as-is. When set to ‘fail’, the presence of any missing value will trigger an error.
When set to ‘omit’, missing data will be discarded row-wise. For example, a single missing value
in a row will cause the whole row to be discarded. When set to ‘exclude’, rows with missing data
are retained but their ‘frequency’ is set to zero.

Weights
In the case of raw data, the optional ‘weight’ argument names a column in the data that contains per-
row weights. Similarly, the optional ‘frequency’ argument names a column in the ‘observed’ data

144 mxData

that contains per-row frequencies. Frequencies must be integers but weights can be arbitrary real
numbers. For data with many repeated response patterns, organizing the data into unique patterns
and frequencies can reduce model evaluation time.

In some cases, the fit function can be evaluated more efficiently when data are sorted. When a
primary key is provided, sorting is disabled. Otherwise, sort defaults to TRUE.

The mxData function does not currently place restrictions on the size, shape, or symmetry of matri-
ces input into the ‘observed’ argument. While it is possible to specify MxData objects as covariance
or correlation matrices that do not have the properties commonly associated with these matrices,
failure to correctly specify these matrices will likely lead to problems in model estimation.

note: MxData objects may not be included in mxAlgebras nor in the mxFitFunctionAlgebra func-
tion. To reference data in these functions, use a mxMatrix or a definition variable (data.var) label.

Also, while column names are stored in the ‘observed’ slot of MxData objects, these names are
not automatically recognized as variable names in mxPaths in RAM models. These models use the
‘manifestVars’ of the mxModel function to explicitly identify used variables used in the model.

Value

Returns a new MxData object.

References

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.

See Also

To generate data, see mxGenerateData; For objects which may be entered as arguments in the
‘observed’ slot, see matrix and data.frame. See MxData for the S4 class created by mxData. For
WLS data, see mxDataWLS (deprecated). More information about the OpenMx package may be
found here.

Examples

library(OpenMx)

Simple covariance model. See other mxFitFunctions for examples with different data types

1. Create a covariance matrix x and y
covMatrix <- matrix(nrow = 2, ncol = 2, byrow = TRUE,
c(0.77642931, 0.39590663,

0.39590663, 0.49115615)
)
covNames <- c("x", "y")
dimList <- list(covNames, covNames)
dimnames(covMatrix) <- dimList

2. Create an MxData object from covMatrix
testData <- mxData(observed=covMatrix, type="cov", numObs = 100)

testModel <- mxModel(model="testModel2",
mxMatrix(name="expCov", type="Symm", nrow=2, ncol=2,

https://openmx.ssri.psu.edu/documentation/

MxData-class 145

values=c(.2,.1,.2), free=TRUE, dimnames=dimList),
mxExpectationNormal("expCov", dimnames=covNames),
mxFitFunctionML(),

testData
)

outModel <- mxRun(testModel)

summary(outModel)

MxData-class MxData Class

Description

MxData is an S4 class. An MxData object is a named entity. New instances of this class can be
created using the function mxData. MxData is an S4 class union. An MxData object is either NULL
or a MxNonNullData object.

Details

The MxNonNullData class has the following slots:

name - The name of the object
observed - Either a matrix or a data frame

vector - A vector for means, or NA if missing
type - Either ’raw’, ’cov’, or ’cor’

numObs - The number of observations

The ’name’ slot is the name of the MxData object.

The ‘observed’ slot is used to contain data, either as a matrix or as a data frame. Use of the data in
this slot by other functions depends on the value of the ’type’ slot. When ’type’ is equal to ’cov’ or
’cor’, the data input into the ’matrix’ slot should be a symmetric matrix or data frame.

The ’vector’ slot is used to contain a vector of numeric values, which is used as a vector of means
for MxData objects with ’type’ equal to ’cov’ or ’cor’. This slot may be used in estimation using
the mxFitFunctionML function.

The ’type’ slot may take one of four supported values:

raw The contents of the ‘observed’ slot are treated as raw data. Missing values are permitted and
must be designated as the system missing value. The ’vector’ and ’numObs’ slots cannot be
specified, as the ’vector’ argument is not relevant and the ’numObs’ argument is automati-
cally populated with the number of rows in the data. Data of this type may use the mxFit-
FunctionML function as its fit function in MxModel objects, which can deal with covariance
estimation under full-information maximum likelihood.

146 mxDataDynamic

cov The contents of the ‘observed’ slot are treated as a covariance matrix. The ’vector’ argument
is not required, but may be included for estimations involving means. The ’numObs’ slot is
required. Data of this type may use fit functions such as the mxFitFunctionML, depending on
the specified model.

cor The contents of the ‘observed’ slot are treated as a correlation matrix. The ’vector’ argument
is not required, but may be included for estimations involving means. The ’numObs’ slot is
required. Data of this type may use fit functions such as the mxFitFunctionML, depending on
the specified model.

The ’numObs’ slot describes the number of observations in the data. If ’type’ equals ’raw’, then
’numObs’ is automatically populated as the number of rows in the matrix or data frame in the
‘observed’ slot. If ’type’ equals ’cov’ or ’cor’, then this slot must be input using the ’numObs’
argument in the mxData function when the MxData argument is created.

MxData objects may not be included in MxAlgebra objects or use the mxFitFunctionAlgebra func-
tion. If these capabilities are desired, data should be appropriately input or transformed using the
mxMatrix and mxAlgebra functions.

While column names are stored in the ‘observed’ slot of MxData objects, these names are not
recognized as variable names in MxPath objects. Variable names must be specified using the ’man-
ifestVars’ argument of the mxModel function prior to use in MxPath objects.

The mxData function does not currently place restrictions on the size, shape, or symmetry of matri-
ces input into the ‘observed’ argument. While it is possible to specify MxData objects as covariance
or correlation matrices that do not have the properties commonly associated with these matrices,
failure to correctly specify these matrices will likely lead to problems in model estimation.

References

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.

See Also

mxData for creating MxData objects, matrix and data.frame for objects which may be entered as
arguments in the ’matrix’ slot. More information about the OpenMx package may be found here.

mxDataDynamic Create dynamic data

Description

Create dynamic data

Usage

mxDataDynamic(type, ..., expectation, verbose = 0L)

https://openmx.ssri.psu.edu/documentation/

MxDataStatic-class 147

Arguments

type type of data

... Not used. Forces remaining arguments to be specified by name.

expectation the name of the expectation to provide the data

verbose Increase runtime debugging output

MxDataStatic-class Create static data

Description

Internal static data class.

Details

Not to be used.

mxDataWLS Create legacy MxData Object for Least Squares (WLS, DWLS, ULS)
Analyses

Description

This function creates a new MxData object of type “ULS” (unweighted least squares), “WLS”
(weighted least squares) or “DWLS” (diagonally-weighted least squares). The appropriate fit func-
tion to include with these models is mxFitFunctionWLS

note: This function continues to work, but is deprecated. Use mxData and mxFitFunctionWLS
instead.

Usage

mxDataWLS(data, type = "WLS", useMinusTwo = TRUE, returnInverted = TRUE,
fullWeight = TRUE, suppressWarnings = TRUE, allContinuousMethod =

c("cumulants", "marginals"), silent=!interactive())

Arguments

data A matrix or data.frame which provides raw data to be used for WLS.

type A character string ’WLS’ (default), ’DWLS’, or ’ULS’ for weighted, diagonally
weighted, or unweighted least squares, respectively

useMinusTwo Logical indicating whether to use -2LL (default) or -LL.

returnInverted Logical indicating whether to return the information matrix (default) or the co-
variance matrix.

148 mxDataWLS

fullWeight Logical determining if the full weight matrix is returned (default). Needed for
standard error and quasi-chi-squared calculation.

suppressWarnings

Logical that determines whether to suppress diagnostic warnings. These warn-
ings are likely only helpful to developers.

allContinuousMethod

A character string ’cumulants’ (default) or ’marginals’. See mxFitFunction-
WLS.

silent Whether to report progress

Details

The mxDataWLS function creates an MxData object, which can be used in MxModel objects. This
function takes raw data and returns an MxData object to be used in a model to fit with weighted least
squares.

note: This function continues to work, but is deprecated. Use mxData and mxFitFunctionWLS
instead.

Value

Returns a new MxData object.

References

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.

Browne, M. W. (1984). Asymptotically Distribution-Free Methods for the Analysis of Covariance
Structures. British Journal of Mathematical and Statistical Psychology, 37, 62-83.

See Also

mxFitFunctionWLS. MxData for the S4 class created by mxData. matrix and data.frame for objects
which may be entered as arguments in the ‘observed’ slot. More information about the OpenMx
package may be found here.

Examples

Create and fit a model using mxMatrix, mxAlgebra, mxExpectationNormal, and mxFitFunctionWLS

library(OpenMx)

Simulate some data

x=rnorm(1000, mean=0, sd=1)
y= 0.5*x + rnorm(1000, mean=0, sd=1)
tmpFrame <- data.frame(x, y)
tmpNames <- names(tmpFrame)
wdata <- mxDataWLS(tmpFrame)

Define the matrices

https://openmx.ssri.psu.edu/documentation/

mxDescribeDataWLS 149

S <- mxMatrix(type = "Full", nrow = 2, ncol = 2, values=c(1,0,0,1),
free=c(TRUE,FALSE,FALSE,TRUE), labels=c("Vx", NA, NA, "Vy"), name = "S")

A <- mxMatrix(type = "Full", nrow = 2, ncol = 2, values=c(0,1,0,0),
free=c(FALSE,TRUE,FALSE,FALSE), labels=c(NA, "b", NA, NA), name = "A")

I <- mxMatrix(type="Iden", nrow=2, ncol=2, name="I")

Define the expectation

expCov <- mxAlgebra(solve(I-A) %*% S %*% t(solve(I-A)), name="expCov")
expFunction <- mxExpectationNormal(covariance="expCov", dimnames=tmpNames)

Choose a fit function

fitFunction <- mxFitFunctionWLS()

Define the model

tmpModel <- mxModel(model="exampleModel", S, A, I, expCov, expFunction, fitFunction,
wdata)

Fit the model and print a summary

tmpModelOut <- mxRun(tmpModel)
summary(tmpModelOut)

mxDescribeDataWLS Determine whether a dataset will have weights and summary statistics
for the means if used with mxFitFunctionWLS

Description

Given either a data.frame or an mxData of type raw, this function determines whether mxFitFunctionWLS
will generate expectations for means.

Usage

mxDescribeDataWLS(
data,
allContinuousMethod = c("cumulants", "marginals"),
verbose = FALSE

)

Arguments

data the (currently raw) data being used in a mxFitFunctionWLS model.
allContinuousMethod

the method used to process data when all columns are continuous.
verbose logical. Whether to report diagnostics.

150 MxDirectedGraph-class

Details

All-continuous data processed using the "cumulants" method lack means, while all continuous data
processed with allContinuousMethod = "marginals" will have means.

When data are not all continuous, allContinuousMethod is ignored, and means are modelled.

Value

- list describing the data.

See Also

- mxFitFunctionWLS, omxAugmentDataWithWLSSummary

Examples

====================================
= All continuous, data.frame input =
====================================

tmp = mxDescribeDataWLS(mtcars, allContinuousMethod= "cumulants", verbose = TRUE)
tmp$hasMeans # FALSE - no means with cumulants
tmp = mxDescribeDataWLS(mtcars, allContinuousMethod= "marginals")
tmp$hasMeans # TRUE we get means with marginals

==========================
= mxData object as input =
==========================
tmp = mxData(mtcars, type="raw")
mxDescribeDataWLS(tmp, allContinuousMethod= "cumulants", verbose = TRUE)$hasMeans # FALSE
mxDescribeDataWLS(tmp, allContinuousMethod= "marginals")$hasMeans # TRUE

=======================================
= One var is a factor: Means modelled =
=======================================
tmp = mtcars
tmp$cyl = factor(tmp$cyl)
mxDescribeDataWLS(tmp, allContinuousMethod= "cumulants")$hasMeans # TRUE - always has means
mxDescribeDataWLS(tmp, allContinuousMethod= "marginals")$hasMeans # TRUE

MxDirectedGraph-class MxDirectedGraph

Description

This is an internal class and should not be used directly. It is a class for directed graphs.

mxEval 151

mxEval Evaluate Values in MxModel

Description

This function can be used to evaluate an arbitrary R expression that includes named entities from a
MxModel object, or labels from a MxMatrix object.

Usage

mxEval(expression, model, compute = FALSE, show = FALSE, defvar.row = 1,
cache = new.env(parent = emptyenv()), cacheBack = FALSE, .extraBack=0L)

mxEvalByName(name, model, compute = FALSE, show = FALSE, defvar.row = 1,
cache = new.env(parent = emptyenv()), cacheBack = FALSE, .extraBack=0L)

Arguments

expression An arbitrary R expression.

model The model in which to evaluate the expression.

compute If TRUE then compute the value of algebra expressions and populate square
bracket substitutions.

show If TRUE then print the translated expression.

defvar.row The row number for definition variables when compute=TRUE; defaults to 1.
When compute=FALSE, values for definition variables are always taken from
the first (i.e., first before any automated sorting is done) row of the raw data.

cache An R environment of matrix values used to speedup computation.

cacheBack If TRUE then return the list pair (value, cache).

name The character name of an object to evaluate.

.extraBack Depth of original caller in count of stack frames (environments).

Details

[Stable] The argument ‘expression’ is an arbitrary R expression. Any named entities that are used
within the R expression are translated into their current value from the model. Any labels from
the matrices within the model are translated into their current value from the model. Finally the
expression is evaluated and the result is returned. To enable debugging, the ‘show’ argument has
been provided. The most common mistake when using this function is to include named entities in
the model that are identical to R function names. For example, if a model contains a named entity
named ‘c’, then the following mxEval call will return an error: mxEval(c(A, B, C), model).

The mxEvalByName function is a wrapper around mxEval that takes a character instead of an R
expression.

If ‘compute’ is FALSE, then MxAlgebra expressions return their current values as they have been
computed by the optimization call (using mxRun). If the ‘compute’ argument is TRUE, then MxAl-
gebra expressions will be calculated in R and square bracket substitutions will be performed. Any

152 mxEvaluateOnGrid

references to an objective function that has not yet been calculated will return a 1 x 1 matrix with a
value of NA.

The ‘cache’ is used to speedup calculation by storing previously computing values. The cache is a
list of matrices, such that names(cache) must all be of the form “modelname.entityname”. Setting
‘cacheBack’ to TRUE will return the pair list(value, cache) where value is the result of the mxEval()
computation and cache is the updated cache.

References

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.

See Also

mxAlgebra to create algebraic expressions inside your model and mxModel for the model object
mxEval looks inside when evaluating.

Examples

library(OpenMx)

Set up a 1x1 matrix
matrixA <- mxMatrix("Full", nrow = 1, ncol = 1, values = 1, name = "A")

Set up an algebra
algebraB <- mxAlgebra(A + A, name = "B")

Put them both in a model
testModel <- mxModel(model="testModel3", matrixA, algebraB)

Even though the model has not been run, we can evaluate the algebra
given the starting values in matrixA.
mxEval(B, testModel, compute=TRUE)

If we just print the algebra, we can see it has not been evaluated
testModel$B

mxEvaluateOnGrid Evaluate an algebra on an abscissa grid and collect column results

Description

This function evaluates an algebra on a grid of points provided in an auxiliary abscissa matrix.

Usage

mxEvaluateOnGrid(algebra, abscissa)

https://openmx.ssri.psu.edu/documentation/

MxExpectation-class 153

Arguments

algebra the name of the single column matrix to be evaluated.

abscissa the name of the abscissa matrix. See details.

Details

The abscissa matrix must be in a specific format. The variables are in the rows. Abscissa row names
must match names of free variables. The grid points are in columns. For each point (column), the
free variables are set to the given values and the algebra is re-evaluated. The resulting columns are
collected as the result.

Value

Returns the collected columns.

Examples

library(OpenMx)

test2 <- mxModel("test2",
mxMatrix(values=1.1, nrow=1, ncol=1, free=TRUE, name="thang"),
mxMatrix(nrow=1, ncol=1, labels="abscissa1", free=TRUE, name="currentAbscissa"),
mxMatrix(values=-2:2, nrow=1, ncol=5, name="abscissa",
dimnames=list(c('abscissa1'), NULL)),

mxAlgebra(rbind(currentAbscissa + thang, currentAbscissa * thang), name="stuff"),
mxAlgebra(mxEvaluateOnGrid(stuff, abscissa), name="grid"))

test2 <- mxRun(test2)
omxCheckCloseEnough(test2$grid$result, matrix(c(-1:3 + .1, -2:2 * 1.1), ncol=5, nrow=2,byrow=TRUE))

MxExpectation-class MxExpectation

Description

This is an internal class and should not be used directly.

154 mxExpectationBA81

mxExpectationBA81 Create a Bock & Aitkin (1981) expectation

Description

Used in conjunction with mxFitFunctionML, this expectation models ordinal data with a modest
number of latent dimensions. Currently, only a multivariate Normal latent distribution is supported.
An equal-interval quadrature is used to integrate over the latent distribution. When all items use the
graded response model and items are assumed conditionally independent then item factor analysis
is equivalent to a factor model.

Usage

mxExpectationBA81(
ItemSpec,
item = "item",
...,
qpoints = 49L,
qwidth = 6,
mean = "mean",
cov = "cov",
verbose = 0L,
weightColumn = NA_integer_,
EstepItem = NULL,
debugInternal = FALSE

)

Arguments

ItemSpec a single item model (to replicate) or a list of item models in the same order as
the column of ItemParam

item the name of the mxMatrix holding item parameters with one column for each
item model with parameters starting at row 1 and extra rows filled with NA

... Not used. Forces remaining arguments to be specified by name.

qpoints number of points to use for equal interval quadrature integration (default 49L)

qwidth the width of the quadrature as a positive Z score (default 6.0)

mean the name of the mxMatrix holding the mean vector

cov the name of the mxMatrix holding the covariance matrix

verbose the level of runtime diagnostics (default 0L)

weightColumn the name of the column in the data containing the row weights (DEPRECATED)

EstepItem a simple matrix of item parameters for the E-step. This option is mainly of use
for debugging derivatives.

debugInternal when enabled, some of the internal tables are returned in $debug. This is mainly
of use to developers.

mxExpectationBA81 155

Details

The conditional likelihood of response xij to item j from person i with item parameters ξj and
latent ability θi is

L(xi|ξ, θi) =
∏
j

Pr(pick = xij |ξj , θi).

Items are assumed to be conditionally independent. That is, the outcome of one item is assumed to
not influence another item after controlling for ξ and θi.

The unconditional likelihood is obtained by integrating over the latent distribution θi,

L(xi|ξ) =
∫

L(xi|ξ, θi)L(θi)dθi.

With an assumption that examinees are independently and identically distributed, we can sum the
individual log likelihoods,

L =
∑
i

logL(xi|ξ).

Response models Pr(pick = xij |ξj , θi) are not implemented in OpenMx, but are imported from
the RPF package. You must pass a list of models obtained from the RPF package in the ‘ItemSpec’
argument. All item models must use the same number of latent factors although some of these
factor loadings can be constrained to zero in the item parameter matrix. The ‘item’ matrix contains
item parameters with one item per column in the same order at ItemSpec.

The ‘qpoints’ and ‘qwidth’ argument control the fineness and width, respectively, of the equal-
interval quadrature grid. The integer ‘qpoints’ is the number of points per dimension. The quadra-
ture extends from negative qwidth to positive qwidth for each dimension. Since the latent distribu-
tion defaults to standard Normal, qwidth can be regarded as a value in Z-score units.

The optional ‘mean’ and ‘cov’ arguments permit modeling of the latent distribution in multigroup
models (in a single group, the latent distribution must be fixed). A separate latent covariance model
is used in combination with mxExpectationBA81. The point mass distribution contained in the
quadrature is converted into a multivariate Normal distribution by mxDataDynamic. Typically mx-
ExpectationNormal is used to fit a multivariate Normal model to these data. Some intricate pro-
gramming is required. Examples are given in the manual. mxExpectationBA81 uses a sample size
of N for the covariance matrix. This differs from mxExpectationNormal which uses a sample size
of N − 1.

The ‘verbose’ argument enables diagnostics that are mainly of interest to developers.

When a two-tier covariance matrix is recognized, this expectation automatically enables analytic
dimension reduction (Cai, 2010).

The optional ‘weightColumn’ is superseded by the weight argument in mxData. For data with many
repeated response patterns, model evaluation time can be reduced. An easy way to transform your
data into this form is to use compressDataFrame. Non-integer weights are supported except for
EAPscores.

mxExpectationBA81 requires mxComputeEM. During a typical optimization run, latent abilities
are assumed for examinees during the E-step. These examinee scores are implied by the previous

https://cran.r-project.org/package=rpf

156 mxExpectationBA81

iteration’s parameter vector. This can be overridden using the ‘EstepItem’ argument. This is mainly
of use to developers for checking item parameter derivatives.

Common univariate priors are available from univariatePrior. The standard Normal distribution of
the quadrature acts like a prior distribution for difficulty. It is not necessary to impose any additional
Bayesian prior on difficulty estimates (Baker & Kim, 2004, p. 196).

Many estimators are available for standard errors. Oakes is recommended (see mxComputeEM).
Also available are Supplement EM (mxComputeEM), Richardson extrapolation (mxComputeNu-
mericDeriv), likelihood-based confidence intervals (mxCI), and the covariance of the rowwise gra-
dients.

References

Bock, R. D., & Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters:
Application of an EM algorithm. Psychometrika, 46, 443-459.

Cai, L. (2010). A two-tier full-information item factor analysis model with applications. Psychome-
trika, 75, 581-612.

Pritikin, J. N., Hunter, M. D., & Boker, S. M. (2015). Modular open-source software for Item Factor
Analysis. Educational and Psychological Measurement, 75(3), 458-474

Pritikin, J. N. & Schmidt, K. M. (in press). Model builder for Item Factor Analysis with OpenMx.
R Journal.

Seong, T. J. (1990). Sensitivity of marginal maximum likelihood estimation of item and ability
parameters to the characteristics of the prior ability distributions. Applied Psychological Measure-
ment, 14(3), 299-311.

See Also

RPF

Examples

library(OpenMx)
library(rpf)

numItems <- 14

Create item specifications
spec <- list()
for (ix in 1:numItems) { spec[[ix]] <- rpf.grm(outcomes=sample(2:7, 1)) }
names(spec) <- paste("i", 1:numItems, sep="")

Generate some random "true" parameter values
correct.mat <- mxSimplify2Array(lapply(spec, rpf.rparam))

Generate some example data
data <- rpf.sample(500, spec, correct.mat)

Create a matrix of item parameters with starting values
imat <- mxMatrix(name="item",

values=mxSimplify2Array(lapply(spec, rpf.rparam)))

https://cran.r-project.org/package=rpf

mxExpectationGREML 157

rownames(imat)[1] <- 'f1'
imat$free[!is.na(correct.mat)] <- TRUE
imat$values[!imat$free] <- NA

Create a compute plan
plan <- mxComputeSequence(list(

mxComputeEM('expectation', 'scores',
mxComputeNewtonRaphson(), information="oakes1999",
infoArgs=list(fitfunction='fitfunction')),

mxComputeHessianQuality(),
mxComputeStandardError(),
mxComputeReportDeriv()))

Build the OpenMx model
grmModel <- mxModel(model="grm1", imat,

mxData(observed=data, type="raw"),
mxExpectationBA81(ItemSpec=spec),
mxFitFunctionML(),
plan)

grmModel <- mxRun(grmModel)
summary(grmModel)

mxExpectationGREML Create MxExpectationGREML Object

Description

This function creates a new MxExpectationGREML object.

Usage

mxExpectationGREML(V, yvars=character(0), Xvars=list(), addOnes=TRUE, blockByPheno=TRUE,
staggerZeroes=TRUE, dataset.is.yX=FALSE, casesToDropFromV=integer(0))

Arguments

V Character string; the name of the MxAlgebra or MxMatrix to serve as the ’V’
matrix (the model-expected covariance matrix). Internally, the ’V’ matrix is
assumed to be symmetric, and its elements above the main diagonal are ignored.

yvars, Xvars, addOnes, blockByPheno, staggerZeroes
Passed to mxGREMLDataHandler().

dataset.is.yX Logical; defaults to FALSE. If TRUE, then the first column of the raw dataset is
taken as-is to be the ’y’ phenotype vector, and the remaining columns are taken
as-is to be the ’X’ matrix of covariates. In this case, mxGREMLDataHandler()
is never internally called at runtime, and all other arguments besides V and
casesToDropFromV are ignored.

158 mxExpectationGREML

casesToDropFromV

Integer vector. Its elements are the numbers of the rows and columns of covari-
ance matrix ’V’ to be dropped at runtime, usually because they correspond to
rows of ’y’ or ’X’ that contained missing observations. By default, no cases are
dropped from ’V.’ Ignored unless dataset.is.yX=TRUE.

Details

"GREML" stands for "genomic-relatedness-matrix restricted maximum-likelihood." In the strictest
sense of the term, it refers to genetic variance-component estimation from matrices of subjects’
pairwise degree of genetic relatedness, as calculated from genome-wide marker data. It is from
this original motivation that some of the terminology originates, such as calling ’y’ the "pheno-
type" vector. However, OpenMx’s implementation of GREML is applicable for analyses from any
subject-matter domain, and in which the following assumptions are reasonable:

1. Conditional on ’X’ (the covariates), the phenotype vector (response variable) ’y’ is a single
realization from a multivariate-normal distribution having (in general) a dense covariance ma-
trix, ’V.’

2. The parameters of the covariance matrix, such as variance components, are of primary interest.

3. The random effects are normally distributed.

4. Weighted least-squares regression, using the inverse of ’V’ as a weight matrix, is an adequate
model for the phenotypic means. Note that the regression coefficients are not actually free
parameters to be numerically optimized.

Computationally, the chief distinguishing feature of an OpenMx GREML analysis is that the phe-
notype vector, ’y,’ is a single realization of a random vector that, in general, cannot be partitioned
into independent subvectors. For this reason, definition variables are not compatible (and should be
unnecessary with) GREML expectation. GREML expectation can still be used if the covariance ma-
trix is sparse, but as of this writing, OpenMx does not take advantage of the sparseness to improve
performance. Because of the limitations of restricted maximum likelihood, GREML expectation is
presently incompatible with ordinal variables.

Value

Returns a new object of class MxExpectationGREML.

References

Kirkpatrick RM, Pritikin JN, Hunter MD, & Neale, MC. (2021). Combining structural-equation
modeling with genomic-relatedness matrix restricted maximum likelihood in OpenMx. In press at
Behavior Genetics. https://doi.org/10.1007/s10519-020-10037-5

One of the first uses of the acronym "GREML":
Benjamin DJ, Cesarini D, van der Loos MJHM, Dawes CT, Koellinger PD, et al. (2012) The
genetic architecture of economic and political preferences. Proceedings of the National Academy
of Sciences 109: 8026-8031. doi: 10.1073/pnas.1120666109

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.

https://openmx.ssri.psu.edu/documentation/

MxExpectationGREML-class 159

See Also

See MxExpectationGREML for the S4 class created by mxExpectationGREML(). More information
about the OpenMx package may be found here.

Examples

dat <- cbind(rnorm(100),rep(1,100))
colnames(dat) <- c("y","x")

ge <- mxExpectationGREML(V="V",yvars="y",Xvars=list("X"),addOnes=FALSE)
gff <- mxFitFunctionGREML(dV=c(ve="I"))
plan <- mxComputeSequence(freeSet=c("Ve"),steps=list(

mxComputeNewtonRaphson(fitfunction="fitfunction"),
mxComputeOnce('fitfunction',
c('fit','gradient','hessian','ihessian')),

mxComputeStandardError(),
mxComputeReportDeriv(),
mxComputeReportExpectation()

))

testmod <- mxModel(
"GREMLtest",
mxData(observed = dat, type="raw"),
mxMatrix(type = "Full", nrow = 1, ncol=1, free=TRUE,

values = 1, labels = "ve", lbound = 0.0001, name = "Ve"),
mxMatrix("Iden",nrow=100,name="I",condenseSlots=TRUE),
mxAlgebra(I %x% Ve,name="V"),
ge,
gff,
plan

)
str(testmod)

MxExpectationGREML-class

Class "MxExpectationGREML"

Description

MxExpectationGREML is a type of expectation class. It contains the necessary elements for speci-
fying a GREML model. For more information, see mxExpectationGREML().

Objects from the Class

Objects can be created by calls of the form mxExpectationGREML(V, yvars, Xvars, addOnes,
blockByPheno, staggerZeroes, dataset.is.yX, casesToDropFromV).

160 MxExpectationGREML-class

Slots

V: Object of class "MxCharOrNumber". Identifies the MxAlgebra or MxMatrix to serve as the ’V’
matrix.

yvars: Character vector. Each string names a column of the raw dataset, to be used as a pheno-
types.

Xvars: A list of data column names, specifying the covariates to be used with each phenotype.

addOnes: Logical; pertains to data-handling at runtime.

blockByPheno: Logical; pertains to data-handling at runtime.

staggerZeroes: Logical; pertains to data-handling at runtime.

dataset.is.yX: Logical; pertains to data-handling at runtime.

y: Object of class "MxData". Its observed slot will contain the phenotype vector, ’y.’

X: A matrix, to contain the ’X’ matrix of covariates.

yXcolnames: Character vector; used to store the column names of ’y’ and ’X.’

casesToDrop: Integer vector, specifying the rows and columns of the ’V’ matrix to be removed at
runtime.

b: A matrix, to contain the vector of regression coefficients calculated at runtime.

bcov: A matrix, to contain the sampling covariance matrix of the regression coefficients calculated
at runtime.

numFixEff: Integer number of covariates in ’X.’

dims: Object of class "character".

numStats: Numeric; number of observed statistics.

dataColumns: Object of class "numeric".

name: Object of class "character".

data: Object of class "MxCharOrNumber".

.runDims: Object of class "character".

Extends

Class "MxBaseExpectation", directly. Class "MxBaseNamed", by class "MxBaseExpectation", dis-
tance 2. Class "MxExpectation", by class "MxBaseExpectation", distance 2.

Methods

No methods defined with class "MxExpectationGREML" in the signature.

References

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation.

See Also

See mxExpectationGREML() for creating MxExpectationGREML objects, and for more informa-
tion generally concerning GREML analyses, including a complete example. More information
about the OpenMx package may be found here.

https://openmx.ssri.psu.edu/documentation

mxExpectationHiddenMarkov 161

Examples

showClass("MxExpectationGREML")

mxExpectationHiddenMarkov

Hidden Markov expectation

Description

Used in conjunction with mxFitFunctionML, this expectation can express a mixture model (with
the transition matrix omitted) or a Hidden Markov model.

Usage

mxExpectationHiddenMarkov(components, initial="initial", transition=NULL,
..., verbose=0L, scale=c('softmax', 'sum', 'none'))

Arguments

components A character vector of model names.

initial The name of the matrix or algebra column that specifies the initial probabilities.

transition The name of the matrix or algebra that specifies the left stochastic transition
probabilities.

... Not used. Forces remaining arguments to be specified by name.

verbose the level of runtime diagnostics

scale How the probabilities are rescaled. For ’softmax’, the coefficient-wise exponen-
tial is taken and then each column is divided by its column sum. For ’sum’, each
column is divided by its column sum. For ’none’, no scaling is done.

Details

The initial probabilities given in initial must sum to one. So too must the columns of the transition
matrix given in transition. The transitions go from a column to a row, similar to how regression
effects in the RAM structural equation models go from the column variable to the row variable.
This means transition is a left stochastic matrix.

For ease of use the raw free parameters of these matrices are rescaled by OpenMx according to
the scale argument. When scale is set to "softmax" the softmax function is applied to the initial
probabilities and the columns of the transition matrix. The softmax function is also sometimes
called multinomial logistic regression. Softmax exponentiates each element in a vector and then
divides each element by the sum of the exponentiated elements. In equation form the softmax
function is

softmax(xi) =
exi∑K
k=1

exk

162 mxExpectationHiddenMarkov

When using the softmax scaling no free parameter bounds or constraints are needed. However, for
model identification, one element of the initial probabilities vector must be fixed. If the softmax
scaling is used, then the usual choice for the fixed parameter value is zero. The regime (or latent
class or mixture component) that has its initial probability set to zero becomes the comparison
against which other probabilities are evaluated. Likewise for model identification, one element in
each column of the transition matrix must be fixed. When the softmax scaling is used, the typical
choice is to fix one element in each column to zero. Generally, one row of the transition matrix is
fixed to zero, or the diagonal elements of the transition matrix are fixed to zero.

When scale is set to "sum" then each element of the initial probabilities and each column of the
transition matrix is internally divided by its sum. When using the sum scaling, the same model
identification requirements are present. In particular, one element of the initial probabilities must
be fixed and one element in each column of the transition matrix must be fixed. The typical value to
fix these values at for sum scaling is one. Additionally when using sum scaling, all free parameters
in the initial and transition probabilities must have lower bounds of zero. In equation form the sum
scaling does the following:

sumscale(xi) =
xi∑K
k=1

xk

When scale is set to "none" then no re-scaling is done. The parameters of initial and transition
are left "as is". This can be dangerous and is not recommended for novice users. It might produce
nonsensical results particularly for hidden Markov models. However, some advanced users may find
no scaling to be advantageous for certain applications (e.g., they are providing their own scaling),
and thus it is provided as an option.

Parameters are estimated in the given scale. To obtain the initial column vector and left stochastic
transition matrix in probability units then examine the expectation’s output slot with for example
yourModel$expectation$output

Definition variables can be used to assign a separate set of mixture probabilities to each row of data.
Definition variables can be used in the initial column vector or in the transition matrix, but not in
both at the same time.

Note that, when the transition matrix is omitted, this expectation is the same as mxExpectationMix-
ture. mxGenerateData is not implemented for this type of expectation.

Examples

library(OpenMx)

start_prob <- c(.2,.4,.4)
transition_prob <- matrix(c(.8, .1, .1,
.3, .6, .1,
.1, .3, .6), 3, 3)
noise <- .5

simulate a trajectory
state <- sample.int(3, 1, prob=transition_prob %*% start_prob)
trail <- c(state)

for (rep in 1:500) {
state <- sample.int(3, 1, prob=transition_prob[,state])

mxExpectationLISREL 163

trail <- c(trail, state)
}

add noise
trailN <- sapply(trail, function(v) rnorm(1, mean=v, sd=sqrt(noise)))

classes <- list()

for (cl in 1:3) {
classes[[cl]] <- mxModel(paste0("cl", cl), type="RAM",

manifestVars=c("ob"),
mxPath("one", "ob", value=cl, free=FALSE),
mxPath("ob", arrows=2, value=noise, free=FALSE),
mxFitFunctionML(vector=TRUE))

}

m1 <-
mxModel("hmm", classes,

mxData(data.frame(ob=trailN), "raw"),
mxMatrix(nrow=3, ncol=1,

labels=paste0('i',1:3), name="initial"),
mxMatrix(nrow=length(classes), ncol=length(classes),

labels=paste0('t', 1:(length(classes) * length(classes))),
name="transition"),

mxExpectationHiddenMarkov(
components=sapply(classes, function(m) m$name),
initial="initial",
transition="transition", scale="softmax"),

mxFitFunctionML())

m1$transition$free[1:(length(classes)-1), 1:length(classes)] <- TRUE

m1 <- mxRun(m1)

summary(m1)

print(m1$expectation$output)

mxExpectationLISREL Create MxExpectationLISREL Object

Description

This function creates a new MxExpectationLISREL object.

Usage

mxExpectationLISREL(LX=NA, LY=NA, BE=NA, GA=NA, PH=NA, PS=NA, TD=NA, TE=NA, TH=NA,
TX = NA, TY = NA, KA = NA, AL = NA,
dimnames = NA, thresholds = NA,

164 mxExpectationLISREL

threshnames = deprecated(), verbose=0L, ...,
expectedCovariance=NULL, expectedMean=NULL, discrete = as.character(NA))

Arguments

LX An optional character string indicating the name of the ’LX’ matrix.

LY An optional character string indicating the name of the ’LY’ matrix.

BE An optional character string indicating the name of the ’BE’ matrix.

GA An optional character string indicating the name of the ’GA’ matrix.

PH An optional character string indicating the name of the ’PH’ matrix.

PS An optional character string indicating the name of the ’PS’ matrix.

TD An optional character string indicating the name of the ’TD’ matrix.

TE An optional character string indicating the name of the ’TE’ matrix.

TH An optional character string indicating the name of the ’TH’ matrix.

TX An optional character string indicating the name of the ’TX’ matrix.

TY An optional character string indicating the name of the ’TY’ matrix.

KA An optional character string indicating the name of the ’KA’ matrix.

AL An optional character string indicating the name of the ’AL’ matrix.

dimnames An optional character vector that is currently ignored

thresholds An optional character string indicating the name of the thresholds matrix.

threshnames [Deprecated]
verbose integer. Level of runtime diagnostic output.

... Not used. Forces remaining arguments to be specified by name.
expectedCovariance

An optional character string indicating the name of a matrix for the model im-
plied covariance.

expectedMean An optional character string indicating the name of a matrix for the model im-
plied mean.

discrete An optional character string indicating the name of the discrete matrix.

Details

Expectation functions define the way that model expectations are calculated. The mxExpectation-
LISREL calculates the expected covariance and means of a given MxData object given a LISREL
model. This model is defined by LInear Structural RELations (LISREL; Jöreskog & Sörbom, 1982,
1996). Arguments ’LX’ through ’AL’ must refer to MxMatrix objects with the associated properties
of their respective matrices in the LISREL modeling approach.

The full LISREL specification has 13 matrices and is sometimes called the extended LISREL model.
It is defined by the following equations.

η = α+Bη + Γξ + ζ

y = τy + Λyη + ϵ

mxExpectationLISREL 165

x = τx + Λxξ + δ

The table below is provided as a quick reference to the numerous matrices in LISREL models.
Note that NX is the number of manifest exogenous (independent) variables, the number of Xs. NY
is the number of manifest endogenous (dependent) variables, the number of Ys. NK is the number
of latent exogenous variables, the number of Ksis or Xis. NE is the number of latent endogenous
variables, the number of etas.

Matrix Word Abbreviation Dimensions Expression Description
Λx Lambda x LX NX x NK Exogenous Factor Loading Matrix
Λy Lambda y LY NY x NE Endogenous Factor Loading Matrix
B Beta BE NE x NE Regressions of Latent Endogenous Variables Predicting Endogenous Variables
Γ Gamma GA NE x NK Regressions of Latent Exogenous Variables Predicting Endogenous Variables
Φ Phi PH NK x NK cov(ξ) Covariance Matrix of Latent Exogenous Variables
Ψ Psi PS NE x NE cov(ζ) Residual Covariance Matrix of Latent Endogenous Variables
Θδ Theta delta TD NX x NX cov(δ) Residual Covariance Matrix of Manifest Exogenous Variables
Θϵ Theta epsilon TE NY x NY cov(ϵ) Residual Covariance Matrix of Manifest Endogenous Variables
Θδϵ Theta delta epsilson TH NX x NY cov(δ, ϵ) Residual Covariance Matrix of Manifest Exogenous with Endogenous Variables
τx tau x TX NX x 1 Residual Means of Manifest Exogenous Variables
τy tau y TY NY x 1 Residual Means of Manifest Endogenous Variables
κ kappa KA NK x 1 mean(ξ) Means of Latent Exogenous Variables
α alpha AL NE x 1 Residual Means of Latent Endogenous Variables

From the extended LISREL model, several submodels can be defined. Subtypes of the LISREL
model are defined by setting some of the arguments of the LISREL expectation function to NA.
Note that because the default values of each LISREL matrix is NA, setting a matrix to NA can be
accomplished by simply not giving it any other value.

The first submodel is the LISREL model without means.

η = Bη + Γξ + ζ

y = Λyη + ϵ

x = Λxξ + δ

The LISREL model without means requires 9 matrices: LX, LY, BE, GA, PH, PS, TD, TE, and TH.
Hence this LISREL model has TX, TY, KA, and AL as NA. This can be accomplished be leaving
these matrices at their default values.

The TX, TY, KA, and AL matrices must be specified if either the mxData type is “cov” or “cor”
and a means vector is provided, or if the mxData type is “raw”. Otherwise the TX, TY, KA, and AL
matrices are ignored and the model without means is estimated.

A second submodel involves only endogenous variables.

η = Bη + ζ

y = Λyη + ϵ

166 mxExpectationLISREL

The endogenous-only LISREL model requires 4 matrices: LY, BE, PS, and TE. The LX, GA, PH,
TD, and TH must be NA in this case. However, means can also be specified, allowing TY and AL
if the data are raw or if observed means are provided.

Another submodel involves only exogenous variables.

x = Λxξ + δ

The exogenous-model model requires 3 matrices: LX, PH, and TD. The LY, BE, GA, PS, TE, and
TH matrices must be NA. However, means can also be specified, allowing TX and KA if the data
are raw or if observed means are provided.

The model that is run depends on the matrices that are not NA. If all 9 matrices are not NA, then the
full model is run. If only the 4 endogenous matrices are not NA, then the endogenous-only model
is run. If only the 3 exogenous matrices are not NA, then the exogenous-only model is run. If some
endogenous and exogenous matrices are not NA, but not all of them, then appropriate errors are
thrown. Means are included in the model whenever their matrices are provided.

The MxMatrix objects included as arguments may be of any type, but should have the properties
described above. The mxExpectationLISREL will not return an error for incorrect specification, but
incorrect specification will likely lead to estimation problems or errors in the mxRun function.

Like the mxExpectationRAM, the mxExpectationLISREL evaluates with respect to an MxData
object. The MxData object need not be referenced in the mxExpectationLISREL function, but must
be included in the MxModel object. mxExpectationLISREL requires that the ’type’ argument in the
associated MxData object be equal to ’cov’, ’cor’, or ’raw’.

To evaluate, place mxExpectationLISREL objects, the mxData object for which the expected co-
variance approximates, referenced MxAlgebra and MxMatrix objects, and optional MxBounds and
MxConstraint objects in an MxModel object. This model may then be evaluated using the mxRun
function. The results of the optimization can be found in the ’output’ slot of the resulting model,
and may be obtained using the mxEval function.

Value

Returns a new MxExpectationLISREL object. One and only one MxExpectationLISREL object
can be included with models using one and only one fit function object (e.g., MxFitFunctionML)
and with referenced MxAlgebra, MxData and MxMatrix objects.

References

Jöreskog, K. G. & Sörbom, D. (1996). LISREL 8: User’s Reference Guide. Lincolnwood, IL:
Scientific Software International.

Jöreskog, K. G. & Sörbom, D. (1982). Recent developments in structural equation modeling. Jour-
nal of Marketing Research, 19, 404-416.

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.

See Also

demo("LISRELJointFactorModel")

https://openmx.ssri.psu.edu/documentation/

mxExpectationLISREL 167

Examples

Create and fit a model using mxExpectationLISREL, and mxFitFunctionML

library(OpenMx)

vNames <- paste("v",as.character(1:6),sep="")
dimList <- list(vNames, vNames)
covData <- matrix(

c(0.9223099, 0.1862938, 0.4374359, 0.8959973, 0.9928430, 0.5320662,
0.1862938, 0.2889364, 0.3927790, 0.3321639, 0.3371594, 0.4476898,
0.4374359, 0.3927790, 1.0069552, 0.6918755, 0.7482155, 0.9013952,
0.8959973, 0.3321639, 0.6918755, 1.8059956, 1.6142005, 0.8040448,
0.9928430, 0.3371594, 0.7482155, 1.6142005, 1.9223567, 0.8777786,
0.5320662, 0.4476898, 0.9013952, 0.8040448, 0.8777786, 1.3997558
), nrow=6, ncol=6, byrow=TRUE, dimnames=dimList)

Create LISREL matrices

mLX <- mxMatrix("Full", values=c(.5, .6, .8, rep(0, 6), .4, .7, .5),
name="LX", nrow=6, ncol=2,
free=c(TRUE,TRUE,TRUE,rep(FALSE, 6),TRUE,TRUE,TRUE),
dimnames=list(vNames, c("x1","x2")))

mTD <- mxMatrix("Diag", values=c(rep(.2, 6)),
name="TD", nrow=6, ncol=6, free=TRUE,
dimnames=dimList)

mPH <- mxMatrix("Symm", values=c(1, .3, 1),
name="PH", nrow=2, ncol=2, free=c(FALSE, TRUE, FALSE),
dimnames=list(c("x1","x2"),c("x1","x2")))

Create a LISREL expectation with LX, TD, and PH matrix names

expFunction <- mxExpectationLISREL(LX="LX", TD="TD", PH="PH")

Create fit function and data

tmpData <- mxData(observed=covData, type="cov", numObs=100)
fitFunction <- mxFitFunctionML()

Create the model, fit it, and print a summary.

tmpModel <- mxModel(model="exampleModel",
mLX, mTD, mPH, expFunction, fitFunction, tmpData)

tmpModelOut <- mxRun(tmpModel)
summary(tmpModelOut)

#--------------------------------------
Fit factor model with means

require(OpenMx)

data(demoOneFactor)

168 mxExpectationMixture

nvar <- ncol(demoOneFactor)
varnames <- colnames(demoOneFactor)

factorMeans <- mxMatrix("Zero", 1, 1, name="Kappa",
dimnames=list("F1", NA))

xIntercepts <- mxMatrix("Full", nvar, 1, free=TRUE, name="TauX",
dimnames=list(varnames, NA))

factorLoadings <- mxMatrix("Full", nvar, 1, TRUE, .6, name="LambdaX",
labels=paste("lambda", 1:nvar, sep=""),
dimnames=list(varnames, "F1"))

factorCovariance <- mxMatrix("Diag", 1, 1, FALSE, 1, name="Phi")
xResidualVariance <- mxMatrix("Diag", nvar, nvar, TRUE, .2, name="ThetaDelta",

labels=paste("theta", 1:nvar, sep=""))

liModel <- mxModel(model="LISREL Factor Model",
factorMeans, xIntercepts, factorLoadings,
factorCovariance, xResidualVariance,
mxExpectationLISREL(LX="LambdaX", PH="Phi",
TD="ThetaDelta", TX="TauX", KA="Kappa"),
mxFitFunctionML(),
mxData(cov(demoOneFactor), "cov",
means=colMeans(demoOneFactor), numObs=nrow(demoOneFactor))
)

liRun <- mxRun(liModel)

summary(liRun)

mxExpectationMixture Mixture expectation

Description

Used in conjunction with mxFitFunctionML, this expectation can express a mixture model.

Usage

mxExpectationMixture(components, weights="weights",
..., verbose=0L, scale=c('softmax', 'sum', 'none'))

Arguments

components A character vector of model names.

weights The name of the matrix or algebra column that specifies the component weights.

... Not used. Forces remaining arguments to be specified by name.

verbose the level of runtime diagnostics

scale How the probabilities are rescaled. For ’softmax’, the coefficient-wise exponen-
tial is taken and then each column is divided by its column sum. For ’sum’, each
column is divided by its column sum. For ’none’, no scaling is done.

mxExpectationMixture 169

Details

The mixture probabilities given in weights must sum to one. As such for K mixture components,
only K − 1 of the elements of weights can be estimated. The mixture probabilities in weights
should be a column vector (i.e., a K by 1 matrix, or algebra with a K by 1 result).

For ease of use the raw free parameters of weights can be rescaled by OpenMx according to the
scale argument. When scale is set to "softmax" the softmax function is applied to the weights.
The softmax function is also sometimes called multinomial logistic regression. Softmax exponen-
tiates each element in a vector and then divides each element by the sum of the exponentiated
elements. In equation form the softmax function is

softmax(xi) =
exi∑K
k=1

exk

When using the softmax scaling no free parameter bounds or constraints are needed. However, for
model identification, one element of the weights vector must be fixed. If the softmax scaling is used,
then the usual choice for the fixed parameter value is zero. The latent class or mixture component
that has its raw weight set to zero becomes the comparison against which other probabilities are
evaluated.

When scale is set to "sum" then each element of the weights matrix is internally divided by its sum.
When using the sum scaling, the same model identification requirements are present. In particular,
one element of the weights must be fixed. The typical value to fix this value at for sum scaling
is one. Additionally when using sum scaling, all free parameters in the weights must have lower
bounds of zero. In equation form the sum scaling does the following:

sumscale(xi) =
xi∑K
k=1

xk

When scale is set to "none" then no re-scaling is done. The weights are left "as is". This can be
dangerous and is not recommended for novice users. However, some advanced users may find no
scaling to be advantageous for certain applications (e.g., they are providing their own scaling), and
thus it is provided as an option.

Parameters are estimated in the given scale. To obtain the weights column vector, examine the
expectation’s output slot with for example yourModel$expectation$output

An extension of this expectation to a Hidden Markov model is available with mxExpectationHid-
denMarkov. mxGenerateData is not implemented for this type of expectation.

Examples

library(OpenMx)

set.seed(1)

trail <- c(rep(1,480), rep(2,520))
trailN <- sapply(trail, function(v) rnorm(1, mean=v))

classes <- list()

for (cl in 1:2) {

170 mxExpectationNormal

classes[[cl]] <- mxModel(paste0("class", cl), type="RAM",
manifestVars=c("ob"),
mxPath("one", "ob", value=cl, free=FALSE),
mxPath("ob", arrows=2, value=1, free=FALSE),
mxFitFunctionML(vector=TRUE))

}

mix1 <- mxModel(
"mix1", classes,
mxData(data.frame(ob=trailN), "raw"),
mxMatrix(values=1, nrow=1, ncol=2, free=c(FALSE,TRUE), name="weights"),
mxExpectationMixture(paste0("class",1:2), scale="softmax"),
mxFitFunctionML())

mix1Fit <- mxRun(mix1)

mxExpectationNormal Create MxExpectationNormal Object

Description

This function creates an MxExpectationNormal object.

Usage

mxExpectationNormal(covariance, means=NA, dimnames = NA, thresholds = NA,
threshnames = dimnames, ...,

discrete = as.character(NA), discreteSpec=NULL)

Arguments

covariance A character string indicating the name of the expected covariance algebra.

means A character string indicating the name of the expected means algebra.

dimnames An optional character vector to be assigned to the dimnames of the covariance
and means algebras.

thresholds An optional character string indicating the name of the thresholds matrix.

threshnames An optional character vector to be assigned to the column names of the thresh-
olds matrix.

... Not used. Forces remaining arguments to be specified by name.

discrete An optional character string indicating the name of the discrete matrix.

discreteSpec An optional matrix containing maximum counts and model IDs.

mxExpectationNormal 171

Details

Expectation functions define the way that model expectations are calculated. The mxExpectation-
Normal function uses the algebra defined by the ’covariance’ and ’means’ arguments to define the
expected covariance and means under the assumption of multivariate normality. The ’covariance’
argument takes an MxAlgebra object, which defines the expected covariance of an associated Mx-
Data object. The ’means’ argument takes an MxAlgebra object, which defines the expected means
of an associated MxData object. The ’dimnames’ arguments takes an optional character vector. If
this argument is not a single NA, then this vector is used to assign the dimnames of the means vector
as well as the row and columns dimnames of the covariance matrix.

thresholds: The name of the thresholds matrix. When needed (for modelling ordinal data), this
matrix should be created using mxMatrix(). The thresholds matrix must have as many columns as
there are ordinal variables in the model, and number of rows equal to one fewer than the maximum
number of levels found in the ordinal variables. The starting values of this matrix must also be set
to reasonable values. Fill each column with a set of ordered start thresholds, one for each level of
this column’s factor levels minus 1. These thresholds may be free if you wish them to be estimated,
or fixed. The unused rows in each column, if any, can be set to any value including NA.

threshnames: A character vector consisting of the variables in the thresholds matrix, i.e., the names
of ordinal variables in a model. This is necessary for OpenMx to map the thresholds matrix columns
onto the variables in your data. If you set the dimnames of the columns in the thresholds matrix
then threshnames is not needed.

Usage Notes: dimnames must be supplied where the matrices referenced by the covariance and
means algebras are not themselves labeled. Failure to do so leads to an error noting that the covari-
ance or means matrix associated with the FIML objective does not contain dimnames.

mxExpectationNormal evaluates with respect to an MxData object. The MxData object need not
be referenced in the mxExpectationNormal function, but must be included in the MxModel object.
When the ’type’ argument in the associated MxData object is equal to ’raw’, missing values are
permitted in the associated MxData object.

To evaluate, place an mxExpectationNormal object, the mxData object for which the expected co-
variance approximates, referenced MxAlgebra and MxMatrix objects, optional MxBounds or Mx-
Constraint objects, and an mxFitFunction such as mxFitFunctionML in an MxModel object. This
model may then be evaluated using the mxRun function.

The results of the optimization can be reported using the summary function, or accessed directly in
the ’output’ slot of the resulting model (i.e., modelName$output). Components of the output may
be referenced using the Extract functionality.

Value

Returns an MxExpectationNormal object.

References

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.

Examples

Create and fit a model using mxMatrix, mxAlgebra,
mxExpectationNormal, and mxFitFunctionML

https://openmx.ssri.psu.edu/documentation/

172 mxExpectationRAM

library(OpenMx)

Simulate some data

x=rnorm(1000, mean=0, sd=1)
y= 0.5*x + rnorm(1000, mean=0, sd=1)
tmpFrame <- data.frame(x, y)
tmpNames <- names(tmpFrame)

Define the matrices

M <- mxMatrix(type = "Full", nrow = 1, ncol = 2, values=c(0,0),
free=c(TRUE,TRUE), labels=c("Mx", "My"), name = "M")

S <- mxMatrix(type = "Full", nrow = 2, ncol = 2, values=c(1,0,0,1),
free=c(TRUE,FALSE,FALSE,TRUE), labels=c("Vx", NA, NA, "Vy"),
name = "S")

A <- mxMatrix(type = "Full", nrow = 2, ncol = 2, values=c(0,1,0,0),
free=c(FALSE,TRUE,FALSE,FALSE), labels=c(NA, "b", NA, NA),
name = "A")

I <- mxMatrix(type="Iden", nrow=2, ncol=2, name="I")

Define the expectation

expCov <- mxAlgebra(solve(I-A) %*% S %*% t(solve(I-A)), name="expCov")
expFunction <- mxExpectationNormal(covariance="expCov", means="M",
dimnames=tmpNames)

Choose a fit function

fitFunction <- mxFitFunctionML()

Define the model

tmpModel <- mxModel(model="exampleModel", M, S, A, I,
expCov, expFunction, fitFunction,
mxData(observed=tmpFrame, type="raw"))

Fit the model and print a summary

tmpModelOut <- mxRun(tmpModel)
summary(tmpModelOut)

mxExpectationRAM Create an MxExpectationRAM Object

Description

This function creates an MxExpectationRAM object.

mxExpectationRAM 173

Usage

mxExpectationRAM(A="A", S="S", F="F", M = NA, dimnames = NA, thresholds = NA,
threshnames = dimnames, ..., between=NULL, verbose=0L,

.useSparse=NA, expectedCovariance=NULL, expectedMean=NULL,
discrete = as.character(NA), selectionVector = as.character(NA),
expectedFullCovariance=NULL, expectedFullMean=NULL)

Arguments

A A character string indicating the name of the ’A’ matrix.

S A character string indicating the name of the ’S’ matrix.

F A character string indicating the name of the ’F’ matrix.

M An optional character string indicating the name of the ’M’ matrix.

dimnames An optional character vector to be assigned to the column names of the ’F’ and
’M’ matrices.

thresholds An optional character string indicating the name of the thresholds matrix.

threshnames An optional character vector to be assigned to the column names of the thresh-
olds matrix.

... Not used. Forces remaining arguments to be specified by name.

between A character vector of matrices that specify cross model relationships.

verbose integer. Level of runtime diagnostic output.

.useSparse logical. Whether to use sparse matrices to compute the expectation. The default
NA allows the backend to decide.

expectedCovariance

An optional character string indicating the name of a matrix for the observed
model implied covariance.

expectedMean An optional character string indicating the name of a matrix for the observed
model implied mean.

discrete An optional character string indicating the name of the discrete matrix.
selectionVector

An optional character string indicating the name of the Pearson selection vector
matrix.

expectedFullCovariance

An optional character string indicating the name of a matrix for the full model
implied covariance. Both latent and observed variables are included.

expectedFullMean

An optional character string indicating the name of a matrix for the full model
implied mean. Both latent and observed variables are included.

Details

Expectation functions define the way that model expectations are calculated. The mxExpectation-
RAM calculates the expected covariance and means of a given MxData object given a RAM model.
This model is defined by reticular action modeling (McArdle and McDonald, 1984). The ’A’, ’S’,

174 mxExpectationRAM

and ’F’ arguments refer to MxMatrix objects with the associated properties of the A, S, and F ma-
trices in the RAM modeling approach. Note for advanced users: these matrices may be replaced by
mxAlgebras. Such a model will lack properties (labels, free, bounds) that other functions may be
expecting.

The MxMatrix objects included as arguments may be of any type, but should have the properties
described above. The mxExpectationRAM will not return an error for incorrect specification, but
incorrect specification will likely lead to estimation problems or errors in the mxRun function.

The ’A’ argument refers to the A or asymmetric matrix in the RAM approach. This matrix consists
of all of the asymmetric paths (one-headed arrows) in the model. A free parameter in any row
and column describes a regression of the variable represented by that row regressed on the variable
represented in that column.

The ’S’ argument refers to the S or symmetric matrix in the RAM approach, and as such must be
square. This matrix consists of all of the symmetric paths (two-headed arrows) in the model. A free
parameter in any row and column describes a covariance between the variable represented by that
row and the variable represented by that column. Variances are covariances between any variable at
itself, which occur on the diagonal of the specified matrix.

The ’F’ argument refers to the F or filter matrix in the RAM approach. If no latent variables are
included in the model (i.e., the A and S matrices are of both of the same dimension as the data
matrix), then the ’F’ should refer to an identity matrix. If latent variables are included (i.e., the A
and S matrices are not of the same dimension as the data matrix), then the ’F’ argument should
consist of a horizontal adhesion of an identity matrix and a matrix of zeros.

The ’M’ argument refers to the M or means matrix in the RAM approach. It is a 1 x n matrix,
where n is the number of manifest variables + the number of latent variables. The M matrix must
be specified if either the mxData type is “cov” or “cor” and a means vector is provided, or if the
mxData type is “raw”. Otherwise the M matrix is ignored.

The ’dimnames’ arguments takes an optional character vector. If this argument is not a single NA,
then this vector be assigned to be the column names of the ’F’ matrix and optionally to the ’M’
matrix, if the ’M’ matrix exists.

mxExpectationRAM evaluates with respect to an MxData object. The MxData object need not be
referenced in the mxExpectationRAM function, but must be included in the MxModel object.

To evaluate an mxExpectationRAM object, place it, the mxData object which the expected covari-
ance approximates, any referenced MxAlgebra and MxMatrix objects, and optional MxBounds and
MxConstraint objects in an MxModel object and evaluate it using mxRun. The results of the op-
timization can be found in the ’output’ slot of the resulting model, and may be obtained using the
mxEval function.

Value

Returns a new MxExpectationRAM object. mxExpectationRAM objects should be included in a
model, along with referenced MxAlgebra, MxData and MxMatrix objects.

References

McArdle, J. J. and MacDonald, R. P. (1984). Some algebraic properties of the Reticular Action
Model for moment structures. British Journal of Mathematical and Statistical Psychology, 37, 234-
251.

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.

https://openmx.ssri.psu.edu/documentation/

mxExpectationStateSpace 175

Examples

Create and fit a model using mxMatrix, mxAlgebra,
mxExpectationNormal, and mxFitFunctionML

library(OpenMx)

Simulate some data

x=rnorm(1000, mean=0, sd=1)
y= 0.5*x + rnorm(1000, mean=0, sd=1)
tmpFrame <- data.frame(x, y)
tmpNames <- names(tmpFrame)

Define the matrices

matrixS <- mxMatrix(type = "Full", nrow = 2, ncol = 2, values=c(1,0,0,1),
free=c(TRUE,FALSE,FALSE,TRUE), labels=c("Vx", NA, NA, "Vy"),
name = "S")

matrixA <- mxMatrix(type = "Full", nrow = 2, ncol = 2, values=c(0,1,0,0),
free=c(FALSE,TRUE,FALSE,FALSE), labels=c(NA, "b", NA, NA),
name = "A")

matrixF <- mxMatrix(type="Iden", nrow=2, ncol=2, name="F")
matrixM <- mxMatrix(type = "Full", nrow = 1, ncol = 2, values=c(0,0),

free=c(TRUE,TRUE), labels=c("Mx", "My"), name = "M")

Define the expectation

expFunction <- mxExpectationRAM(M="M", dimnames = tmpNames)

Choose a fit function

fitFunction <- mxFitFunctionML()

Define the model

tmpModel <- mxModel(model="exampleRAMModel",
matrixA, matrixS, matrixF, matrixM,
expFunction, fitFunction,
mxData(observed=tmpFrame, type="raw"))

Fit the model and print a summary

tmpModelOut <- mxRun(tmpModel)
summary(tmpModelOut)

mxExpectationStateSpace

Create an MxExpectationStateSpace Object

176 mxExpectationStateSpace

Description

This function creates a new MxExpectationStateSpace object.

Usage

mxExpectationStateSpace(A, B, C, D, Q, R, x0, P0, u,
dimnames = NA, thresholds = deprecated(),
threshnames = deprecated(),
..., t = NA, scores=FALSE)

Arguments

A A character string indicating the name of the ’A’ matrix.

B A character string indicating the name of the ’B’ matrix.

C A character string indicating the name of the ’C’ matrix.

D A character string indicating the name of the ’D’ matrix.

Q A character string indicating the name of the ’Q’ matrix.

R A character string indicating the name of the ’R’ matrix.

x0 A character string indicating the name of the ’x0’ matrix.

P0 A character string indicating the name of the ’P0’ matrix.

u A character string indicating the name of the ’u’ matrix.

dimnames An optional character vector to be assigned to the row names of the ’C’ matrix.

thresholds [Deprecated]
threshnames [Deprecated]
... Unused. Requires further arguments to be named.

t Not to be used

scores Not to be used

Details

This page presents details for both the mxExpectationStateSpace function and for state space
modeling generally; however, for much more information on state space modeling see the paper by
Hunter (2018) listed under references. Authors using state space modeling in OpenMx should cite
Hunter (2018).

Expectation functions define the way that model expectations are calculated. When used in con-
junction with the mxFitFunctionML, the mxExpectationStateSpace uses maximum likelihood pre-
diction error decomposition (PED) to obtain estimates of free parameters in a model of the raw
MxData object. State space expectations treat the raw data as a multivariate time series of equally
spaced times with each row corresponding to a single occasion. This is not a model of the block
Toeplitz lagged autocovariance matrix. State space expectations implement a classical Kalman filter
to produce expectations.

The hybrid Kalman filter (combination of classical Kalman and Kalman-Bucy filters) for continuous
latent time with discrete observations is implemented and is available as mxExpectationStateSpace-
ContinuousTime. The following alternative filters are not yet implemented: square root Kalman

mxExpectationStateSpace 177

filter (in Cholesky or singular value decomposition form), extended Kalman filter for linear approx-
imations to nonlinear state space models, unscented Kalman filter for highly nonlinear state space
models, and Rauch-Tung-Striebel smoother for updating forecast state estimates after a complete
forward pass through the data has been made.

Missing data handling is implemented in the same fashion as full information maximum likelihood
for partially missing rows of data. Additionally, completely missing rows of data are handled by
only using the prediction step from the Kalman filter and omitting the update step.

This model uses notation for the model matrices commonly found in engineering and control theory.

The ’A’, ’B’, ’C’, ’D’, ’Q’, ’R’, ’x0’, and ’P0’ arguments must be the names of MxMatrix or
MxAlgebraobjects with the associated properties of the A, B, C, D, Q, R, x0, and P0 matrices in the
state space modeling approach.

The state space expectation is defined by the following model equations.

xt = Axt−1 +But + qt

yt = Cxt +Dut + rt

with qt and rt both independently and identically distributed random Gaussian (normal) variables
with mean zero and covariance matrices Q and R, respectively.

The first equation is called the state equation. It describes how the latent states change over time.
Also, the state equation in state space modeling is directly analogous to the structural model in
LISREL structural equation modeling.

The second equation is called the output equation. It describes how the latent states relate to the
observed states at a single point in time. The output equation shows how the observed output is
produced by the latent states. Also, the output equation in state space modeling is directly analogous
to the measurement model in LISREL structural equation modeling.

Note that the covariates, u, have "instantaneous" effects on both the state and output equations. If
lagged effects are desired, then the user must create a lagged covariate by shifting their observed
variable to the desired lag.

The state and output equations, together with some minimal assumptions and the Kalman filter,
imply a new expected covariance matrix and means vector for every row of data. The expected
covariance matrix of row t is

St = C(APt−1A
T +Q)CT +R

The expected means vector of row t is

ŷt = Cxt +Dut

The ’dimnames’ arguments takes an optional character vector.

The ’A’ argument refers to the A matrix in the State Space approach. This matrix consists of time
regressive coefficients from the latent variable in column j at time t− 1 to the latent variable in row
i at time t. Entries in the diagonal are autoregressive coefficients. Entries in the off-diagonal are
cross-lagged regressive coefficients. If the A and B matrices are zero matrices, then the state space
model reduces to a factor analysis. The A matrix is sometimes called the state-transition model.

178 mxExpectationStateSpace

The ’B’ argument refers to the B matrix in the State Space approach. This matrix consists of
regressive coefficients from the input (manifest covariate) variable j at time t to the latent variable
in row i at time t. Note that the covariate effect is contemporaneous: the covariate at time t has
influence on the latent state also at time t. A lagged effect can be created by lagged the observed
variable. The B matrix is sometimes called the control-input model.

The ’C’ argument refers to the C matrix in the State Space approach. This matrix consists of con-
temporaneous regression coefficients from the latent variable in column j to the observed variable
in row i. This matrix is directly analogous to the factor loadings matrix in LISREL and Mplus
models. The C matrix is sometimes called the observation model.

The ’D’ argument refers to the D matrix in the State Space approach. This matrix consists of con-
temporaneous regressive coefficients from the input (manifest covariate) variable j to the observed
variable in row i. The D matrix is sometimes called the feedthrough or feedforward matrix.

The ’Q’ argument refers to the Q matrix in the State Space approach. This matrix consists of
residual covariances among the latent variables. This matrix must be symmetric. As a special case,
it is often diagonal. The Q matrix is the covariance of the process noise. Just as in factor analysis
and general structural equation modeling, the scale of the latent variables is usually set by fixing
some factor loadings in the C matrix, or fixing some factor variances in the Q matrix.

The ’R’ argument refers to the R matrix in the State Space approach. This matrix consists of
residual covariances among the observed (manifest) variables. This matrix must be symmetric As a
special case, it is often diagonal. The R matrix is the covariance of the observation noise.

The ’x0’ argument refers to the x0 matrix in the State Space approach. This matrix consists of the
column vector of the initial values for the latent variables. The state space expectation uses the x0

matrix as the starting point to recursively estimate the latent variables’ values at each time. These
starting values can be difficult to pick, however, for sufficiently long time series they often do not
greatly impact the estimation.

The ’P0’ argument refers to the P0 matrix in the State Space approach. This matrix consists of the
initial values of the covariances of the error in the initial latent variable estimates given in x0. That
is, the P0 matrix gives the covariance of x0 − xtrue0 where xtrue0 is the vector of true initial
values. P0 is a measure of the accuracy of the initial latent state estimates. The Kalman filter uses
this initial covariance to recursively generated a new covariance for each time point based on the
previous time point. The Kalman filter updates this covariance so that it is as small as possible
(minimum trace). Similar to the x0 matrix, these starting values are often difficult to choose.

The ’u’ argument refers to the u matrix in the State Space approach. This matrix consists of the
inputs or manifest covariates of the state space expectation. The u matrix must be a column vector
with the same number of rows as the B and D matrices have columns. If no inputs are desired, u
can be a zero matrix. If time-varying inputs are desired, then they should be included as columns in
the MxData object and referred to in the labels of the u matrix as definition variables. There is an
example of this below.

The MxMatrix objects included as arguments may be of any type, but should have the properties
described above. The mxExpectationStateSpace will not return an error for incorrect specification,
but incorrect specification will likely lead to estimation problems or errors in the mxRun function.

mxExpectationStateSpace evaluates with respect to an MxData object. The MxData object need
not be referenced in the mxExpectationStateSpace function, but must be included in the MxModel
object. mxExpectationStateSpace requires that the ’type’ argument in the associated MxData object
be equal to ’raw’. Neighboring rows of the MxData object are treated as adjacent, equidistant time
points increasing from the first to the last row.

mxExpectationStateSpace 179

To evaluate, place mxExpectationStateSpace objects, the mxData object for which the expected
covariance approximates, referenced MxAlgebra and MxMatrix objects, and optional MxBounds
and MxConstraint objects in an MxModel object. This model may then be evaluated using the
mxRun function. The results of the optimization can be found in the ’output’ slot of the resulting
model, and may be obtained using the mxEval function.

Value

Returns a new MxExpectationStateSpace object. mxExpectationStateSpace objects should be in-
cluded with models with referenced MxAlgebra, MxData and MxMatrix objects.

References

K.J. Åström and R.M. Murray (2010). Feedback Systems: An Introduction for Scientists and
Engineers. Princeton University Press.

J. Durbin and S.J. Koopman. (2001). Time Series Analysis by State Space Methods. Oxford Uni-
versity Press.

Hunter, M.D. (2018). State Space Modeling in an Open Source, Modular, Structural Equation
Modeling Environment. Structural Equation Modeling: A Multidisciplinary Journal, 25(2), 307-
324. DOI: 10.1080/10705511.2017.1369354

R.E. Kalman (1960). A New Approach to Linear Filtering and Prediction Problems. Basic Engi-
neering, 82, 35-45.

G. Petris (2010). An R Package for Dynamic Linear Models. Journal of Statistical Software, 36,
1-16.

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.

See Also

mxExpectationStateSpaceContinuousTime

Examples

Create and fit a model using mxMatrix, mxExpectationStateSpace, and mxFitFunctionML
require(OpenMx)
data(demoOneFactor)
nvar <- ncol(demoOneFactor)
varnames <- colnames(demoOneFactor)
ssModel <- mxModel(model="State Space Manual Example",

mxMatrix("Full", 1, 1, TRUE, .3, name="A"),
mxMatrix("Zero", 1, 1, name="B"),
mxMatrix("Full", nvar, 1, TRUE, .6, name="C", dimnames=list(varnames, "F1")),
mxMatrix("Zero", nvar, 1, name="D"),
mxMatrix("Diag", 1, 1, FALSE, 1, name="Q"),
mxMatrix("Diag", nvar, nvar, TRUE, .2, name="R"),
mxMatrix("Zero", 1, 1, name="x0"),
mxMatrix("Diag", 1, 1, FALSE, 1, name="P0"),
mxMatrix("Zero", 1, 1, name="u"),
mxData(observed=demoOneFactor[1:100,], type="raw"),#fewer rows = fast

https://openmx.ssri.psu.edu/documentation/

180 mxExpectationStateSpaceContinuousTime

mxExpectationStateSpace("A", "B", "C", "D", "Q", "R", "x0", "P0", "u"),
mxFitFunctionML()

)
ssRun <- mxRun(ssModel)
summary(ssRun)
Note the freely estimated Autoregressive parameter (A matrix)
is near zero as it should be for the independent rows of data
from the factor model.

Create and fit a model with INPUTS using mxMatrix, mxExpectationStateSpace, and mxFitFunctionML
require(OpenMx)
data(demoOneFactor)
nvar <- ncol(demoOneFactor)
varnames <- colnames(demoOneFactor)
#demoOneFactorInputs <- cbind(demoOneFactor, V1=rep(1, nrow(demoOneFactor)))
demoOneFactorInputs <- cbind(demoOneFactor, V1=rnorm(nrow(demoOneFactor)))
ssModel <- mxModel(model="State Space Inputs Manual Example",

mxMatrix("Full", 1, 1, TRUE, .3, name="A"),
mxMatrix("Full", 1, 1, TRUE, values=1, name="B"),
mxMatrix("Full", nvar, 1, TRUE, .6, name="C", dimnames=list(varnames, "F1")),
mxMatrix("Zero", nvar, 1, name="D"),
mxMatrix("Diag", 1, 1, FALSE, 1, name="Q"),
mxMatrix("Diag", nvar, nvar, TRUE, .2, name="R"),
mxMatrix("Zero", 1, 1, name="x0"),
mxMatrix("Diag", 1, 1, FALSE, 1, name="P0"),
mxMatrix("Full", 1, 1, FALSE, labels="data.V1", name="u"),
mxData(observed=demoOneFactorInputs[1:100,], type="raw"),#fewer rows = fast
mxExpectationStateSpace("A", "B", "C", "D", "Q", "R", "x0", "P0", u="u"),
mxFitFunctionML()

)
ssRun <- mxRun(ssModel)
summary(ssRun)
Note the freely estimated Autoregressive parameter (A matrix)
and the freely estimated Control-Input parameter (B matrix)
are both near zero as they should be for the independent rows of data
from the factor model that does not have inputs, covariates,
or exogenous variables.

mxExpectationStateSpaceContinuousTime

Create an MxExpectationStateSpace Object

Description

This function creates a new MxExpectationStateSpace object.

mxExpectationStateSpaceContinuousTime 181

Usage

mxExpectationStateSpaceContinuousTime(A, B, C, D, Q, R, x0, P0, u, t = NA,
dimnames = NA, thresholds = deprecated(),

threshnames = deprecated(), ..., scores=FALSE)
mxExpectationSSCT(A, B, C, D, Q, R, x0, P0, u, t = NA,

dimnames = NA, thresholds = deprecated(),
threshnames = deprecated(),

..., scores=FALSE)

Arguments

A A character string indicating the name of the ’A’ matrix.

B A character string indicating the name of the ’B’ matrix.

C A character string indicating the name of the ’C’ matrix.

D A character string indicating the name of the ’D’ matrix.

Q A character string indicating the name of the ’Q’ matrix.

R A character string indicating the name of the ’R’ matrix.

x0 A character string indicating the name of the ’x0’ matrix.

P0 A character string indicating the name of the ’P0’ matrix.

u A character string indicating the name of the ’u’ matrix.

t A character string indicating the name of the ’t’ matrix.

dimnames An optional character vector to be assigned to the row names of the ’C’ matrix.

thresholds [Deprecated]
threshnames [Deprecated]
... Unused. Requires further arguments to be named.

scores Not to be used

Details

The mxExpectationStateSpaceContinuousTime and mxExpectationSSCT functions are identi-
cal. The latter is simply an abbreviated name. When using the former, tab completion is strongly en-
couraged to save tedious typing. Both of these functions are wrappers for the mxExpectationStateS-
pace function, which could be used for both discrete and continuous time modeling. However, there
is a strong possibility of misunderstanding the model parameters when switching between discrete
time and continuous time. The expectation matrices have the same names, but mean importantly
different things so caution is warranted. The best practice is to use mxExpectationStateSpace
for discrete time models, and mxExpectationStateSpaceContinuousTime for continuous time
models.

Expectation functions define the way that model expectations are calculated. That is to say, ex-
pectation functions define how a set of model matrices get turned into expectations for the data.
When used in conjunction with the mxFitFunctionML, the mxExpectationStateSpace uses maxi-
mum likelihood prediction error decomposition (PED) to obtain estimates of free parameters in a
model of the raw MxData object. Continuous time state space expectations treat the raw data as a
multivariate time series of possibly unevenly spaced times with each row corresponding to a single

182 mxExpectationStateSpaceContinuousTime

occasion. Continuous time state space expectations implement a hybrid Kalman filter to produce
expectations. The hybrid Kalman filter uses a Kalman-Bucy filter for the prediction step and the
classical Kalman filter for the update step. It is a hybrid between the classical Kalman filter used
for the discrete (but possibly unequally spaced) measurement occasions and the continuous time
Kalman-Bucy filter for latent variable predictions.

Missing data handling is implemented in the same fashion as full information maximum likelihood
for partially missing rows of data. Additionally, completely missing rows of data are handled by
only using the prediction step from the Kalman-Bucy filter and omitting the update step.

This model uses notation for the model matrices commonly found in engineering and control theory.

The ’A’, ’B’, ’C’, ’D’, ’Q’, ’R’, ’x0’, and ’P0’ arguments must be the names of MxMatrix or
MxAlgebraobjects with the associated properties of the A, B, C, D, Q, R, x0, and P0 matrices in the
state space modeling approach. The ’t’ matrix must be a 1x1 matrix using definition variables that
gives the times at which measurements occurred.

The state space expectation is defined by the following model equations.

d

dt
x(t) = Ax(t) +But + q(t)

yt = Cxt +Dut + rt

with q(t) and rt both independently and identically distributed random Gaussian (normal) variables
with mean zero and covariance matrices Q and R, respectively. Subscripts or square brackets indi-
cate discrete indices; parentheses indicate continuous indices. The derivative of x(t) with respect
to t is d

dtx(t).

The first equation is called the state equation. It describes how the latent states change over time
with a first-order linear differential equation. Unlike some other programs, we do not require that
the continuous time A matrix has an inverse. This allows zero dynamics (i.e. no growth models)
and many other important kinds of processes.

The second equation is called the output equation. It describes how the latent states relate to the
observed states at a single point in time. The output equation shows how the observed output is
produced by the latent states. Also, the output equation in state space modeling is directly analogous
to the measurement model in LISREL structural equation modeling.

Note that the covariates, u, have "instantaneous" effects on both the state and output equations. If
lagged effects are desired, then the user must create a lagged covariate by shifting their observed
variable to the desired lag.

The state and output equations, together with some minimal assumptions and the Kalman filter,
imply a new expected covariance matrix and means vector for every row of data. The expected
covariance matrix of row t is

St = C(APt−1A
T +Q)CT +R

The expected means vector of row t is

ŷt = Cxt +Dut

The ’dimnames’ arguments takes an optional character vector.

mxExpectationStateSpaceContinuousTime 183

The ’A’ argument refers to the A matrix in the State Space approach. This matrix gives the dynam-
ics. Entries in the diagonal give the strength of the influence of a variable’s position on its slope.
Entries in the off-diagonal give the coupling strength from one variable to another. The A matrix is
sometimes called the state-transition model.

The ’B’ argument refers to the B matrix in the State Space approach. This matrix consists of
exogenous forces that influence the dynamics. Note that the covariate effect is contemporaneous:
the covariate at time t has influence on the slope of the latent state also at time t. A lagged effect
can be created by lagged the observed variable. The B matrix is sometimes called the control-input
model.

The ’C’ argument refers to the C matrix in the State Space approach. This matrix consists of con-
temporaneous regression coefficients from the latent variable in column j to the observed variable
in row i. This matrix is directly analogous to the factor loadings matrix in LISREL and Mplus
models. The C matrix is sometimes called the observation model.

The ’D’ argument refers to the D matrix in the State Space approach. This matrix consists of con-
temporaneous regressive coefficients from the input (manifest covariate) variable j to the observed
variable in row i. The D matrix is sometimes called the feedthrough or feedforward matrix.

The ’Q’ argument refers to the Q matrix in the State Space approach. This matrix gives the covari-
ance of the dynamic noise. The dynamic noise can be thought of as unmeasured covariate inputs
active at all times. This matrix must be symmetric, diagonal, or zero. As a special case, it is often
diagonal. The Q matrix is the covariance of the process noise. Just as in factor analysis and general
structural equation modeling, the scale of the latent variables is usually set by fixing some factor
loadings in the C matrix, or fixing some factor variances in the Q matrix.

The ’R’ argument refers to the R matrix in the State Space approach. This matrix consists of
residual covariances among the observed (manifest) variables. This matrix must be symmetric As a
special case, it is often diagonal. The R matrix is the covariance of the observation noise.

The ’x0’ argument refers to the x0 matrix in the State Space approach. This matrix consists of the
column vector of the initial values for the latent variables. The state space expectation uses the x0

matrix as the starting point to recursively estimate the latent variables’ values at each time. These
starting values can be difficult to pick, however, for sufficiently long time series they often do not
greatly impact the estimation.

The ’P0’ argument refers to the P0 matrix in the State Space approach. This matrix consists of the
initial values of the covariances of the error in the initial latent variable estimates given in x0. That
is, the P0 matrix gives the covariance of x0 − xtrue0 where xtrue0 is the vector of true initial
values. P0 is a measure of the accuracy of the initial latent state estimates. The Kalman filter uses
this initial covariance to recursively generated a new covariance for each time point based on the
previous time point. The Kalman filter updates this covariance so that it is as small as possible
(minimum trace). Similar to the x0 matrix, these starting values are often difficult to choose.

The ’u’ argument refers to the u matrix in the State Space approach. This matrix consists of the
inputs or manifest covariates of the state space expectation. The u matrix must be a column vector
with the same number of rows as the B and D matrices have columns. If no inputs are desired, u
can be a zero matrix. If time-varying inputs are desired, then they should be included as columns in
the MxData object and referred to in the labels of the u matrix as definition variables. There is an
example of this below.

The ’t’ argument refers to the t matrix in the State Space approach. This matrix should be 1x1 (1 row
and 1 column) and not free. The label for the element of this matrix should be ’data.YourTimeVariable’.
The ’data’ part does not change, but ’YourTimeVariable’ should be a name in your data set that gives

184 mxExpectationStateSpaceContinuousTime

the times at which measurement happened. The units of time are up to you. Your choice of time
units will influence of the values of the parameters you estimate. Also, recall that the model is given
x0 and P0. These always happen at t = 0. So the first row of data happens some amount of time
after zero.

The MxMatrix objects included as arguments may be of any type, but should have the properties
described above. The mxExpectationStateSpace will not return an error for incorrect specification,
but incorrect specification will likely lead to estimation problems or errors in the mxRun function.

mxExpectationStateSpaceContinuousTime evaluates with respect to an MxData object. The Mx-
Data object need not be referenced in the mxExpectationStateSpace function, but must be included
in the MxModel object. mxExpectationStateSpace requires that the ’type’ argument in the asso-
ciated MxData object be equal to ’raw’. Neighboring rows of the MxData object are treated as
adjacent, equidistant time points increasing from the first to the last row.

To evaluate, place an mxExpectationStateSpaceContinuousTime object, the mxData object for which
the expected covariance approximates, referenced MxAlgebra and MxMatrix objects, and optional
MxBounds and MxConstraint objects in an MxModel object. This model may then be evaluated
using the mxRun function. The results of the optimization can be found in the ’output’ slot of the
resulting model, and may be obtained using the mxEval function.

Value

Returns a new MxExpectationStateSpace object. mxExpectationStateSpace objects should be in-
cluded with models with referenced MxAlgebra, MxData and MxMatrix objects.

References

K.J. Åström and R.M. Murray (2010). Feedback Systems: An Introduction for Scientists and
Engineers. Princeton University Press.

J. Durbin and S.J. Koopman. (2001). Time Series Analysis by State Space Methods. Oxford Uni-
versity Press.

R.E. Kalman (1960). A New Approach to Linear Filtering and Prediction Problems. Basic Engi-
neering, 82, 35-45.

R.E. Kalman and R.S. Bucy (1961). New Results in Linear Filtering and Prediction Theory. Trans-
actions of the ASME, Series D, Journal of Basic Engineering, 83, 95-108.

G. Petris (2010). An R Package for Dynamic Linear Models. Journal of Statistical Software, 36,
1-16.

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.

See Also

mxExpectationStateSpace

Examples

#--
Example 1
Undamped linear oscillator, i.e. a noisy sine wave.
Measurement error, but no dynamic error, single indicator.

https://openmx.ssri.psu.edu/documentation/

mxExpectationStateSpaceContinuousTime 185

This example works great.

#--------------------------------------
Data Generation

require(OpenMx)

Limit to 2 cores for CRAN
mxOption(key="Number of Threads",
value=min(2,parallel::detectCores()))

set.seed(405)
tlen <- 200
t <- seq(1.2, 50, length.out=tlen)

freqParam <- .5
initialCond <- matrix(c(2.5, 0))
x <- initialCond[1,1]*cos(freqParam*t)
plot(t, x, type='l')

measVar <- 1.5
y <- cbind(obs=x+rnorm(tlen, sd=sqrt(measVar)), tim=t)

plot(t, y[,1], type='l')

#--------------------------------------
Model Specification

#Note: the bounds are here only to keep SLSQP from
stepping too far off a cliff. With the bounds in
place, SLSQP finds the right solution. Without
the bounds, SLSQP goes crazy.

cdim <- list('obs', c('ksi', 'ksiDot'))

amat <- mxMatrix('Full', 2, 2, c(FALSE, TRUE, FALSE, TRUE), c(0, -.1, 1, -.2),
name='A', lbound=-10)
bmat <- mxMatrix('Zero', 2, 1, name='B')
cmat <- mxMatrix('Full', 1, 2, FALSE, c(1, 0), name='C', dimnames=cdim)
dmat <- mxMatrix('Zero', 1, 1, name='D')
qmat <- mxMatrix('Zero', 2, 2, name='Q')
rmat <- mxMatrix('Diag', 1, 1, TRUE, .4, name='R', lbound=1e-6)
xmat <- mxMatrix('Full', 2, 1, TRUE, c(0, 0), name='x0', lbound=-10, ubound=10)
pmat <- mxMatrix('Diag', 2, 2, FALSE, 1, name='P0')
umat <- mxMatrix('Zero', 1, 1, name='u')
tmat <- mxMatrix('Full', 1, 1, name='time', labels='data.tim')

osc <- mxModel("LinearOscillator",
amat, bmat, cmat, dmat, qmat, rmat, xmat, pmat, umat, tmat,
mxExpectationSSCT('A', 'B', 'C', 'D', 'Q', 'R', 'x0', 'P0', 'u', 'time'),
mxFitFunctionML(),
mxData(y, 'raw'))

186 mxFactor

oscr <- mxRun(osc)

#--------------------------------------
Results Examination

summary(oscr)

(ssFreqParam <- mxEval(sqrt(-A[2,1]), oscr))
freqParam

(ssMeasVar <- mxEval(R, oscr))
measVar

dampingParam <- 0
(ssDampingParam <- mxEval(-A[2,2], oscr))
dampingParam

mxFactor Fail-safe Factors

Description

This is a wrapper for the R function factor.

OpenMx requires ordinal data to be ordered. R’s factor function doesn’t enforce this, hence this
wrapper exists to throw an error should you accidentally try and run with ordered = FALSE.

Also, the ‘levels’ parameter is optional in R’s factor function. However, relying on the data
to specify the data is foolhardy for the following reasons: The factor function will skip levels
missing from the data: Specifying these in levels leaves the list of levels complete. Data will often
not explore the min and max level that the user knows are possible. For these reasons this function
forces you to write out all possible levels explicitly.

Usage

mxFactor(x = character(), levels, labels = levels,
exclude = NA, ordered = TRUE, collapse = FALSE)

Arguments

x either a vector of data or a data.frame object.

levels a mandatory vector of the values that ’x’ might have taken.

mxFactor 187

labels _either_ an optional vector of labels for the levels, _or_ a character string of
length 1.

exclude a vector of values to be excluded from the set of levels.

ordered logical flag to determine if the levels should be regarded as ordered (in the order
given). Required to be TRUE.

collapse logical flag to determine if duplicate labels should collapsed into a single level

Details

If ‘x’ is a data.frame, then all of the columns of ‘x’ are converted into ordered factors. If ‘x’ is
a data.frame, then ‘levels’ and ‘labels’ may be either a list or a vector. When ‘levels’ is a list,
then different levels are assigned to different columns of the constructed data.frame object. When
‘levels’ is a vector, then the same levels are assigned to all the columns of the data.frame object.
The function will throw an error if ‘ordered’ is not TRUE or if ‘levels’ is missing. See factor for
more information on creating ordered factors.

References

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.

Examples

myVar <- c("s", "t", "a", "t", "i", "s", "t", "i", "c", "s")
ff <- mxFactor(myVar, levels=letters)
Note: letters is a built in list of all lowercase letters of the alphabet
ff
[1] s t a t i s t i c s
Levels: a < b < c < d < e < f < g < h < i < j < k < l < m < n < o < p < q <
r < s < t < u < v < w < x < y < z

as.integer(ff) # the internal codes

factor(ff) # NOTE: drops the levels that do not occur.
mxFactor prevents you doing this unintentionally.

This example works on a dataframe
foo <- data.frame(x=c(1:3),y=c(4:6),z=c(7:9))

Applys one set of levels to all three columns
mxFactor(foo, c(1:9))

Apply unique sets of levels to each variable
mxFactor(foo, list(c(1:3), c(4:6), c(7:9)))

mxFactor(foo, c(1:9), labels=c(1,1,1,2,2,2,3,3,3), collapse=TRUE)

https://openmx.ssri.psu.edu/documentation/

188 mxFactorScores

mxFactorScores Estimate factor scores and standard errors

Description

This function creates the factor scores and their standard errors under different methods for an
MxModel object that has either a RAM or LISREL expectation.

Usage

mxFactorScores(model, type=c('ML', 'WeightedML', 'Regression'),
minManifests=as.integer(NA))

Arguments

model An MxModel object with either an MxExpectationLISREL or MxExpectation-
RAM

type The type of factor scores to compute

minManifests Set scores to NA when there are less than minManifests non-NA manifest vari-
ables

Details

This is a helper function to compute or estimate factor scores along with their standard errors.
The two maximum likelihood methods create a new model for each data row. They then estimate
the factor scores as free parameters in a model with a single data row. For ’ML’, the conditional
likelihood of the data given the factor scores is optimized:

L(D|F)

. For ’WeightedML’, the joint likelihood of the data and the factor scores is optimized:

L(D,F) = L(D|F)L(F)

. The WeightedML scores are akin to the empirical Bayes random effects estimates from mixed
effects modeling. They display the same kind of shrinkage as random effects estimates, and for the
same reason: they account for the latent variable distribution in their estimation.

In many cases, especially for ordinal data or missing data, the weighted ML scores are to be pre-
ferred over alternatives (Estabrook & Neale, 2013). For example, when using ordinal data, a person
whose observations are all in the highest ordinal category theoretically has an ’ML’ factor score of
positive infinity. A similar situation arises for a person whose observations are all in the lowest or-
dinal category: their ’ML’ factor score is theoretically negative infinity. Weighted ML factor scores
in these cases remain reasonable.

For type=’Regression’, with LISREL expectation, factor scores are computed based on a simple
formula. This formula is equivalent to the formula for the Kalman updated scores in a state space
model with zero dynamics (Priestly & Subba Rao, 1975). Thus, to compute the regression factor

mxFactorScores 189

scores, the appropriate state space model is set-up and the mxKalmanScores function is used to pro-
duce the factor scores and their standard errors. With RAM expectation, factor scores are predicted
from the non-missing manifest variables for each row of the raw data, using a general linear pre-
diction formula analytically equivalent to that used with LISREL expectation. The standard errors
for regression-predicted RAM factor scores are the square roots of the indeterminate variances of
the latent variables, given the data row’s missing-data pattern and the values of any relevant defini-
tion variables. The RAM and LISREL methods for computing regression factor scores with their
standard errors are analytically identical. They produce the same score and standard error estimates.

If you have missing data then you must specify minManifests. This option will set scores to NA
when there are too few items to make an accurate score estimate. If you are using the scores as
point estimates without considering the standard error then you should set minManifests as high as
you can tolerate. This will increase the amount of missing data but scores will be more accurate. If
you are carefully considering the standard errors of the scores then you can set minManifests to 0.
When set to 0, all NA rows are scored to the prior distribution.

Note that for compatibility with factanal, type=’regression’ is also acceptable.

Value

An array with dimensions (Number of Rows of Data, Number of Latent Variables, 2). The third
dimension has the scores in the first slot and the standard errors in the second slot. The rows are
in the order of the unsorted data. Multigroup models are an exception, in that the returned value is
instead a list of such arrays, containing one per group.

References

Estabrook, R. & Neale, M. C. (2013). A Comparison of Factor Score Estimation Methods in the
Presence of Missing Data: Reliability and an Application to Nicotine Dependence. Multivariate
Behavioral Research, 48, 1-27.

Priestley, M. & Subba Rao, T. (1975). The estimation of factor scores and Kalman filtering for
discrete parameter stationary processes. International Journal of Control, 21, 971-975.

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.

See Also

mxKalmanScores

Examples

Create and estimate a factor model
require(OpenMx)
data(demoOneFactor)
manifests <- names(demoOneFactor)
latents <- c("G")
factorModel <- mxModel("OneFactor",

type="LISREL",
manifestVars=list(exo=manifests),
latentVars=list(exo=latents),
mxPath(from=latents, to=manifests),
mxPath(from=manifests, arrows=2),

https://openmx.ssri.psu.edu/documentation/

190 mxFIMLObjective

mxPath(from=latents, arrows=2, free=FALSE, values=1.0),
mxPath(from='one', to=manifests),
mxData(observed=cov(demoOneFactor), type="cov", numObs=500,

means = colMeans(demoOneFactor)))
summary(factorRun <- mxRun(factorModel))

Swap in raw data in place of summary data
factorRun <- mxModel(factorRun, mxData(observed=demoOneFactor[1:50,], type="raw"))

Estimate factor scores for the model
r1 <- mxFactorScores(factorRun, 'Regression')

mxFIMLObjective DEPRECATED: Create MxFIMLObjective Object

Description

WARNING: Objective functions have been deprecated as of OpenMx 2.0.

Please use mxExpectationNormal() and mxFitFunctionML() instead. As a temporary workaround,
mxFIMLObjective returns a list containing an MxExpectationNormal object and an MxFitFunc-
tionML object.

All occurrences of

mxFIMLObjective(covariance, means, dimnames = NA, thresholds = NA, vector = FALSE, thresh-
names = dimnames)

Should be changed to

mxExpectationNormal(covariance, means, dimnames = NA, thresholds = NA, threshnames = dim-
names) mxFitFunctionML(vector = FALSE)

Arguments

covariance A character string indicating the name of the expected covariance algebra.

means A character string indicating the name of the expected means algebra.

dimnames An optional character vector to be assigned to the dimnames of the covariance
and means algebras.

thresholds An optional character string indicating the name of the thresholds matrix.

vector A logical value indicating whether the objective function result is the likelihood
vector.

threshnames An optional character vector to be assigned to the column names of the thresh-
olds matrix.

mxFIMLObjective 191

Details

NOTE: THIS DESCRIPTION IS DEPRECATED. Please change to using mxExpectationNormal
and mxFitFunctionML as shown in the example below.

Objective functions were functions for which free parameter values are chosen such that the value
of the objective function is minimized. The mxFIMLObjective function used full-information max-
imum likelihood to provide maximum likelihood estimates of free parameters in the algebra defined
by the ’covariance’ and ’means’ arguments. The ’covariance’ argument takes an MxAlgebra ob-
ject, which defines the expected covariance of an associated MxData object. The ’means’ argument
takes an MxAlgebra object, which defines the expected means of an associated MxData object. The
’dimnames’ arguments takes an optional character vector. If this argument is not a single NA, then
this vector is used to assign the dimnames of the means vector as well as the row and columns
dimnames of the covariance matrix.

The ’vector’ argument is either TRUE or FALSE, and determines whether the objective function
returns a column vector of the likelihoods, or a single -2*(log likelihood) value.

thresholds: The name of the thresholds matrix. When needed (for modelling ordinal data), this
matrix should be created using mxMatrix(). The thresholds matrix must have as many columns as
there are ordinal variables in the model, and number of rows equal to one fewer than the maximum
number of levels found in the ordinal variables. The starting values of this matrix must also be set
to reasonable values. Fill each column with a set of ordered start thresholds, one for each level of
this column’s factor levels minus 1. These thresholds may be free if you wish them to be estimated,
or fixed. The unused rows in each column, if any, can be set to any value including NA.

threshnames: A character vector consisting of the variables in the thresholds matrix, i.e., the names
of ordinal variables in a model. This is necessary for OpenMx to map the thresholds matrix columns
onto the variables in your data. If you set the dimnames of the columns in the thresholds matrix
then threshnames is not needed.

Usage Notes: dimnames must be supplied where the matrices referenced by the covariance and
means algebras are not themselves labeled. Failure to do so leads to an error noting that the covari-
ance or means matrix associated with the FIML objective does not contain dimnames.

mxFIMLObjective evaluates with respect to an MxData object. The MxData object need not be
referenced in the mxFIMLObjective function, but must be included in the MxModel object. mx-
FIMLObjective requires that the ’type’ argument in the associated MxData object be equal to ’raw’.
Missing values are permitted in the associated MxData object.

To evaluate, place MxFIMLObjective objects, the mxData object for which the expected covariance
approximates, referenced MxAlgebra and MxMatrix objects, and optional MxBounds and MxCon-
straint objects in an MxModel object. This model may then be evaluated using the mxRun function.

The results of the optimization can be reported using the summary function, or accessed directly in
the ’output’ slot of the resulting model (i.e., modelName$output). Components of the output may
be referenced using the Extract functionality.

Value

Returns a list containing an MxExpectationNormal object and an MxFitFunctionML object.

References

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.

https://openmx.ssri.psu.edu/documentation/

192 MxFitFunction-class

Examples

Create and fit a model using mxMatrix, mxAlgebra, mxExpectationNormal, and mxFitFunctionML

library(OpenMx)

Simulate some data

x=rnorm(1000, mean=0, sd=1)
y= 0.5*x + rnorm(1000, mean=0, sd=1)
tmpFrame <- data.frame(x, y)
tmpNames <- names(tmpFrame)

Define the matrices

M <- mxMatrix(type = "Full", nrow = 1, ncol = 2, values=c(0,0),
free=c(TRUE,TRUE), labels=c("Mx", "My"), name = "M")

S <- mxMatrix(type = "Full", nrow = 2, ncol = 2, values=c(1,0,0,1),
free=c(TRUE,FALSE,FALSE,TRUE), labels=c("Vx", NA, NA, "Vy"), name = "S")

A <- mxMatrix(type = "Full", nrow = 2, ncol = 2, values=c(0,1,0,0),
free=c(FALSE,TRUE,FALSE,FALSE), labels=c(NA, "b", NA, NA), name = "A")

I <- mxMatrix(type="Iden", nrow=2, ncol=2, name="I")

Define the expectation

expCov <- mxAlgebra(solve(I-A) %*% S %*% t(solve(I-A)), name="expCov")
expFunction <- mxExpectationNormal(covariance="expCov", means="M", dimnames=tmpNames)

Choose a fit function

fitFunction <- mxFitFunctionML()

Define the model

tmpModel <- mxModel(model="exampleModel", M, S, A, I, expCov, expFunction, fitFunction,
mxData(observed=tmpFrame, type="raw"))

Fit the model and print a summary

tmpModelOut <- mxRun(tmpModel)
summary(tmpModelOut)

MxFitFunction-class MxFitFunction

Description

This is an internal class and should not be used directly.

mxFitFunctionAlgebra 193

mxFitFunctionAlgebra Create MxFitFunctionAlgebra Object

Description

mxFitFunctionAlgebra returns an MxFitFunctionAlgebra object.

Usage

mxFitFunctionAlgebra(algebra, numObs = NA, numStats = NA, ..., gradient =
NA_character_, hessian = NA_character_, verbose = 0L,

units="-2lnL", strict=TRUE)

Arguments

algebra A character string indicating the name of an MxAlgebra or MxMatrix object to
use for optimization.

numObs (optional) An adjustment to the total number of observations in the model.

numStats (optional) An adjustment to the total number of observed statistics in the model.

... Not used. Forces remaining arguments to be specified by name.

gradient (optional) A character string indicating the name of an MxAlgebra object.

hessian (optional) A character string indicating the name of an MxAlgebra object.

verbose (optional An integer to increase the level of runtime log output.

units (optional) The units of the fit statistic.

strict Whether to require that all derivative entries reference free parameters.

Details

If you want to fit a multigroup model, the preferred way is to use mxFitFunctionMultigroup.

Fit functions are functions for which free parameter values are chosen such that the value of the ob-
jective function is minimized. While the other fit functions in OpenMx require an expectation func-
tion for the model, the mxAlgebraObjective function uses the referenced MxAlgebra or MxMatrix
object as the function to be minimized.

If a model’s fit function is an mxFitFunctionAlgebra objective function, then the referenced alge-
bra in the objective function must return a 1 x 1 matrix (when using OpenMx’s default optimizer).
There is no restriction on the dimensions of an fit function that is not the primary, or ‘topmost’,
objective function.

To evaluate an algebra fit function, place the following objects in a MxModel object: a mxFitFunctionAlgebra,
MxAlgebra and MxMatrix entities referenced by the MxAlgebraObjective, and optional MxBounds
and MxConstraint objects. This model may then be evaluated using the mxRun function. The re-
sults of the optimization may be obtained using the mxEval function on the name of the MxAlgebra,
after the model has been run.

First and second derivatives can be provided with the algebra fit function. The dimnames on the
gradient and hessian MxAlgebras are matched against names of free variables. Names that do not

194 mxFitFunctionAlgebra

match are ignored. The fit is assumed to be in deviance units (-2 log likelihood units). If you
are working in log likelihood units, the -2 scaling factor is not applied automatically. You have to
multiply by -2 yourself.

Value

Returns an MxFitFunctionAlgebra object. MxFitFunctionAlgebra objects should be included with
models with referenced MxAlgebra and MxMatrix objects.

References

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.

See Also

Other fit functions: mxFitFunctionMultigroup, mxFitFunctionML, mxFitFunctionWLS, mxFitFunctionGREML,
mxFitFunctionR, mxFitFunctionRow

To create an algebra suitable as a reference function to be minimized see: mxAlgebra

More information about the OpenMx package may be found here.

Examples

Create and fit a very simple model that adds two numbers using mxFitFunctionAlgebra

library(OpenMx)

Create a matrix 'A' with no free parameters
A <- mxMatrix('Full', nrow = 1, ncol = 1, values = 1, name = 'A')

Create an algebra 'B', which defines the expression A + A
B <- mxAlgebra(A + A, name = 'B')

Define the objective function for algebra 'B'
objective <- mxFitFunctionAlgebra('B')

Place the algebra, its associated matrix and
its objective function in a model
tmpModel <- mxModel(model="Addition", A, B, objective)

Evalulate the algebra
tmpModelOut <- mxRun(tmpModel)

View the results
tmpModelOut$output$minimum

https://openmx.ssri.psu.edu/documentation/

mxFitFunctionGREML 195

mxFitFunctionGREML Create MxFitFunctionGREML Object

Description

This function creates a new MxFitFunctionGREML object.

Usage

mxFitFunctionGREML(dV=character(0), aug=character(0),
augGrad=character(0), augHess=character(0),
autoDerivType=c("semiAnalyt","numeric"),infoMatType=c("average","expected"))

Arguments

dV Vector of character strings; defaults to a character vector of length zero. If a
value of non-zero length is provided, it must be a named character vector. This
vector’s names must be the labels of each free parameter in the model. The
vector’s elements (i.e., the character strings themselves) must be the names of
MxAlgebra or MxMatrix object(s), each of which equals the first partial deriva-
tive of the ’V’ matrix with respect to the corresponding free parameter.

aug Character string; defaults to a character vector of length zero. Any elements after
the first are ignored. The string should name a 1x1 MxMatrix or an MxAlgebra
that evaluates to a 1x1 matrix. The named object will be used as an "augmenta-
tion" to the GREML fitfunction–specifically, the [1,1] value of the object named
by aug will be added to the GREML fitfunction value at each function evalua-
tion during optimization. The augmentation can be used to regularize estimation
with a prior likelihood, or to use penalty functions to approximate constraints.

augGrad Character string; defaults to a character vector of length zero. Any elements after
the first are ignored. The string should name a MxMatrix or an MxAlgebra that
evaluates to the gradient of aug with respect to free parameters. The gradient
can be either a column or row vector. The free parameters corresponding to the
elements of the gradient vector are taken from the names of argument dV, e.g. if
the third name of dV is 'va', then the third element of the gradient vector should
be the first partial derivative of the augmentation function with respect to 'va'.
Ignored unless both dV and aug have nonzero length.

augHess Character string; defaults to a character vector of length zero. Any elements
after the first are ignored. The string should name a MxMatrix or an MxAlgebra
that evaluates to the Hessian of aug with respect to free parameters. The free
parameters corresponding to each row and column of this matrix are dictated by
the names of argument dV, in the same manner as for the elements of augGrad.
Ignored unless both dV and aug have nonzero length. Providing a nonzero-length
value for augHess but not augGrad will result in an error at runtime.

autoDerivType "Automatic derivative type." Character string, either "semiAnalyt" (default) or
"numeric". See details below.

infoMatType "Information matrix type." Character string, either "average" (default) or "ex-
pected". See details below.

196 mxFitFunctionGREML

Details

Making effective use of arguments dV, augGrad, and augHess will usually require a custom mxComputeSequence().
The derivatives of the REML loglikelihood function with respect to parameters can be internally
computed from the derivatives of the ’V’ matrix supplied via dV. The loglikelihood’s first deriva-
tives thus computed will always be exact, but its matrix of second partial derivatives (i.e., its Hessian
matrix) will be approximated by either the average or expected information matrix, per the value
of argument infoMatType. The average information matrix is faster to compute, but may not pro-
vide a good approximation to the Hessian if ’V’ is not linear in the model’s free parameters. The
expected information matrix is slower to compute, but does not assume that ’V’ is linear in the
free parameters. Neither information matrix will be a good approximation to the Hessian unless
the derivatives of ’V’ evaluate to symmetric matrices the same size as ’V’. Note also that these
loglikelihood derivatives do not reflect the influence of any parameter bounds or MxConstraints.
Internally, the derivatives of the ’V’ matrix are assumed to be symmetric, and the elements above
their main diagonals are ignored.

Formerly, if any derivatives were provided via dV, then derivatives had to be provided for every free
parameter in the MxModel. Currently, users may provide derivatives of ’V’ via dV with respect
to some or all free parameters. Note that the gradient and Hessian of the augmentation must be
complete, i.e. contain derivatives of the augmentation with respect to every parameter or pair of
parameters respectively.

If there are any free parameters with respect to which the user did not provide an analytic derivative
of ’V’, OpenMx will automatically calculate the necessary loglikelihood derivatives according to
autoDerivType. If autoDerivType="semiAnalyt", the GREML fitfunction backend will calcu-
late the missing derivatives in a "semi-analytic" fashion. Specifically, the backend will numerically
differentiate ’V’ with respect to the relevant parameter(s), and use those numeric matrix derivatives
to analytically calculate the needed loglikelihood derivatives. If autoDerivType="numeric", the
needed loglikelihood derivatives will be calculated numerically, via finite-differences.

Argument aug is intended to allow users to provide penalty functions or prior likelihoods in order
to approximate constraints or to regularize optimization. The user is warned that careless use of this
augmentation feature may undermine the validity of his/her statistical inferences.

Value

Returns a new object of class MxFitFunctionGREML.

References

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.

See Also

See MxFitFunctionGREML for the S4 class created by mxFitFunctionGREML(). For more informa-
tion generally concerning GREML analyses, including a complete example, see mxExpectationGREML().

Other fit functions: mxFitFunctionMultigroup, mxFitFunctionML, mxFitFunctionWLS, mxFitFunctionAlgebra,
mxFitFunctionR, mxFitFunctionRow

More information about the OpenMx package may be found here.

https://openmx.ssri.psu.edu/documentation/

MxFitFunctionGREML-class 197

Examples

gff <- mxFitFunctionGREML()
str(gff)

MxFitFunctionGREML-class

Class "MxFitFunctionGREML"

Description

MxFitFunctionGREML is the fitfunction class for GREML analyses.

Objects from the Class

Objects can be created by calls of the form mxFitFunctionGREML(dV).

Slots

dV: Object of class "MxCharOrNumber". Identifies the MxAlgebra or MxMatrix object(s) to serve
as the derivatives of ’V’ with respect to free parameters.

dVnames: Vector of character strings; names of the free parameters corresponding to slot dV.

MLfit: Object of class "numeric", equal to the maximum-likelihood fitfunction value (as opposed
to the restricted maximum-likelihood value).

numObsAdjust: Object of class "integer". Number of observations adjustment.

aug: Object of class "MxCharOrNumber". Identifies the MxAlgebra or MxMatrix object used to
"augment" the fitfunction value at each function evaluation during optimization.

augGrad: Object of class "MxCharOrNumber". Identifies the MxAlgebra or MxMatrix object(s) to
serve as the first derivatives of aug with respect to free parameters.

augHess: Object of class "MxCharOrNumber". Identifies the MxAlgebra or MxMatrix object(s) to
serve as the second derivatives of aug with respect to free parameters.

autoDerivType: Object of class "character". Dictates whether fitfunction derivatives automati-
cally calculated by OpenMx should be numeric or "semi-analytic."

infoMatType: Object of class "character". Dictates whether to calculate the average or expected
information matrix.

info: Object of class "list".

dependencies: Object of class "integer".

expectation: Object of class "integer".

vector: Object of class "logical".

rowDiagnostics: Object of class "logical".

result: Object of class "matrix".

name: Object of class "character".

198 mxFitFunctionML

Extends

Class "MxBaseFitFunction", directly. Class "MxBaseNamed", by class "MxBaseFitFunction", dis-
tance 2. Class "MxFitFunction", by class "MxBaseFitFunction", distance 2.

Methods

No methods defined with class "MxFitFunctionGREML" in the signature.

References

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation.

See Also

See mxFitFunctionGREML() for creating MxFitFunctionGREML objects. See mxExpectationGREML()
for creating MxExpectationGREML objects, and for more information generally concerning GREML
analyses, including a complete example. More information about the OpenMx package may be
found here.

Examples

showClass("MxFitFunctionGREML")

mxFitFunctionML Create MxFitFunctionML Object

Description

This function creates a new MxFitFunctionML object.

Usage

mxFitFunctionML(vector = FALSE, rowDiagnostics = FALSE, ..., fellner =
as.logical(NA), verbose=0L, profileOut=c(),
rowwiseParallel=as.logical(NA), jointConditionOn = c("auto", "ordinal", "continuous"))

Arguments

vector A logical value indicating whether the objective function result is the likelihood
vector.

rowDiagnostics A logical value indicating whether the row-wise results of the objective function
should be returned as an attribute of the fit function.

... Not used. Forces remaining arguments to be specified by name.

fellner Whether to fully expand the covariance matrix for maximum flexibility.

verbose Level of diagnostic output

https://openmx.ssri.psu.edu/documentation

mxFitFunctionML 199

profileOut Character vector naming constant coefficients to profile out of the likelihood
(sometimes known as REML)

rowwiseParallel

For raw data only, whether to use OpenMP to parallelize the evaluation of rows

jointConditionOn

The evaluation strategy when both continuous and ordinal data are present.

Details

Fit functions are functions for which free parameter values are optimized such that the value of a
cost function is minimized. The mxFitFunctionML function computes -2*(log likelihood) of the
data given the current values of the free parameters and the expectation function (e.g., mxExpecta-
tionNormal or mxExpectationRAM) selected for the model.

The ’vector’ argument is either TRUE or FALSE, and determines whether the objective function
returns a column vector of the likelihoods, or a single -2*(log likelihood) value.

The ’rowDiagnostics’ argument is either TRUE or FALSE, and determines whether the row likeli-
hoods are returned as an attribute of the fit function. Additionally, the squared Mahalanobis distance
and the number of observed (non-missing) variables) for each row are returned under the names
rowDist and rowObs, respectively. It is sometimes useful to inspect the likelihoods for outliers, di-
agnostics, or other anomalies. Each rowwise squared Mahalanobis distance should be chi-squared
distributed with degrees of freedom equal to the number of observed variables. In the case of no
missing data, all of the rowwise squared Mahalanobis distances should theoretically be chi-squared
distributed with the same degrees of freedom. In the case of some missing data, the rowwise squared
Mahalanobis distances should theoretically be a mixture of chi-squared distributions with mixing
proportions equal to the proportions of each number of observed variables.

If there are ordinal data, then only the row likelihoods are returned among the row diagnostics.

When vector=FALSE and rowDiagnostics=TRUE, the fit function can be referenced in the model
and included in algebras as a scalar. The row likelihoods, row distances, and row observations are
then an attribute of the fit function but are not accessible in the model during optimization. The row
likelihoods and other diagnostics are accessible to the user after the model has been run.

By default, jointConditionOn='auto' and a heuristic will be used to select the fastest algorithm.
Conditioning the continuous data on ordinal will be superior when there are relatively few unique
ordinal patterns. Otherwise, conditioning the ordinal data on continuous will perform better when
there are relatively many ordinal patterns.

Usage Notes:

The results of the optimization can be reported using the summary function, or accessed directly in
the ’output’ slot of the resulting model (i.e., modelName$output). Components of the output may
be referenced using the Extract functionality.

Value

Returns a new MxFitFunctionML object. One and only one MxFitFunctionML object should be
included in each model along with an associated mxExpectationNormal or mxExpectationRAM
object.

200 mxFitFunctionML

References

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.

See Also

Other fit functions: mxFitFunctionMultigroup, mxFitFunctionWLS, mxFitFunctionAlgebra,
mxFitFunctionGREML, mxFitFunctionR, mxFitFunctionRow

More information about the OpenMx package may be found here.

Examples

Create and fit a model using mxMatrix, mxAlgebra, mxExpectationNormal, and mxFitFunctionML

library(OpenMx)

Simulate some data

x=rnorm(1000, mean=0, sd=1)
y= 0.5*x + rnorm(1000, mean=0, sd=1)
tmpFrame <- data.frame(x, y)
tmpNames <- names(tmpFrame)

Define the matrices

M <- mxMatrix(type = "Full", nrow = 1, ncol = 2, values=c(0,0),
free=c(TRUE,TRUE), labels=c("Mx", "My"), name = "M")

S <- mxMatrix(type = "Full", nrow = 2, ncol = 2, values=c(1,0,0,1),
free=c(TRUE,FALSE,FALSE,TRUE), labels=c("Vx", NA, NA, "Vy"), name = "S")

A <- mxMatrix(type = "Full", nrow = 2, ncol = 2, values=c(0,1,0,0),
free=c(FALSE,TRUE,FALSE,FALSE), labels=c(NA, "b", NA, NA), name = "A")

I <- mxMatrix(type="Iden", nrow=2, ncol=2, name="I")

Define the expectation

expCov <- mxAlgebra(solve(I-A) %*% S %*% t(solve(I-A)), name="expCov")
expFunction <- mxExpectationNormal(covariance="expCov", means="M", dimnames=tmpNames)

Choose a fit function

fitFunction <- mxFitFunctionML(rowDiagnostics=TRUE)
also return row likelihoods, even though the fit function
value is still 1x1

Define the model

tmpModel <- mxModel(model="exampleModel", M, S, A, I, expCov, expFunction, fitFunction,
mxData(observed=tmpFrame, type="raw"))

Fit the model and print a summary

tmpModelOut <- mxRun(tmpModel)

https://openmx.ssri.psu.edu/documentation/

mxFitFunctionMultigroup 201

summary(tmpModelOut)

fitResOnly <- mxEval(fitfunction, tmpModelOut)
attributes(fitResOnly) <- NULL
fitResOnly

Look at the row likelihoods alone
fitLikeOnly <- attr(mxEval(fitfunction, tmpModelOut), 'likelihoods')
head(fitLikeOnly)

mxFitFunctionMultigroup

Create a fit function used to fit multiple-group models

Description

mxFitFunctionMultigroup creates a fit function consisting of the sum of the fit statistics from a
list of submodels provided. Thus, it aggregates fit statistics from multiple submodels.

This total provides the optimization target for fitting a multi-group model.

In addition to being more compact and readable, using mxFitFunctionMultigroup has additional
side effects which are valuable for multi-group modeling.

First, it aggregates analytic derivative calculations.

Second, it allows mxRefModels to compute saturated models for raw data, as this function can learn
which are the constituent submodels.

Third, and finally, it allows mxCheckIdentification to evaluate the local identification of the
multigroup model.

Usage

mxFitFunctionMultigroup(groups, ..., verbose = 0L)

Arguments

groups vector of submodel names (strings)

... Not used. Forces subsequent arguments to be specified by name.

verbose the level of debugging output

Details

Conceptually, mxFitFunctionMultigroup is equivalent to summing the subModel objectives in
an mxAlgebra, and using an mxFitFunctionAlgebra to optimize the model based on this summed
likelihood.

e.g. this 1-line call to mxFitFunctionMultigroup:

mxFitFunctionMultigroup(c("model1", "model2"))

202 mxFitFunctionMultigroup

is equivalent to the following pair of statements:

mxAlgebra(name = "myAlgebra", model1.objective + model2.objective)

mxFitFunctionAlgebra("myAlgebra")

Note: If needed, you can refer to the algebra generated by mxFitFunctionMultigroup as:

modelName.fitfunction

Where "modelName" is the name of the container or supermodel.

See Also

Other fit functions: mxFitFunctionML, mxFitFunctionWLS, mxFitFunctionAlgebra, mxFitFunctionGREML,
mxFitFunctionR, mxFitFunctionRow

More information about the OpenMx package may be found here.

Examples

#--
Brief non-running example
require("OpenMx")
mxFitFunctionMultigroup(c("model1", "model2")) # names of sub-models to be jointly optimised

===
= Longer, fully featured, running example =
===

Create and fit a model using mxMatrix, mxExpectationRAM, mxFitFunctionML,
and mxFitFunctionMultigroup.
The model is multiple group regression.
Only the residual variances are allowed to differ across groups.

library(OpenMx)

Simulate some data

Group 1
N1 = 100
x = rnorm(N1, mean= 0, sd= 1)
y = 0.5*x + rnorm(N1, mean= 0, sd= 1)
ds1 <- data.frame(x, y)
dsNames <- names(ds1)

Group 2: y has greater variance; x & y slightly lower correlation...
N2= 150
x= rnorm(N2, mean= 0, sd= 1)
y= 0.5*x + rnorm(N2, mean= 0, sd= sqrt(1.5))
ds2 <- data.frame(x, y)

mxFitFunctionMultigroup 203

Define the matrices (A matrix implementation of 2 RAM models)

I <- mxMatrix(name="I", type="Iden", nrow=2, ncol=2)
M <- mxMatrix(name = "M", type = "Full", nrow = 1, ncol = 2, values=0,

free=TRUE, labels=c("Mean_x", "Mean_y"))
A matrix containing a path "b" of x on y
A <- mxMatrix(name = "A", type = "Full", nrow = 2, ncol = 2, values=c(0,1,0,0),

free=c(FALSE,TRUE,FALSE,FALSE), labels=c(NA, "b", NA, NA))

S1 <- mxMatrix(name = "S", type = "Diag", nrow = 2, ncol = 2, values=1,
free=TRUE, labels=c("Var_x", "Resid_y_group1"))

S2 <- mxMatrix(name = "S", type = "Diag", nrow = 2, ncol = 2, values=1,
free=TRUE, labels=c("Var_x", "Resid_y_group2"))

Define the expectation
expect <- mxExpectationRAM('A', 'S', 'I', 'M', dimnames= dsNames)

Choose a fit function
fitFunction <- mxFitFunctionML(rowDiagnostics=TRUE)
Also return row likelihoods (the fit function value is still 1x1)

Multiple-group fit function sums the model likelihoods
from its component models
mgFitFun <- mxFitFunctionMultigroup(c('g1model', 'g2model'))

Define model 1 and model 2
m1 = mxModel(model="g1model",
M, S1, A, I, expect, fitFunction,

mxData(cov(ds1), type="cov", numObs=N1, means=colMeans(ds1))
)
m2 = mxModel(model="g2model",
M, S2, A, I, expect, fitFunction,

mxData(cov(ds2), type="cov", numObs=N2, means=colMeans(ds2))
)

mg <- mxModel(model='multipleGroup', m1, m2, mgFitFun)
note!: Paths with the same name in both submodels are
constrained to the same value across models. i.e.,
b has only 1 value, as does Var_x. But Resid_y can take distinct
values in the two groups.

Fit the model and print a summary
mg <- mxRun(mg)
summary(mg)

Examine fit function results
Fit in -2lnL units)
mxEval(fitfunction, mg)

Fit function results for each submodel:
mxEval(g1model.fitfunction, mg)

204 mxFitFunctionR

mxEval(g2model.fitfunction, mg)

mg2 = omxSetParameters(mg,
labels = c("Resid_y_group1", "Resid_y_group2"),
newlabels = "Resid_y", name = "equated")

mg2 = omxAssignFirstParameters(mg2)
mg2 = mxRun(mg2)

mxCompare(mg, mg2)
ouch... that was a significant loss in fit: the residuals definately are larger in group2!

mxFitFunctionR Create MxFitFunctionR Object

Description

mxFitFunctionR returns an MxFitFunctionR object.

Usage

mxFitFunctionR(fitfun, ..., units="-2lnL")

Arguments

fitfun A function that accepts two arguments.

... The initial state information to the objective function.

units (optional) The units of the fit statistic.

Details

The mxFitFunctionR function evaluates a user-defined R function called the ’fitfun’. mxFitFunc-
tionR is useful in defining new mxFitFunctions, since any calculation that can be performed in R
can be treated as an mxFitFunction.

The ’fitfun’ argument must be a function that accepts two arguments. The first argument is the
mxModel that should be evaluated, and the second argument is some persistent state information
that can be stored between one iteration of optimization to the next iteration. It is valid for the
function to simply ignore the second argument.

The function must return either a single numeric value, or a list of exactly two elements. If the
function returns a list, the first argument must be a single numeric value and the second element
will be the new persistent state information to be passed into this function at the next iteration. The
single numeric value will be used by the optimizer to perform optimization.

The initial default value for the persistent state information is NA.

Throwing an exception (via stop) from inside fitfun may result in unpredictable behavior. You may
want to wrap your code in tryCatch while experimenting.

fitfun should not call R functions that use OpenMx’s compiled backend, including (but not limited
to) omxMnor(), because doing so can crash R.

mxFitFunctionRow 205

Value

Returns an MxFitFunctionR object.

References

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.

See Also

Other fit functions: mxFitFunctionMultigroup, mxFitFunctionML, mxFitFunctionWLS, mxFitFunctionAlgebra,
mxFitFunctionGREML, mxFitFunctionRow

More information about the OpenMx package may be found here.

Examples

Create and fit a model using mxFitFunctionR

library(OpenMx)

A <- mxMatrix(nrow = 2, ncol = 2, values = c(1:4), free = TRUE, name = 'A')
squared <- function(x) { x ^ 2 }

Define the objective function in R

objFunction <- function(model, state) {
values <- modelAvalues
return(squared(values[1,1] - 4) + squared(values[1,2] - 3) +

squared(values[2,1] - 2) + squared(values[2,2] - 1))
}

Define the expectation function

fitFunction <- mxFitFunctionR(objFunction)

Define the model

tmpModel <- mxModel(model="exampleModel", A, fitFunction)

Fit the model and print a summary

tmpModelOut <- mxRun(tmpModel)
summary(tmpModelOut)

mxFitFunctionRow Create an MxFitFunctionRow Object

Description

mxFitFunctionRow returns an MxFitFunctionRow object.

https://openmx.ssri.psu.edu/documentation/

206 mxFitFunctionRow

Usage

mxFitFunctionRow(rowAlgebra, reduceAlgebra, dimnames,
rowResults = "rowResults", filteredDataRow = "filteredDataRow",
existenceVector = "existenceVector", units="-2lnL")

Arguments

rowAlgebra A character string indicating the name of the algebra to be evaluated row-wise.
reduceAlgebra A character string indicating the name of the algebra that collapses the row re-

sults into a single number which is then optimized.
dimnames A character vector of names corresponding to columns be extracted from the

data set.
rowResults The name of the auto-generated "rowResults" matrix. See details.
filteredDataRow

The name of the auto-generated "filteredDataRow" matrix. See details.
existenceVector

The name of the auto-generated "existenceVector" matrix. See details.
units (optional) The units of the fit statistic.

Details

Fit functions are functions for which free parameter values are optimized such that the value of a cost
function is minimized. The mxFitFunctionRow function evaluates a user-defined MxAlgebra object
called the ‘rowAlgebra’ in a row-wise fashion. It then stores results of the row-wise evaluation
in another MxAlgebra object called the ‘rowResults’. Finally, the mxFitFunctionRow function
collapses the row results into a single number which is then used for optimization. The MxAlgebra
object named by the ‘reduceAlgebra’ collapses the row results into a single number.

The ‘filteredDataRow’ is populated in a row-by-row fashion with all the non-missing data from the
current row. You cannot assume that the length of the filteredDataRow matrix remains constant
(unless you have no missing data). The ‘existenceVector’ is populated in a row-by-row fashion with
a value of 1.0 in column j if a non-missing value is present in the data set in column j, and a value of
0.0 otherwise. Use the functions omxSelectRows, omxSelectCols, and omxSelectRowsAndCols to
shrink other matrices so that their dimensions will be conformable to the size of ‘filteredDataRow’.

Value

Returns a new MxFitFunctionRow object. Only one MxFitFunction object should be included in
each model. There is no need for an MxExpectation object when using mxFitFunctionRow.

References

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.

See Also

Other fit functions: mxFitFunctionMultigroup, mxFitFunctionML, mxFitFunctionWLS, mxFitFunctionAlgebra,
mxFitFunctionGREML, mxFitFunctionR

More information about the OpenMx package may be found here.

https://openmx.ssri.psu.edu/documentation/

mxFitFunctionWLS 207

Examples

Model that adds two data columns row-wise, then sums that column
Notice no optimization is performed here.

library(OpenMx)

xdat <- data.frame(a=rnorm(10), b=1:10) # Make data set
amod <- mxModel(model="example1",

mxData(observed=xdat, type='raw'),
mxAlgebra(sum(filteredDataRow), name = 'rowAlgebra'),
mxAlgebra(sum(rowResults), name = 'reduceAlgebra'),
mxFitFunctionRow(

rowAlgebra='rowAlgebra',
reduceAlgebra='reduceAlgebra',
dimnames=c('a','b'))

)
amodOut <- mxRun(amod)
mxEval(rowResults, model=amodOut)
mxEval(reduceAlgebra, model=amodOut)

Model that find the parameter that minimizes the sum of the
squared difference between the parameter and a data row.

bmod <- mxModel(model="example2",
mxData(observed=xdat, type='raw'),
mxMatrix(values=.75, ncol=1, nrow=1, free=TRUE, name='B'),
mxAlgebra((filteredDataRow - B) ^ 2, name='rowAlgebra'),
mxAlgebra(sum(rowResults), name='reduceAlgebra'),
mxFitFunctionRow(

rowAlgebra='rowAlgebra',
reduceAlgebra='reduceAlgebra',
dimnames=c('a'))

)
bmodOut <- mxRun(bmod)
mxEval(B, model=bmodOut)
mxEval(reduceAlgebra, model=bmodOut)
mxEval(rowResults, model=bmodOut)

mxFitFunctionWLS Create MxFitFunctionWLS Object

Description

This function creates a new MxFitFunctionWLS object.

Usage

mxFitFunctionWLS(type=c('WLS','DWLS','ULS'),
allContinuousMethod=c("cumulants", "marginals"),
fullWeight=TRUE)

208 mxFitFunctionWLS

Arguments

type A character string ’WLS’ (default), ’DWLS’, or ’ULS’ for weighted, diagonally
weighted, or unweighted least squares, respectively

allContinuousMethod

A character string ’cumulants’ (default) or ’marginals’. See Details.

fullWeight Logical determining if the full weight matrix is returned (default). Needed for
standard error and quasi-chi-squared calculation.

Details

As with other fit functions, mxFitFunctionWLS optimizes free parameter values such that the value
of a cost function is minimized. For mxFitFunctionWLS, this cost function is the weighted least
squares difference between the data and the model-implied expectations for the data based on the
free parameters and the expectation function (e.g., mxExpectationNormal or mxExpectationRAM)
selected for the model.

Bias and sensitivity to model misspecification Both ordinal and continuous data are supported,
as well as combinations of these data types. All three methods (’WLS’, ’ULS’ and ’DWLS’) are
unbiased when the model is correct. Full ’WLS’ is highly sensitive to model misspecification – it
can heavily weight the fourth-order moments of the distribution, so small deviations between the
observed fourth-order moments and those implied by the model can lead to poor estimates.

Behavior with all-continuous data When only continuous variables are present, the argument
allContinuousMethod dictates how to process the data.

The default, cumulants is a good choice for non-normal data. This uses the asymptotically distribu-
tion free (ADF) method of Browne (1984) and computes the fourth order cumulants for the weight
matrix: thus, the name. It is generally fast and ADF up to elliptical distributions. Data computed
using cumulants should also be more accurate than via marginals (because the whole covariance is
a single analytic expression, with no estimation involved).

note: The cumulants method does not handle missing data. It also does not return weights or
summary statistics for the means.

The alternative option, ’marginals’, uses methods similar to those used in processing ordinal and
joint ordinal-continuous data. By contrast with cumulants, marginals returns weights and summary
statistics for the means.

When data are not all continuous, allContinuousMethod is ignored, and means are modelled.

Usage Notes:

Model results can be reported using the summary function, or accessed directly in the ’output’ slot
of the model (i.e., model$output). Components of the output may also be accessed and used in the
same way, i.e., via the $ and [] Extract functions.

Summary statistics are returned in the MxData object in an observedStats list. If observedStats
are already present and in the appropriate shape then they are reused. It is also possible to provide
your own arbitrary user supplied observed statistics using this same approach.

Value

Returns a new MxFitFunctionWLS object. One and only one fit function object should be included
in each model, along with an associated mxExpectationNormal or mxExpectationRAM object.

mxFitFunctionWLS 209

References

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.

Browne, M. W. (1984). Asymptotically distribution-free methods for the analysis of covariance
structures. British Journal of Mathematical and Statistical Psychology, 37, 62-83.

See Also

Other fit functions: mxFitFunctionMultigroup, mxFitFunctionML, mxFitFunctionAlgebra, mxFitFunctionGREML,
mxFitFunctionR, mxFitFunctionRow

More information about the OpenMx package may be found here.

Examples

Create and fit a WLS model using RAM, and then using matrices.

library(OpenMx)

Simulate some data where y = .5x + error

x = rnorm(1000, mean = 0, sd = 1)
y = 0.5*x + rnorm(1000, mean = 0, sd = 1)
tmpFrame = data.frame(x, y)
varNames = names(tmpFrame)

=======================
= A RAM model example =
=======================

m1 = mxModel("my_first_WLS", type = "RAM",
manifestVars = c("x", "y"),
mxPath(c("x", "y"), arrows = 2, values = 1, labels = c("xVar", "yVar")),
mxPath("x", to = "y", labels = "x_to_y"),
mxFitFunctionWLS(),
mxData(tmpFrame, 'raw')
)

m1 = mxRun(m1)
summary(m1)$parameters

Here are the cov, acov and Weight matrices:
print(m1$data$observedStats)

Use a different weight matrix
m2 = m1
os <- m1$data$observedStats
os$asymCov <- solve(rWishart(n=1, df= nrow(tmpFrame), Sigma= diag(3))[,,1])
os$useWeight <- solve(os$asymCov * nrow(tmpFrame))
m2$data$observedStats <- os

Set verbose to check if our new weights are used
m2$data$verbose <- 1L

https://openmx.ssri.psu.edu/documentation/

210 MxFlatModel-class

Run model
m2 <- mxRun(m2)

SE indeed changed due to new weights
print(m2$output$standardErrors - m1$output$standardErrors)

==========================
= A matrix-based example =
==========================

Define matrices for Symmetric (S) and Asymmetric (A) paths and an Identity matrix.

S <- mxMatrix(type = "Full", nrow = 2, ncol = 2, values=c(1,0,0,1),
free=c(TRUE,FALSE,FALSE,TRUE), labels=c("Vx", NA, NA, "Vy"), name = "S")

A <- mxMatrix(type = "Full", nrow = 2, ncol = 2, values=c(0,1,0,0),
free=c(FALSE,TRUE,FALSE,FALSE), labels=c(NA, "b", NA, NA), name = "A")

I <- mxMatrix(type="Iden", nrow=2, ncol=2, name="I")

Build the model

tmpModel <- mxModel(model="exampleModel",
Add the S, A, and I matrices constructed above
S, A, I,

Define the expectation
mxAlgebra(name="expCov", solve(I-A) %*% S %*% t(solve(I-A))),

Choose a normal expectation and WLS as the fit function
mxExpectationNormal(covariance= "expCov", dimnames= varNames),
mxFitFunctionWLS(),

Add the data
mxData(tmpFrame, 'raw')
)

Fit the model and print a summary
tmpModel <- mxRun(tmpModel)
summary(tmpModel)

MxFlatModel-class MxFlatModel

Description

This is an internal class and should not be used.

mxGenerateData 211

mxGenerateData Generate data based on an mxModel (or a data.frame)

Description

This function returns a new (simulated) data set based on either the model-implied distribution if a
model is provided, OR saturated model if a data.frame is given in the model parameter.

See below for important details

Usage

mxGenerateData(model, nrows, returnModel=FALSE, use.miss = TRUE,
..., .backend=TRUE, subname=NULL, empirical=FALSE, nrowsProportion,
silent=FALSE)

Arguments

model A data.frame or MxModel object upon which the data are generated.

nrows Numeric. The number of rows of data to generate (default = same as in the
original data)

returnModel Whether to return the model with new data, or just return the new data.frames
(default)

use.miss Whether to approximate the missingness pattern of the original data (TRUE by
default).

... Not used; forces remaining arguments to be specified by name.

.backend Whether to use the backend to generate data (TRUE by default for speed)

subname If given, limits data generation to this sub model.

empirical Whether the generate data should match the distribution of the current data ex-
actly. Uses mvrnorm instead of rmvnorm

nrowsProportion

Numeric. The number of rows of data to generate expressed as a proportion of
the current number of rows.

silent Logical. Whether to report progress during time consuming data generation.

Details

When given a data.frame as a model, the model is assumed to be saturated multivariate Gaussian
and the expected distribution is obtained using mxDataWLS. In this case, the default number of
rows is assumed to be the number of rows in the original data.frame, but any other number of rows
can also be requested.

When given an MxModel, the model-implied means and covariance are extracted. It then generates
data with the same mean and covariance. Data can be generated based on Normal (mxExpectation-
Normal), RAM (mxExpectationRAM), LISREL (mxExpectationLISREL), and state space (mxEx-
pectationStateSpace) models.

212 mxGenerateData

Please note that this function samples data from the model-implied distribution(s); it does not sam-
ple from the data object in the model. That is, this function generates new data rather than pulling
data that already exist from the model.

Thresholds and ordinal data are implemented by generating continuous data and then using cut and
mxFactor to break the continuous data at the thresholds into an ordered factor.

If the model has definition variables, then a data set must be included in the model object and the
number of rows requested must match the number of rows in the model data. In this case the means,
covariance, and thresholds are reevaluated for each row of data, potentially creating a a different
mean, covariance, and threshold structure for every generated row of data.

For state space models (i.e. models with an mxExpectationStateSpace or mxExpectationStateS-
paceContinuousTime expectation), the data are generated based on the autoregressive structure of
the model. The rows of data in a state space model are not independent replicates of a stationary
process. Rather, they are the result of a latent (possibly non-stationary) autoregressive process. For
state space models different rows of data often correspond to different times. As alluded to above,
data generation works for discrete time state space models and hybrid continuous-discrete time state
space models. The latter have a continuous process that is measured as discrete times.

The subname parameter is used to limit data generation to the given submodel. The reason you
wouldn’t pass the submodel in the model argument is that some parts of the submodel might depend
on objects in other submodels that are part of the model.

Value

A data.frame, list of data.frames, or model populated with the new data (depending on the returnModel
parameter). Raw data is always returned even if the original model contained covariance or some
other non-raw data.

References

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.

Examples

====================================
= Demonstration for empirical=TRUE =
====================================
popCov <- cov(Bollen[, 1:8])*(nrow(Bollen)-1)/nrow(Bollen)
got <- mxGenerateData(Bollen[, 1:8], nrows=nrow(Bollen), empirical = TRUE)
cov(got) - popCov # pretty close, given 8 variables to juggle!
round(cov2cor(cov(got)) - cov2cor(popCov), 4)

===
= Create data based on state space model. =
===

require(OpenMx)
nvar <- 5
varnames <- paste("x", 1:nvar, sep="")
ssModel <- mxModel(model="State Space Manual Example",

mxMatrix("Full", 1, 1, TRUE, .3, name="A"),

https://openmx.ssri.psu.edu/documentation/

mxGenerateData 213

mxMatrix("Zero", 1, 1, name="B"),
mxMatrix("Full", nvar, 1, TRUE, .6, name="C", dimnames=list(varnames, "F1")),
mxMatrix("Zero", nvar, 1, name="D"),
mxMatrix("Diag", 1, 1, FALSE, 1, name="Q"),
mxMatrix("Diag", nvar, nvar, TRUE, .2, name="R"),
mxMatrix("Zero", 1, 1, name="x0"),
mxMatrix("Diag", 1, 1, FALSE, 1, name="P0"),
mxMatrix("Zero", 1, 1, name="u"),
mxExpectationStateSpace("A", "B", "C", "D", "Q", "R", "x0", "P0", "u"),
mxFitFunctionML()

)

ssData <- mxGenerateData(ssModel, 200) # 200 time points

Add simulated data to model and run
ssModel <- mxModel(ssModel, mxData(ssData, 'raw'))
ssRun <- mxRun(ssModel)

Compare parameters from random data to the generating model
cbind(Rand = omxGetParameters(ssRun), Gen = omxGetParameters(ssModel))

Note the parameters should be "close" (up to sampling error)
to the generating values

===
= Demo generating new data from a model =
===
require(OpenMx)
manifests <- paste0("x", 1:5)
originalModel <- mxModel("One Factor", type="RAM",

manifestVars = manifests,
latentVars = "G",
mxPath(from="G", to=manifests, values=.8),
mxPath(from=manifests, arrows=2, values=.2),
mxPath(from="G" , arrows=2, free=FALSE, values=1.0),
mxPath(from = 'one', to = manifests)

)

factorData <- mxGenerateData(originalModel, 1000)
newData = mxData(cov(factorData), type="cov",
numObs=nrow(factorData), means = colMeans(factorData)
)
newModel <- mxModel(originalModel, newData)
newModel <- mxRun(newModel)
cbind(
Original = omxGetParameters(originalModel),
Generated = round(omxGetParameters(newModel), 4),
Delta = round(
omxGetParameters(originalModel) -
omxGetParameters(newModel), 3)
)

214 mxGetExpected

And again with empirical = TRUE

factorData <- mxGenerateData(originalModel, 1000, empirical = TRUE)
newData = mxData(cov(factorData),
type = "cov",
numObs = nrow(factorData),
means = colMeans(factorData)
)

newModel <- mxModel(originalModel, newData)
newModel <- mxRun(newModel)

cbind(
Original = omxGetParameters(originalModel),
Generated = round(omxGetParameters(newModel), 4),
Delta = omxGetParameters(originalModel) -

omxGetParameters(newModel)
)

mxGetExpected Extract the component from a model’s expectation

Description

This function extracts the expected means, covariance, or thresholds from a model.

Usage

mxGetExpected(model, component, defvar.row=1, subname=model$name)
imxGetExpectationComponent(model, component, defvar.row=1, subname=model$name)

Arguments

model MxModel object from which to extract the expectation component.

component Character vector. The name(s) of the component(s) to extract. Recognized
names are “covariance”, “means”, and “thresholds”.

defvar.row A row index. Which row to load for definition variables.

subname Name of the submodel to evaluate.

Details

The expected means, covariance, or thresholds can be extracted from Normal (mxExpectationNor-
mal), RAM (mxExpectationRAM), and LISREL (mxExpectationLISREL) models. When more
than one component is requested, the components will be returned as a list.

If component ’vector’ is requested then the non-redundant coefficients of the expected manifest
distribution will be returned as a vector.

mxGetExpected 215

If component ’standVector’ is requested then the same parameter structure as ’vector’ is returned,
but it is standardized. For Normal expectations the covariances are returned as correlations, the
means are returned as zeros, and the thresholds are returned as z-scores. For the thresholds the
z-scores are computed by using the model-implied means and variances.

Note that capitalization is ignored for the ’standVector’ option, so ’standvector’ is also acceptable.

Value

See details.

References

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.

Examples

===
= Build a 1-factor CFA, with bad start values =
===
require(OpenMx)
manifests = paste("x", 1:5, sep="")
latents = c("G")
factorModel = mxModel("One Factor", type="RAM",

manifestVars = manifests,
latentVars = latents,
mxPath(from = latents, to = manifests),
mxPath(from = manifests, arrows = 2),
mxPath(from = latents, arrows = 2, free = FALSE, values = 1.0),
mxPath(from = 'one', to = manifests),

mxData(demoOneFactor, type = "raw")
)

==
= What do our starting values indicate about the expected data covariance? =
==
mxGetExpected(factorModel, "covariance")

Oops. Starting values indicate an expected zero-covariance matrix.
The model likely won't run from these start values.
Let's adjust them:

factorModel = mxModel("One Factor", type = "RAM",
manifestVars = manifests, latentVars = latents,
Reasonable start VALUES

mxPath(from = latents, to = manifests, values = .2),
mxPath(from = manifests, arrows = 2),
mxPath(from = latents, arrows = 2, free = FALSE, values = 1.0),
mxPath(from = 'one', to = manifests),

mxData(demoOneFactor, type = "raw")
)

mxGetExpected(factorModel, "covariance")

https://openmx.ssri.psu.edu/documentation/

216 mxGREMLDataHandler

x1 x2 x3 x4 x5
x1 0.04 0.04 0.04 0.04 0.04
x2 0.04 0.04 0.04 0.04 0.04
x3 0.04 0.04 0.04 0.04 0.04
x4 0.04 0.04 0.04 0.04 0.04
x5 0.04 0.04 0.04 0.04 0.04

And this version will run:
factorModel = mxRun(factorModel)

mxGREMLDataHandler Helper Function for Structuring GREML Data

Description

This function takes a dataframe or matrix and uses it to setup the ’y’ and ’X’ matrices for a GREML
analysis; this includes trimming out NAs from ’X’ and ’y.’ The result is a matrix the first column of
which is the ’y’ vector, and the remaining columns of which constitute ’X.’

Usage

mxGREMLDataHandler(data, yvars=character(0), Xvars=list(), addOnes=TRUE,
blockByPheno=TRUE, staggerZeroes=TRUE)

Arguments

data Either a dataframe or matrix, with column names, containing the variables to be
used as phenotypes and covariates in ’y’ and ’X,’ respectively.

yvars Character vector. Each string names a column of the raw dataset, to be used as
a phenotype.

Xvars A list of data column names, specifying the covariates to be used with each
phenotype. The list should have the same length as argument yvars.

addOnes Logical; should lead columns of ones (for the regression intercepts) be adhered
to the covariates when assembling the ’X’ matrix? Defaults to TRUE.

blockByPheno Logical; relevant to polyphenotype analyses. If TRUE (default), then the result-
ing ’y’ will contain phenotype #1 for individuals 1 thru n, phenotype #2 for
individuals 1 thru n, ... If FALSE, then observations are "blocked by individual",
and the resulting ’y’ will contain individual #1’s scores on phenotypes 1 thru p,
individual #2’s scores on phenotypes 1 thru p, ... Note that in either case, ’X’
will be structured appropriately for ’y.’

staggerZeroes Logical; relevant to polyphenotype analyses. If TRUE (default), then each phe-
notype’s covariates in ’X’ are "staggered," and ’X’ is padded out with zeroes.
If FALSE, then ’X’ is formed simply by stacking the phenotypes’ covariates;
this requires each phenotype to have the same number of covariates (i.e., each
character vector in Xvars must be of the same length). The default (TRUE) is in-
tended for instances where the multiple phenotypes truly are different variables,

mxGREMLDataHandler 217

whereas staggerZeroes=FALSE is intended for instances where the multiple
"phenotypes" actually represent multiple observations on the same variable. One
example of the latter case is longitudinal data where the multiple "phenotypes"
are repeated measures on a single phenotype.

Details

For a monophenotype analysis (only), argument Xdata can be a character vector. In a polypheno-
type analysis, if the same covariates are to be used with all phenotypes, then Xdata can be a list of
length 1.

Note the synergy between the output of mxGREMLDataHandler() and arguments dataset.is.yX
and casesToDropFromV to mxExpectationGREML().

If the dataframe or matrix supplied for argument data has n rows, and argument yvars is of length
p, then the resulting ’y’ and ’X’ matrices will have np rows. Then, if either matrix contains any NA’s,
the rows containing the NA’s are trimmed from both ’X’ and ’y’ before being returned in the output
(in which case they will obviously have fewer than np rows). Function mxGREMLDataHandler()
reports which rows of the full-size ’X’ and ’y’ were trimmed out due to missing observations.
These row indices can be provided as argument casesToDropFromV to mxExpectationGREML().

Value

A list with these two components:

yX Numeric matrix. The first column is the phenotype vector, ’y,’ while the re-
maining columns constitute the ’X’ matrix of covariates. If this matrix is used
as the raw dataset for a model, then the model’s GREML expectation can be
constructed with dataset.is.yX=TRUE in mxExpectationGREML().

casesToDrop Numeric vector. Contains the indices of the rows of the ’y’ and ’X’ that were
dropped due to containing NA’s. Can be provided as as argument casesToDropFromV
to mxExpectationGREML().

References

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.

See Also

For more information generally concerning GREML analyses, including a complete example, see
mxExpectationGREML(). More information about the OpenMx package may be found here.

Examples

dat <- cbind(rnorm(100),rep(1,100))
colnames(dat) <- c("y","x")
dat[42,1] <- NA
dat[57,2] <- NA
dat2 <- mxGREMLDataHandler(data=dat, yvars="y", Xvars=list("x"),

addOnes = FALSE)
str(dat2)

https://openmx.ssri.psu.edu/documentation/

218 mxJiggle

MxInterval-class MxInterval

Description

This is an internal class and should not be used directly.

See Also

mxCI

mxJiggle Jiggle parameter values.

Description

Jiggle free parameter values, subject to box constraints. imxJiggle() is called internally by
mxTryHard() (q.v.). mxJiggle() provides a more user-friendly wrapper to imxJiggle(), and can
alternately emulate the ’JIGGLE’ behavior of classic Mx.

Usage

mxJiggle(model, classic=FALSE, dsn=c("runif","rnorm","rcauchy"), loc=1, scale=0.25)
imxJiggle(params, lbounds, ubounds, dsn, loc, scale)

Arguments

model An object of class MxModel.

classic Logical; should mxJiggle() emulate the classic-Mx behavior elicited by key-
word JIGGLE? Defaults to FALSE. See below, under "Details," for additional
information.

dsn Character string naming which random-number distribution–either uniform (rect-
angular), normal (Gaussian), or Cauchy–to be used to perturb free-parameter
values. Defaults to the uniform distribution (for mxJiggle()).

loc, scale Numeric. The location and scale parameters of the distribution from which ran-
dom values are drawn to perturb free-parameter values, defaulting respectively
to 1 and 0.25 (for mxJiggle()).

params Numeric vector of current free parameter values.

lbounds Numeric vector of lower bounds on parameters.

ubounds Numeric vector of upper bounds on parameters.

mxJiggle 219

Details

If mxJiggle() argument classic=FALSE (the default), mxJiggle() calls imxJiggle(). In that
case, mxJiggle() passes imxJiggle() its own values for arguments dsn, loc, and scale, and
extracts values for arguments params, lbounds, and ubounds from model. Then, model’s free-
parameter values are randomly perturbed before being re-assigned to it. The distributional family
from which the perturbations are randomly generated is dictated by argument dsn. The distribution
is parameterized by arguments loc and scale, respectively the location and scale parameters. The
location parameter is the distribution’s median. For the uniform distribution, scale is the absolute
difference between its median and extrema (i.e., half the width of the rectangle); for the normal
distribution, scale is its standard deviation; and for the Cauchy, scale is one-half its interquartile
range. Free-parameter values are first multiplied by random draws from a distribution with the
provided loc and scale, then added to random draws from a distribution with the same scale but
with a median of zero.

If mxJiggle() argument classic=TRUE, then each free-parameter value xi is replaced with xi +
0.1(xi + 0.5); this is the same behavior elicited in classic Mx by keyword JIGGLE.

Value

imxJiggle() returns a numeric vector of randomly perturbed free-parameter values. mxJiggle()
returns model, with its free parameter values altered according to the other function arguments.

See Also

mxTryHard()

Examples

data(demoOneFactor)
manifests <- names(demoOneFactor)
latents <- c("G")
factorModel <- mxModel(
"One Factor",
type="RAM",
manifestVars = manifests,
latentVars = latents,
mxPath(from=latents, to=manifests,values=0.8),
mxPath(from=manifests, arrows=2,values=1),
mxPath(from=latents, arrows=2,
free=FALSE, values=1.0),
mxData(cov(demoOneFactor), type="cov",
numObs=500)
)

iniPars <- coef(factorModel)
print(iniPars)

pars2 <- imxJiggle(params=iniPars,lbounds=NA,ubounds=NA,dsn="runif",loc=1,scale=0.05)
print(pars2)

mod2 <- mxJiggle(model=factorModel,scale=0.05)

220 mxKalmanScores

coef(mod2)

mod3 <- mxJiggle(model=factorModel,classic=TRUE)
coef(mod3)

mxKalmanScores Estimate Kalman scores and error covariance matrices

Description

This function creates the Kalman predicted, Kalman updated, and Rauch-Tung-Striebel smoothed
latent state and error covariance estimates for an MxModel object that has an MxExpectationStateS-
pace object.

Usage

mxKalmanScores(model, data=NA, frontend=TRUE)

Arguments

model An MxModel object with an MxExpectationStateSpace.

data An optional data.frame or matrix.

frontend When TRUE, compute score in the frontend, otherwise use the backend.

Details

This is a helper function that computes the results of the classical Kalman filter. In particular, for
every row of data there is a predicted latent score, an error covariance matrix for the predicted latent
scores that provides an estimate of the predictions precision, an updated latent score, and an updated
error covariance matrix for the updated latent scores. Additionally, the Rauch-Tung-Striebel (RTS)
smoothed latent scores and error covariance matrices are returned.

Value

A list with components xPredicted, PPredicted, xUpdated, PUpdated, xSmoothed, PSmoothed,
m2ll, and L. When using backend scores, this list also has components for yPredicted and SPre-
dicted which have the same number of time points as the other components but relate to the ob-
served variables instead of the latent variables. The rows of xPredicted, xUpdated, and xSmoothed
correspond to different time points. The columns are the different latent variables. The third index
of PPredicted, PUpdated, and PSmoothed corresponds to different times. This works nicely with
the R default print method for arrays. At each time there is a covariance matrix of the latent variable
scores. For all items listed below, the first element goes with the zeroth time point (See example).

xPredicted matrix of Kalman predicted scores

PPredicted array of Kalman predicted error covariances

xUpdated matrix of Kalman updated scores

PUpdated array of Kalman updated error covariances

mxKalmanScores 221

xSmoothed matrix of RTS smoothed scores

PSmoothed array of RTS smoothed error covariances

m2ll minus 2 log likelihood

L likelihood, i.e., the multivariate normal probability density

yPredicted matrix of Kalman predicted scores for the observed variables, i.e., the predicted means.
Only available for backend scores.

SPredicted array of Kalman predicted error covariances for the observed variables, i.e., the pre-
dicted covariances. Only available for backend scores.

References

J. Durbin and S.J. Koopman. (2001). Time Series Analysis by State Space Methods. Oxford Uni-
versity Press.

R.E. Kalman (1960). A New Approach to Linear Filtering and Prediction Problems. Basic Engi-
neering, 82, 35-45.

H.E. Rauch, F. Tung, C.T. Striebel. (1965). Maximum Likelihood Estimates of Linear Dynamic
Systems. American Institute of Aeronautics and Astronautics Journal, 3, 1445-1450.

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.

See Also

mxExpectationStateSpace

Examples

Create and fit a model using mxMatrix, mxExpectationStateSpace, and mxFitFunctionML
require(OpenMx)
data(demoOneFactor)
Use only first 50 rows, for speed of example
data <- demoOneFactor[1:50,]
nvar <- ncol(demoOneFactor)
varnames <- colnames(demoOneFactor)
ssModel <- mxModel(model="State Space Manual Example",

mxMatrix("Full", 1, 1, TRUE, .3, name="A"),
mxMatrix("Zero", 1, 1, name="B"),
mxMatrix("Full", nvar, 1, TRUE, .6, name="C", dimnames=list(varnames, "F1")),
mxMatrix("Zero", nvar, 1, name="D"),
mxMatrix("Diag", 1, 1, FALSE, 1, name="Q"),
mxMatrix("Diag", nvar, nvar, TRUE, .2, name="R"),
mxMatrix("Zero", 1, 1, name="x0"),
mxMatrix("Diag", 1, 1, FALSE, 1, name="P0"),
mxMatrix("Zero", 1, 1, name="u"),
mxData(observed=data, type="raw"),
mxExpectationStateSpace("A", "B", "C", "D", "Q", "R", "x0", "P0", "u"),
mxFitFunctionML()

)
ssRun <- mxRun(ssModel)
summary(ssRun)
Note the freely estimated Autoregressive parameter (A matrix)

https://openmx.ssri.psu.edu/documentation/

222 mxLISRELObjective

is near zero as it should be for the independent rows of data
from the factor model.

ssScores <- mxKalmanScores(ssRun)

cor(cbind(ssScores$xPredicted[,1], ssScores$xUpdated[,1], ssScores$xSmoothed[,1]))
Because the autoregressive dynamics are near zero, the predicted and updated scores
correlate minimally, and the updated and smoothed latent state estimates
are extremely close.

The first few latent predicted scores
head(ssScores$xPredicted)

The predicted latent score for time 10
ssScores$xPredicted[10+1,]

The error covariance of the predicted score at time 10
ssScores$PPredicted[,,10+1]

MxLISRELModel-class MxLISRELModel

Description

This is an internal class and should not be used directly.

mxLISRELObjective Create MxLISRELObjective Object

Description

This function creates a new MxLISRELObjective object.

Usage

mxLISRELObjective(LX=NA, LY=NA, BE=NA, GA=NA, PH=NA, PS=NA, TD=NA, TE=NA, TH=NA,
TX = NA, TY = NA, KA = NA, AL = NA,
dimnames = NA, thresholds = NA, vector = FALSE, threshnames = dimnames)

Arguments

LX An optional character string indicating the name of the ’LX’ matrix.

LY An optional character string indicating the name of the ’LY’ matrix.

BE An optional character string indicating the name of the ’BE’ matrix.

GA An optional character string indicating the name of the ’GA’ matrix.

mxLISRELObjective 223

PH An optional character string indicating the name of the ’PH’ matrix.

PS An optional character string indicating the name of the ’PS’ matrix.

TD An optional character string indicating the name of the ’TD’ matrix.

TE An optional character string indicating the name of the ’TE’ matrix.

TH An optional character string indicating the name of the ’TH’ matrix.

TX An optional character string indicating the name of the ’TX’ matrix.

TY An optional character string indicating the name of the ’TY’ matrix.

KA An optional character string indicating the name of the ’KA’ matrix.

AL An optional character string indicating the name of the ’AL’ matrix.

dimnames An optional character vector that is currently ignored

thresholds An optional character string indicating the name of the thresholds matrix.

vector A logical value indicating whether the objective function result is the likelihood
vector.

threshnames An optional character vector to be assigned to the column names of the thresh-
olds matrix.

Details

Objective functions are functions for which free parameter values are chosen such that the value
of the objective function is minimized. The mxLISRELObjective provides maximum likelihood
estimates of free parameters in a model of the covariance of a given MxData object. This model is
defined by LInear Structural RELations (LISREL; Jöreskog & Sörbom, 1982, 1996). Arguments
’LX’ through ’AL’ must refer to MxMatrix objects with the associated properties of their respective
matrices in the LISREL modeling approach.

The full LISREL specification has 13 matrices and is sometimes called the extended LISREL model.
It is defined by the following equations.

η = α+Bη + Γξ + ζ

y = τy + Λyη + ϵ

x = τx + Λxξ + δ

The table below is provided as a quick reference to the numerous matrices in LISREL models.
Note that NX is the number of manifest exogenous (independent) variables, the number of Xs. NY
is the number of manifest endogenous (dependent) variables, the number of Ys. NK is the number
of latent exogenous variables, the number of Ksis or Xis. NE is the number of latent endogenous
variables, the number of etas.

Matrix Word Abbreviation Dimensions Expression Description
Λx Lambda x LX NX x NK Exogenous Factor Loading Matrix
Λy Lambda y LY NY x NE Endogenous Factor Loading Matrix
B Beta BE NE x NE Regressions of Latent Endogenous Variables Predicting Endogenous Variables
Γ Gamma GA NE x NK Regressions of Latent Exogenous Variables Predicting Endogenous Variables
Φ Phi PH NK x NK cov(ξ) Covariance Matrix of Latent Exogenous Variables

224 mxLISRELObjective

Ψ Psi PS NE x NE cov(ζ) Residual Covariance Matrix of Latent Endogenous Variables
Θδ Theta delta TD NX x NX cov(δ) Residual Covariance Matrix of Manifest Exogenous Variables
Θϵ Theta epsilon TE NY x NY cov(ϵ) Residual Covariance Matrix of Manifest Endogenous Variables
Θδϵ Theta delta epsilson TH NX x NY cov(δ, ϵ) Residual Covariance Matrix of Manifest Exogenous with Endogenous Variables
τx tau x TX NX x 1 Residual Means of Manifest Exogenous Variables
τy tau y TY NY x 1 Residual Means of Manifest Endogenous Variables
κ kappa KA NK x 1 mean(ξ) Means of Latent Exogenous Variables
α alpha AL NE x 1 Residual Means of Latent Endogenous Variables

From the extended LISREL model, several submodels can be defined. Subtypes of the LISREL
model are defined by setting some of the arguments of the LISREL objective to NA. Note that be-
cause the default values of each LISREL matrix is NA, setting a matrix to NA can be accomplished
by simply not giving it any other value.

The first submodel is the LISREL model without means.

η = Bη + Γξ + ζ

y = Λyη + ϵ

x = Λxξ + δ

The LISREL model without means requires 9 matrices: LX, LY, BE, GA, PH, PS, TD, TE, and TH.
Hence this LISREL model has TX, TY, KA, and AL as NA. This can be accomplished be leaving
these matrices at their default values.

The TX, TY, KA, and AL matrices must be specified if either the mxData type is “cov” or “cor”
and a means vector is provided, or if the mxData type is “raw”. Otherwise the TX, TY, KA, and AL
matrices are ignored and the model without means is estimated.

A second submodel involves only endogenous variables.

η = Bη + ζ

y = Λyη + ϵ

The endogenous-only LISREL model requires 4 matrices: LY, BE, PS, and TE. The LX, GA, PH,
TD, and TH must be NA in this case. However, means can also be specified, allowing TY and AL
if the data are raw or if observed means are provided.

Another submodel involves only exogenous variables.

x = Λxξ + δ

The exogenous-model model requires 3 matrices: LX, PH, and TD. The LY, BE, GA, PS, TE, and
TH matrices must be NA. However, means can also be specified, allowing TX and KA if the data
are raw or if observed means are provided.

The model that is run depends on the matrices that are not NA. If all 9 matrices are not NA, then the
full model is run. If only the 4 endogenous matrices are not NA, then the endogenous-only model
is run. If only the 3 exogenous matrices are not NA, then the exogenous-only model is run. If some

mxLISRELObjective 225

endogenous and exogenous matrices are not NA, but not all of them, then appropriate errors are
thrown. Means are included in the model whenever their matrices are provided.

The MxMatrix objects included as arguments may be of any type, but should have the properties
described above. The mxLISRELObjective will not return an error for incorrect specification, but
incorrect specification will likely lead to estimation problems or errors in the mxRun function.

Like the mxRAMObjective, the mxLISRELObjective evaluates with respect to an MxData object.
The MxData object need not be referenced in the mxLISRELObjective function, but must be in-
cluded in the MxModel object. mxLISRELObjective requires that the ’type’ argument in the asso-
ciated MxData object be equal to ’cov’, ’cor’, or ’raw’.

To evaluate, place MxLISRELObjective objects, the mxData object for which the expected co-
variance approximates, referenced MxAlgebra and MxMatrix objects, and optional MxBounds and
MxConstraint objects in an MxModel object. This model may then be evaluated using the mxRun
function. The results of the optimization can be found in the ’output’ slot of the resulting model,
and may be obtained using the mxEval function.

Value

Returns a new MxLISRELObjective object. MxLISRELObjective objects should be included with
models with referenced MxAlgebra, MxData and MxMatrix objects.

References

Jöreskog, K. G. & Sörbom, D. (1996). LISREL 8: User’s Reference Guide. Lincolnwood, IL:
Scientific Software International.

Jöreskog, K. G. & Sörbom, D. (1982). Recent developments in structural equation modeling. Jour-
nal of Marketing Research, 19, 404-416.

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.

Examples

#####------------------------------#####
Factor Model
mLX <- mxMatrix("Full", values=c(.5, .6, .8, rep(0, 6), .4, .7, .5),

name="LX", nrow=6, ncol=2,
free=c(TRUE,TRUE,TRUE,rep(FALSE, 6),TRUE,TRUE,TRUE))

mTD <- mxMatrix("Diag", values=c(rep(.2, 6)), name="TD", nrow=6, ncol=6,
free=TRUE)

mPH <- mxMatrix("Symm", values=c(1, .3, 1), name="PH", nrow=2, ncol=2,
free=c(FALSE, TRUE, FALSE))

Create a LISREL objective with LX, TD, and PH matrix names
objective <- mxLISRELObjective(LX="LX", TD="TD", PH="PH")

testModel <- mxModel(model="testModel4", mLX, mTD, mPH, objective)

https://openmx.ssri.psu.edu/documentation/

226 mxMakeNames

MxListOrNull-class An optional list

Description

An optional list

mxMakeNames mxMakeNames

Description

Adjust a character vector so that it is valid when used as MxMatrix column or row names.

Usage

mxMakeNames(names, unique = FALSE)

Arguments

names a character vector

unique whether to pass the result through make.unique

Details

note: OpenMx is (much) more restrictive than base R’s make.names.

See Also

make.names

Examples

demo <- c("", "103", "data", "foo.bar[3,2]", "+!", "!+")
mxMakeNames(demo, unique=TRUE)

mxMarginalNegativeBinomial 227

mxMarginalNegativeBinomial

Indicator with marginal Negative Binomial distribution

Description

Indicator with marginal Negative Binomial distribution

Usage

mxMarginalNegativeBinomial(
vars,
maxCount = NA,
size,
prob = c(),
mu = c(),
zeroInf = 0.01,
free = TRUE,
labels = NA,
lbound = NA,
ubound = NA

)

Arguments

vars character vector of manifest indicators

maxCount maximum observed count

size positive target number of successful trials

prob probability of success in each trial

mu alternative parametrization via mean

zeroInf zero inflation parameter in probability units

free logical vector indicating whether paremeters are free

labels character vector of parameter labels

lbound numeric vector of lower bounds

ubound numeric vector of upper bounds

Value

a list of MxMarginPoisson obects

228 mxMarginalPoisson

mxMarginalPoisson Indicator with marginal Poisson distribution

Description

Indicator with marginal Poisson distribution

Usage

mxMarginalPoisson(
vars,
maxCount = NA,
lambda,
zeroInf = 0.01,
free = TRUE,
labels = NA,
lbound = 0,
ubound = c(1, NA)

)

Arguments

vars character vector of manifest indicators

maxCount maximum observed count

lambda non-negative means

zeroInf zero inflation parameter in probability units

free logical vector indicating whether paremeters are free

labels character vector of parameter labels

lbound numeric vector of lower bounds

ubound numeric vector of upper bounds

Value

a list of MxMarginPoisson obects

mxMatrix 229

mxMatrix Create MxMatrix Object

Description

This function creates a new MxMatrix object.

Usage

mxMatrix(type = c('Full', 'Diag', 'Iden', 'Lower',
'Sdiag', 'Stand', 'Symm', 'Unit', 'Zero'), nrow = NA, ncol = NA,

free = FALSE, values = NA, labels = NA, lbound = NA,
ubound = NA, byrow = getOption('mxByrow'), dimnames = NA, name = NA,
condenseSlots=getOption('mxCondenseMatrixSlots'),
..., joinKey=as.character(NA), joinModel=as.character(NA))

Arguments

type A character string indicating the matrix type, where type indicates the range
of values and equalities in the matrix. Must be one of: ‘Diag’, ‘Full’, ‘Iden’,
‘Lower’, ‘Sdiag’, ‘Stand’, ‘Symm’, ‘Unit’, or ‘Zero’.

nrow Integer; the desired number of rows. One or both of ‘nrow’ and ‘ncol’ is re-
quired when ‘values’, ‘free’, ‘labels’, ‘lbound’, and ‘ubound’ arguments are not
matrices, depending on the desired MxMatrix type.

ncol Integer; the desired number of columns. One or both of ‘nrow’ and ‘ncol’ is
required when ‘values’, ‘free’, ‘labels’, ‘lbound’, and ‘ubound’ arguments are
not matrices, depending on the desired MxMatrix type.

free A vector or matrix of logicals for free parameter specification. A single ‘TRUE’
or ‘FALSE’ will set all allowable variables to free or fixed, respectively.

values A vector or matrix of numeric starting values. By default, all values are set to
zero.

labels A vector or matrix of characters for variable label specification.

lbound A vector or matrix of numeric lower bounds. Default bounds are specified with
an NA.

ubound A vector or matrix of numeric upper bounds. Default bounds are specified with
an NA.

byrow Logical; defaults to value of global option ’mxByRow’. If FALSE (default),
the ‘values’, ‘free’, ‘labels’, ‘lbound’, and ‘ubound’ matrices are populated by
column rather than by row.

dimnames List. The dimnames attribute for the matrix: a list of length 2 giving the row
and column names respectively. An empty list is treated as NULL, and a list of
length one as row names. The list can be named, and the list names will be used
as names for the dimensions.

name An optional character string indicating the name of the MxMatrix object.

230 mxMatrix

condenseSlots Logical; defaults to value of global option ’mxCondenseMatrixSlots’. If TRUE,
then the resulting MxMatrix will "condense" its ‘labels’, ‘free’, ‘lbound’, and
‘ubound’ down to 1x1 matrices if they contain only FALSE (‘free’) or NA (the
other three). If FALSE, those four matrices and the ‘values’ matrix will all be of
equal dimensions.

... Not used. Forces remaining arguments to be specified by name.
joinKey The name of the column in current model’s raw data that is used as a foreign key

to match against the primary key in the joinModel’s raw data.
joinModel The name of the model that this matrix joins against.

Details

The mxMatrix function creates MxMatrix objects, which consist of five matrices and a ‘type’ argu-
ment. The ‘values’ matrix is made up of numeric elements whose usage and capabilities in other
functions are defined by the ‘free’ matrix. If an element is specified as a fixed parameter in the
‘free’ matrix, then the element in the ‘values’ matrix is treated as a constant value and cannot be
altered or updated by an objective function when included in an mxRun function. If an element is
specified as a free parameter in the ‘free’ matrix, the element in the ‘value’ matrix is considered a
starting value and can be changed by an objective function when included in an mxRun function.

Element labels beginning with 'data.' can be used if the MxMatrix is to be used in an MxModel
object that has a raw dataset (i.e., an MxData object of type="raw"). Such a label instructs OpenMx
to use a particular column of the raw dataset to fill in the value of that element. For historical
reasons, the variable contained in that column is called a "definition variable." For example, if an
MxMatrix element has the label 'data.x', then OpenMx will use the first value of the data column
named "x" when evaluating the fitfunction for the first row, and will use the second value of column
"x" when evaluating the fitfunction for the second row, and so on. After the call to mxRun(), the
values for elements labeled with 'data.x' are returned as the value from the first (i.e., first before
any automated sorting is done) element of column "x" in the data.

Objects created by the mxMatrix() function are of a specific ‘type’, which specifies the number
and location of parameters in the ‘labels’ matrix and the starting values in the ‘values’ matrix. Input
‘values’, ‘free’, and ‘labels’ matrices must be of appropriate shape and have appropriate values for
the matrix type requested. Nine types of matrices are supported:

‘Diag’ matrices must be square, and only elements on the principal diagonal may be specified as free parameters or take non-zero values. All other elements are required to be fixed parameters with a value of 0.
‘Full’ matrices may be either rectangular or square, and all elements in the matrix may be freely estimated. This type is the default for the mxMatrix() function.
‘Iden’ matrices must be square, and consist of no free parameters. Matrices of this type have a value of 1 for all entries on the principal diagonal and the value 0 in all off-diagonal entries.
‘Lower’ matrices must be square, with a value of 0 for all entries in the upper triangle and no free parameters in the upper triangle.
‘Sdiag’ matrices must be square, with a value of 0 for all entries in the upper triangle and along the diagonal. No free parameters in the upper triangle or along the diagonal.
‘Symm’ matrices must be square, and elements in the principle diagonal and lower triangular portion of the matrix may be free parameters of any value. Elements in the upper triangular portion of the matrix are constrained to be equal to those in the lower triangular portion, such that the value and parameter specification of the element in row i and column j is identical to to the value and specification of the element in row j and column i.
‘Stand’ matrices are symmetric matrices (see ’Symm’) with 1’s along the main diagonal.
‘Unit’ matrices may be either rectangular or square, and contain no free parameters. All elements in matrices of this type have a value of 1 for all elements.
‘Zero’ matrices may be either rectangular or square, and contain no free parameters. All elements in matrices of this type have a value of 0 for all elements.

When ‘type’ is ‘Lower’ or ‘Symm’, then the arguments to ‘free’, ‘values’, ‘labels’, ‘lbound’, or
‘ubound’ may be vectors of length N ∗ (N + 1)/2, where N is the number of rows and columns
of the matrix. When ‘type’ is ‘Sdiag’ or ‘Stand’, then the arguments to ‘free’, ‘values’, ‘labels’,
‘lbound’, or ‘ubound’ may be vectors of length N ∗ (N − 1)/2.

mxMatrix 231

Value

Returns a new MxMatrix object, which consists of a ‘values’ matrix of numeric starting values,
a ‘free’ matrix describing free parameter specification, a ‘labels’ matrix of labels for the variable
names, and ‘lbound’ and ‘ubound’ matrices of the lower and upper parameter bounds. This Mx-
Matrix object can be used as an argument in the mxAlgebra(), mxBounds(), mxConstraint() and
mxModel() functions.

References

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.

See Also

MxMatrix for the S4 class created by mxMatrix. More information about the OpenMx package
may be found here.

Examples

Create a 3 x 3 identity matrix

idenMatrix <- mxMatrix(type = "Iden", nrow = 3,
ncol = 3, name = "I")

Create a full 4 x 2 matrix from existing
value matrix with all free parameters

vals <- matrix(1:8, nrow = 4)
fullMatrix <- mxMatrix(type = "Full", values = vals,

free = TRUE, name = "foo")

Create a 3 x 3 symmetric matrix with free off-
diagonal parameters and starting values

symmMatrix <- mxMatrix(type = "Symm", nrow = 3, ncol = 3,
free = c(FALSE, TRUE, TRUE, FALSE, TRUE, FALSE),
values = c(1, .8, .8, 1, .8, 1),
labels = c(NA, "free1", "free2", NA, "free3", NA),
name = "bar")

Create an mxMatrix from a character matrix. All numbers are
interpreted as fixed and non-numbers are interpreted as free
parameters.

matrixFromChar <- function(inputm, name=NA) {
inputmFixed <- suppressWarnings(matrix(
as.numeric(inputm),nrow = nrow(inputm), ncol = ncol(inputm)))

inputmCharacter <- inputm
inputmCharacter[!is.na(inputmFixed)] <- NA
mxMatrix(nrow=nrow(inputm), ncol=ncol(inputm),

free=!is.na(inputmCharacter),
values=inputmFixed,

https://openmx.ssri.psu.edu/documentation/

232 MxMatrix-class

labels=inputmCharacter,
dimnames=dimnames(inputm), name=name)

}

Demonstrate some of the behavior of the condensed slots
Create a 3x3 matrix with condensed slots

a <- mxMatrix('Full', 3, 3, values=1, condenseSlots=TRUE)
a@free # at operator returns the stored 1x1 matrix
a$free # dollar operator constructs full matrix for printing

assignment with the dollar operator
de-condenses the slots to create the
full 3x3 matrix
a$free[1,1] <- TRUE
a@free

MxMatrix-class MxMatrix Class

Description

MxMatrix is a virtual S4 class that comprises the nine types of matrix objects used by OpenMx (see
mxMatrix() for details). An MxMatrix object is a named entity. New instances of this class can
be created using the function mxMatrix(). MxMatrix objects may be used as arguments in other
functions from the OpenMx package, including mxAlgebra(), mxConstraint(), and mxModel().

Objects from the Class

All nine types of object that the class comprises can be created via mxMatrix().

Slots

name: Character string; the name of the MxMatrix object. Note that this is the object’s "Mx name"
(so to speak), which identifies it in OpenMx’s internal namespace, rather than the symbol
identifying it in R’s workspace. Use of MxMatrix objects in an mxAlgebra or mxConstraint
function requires reference by name.

values: Numeric matrix of values. If an element is specified as a fixed parameter in the ’free’
matrix, then the element in the ’values’ matrix is treated as a constant value and cannot be
altered or updated by an objective function when included in an mxRun() function. If an
element is specified as a free parameter in the ’free’ matrix, the element in the ’value’ matrix
is considered a starting value and can be changed by an objective function when included in
an mxRun() function.

MxMatrix-class 233

labels: Matrix of character strings which provides the labels of free and fixed parameters. Fixed
parameters with identical labels must have identical values. Free parameters with identical
labels impose an equality constraint. The same label cannot be applied to a free parameter and
a fixed parameter. A free parameter with the label ’NA’ implies a unique free parameter, that
cannot be constrained to equal any other free parameter.

free: Logical matrix specifying whether each element is free versus fixed. An element is a free pa-
rameter if-and-only-if the corresponding value in the ’free’ matrix is ’TRUE’. Free parameters
are elements of an MxMatrix object whose values may be changed by a fitfunction when that
MxMatrix object is included in an MxModel object and evaluated using the mxRun() function.

lbound: Numeric matrix of lower bounds on free parameters.

ubound: Numeric matrix of upper bounds on free parameters.

.squareBrackets: Logical matrix; used internally by OpenMx. Identifies which elements have
labels with square brackets in them.

.persist: Logical; used internally by OpenMx. Governs how mxRun() handles the MxMatrix
object when it is inside the MxModel being run.

.condenseSlots: Logical; used internally by OpenMx. If FALSE, then the matrices in the ’values’,
’labels’, ’free’, ’lbound’, and ’ubound’ slots are all of equal dimensions. If TRUE, then the last
four of those slots will "condense" a matrix consisting entirely of FALSE or NA down to 1x1.

display: Character string; used internally by OpenMx when parsing MxAlgebras.

dependencies: Integer; used internally by OpenMx when parsing MxAlgebras.

Methods

$ signature(x = "MxMatrix"): ...

$<- signature(x = "MxMatrix"): ...

[signature(x = "MxMatrix"): ...

[<- signature(x = "MxMatrix"): ...

dim signature(x = "MxMatrix"): ...

dimnames signature(x = "MxMatrix"): ...

dimnames<- signature(x = "MxMatrix"): ...

length signature(x = "MxMatrix"): ...

names signature(x = "MxMatrix"): ...

ncol signature(x = "MxMatrix"): ...

nrow signature(x = "MxMatrix"): ...

print signature(x = "MxMatrix"): ...

show signature(object = "MxMatrix"): ...

Note that some methods are documented separately (see below, under "See Also").

References

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation.

https://openmx.ssri.psu.edu/documentation

234 mxMI

See Also

mxMatrix() for creating MxMatrix objects. Note that functions imxCreateMatrix(), imxDeparse(),
imxSquareMatrix(), imxSymmetricMatrix(), and imxVerifyMatrix() are separately documented
methods for this class. More information about the OpenMx package may be found here.

Examples

showClass("MxMatrix")

mxMI Estimate Modification Indices for MxModel Objects

Description

This function estimates the change in fit function value resulting from freeing currently fixed pa-
rameters.

Usage

mxMI(model, matrices=NA, full=TRUE)

Arguments

model An MxModel for which modification indices are desired.

matrices Character vector. The names of the matrices in which to search for modification

full Logical. Whether or not to return the full modification index in addition to the
restricted.

Details

Modification indices provide an estimate of how much the fit function value would change if a pa-
rameter that is currently fixed was instead freely estimated. There are two versions of this estimate:
a restricted version and an full version. The restricted version is reported as the MI and is much
faster to compute. The full version is reported as MI.Full. The full version accounts for the total
change in fit function value resulting from the newly freed parameter. The restricted version only
accounts for the change in the fit function due to the movement of the new free parameter. In partic-
ular, the restricted version does not account for the change in fit function value due to the other free
parameters moving in response to the new parameter. In addition to the fit function value change,
the expected parameter change (EPC) can be computed for each parameter that is newly freed.

The algorithm respects fixed parameter labels. That is, when a fixed parameter has a label and
occurs in more than one spot, then that fixed parameter is freed in all locations in which it occurs to
evaluate the modification index for that fixed parameter.

When the fit function is in minus two log likelihood units (e.g. mxFitFunctionML), then the MI
will be approximately chi squared distributed with 1 degree of freedom. Using a p-value of 0.01
has been suggested. Hence, a MI greater than qchisq(p=1-0.01, df=1), or 6.63, is suggestive of
a modification.

mxMI 235

Users should be cautious in their use of modification indices. If a model was created with the aid
of MIs, then it should always be reported. Do not pretend that you have a theoretical reason for
part of a model that was put there because it was suggested by a modification index. This is fraud.
When using modification indices there are two options for best practices. First, you can report the
analyses as exploratory. Document all the explorations that you did, and know that your results
may or may not generalize. Second, you can use cross-validation. Reserve part of your data for
exploration, and use the remaining data to test if the exploratory model generalizes to new data.

Value

A data.frame with named columns

MI The restricted modification index.

MI.Full The full modification index.

plusOneParamModels A list of models with one additional free parameter

EPC The expected parameter change. Only available when full=TRUE

References

Sörbom, D. (1989). Model Modification. Psychometrika, 54, 371-384.

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.

Examples

Create a model
require(OpenMx)
data(demoOneFactor)
manifests <- names(demoOneFactor)
latents <- c("G")
factorModel <- mxModel("One Factor",

type="RAM",
manifestVars = manifests,
latentVars = latents,
mxPath(from=latents, to=manifests),
mxPath(from=manifests, arrows=2),
mxPath(from=latents, arrows=2,

free=FALSE, values=1.0),
mxPath(from = 'one', to = manifests),
mxData(observed=cov(demoOneFactor), type="cov", numObs=500,

means = colMeans(demoOneFactor)))
#No SEs for speed
factorModel <- mxOption(factorModel, 'Standard Errors', 'No')
factorRun <- mxRun(factorModel)

See if it should be modified
Notes
Using full=FALSE for faster performance
Using matrices= 'A' and 'S' to not get MIs for
the F matrix which is always fixed.
fim <- mxMI(factorRun, matrices=c('A', 'S'), full=FALSE)

https://openmx.ssri.psu.edu/documentation/

236 mxMLObjective

round(fim$MI, 3)
plot(fim$MI, ylim=c(0, 10))
abline(h=qchisq(p=1-0.01, df=1)) # line of "significance"

mxMLObjective DEPRECATED: Create MxMLObjective Object

Description

WARNING: Objective functions have been deprecated as of OpenMx 2.0.

Please use mxExpectationNormal() and mxFitFunctionML() instead. As a temporary workaround,
mxMLObjective returns a list containing an MxExpectationNormal object and an MxFitFunctionML
object.

mxMLObjective(covariance, means = NA, dimnames = NA, thresholds = NA) All occurrences of

mxMLObjective(covariance, means = NA, dimnames = NA, thresholds = NA)

Should be changed to

mxExpectationNormal(covariance, means = NA, dimnames = NA, thresholds = NA, threshnames =
dimnames) mxFitFunctionML(vector = FALSE)

Arguments

covariance A character string indicating the name of the expected covariance algebra.

means An optional character string indicating the name of the expected means algebra.

dimnames An optional character vector to be assigned to the dimnames of the covariance
and means algebras.

thresholds An optional character string indicating the name of the thresholds matrix.

Details

NOTE: THIS DESCRIPTION IS DEPRECATED. Please change to using mxExpectationNormal
and mxFitFunctionML as shown in the example below.

Objective functions are functions for which free parameter values are chosen such that the value of
the objective function is minimized. The mxMLObjective function uses full-information maximum
likelihood to provide maximum likelihood estimates of free parameters in the algebra defined by the
’covariance’ argument given the covariance of an MxData object. The ’covariance’ argument takes
an MxAlgebra object, which defines the expected covariance of an associated MxData object. The
’dimnames’ arguments takes an optional character vector. If this argument is not a single NA, then
this vector be assigned to be the dimnames of the means vector, and the row and columns dimnames
of the covariance matrix.

mxMLObjective evaluates with respect to an MxData object. The MxData object need not be
referenced in the mxMLObjective function, but must be included in the MxModel object. mxM-
LObjective requires that the ’type’ argument in the associated MxData object be equal to ’cov’ or
’cov’. The ’covariance’ argument of this function evaluates with respect to the ’matrix’ argument

mxMLObjective 237

of the associated MxData object, while the ’means’ argument of this function evaluates with respect
to the ’vector’ argument of the associated MxData object. The ’means’ and ’vector’ arguments are
optional in both functions. If the ’means’ argument is not specified (NA), the optional ’vector’ argu-
ment of the MxData object is ignored. If the ’means’ argument is specified, the associated MxData
object should specify a ’means’ argument of equivalent dimension as the ’means’ algebra.

dimnames must be supplied where the matrices referenced by the covariance and means algebras
are not themselves labeled. Failure to do so leads to an error noting that the covariance or means
matrix associated with the ML objective does not contain dimnames.

To evaluate, place MxMLObjective objects, the mxData object for which the expected covariance
approximates, referenced MxAlgebra and MxMatrix objects, and optional MxBounds and MxCon-
straint objects in an MxModel object. This model may then be evaluated using the mxRun function.
The results of the optimization can be found in the ’output’ slot of the resulting model, or using the
mxEval function.

Value

Returns a list containing an MxExpectationNormal object and an MxFitFunctionML object.

References

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.

Examples

Create and fit a model using mxMatrix, mxAlgebra, mxExpectationNormal, and mxFitFunctionML

library(OpenMx)

Simulate some data

x=rnorm(1000, mean=0, sd=1)
y= 0.5*x + rnorm(1000, mean=0, sd=1)
tmpFrame <- data.frame(x, y)
tmpNames <- names(tmpFrame)

Define the matrices

S <- mxMatrix(type = "Full", nrow = 2, ncol = 2, values=c(1,0,0,1),
free=c(TRUE,FALSE,FALSE,TRUE), labels=c("Vx", NA, NA, "Vy"), name = "S")

A <- mxMatrix(type = "Full", nrow = 2, ncol = 2, values=c(0,1,0,0),
free=c(FALSE,TRUE,FALSE,FALSE), labels=c(NA, "b", NA, NA), name = "A")

I <- mxMatrix(type="Iden", nrow=2, ncol=2, name="I")

Define the expectation

expCov <- mxAlgebra(solve(I-A) %*% S %*% t(solve(I-A)), name="expCov")
expFunction <- mxExpectationNormal(covariance="expCov", dimnames=tmpNames)

Choose a fit function

fitFunction <- mxFitFunctionML()

https://openmx.ssri.psu.edu/documentation/

238 mxModel

Define the model

tmpModel <- mxModel(model="exampleModel", S, A, I, expCov, expFunction, fitFunction,
mxData(observed=cov(tmpFrame), type="cov", numObs=dim(tmpFrame)[1]))

Fit the model and print a summary

tmpModelOut <- mxRun(tmpModel)
summary(tmpModelOut)

mxModel Create MxModel Object

Description

Create or modify an MxModel.

Usage

mxModel(model = NA, ..., manifestVars = NA, latentVars = NA,
remove = FALSE, independent = NA, type = NA, name = NA)

Arguments

model This argument is either an MxModel object or a string. If ’model’ is an Mx-
Model object, then all elements of that model are placed in the resulting Mx-
Model object. If ’model’ is a string, then a new model is created with the string
as its name. If ’model’ is either unspecified or ’model’ is a named entity, data
source, or MxPath object, then a new model is created.

... An arbitrary number of mxMatrix, mxPath, mxData, and other functions such
as mxConstraints and mxCI. These will all be added or removed from the model
as specified in the ’model’ argument, based on the ’remove’ argument.

manifestVars For RAM-type models, A list of manifest variables to be included in the model.

latentVars For RAM-type models, A list of latent variables to be included in the model.

remove logical. If TRUE, elements listed in this statement are removed from the original
model. If FALSE, elements listed in this statement are added to the original
model.

independent logical. If TRUE then the model is evaluated independently of other models.

type character vector. The model type to assign to this model. Defaults to op-
tions("mxDefaultType"). See below for valid types

name An optional character vector indicating the name of the object.

mxModel 239

Details

The mxModel function is used to create MxModels. Models created by this function may be new,
or may be modified versions of existing MxModel objects. By default a new MxModel object will
be created: To create a modified version of an existing MxModel object, include this model in the
’model’ argument.

Other named-entities may be added as arguments to the mxModel function, which are then added to
or removed from the model specified in the ‘model’ argument. Functions you can use to add objects
to the model to this way include mxPath, mxCI, mxAlgebra, mxBounds, mxConstraint, mxData,
and mxMatrix objects, as well as fit functions and expectations (see below). You can also include
sub-models as components of a model. These sub-models may be estimated separately or jointly
depending on shared parameters and the ‘independent’ flag (see below). Only one MxData object
and one fit function and expectation may be included per model, but there are no restrictions on the
number of other named-entities included in an mxModel statement.

All other arguments must be named (i.e. ‘latentVars = names’), or they will be interpreted as
elements of the ellipsis list. The ‘manifestVars’ and ‘latentVars’ arguments specify the names of the
manifest and latent variables, respectively, for use with the mxPath function.

The ‘remove’ argument may be used when mxModel is used to create a modified version of an
existing MxMatrix object. When ‘remove’ is set to TRUE, the listed objects are removed from the
model specified in the ‘model’ argument. When ‘remove’ is set to FALSE, the listed objects are
added to the model specified in the ‘model’ argument.

Model independence may be specified with the ‘independent’ argument. If a model is independent
(‘independent = TRUE’), then the parameters of this model are not shared with any other model.
An independent model may be estimated with no dependency on any other model. If a model is not
independent (‘independent = FALSE’), then this model shares parameters with one or more other
models such that these models must be jointly estimated. These dependent models must be entered
as arguments in another model, so that they are simultaneously optimized.

The model type is determined by a character vector supplied to the ‘type’ argument. The type of a
model is a dynamic property, ie. it is allowed to change during the lifetime of the model. To see
a list of available types, use the mxTypes command. When a new model is created and no type is
specified, the type specified by options("mxDefaultType") is used.

Expectations and Fit functions
To be estimated, MxModel objects must include fit functions and expectations as arguments. Fit
functions include mxFitFunctionML, mxFitFunctionMultigroup, mxFitFunctionWLS, mxFitFunc-
tionAlgebra, mxFitFunctionGREML, mxFitFunctionR, and mxFitFunctionRow. Expectations in-
clude mxExpectationBA81, mxExpectationGREML, mxExpectationHiddenMarkov mxExpectation-
LISREL, mxExpectationMixture, mxExpectationNormal, mxExpectationRAM, mxExpectationStateS-
pace, mxExpectationStateSpaceContinuousTime. The ’type’ of the model may imply a certain fit
function or expectation (e.g. type = "RAM" implies mxExpectationRAM). The model data may
also constrain which fit and expectation are appropriate.

The model, complete with fit function and expectation can then be executed using mxRun.

Accessing model components
You can view a model summary with summary. You can also access Named entities in MxModel
directly via the $ symbol. For instance, for an MxModel named "yourModel" containing an MxMa-
trix named "yourMatrix", the contents of "yourMatrix" can be accessed as yourModel$yourMatrix.
Slots (i.e., matrices, algebras, etc.) in an mxMatrix may also be referenced with the $ symbol (e.g.,

240 mxModel

yourModel$matrices or yourModel$algebras). See the documentation for Classes and the examples
in Classes for more information.

Value

Returns a new MxModel object. To be run, MxModel object must include a fit function and expec-
tation.

References

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.

See Also

See mxCI for information about adding Confidence Interval calculations to a model. See mxPath for
information about adding paths to RAM-type models. See mxMatrix for information about adding
matrices to models. See mxData for specifying the data a model is to be evaluated against. Many
advanced options can be set via mxOption. More information about the OpenMx package may be
found here.

Examples

library(OpenMx)

At the simplest, you can create an empty model,
placing it in an object, and add to it later
emptyModel <- mxModel(model="IAmEmpty")

Create a model named 'firstdraft' with one matrix 'A'
firstModel <- mxModel(model='firstdraft',

mxMatrix(type='Full', nrow = 3, ncol = 3, name = "A"))

Update 'firstdraft', and rename the model 'finaldraft'
finalModel <- mxModel(model=firstModel,

mxMatrix(type='Symm', nrow = 3, ncol = 3, name = "S"),
mxMatrix(type='Iden', nrow = 3, name = "F"),
name= "finaldraft")

Add data to the model from an existing data frame in object 'data'
data(twinData) # load some data
finalModel <- mxModel(model=finalModel, mxData(twinData, type='raw'))

Two ways to view the matrix named "A" in MxModel object 'model'

finalModel$A

finalModel$matrices$A

A working example using OpenMx Path Syntax
data(HS.ability.data) # load the data

The manifest variables loading on each proposed latent variable

https://openmx.ssri.psu.edu/documentation/

MxModel-class 241

Spatial <- c("visual", "cubes", "paper")
Verbal <- c("general", "paragrap", "sentence")
Math <- c("numeric", "series", "arithmet")

latents <- c("vis", "math", "text")
manifests <- c(Spatial, Math, Verbal)

HSModel <- mxModel(model="Holzinger_and_Swineford_1939", type="RAM",
manifestVars = manifests, # list the measured variables (boxes)
latentVars = latents, # list the latent variables (circles)
factor loadings from latents to manifests
mxPath(from="vis", to=Spatial),# factor loadings
mxPath(from="math", to=Math), # factor loadings
mxPath(from="text", to=Verbal), # factor loadings

Allow latent variables to covary
mxPath(from="vis" , to="math", arrows=2, free=TRUE),
mxPath(from="vis" , to="text", arrows=2, free=TRUE),
mxPath(from="math", to="text", arrows=2, free=TRUE),

Allow latent variables to have variance
mxPath(from=latents, arrows=2, free=FALSE, values=1.0),
Manifest have residual variance
mxPath(from=manifests, arrows=2),
the data to be analysed
mxData(cov(HS.ability.data[,manifests]), type = "cov", numObs = 301))

fitModel <- mxRun(HSModel) # run the model
summary(fitModel) # examine the output: Fit statistics and path loadings

MxModel-class MxModel Class

Description

MxModel is an S4 class. An MxModel object is a named entity.

Details

The ‘matrices’ slot contains a list of the MxMatrix objects included in the model. These objects
are listed by name. Two objects may not share the same name. If a new MxMatrix is added to
an MxModel object with the same name as an MxMatrix object in that model, the added version
replaces the previous version. There is no imposed limit on the number of MxMatrix objects that
may be added here.

The ‘algebras’ slot contains a list of the MxAlgebra objects included in the model. These objects
are listed by name. Two objects may not share the same name. If a new MxAlgebra is added to
an MxModel object with the same name as an MxAlgebra object in that model, the added version
replaces the previous version. All MxMatrix objects referenced in the included MxAlgebra objects

242 MxModel-class

must be included in the ‘matrices’ slot prior to estimation. There is no imposed limit on the number
of MxAlgebra objects that may be added here.

The ‘constraints’ slot contains a list of the MxConstraint objects included in the model. These ob-
jects are listed by name. Two objects may not share the same name. If a new MxConstraint is added
to an MxModel object with the same name as an MxConstraint object in that model, the added ver-
sion replaces the previous version. All MxMatrix objects referenced in the included MxConstraint
objects must be included in the ‘matrices’ slot prior to estimation. There is no imposed limit on the
number of MxConstraint objects that may be added here.

The ‘intervals’ slot contains a list of the confidence intervals requested by included MxCI objects.
These objects are listed by the free parameters, MxMatrices and MxAlgebras referenced in the
MxCI objects, not the list of MxCI objects themselves. If a new MxCI object is added to an Mx-
Model object referencing one or more free parameters MxMatrices or MxAlgebras previously listed
in the ‘intervals’ slot, the new confidence interval(s) replace the existing ones. All listed confidence
intervals must refer to free parameters MxMatrices or MxAlgebras in the model.

The ‘latentVars’ slot contains a list of latent variable names, which may be referenced by MxPath
objects. This slot defaults to ’NA’, and is only used when the mxPath function is used. In the con-
text of a RAM model, this slot accepts a character vector of variable names. However, the LISREL
model is partitioned into exogenous and endogenous parts. Both exogenous and endogenous vari-
ables can be specified using a list like, list(endo='a', exo='b'). If a character vector is passed
to a LISREL model then those variables will be assumed endogenous.

The ‘manifestVars’ slot contains a list of latent variable names, which may be referenced by Mx-
Path objects. This slot defaults to ’NA’, and is only used when the mxPath function is used. In
the context of a RAM model, this slot accepts a character vector of variable names. However, the
LISREL model is partitioned into exogenous and endogenous parts. Both exogenous and endoge-
nous variables can be specified using a list like, list(endo='a', exo='b'). If a character vector
is passed to a LISREL model then those variables will be assumed endogenous.

The ‘data’ slot contains an MxData object. This slot must be filled prior to execution when a
fitfunction referencing data is used. Only one MxData object may be included per model, but
submodels may have their own data in their own ‘data’ slots. If an MxData object is added to an
MxModel which already contains an MxData object, the new object replaces the existing one.

The ‘submodels’ slot contains references to all of the MxModel objects included as submodels of
this MxModel object. Models held as arguments in other models are considered to be submodels.
These objects are listed by name. Two objects may not share the same name. If a new submodel
is added to an MxModel object with the same name as an existing submodel, the added version
replaces the previous version. When a model containing other models is executed using mxRun, all
included submodels are executed as well. If the submodels are dependent on one another, they are
treated as one larger model for purposes of estimation.

The ‘independent’ slot contains a logical value indicating whether or not the model is independent.
If a model is independent (independent=TRUE), then the parameters of this model are not shared
with any other model. An independent model may be estimated with no dependency on any other
model. If a model is not independent (independent=FALSE), then this model shares parameters
with one or more other models such that these models must be jointly estimated. These dependent
models must be entered as submodels of another MxModel objects, so that they are simultaneously
optimized.

The ‘options’ slot contains a list of options for the model. The name of each entry in the list is the
option name to be used at runtime. The values in this list are the values of the optimizer options.

MxModel-class 243

The standard interface for updating options is through the mxOption function.

The ‘output’ slot contains a list of output added to the model by the mxRun function. Output
includes parameter estimates, optimization information, model fit, and other information. If a model
has not been optimized using the mxRun function, the ’output’ slot will be ’NULL’.

Named entities in MxModel objects may be viewed and referenced by name using the $ symbol. For
instance, for an MxModel named "yourModel" containing an MxMatrix named "yourMatrix", the
contents of "yourMatrix" can be accessed as yourModel$yourMatrix. Slots (i.e., matrices, algebras,
etc.) in an mxMatrix may also be referenced with the $ symbol (e.g., yourModel$matrices or
yourModel$algebras). See the documentation for Classes and the examples in mxModel for more
information.

Objects from the Class

Objects can be created by calls of the form mxModel().

Slots

name: Character string. The name of the model object.

matrices: List of the model’s MxMatrix objects.

algebras: List of the model’s MxAlgebra objects.

constraints: List of the model’s MxConstraint objects.

intervals: List of the model’s MxInterval objects, requested via mxCI().

penalties: List of the model’s MxPenalty objects.

latentVars: "Latent variables;" object of class "MxCharOrList".

manifestVars: "Manifest variables;" object of class "MxCharOrList".

data: Object of class MxData.

submodels: List of MxModel objects.

expectation: Object of class MxExpectation; dictates the model’s specification.

fitfunction: Object of class MxFitFunction; dictates the cost function to be minimized when
fitting the model.

compute: Object of class MxCompute–the model’s compute plan, which contains instructions on
what the model is to compute and how to do so.

independent: Logical; is the model to be run independently from other submodels?

options: List of model-specific options, set by mxOption().

output: List of model output produced during a call to mxRun().

.newobjects: Logical; for internal use.

.resetdata: Logical; for internal use.

.wasRun: Logical; for internal use.

.modifiedSinceRun: Logical; for internal use.

.version: Object of class "package_version"; for internal use.

244 mxModelAverage

Methods

$ signature(x = "MxModel"): Accessor. Accesses slots by slot-name. Also accesses constituent
named entities, by name.

$<- signature(x = "MxModel"): Assignment. Generally, this method will not allow the user to
make unsafe changes to the MxModel object.

[[signature(x = "MxModel"): Accessor for constituent named entities.

[[<- signature(x = "MxModel"): Assignment for a named entity.

names signature(x = "MxModel"): Returns names of slots and named entities.

print signature(x = "MxModel"): "Print" method.

show signature(object = "MxModel"): "Show" method.

Note that imxInitModel(), imxModelBuilder(), imxTypeName(), and imxVerifyModel() are
separately documented methods for class "MxModel".

References

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.

See Also

mxExpectationRAM, mxExpectationLISREL, mxModel for creating MxModel objects. More in-
formation about the OpenMx package may be found here.

mxModelAverage Information-Theoretic Model-Averaging and Multimodel Inference

Description

omxAkaikeWeights() orders a list of MxModels (hereinafter, the "candidate set" of models) from
best to worst AIC, reports their Akaike weights, and indicates which are in the confidence set for
best-approximating model. mxModelAverage() calls omxAkaikeWeights() and includes its output,
and also reports model-average point estimates and (if requested) their standard errors.

Usage

mxModelAverage(reference=character(0), models=list(),
include=c("onlyFree","all"), SE=NULL, refAsBlock=FALSE, covariances=list(),
type=c("AIC","AICc"), conf.level=0.95)

omxAkaikeWeights(models=list(), type=c("AIC","AICc"), conf.level=0.95)

https://openmx.ssri.psu.edu/documentation/

mxModelAverage 245

Arguments

reference Vector of character strings referring to parameters, MxMatrices, or MxAlge-
bras for which model-average estimates are to be computed. Defaults to NULL.
If a zero-length value is provided, only the output of omxAkaikeWeights() is
returned, with a warning.

models The candidate set of models: a list of at least two MxModel objects, each of
which must be uniquely identified by the value of its name slot. Defaults to an
empty list.

include Character string, either "onlyFree" (default) or "all". When calculating model-
average estimates for a given reference quantity, should all the MxModels in the
candidate set be included in the calculations, or only those in which the quantity
is freely estimated? See below, under "Details," for additional information.

SE Logical; should standard errors be reported for the model-average point esti-
mates? Defaults to NULL, in which case standard errors are reported if argument
include="onlyFree", and not reported otherwise.

refAsBlock Logical. If FALSE (default), mxModelAverage() will include a matrix of model-
conditional sampling variances for the reference quantities in its output, and
model-average results may be based on different subsets of the candidate set if
include="onlyFree". If TRUE, mxModelAverage() will instead include a joint
sampling covariance matrix for all reference quantities, and will throw an error
if include="onlyFree" and if it is not the case that all reference quantities are
freely estimated in all models in the candidate set.

covariances Optional list of repeated-sampling covariance matrices of free parameter esti-
mates (possibly from bootstrapping or the sandwich estimator); defaults to an
empty list. A non-empty list must either be of the same length as models, or
have named elements corresponding to names of MxModels in the candidate
set. See below, under "Details," for additional information.

type Character string specifying which information criterion to use: either "AIC" for
the ordinary AIC (default), or "AICc" for Hurvich & Tsai’s (1989) sample-size
corrected AIC.

conf.level Numeric proportion specifying the desired coverage probability of the confi-
dence set for best-approximating model among the candidate set (Burnham &
Anderson, 2002). Defaults to 0.95.

Details

If statistical inferences (hypothesis tests and confidence intervals) are the motivation for calculating
model-average point estimates and their standard errors, then include="onlyFree" (the default)
is recommended. Note that, if models in which a quantity is held fixed are included in calculating
the quantity’s model-average estimate, then that estimate cannot even asymptotically be normally
distributed (Bartels, 1997).

If argument covariances is non-empty, then either it must be of the same length as argument
models, or all of its elements must be named after an MxModel in models (an MxModel’s name
is the character string in its name slot). If covariances is of the same length as models but lacks
element names, mxModelAverage() will assume that they are ordered so that the first element of

246 mxModelAverage

covariances is to be used with the first MxModel, the second element is to be used with the sec-
ond MxModel, and so on. Otherwise, mxModelAverage() assigns the elements of covariances to
the MxModels by matching element names to MxModel names. If covariances doesn’t provide a
covariance matrix for a given MxModel–perhaps because it is empty, or only provides matrices for
a nonempty proper subset of the candidate set–mxModelAverage() will fall back to its default be-
havior of calculating a covariance matrix from the Hessian matrix in the MxModel’s output slot. If
a covariance matrix cannot be thus calculated and SE=TRUE, SE is coerced to FALSE, with a warning.

The matrices in covariances must have complete row and column names, equal to the free param-
eter labels of the corresponding MxModel. These names indicate to which free parameter a given
row or column corresponds.

Value

omxAkaikeWeights() returns a dataframe, with one row for each element of models. The rows are
sorted by their MxModel’s AIC (or AICc), from best to worst. The dataframe has five columns:

1. "model": Character string. The name of the MxModel.

2. "AIC" or "AICc": Numeric. The MxModel’s AIC or AICc.

3. "delta": Numeric. The MxModel’s AIC (or AICc) minus the best (smallest) AIC (or AICc)
in the candidate set.

4. "AkaikeWeight": Numeric. The MxModel’s Akaike weight. This column will sum to unity.

5. "inConfidenceSet": Character. Will contain an asterisk if the MxModel is in the confidence
set for best-approximating model.

The dataframe also has an attribute, "unsortedModelNames", which contains the names of the
MxModels in the same order as they appear in models (i.e., without sorting them by their AIC).

If a zero-length value is provided for argument reference, then mxModelAverage() returns only
the output of omxAkaikeWeights(), with a warning. Otherwise, for the default values of its argu-
ments, mxModelAverage() returns a list with four elements:

1. "Model-Average Estimates": A numeric matrix with one row for each distinct quantity
specified by reference, and as many as two columns. Its rows are named for the corre-
sponding reference quantities. Its first column, "Estimate", contains the model-average point
estimates. If standard errors are being calculated, then its second column, "SE", contains the
"model-unconditional" standard errors of the model-average point estimates. Otherwise, there
is no second column.

2. "Model-wise Estimates": A numeric matrix with one row for each distinct quantity spec-
ified by reference (indicated by row name), and one column for each MxModel (indicated
by column name). Each element is an estimate of the given reference quantity, from the given
MxModel. Quantities that cannot be evaluated for a given MxModel are reported as NA.

3. "Model-wise Sampling Variances": A numeric matrix just like the one in list element 2,
except that its elements are the estimated sampling variances of the corresponding model-
conditional point estimates in list element 2. Variances for fixed quantities are reported as 0
if include="all", and as NA if include="onlyFree"; however, if no covariance matrix is
available for a model, all of that model’s sampling variances will be reported as NA.

4. "Akaike-Weights Table": The output from omxAkaikeWeights().

mxModelAverage 247

If refAsBlock=TRUE, list element 3 will instead contain be named "Joint Covariance Matrix",
and if SE=TRUE, it will contain the joint sampling covariance matrix for the model-average point
estimates.

Note

The "best-approximating model" is defined as the model that truly ("in the population," so to speak)
has the smallest Kullback-Leibler divergence from full reality, among the models in the candidate
set (Burnham & Anderson, 2002).

A model’s Akaike weight is interpretable as the relative weight-of-evidence for that model being
the best-approximating model, given the observed data and the candidate set. It has a Bayesian
interpretation as the posterior probability that the given model is the best-approximating model
in the candidate set, assuming a "savvy" prior probability that depends upon sample size and the
number of free parameters in the model (Burnham & Anderson, 2002).

The confidence set for best-approximating model serves to reflect sampling error in the AICs. When
fitting the candidate set to data over repeated sampling, the confidence set is expected to contain the
best-approximating model with probability equal to its confidence level.

The sampling variances and covariances of the model-average point estimates are calculated from
Equations (4) and (5) in Burnham & Anderson (2004). The standard errors reported by mxModelAverage()
are the square roots of those sampling variances.

For an example of model-averaging and multimodel inference applied to structural equation mod-
eling using OpenMx v1.3 (i.e., well before the functions documented here were implemented), see
Kirkpatrick, McGue, & Iacono (2015).

References

Bartels, L. M. (1997). Specification uncertainty and model averaging. American Journal of Political
Science, 41(2), 641-674.

Burnham, K. P., & Anderson, D. R. (2002). Model Selection and Multimodel Inference: A Practical
Information-Theoretic Approach (2nd ed.). New York: Springer.

Burnham, K. P., & Anderson, D. R. (2004). Multimodel inference: Understanding AIC and BIC in
model selection. Sociological Methods & Research, 33(2), 261-304. doi:10.1177/0049124104268644

Hurvich, C. M., & Tsai, C-L. (1989). Regression and time series model selection in small samples.
Biometrika, 76(2), 297-307.

Kirkpatrick, R. M., McGue, M., & Iacono, W. G. (2015). Replication of a gene-environment inter-
action via multimodel inference: Additive-genetic variance in adolescents’ general cognitive ability
increases with family-of-origin socioeconomic status. Behavior Genetics, 45, 200-214.

See Also

mxCompare()

Examples

require(OpenMx)
data(demoOneFactor)
factorModel1 <- mxModel(

248 mxNormalQuantiles

"OneFactor1",
mxMatrix(
"Full", 5, 1, values=0.8,
labels=paste("a",1:5,sep=""),
free=TRUE, name="A"),
mxMatrix(
"Full", 5, 1, values=1,
labels=paste("u",1:5,sep=""),
free=TRUE, name="Udiag"),
mxMatrix(
"Symm", 1, 1, values=1,
free=FALSE, name="L"),
mxAlgebra(vec2diag(Udiag),name="U"),
mxAlgebra(A %*% L %*% t(A) + U, name="R"),
mxExpectationNormal(
covariance = "R",
dimnames = names(demoOneFactor)),
mxFitFunctionML(),
mxData(cov(demoOneFactor), type="cov", numObs=500))
factorFit1 <- mxRun(factorModel1)
#Constrain unique variances equal:
factorModel2 <- omxSetParameters(
model=factorModel1,labels=paste("u",1:5,sep=""),
newlabels="u",name="OneFactor2")
factorFit2 <- mxRun(factorModel2)
omxAkaikeWeights(models=list(factorFit1,factorFit2))

mxModelAverage(
reference=c("A","Udiag"), include="all",
models=list(factorFit1,factorFit2))

mxNormalQuantiles mxNormalQuantiles

Description

Get quantiles from a normal distribution

Usage

mxNormalQuantiles(nBreaks, mean = 0, sd = 1)

Arguments

nBreaks the number of thresholds, or a vector of the number of thresholds

mean the mean of the underlying normal distribution

sd the standard deviation of the underlying normal distribution

mxOption 249

Value

a vector of quantiles

Examples

mxNormalQuantiles(3)
mxNormalQuantiles(3, mean=7)
mxNormalQuantiles(2, mean=1, sd=3)

mxOption Set or Clear an Optimizer Option

Description

The function sets, shows, or clears an option that is specific to the optimizer in the back-end.

Usage

mxOption(model=NULL, key=NULL, value, reset = FALSE)

Arguments

model An MxModel object or NULL

key The name of the option.

value The value of the option.

reset If TRUE then reset all options to their defaults.

Details

mxOption is used to set, clear, or query an option (given in the ‘key’ argument) in the back-end
optimizer. Valid option keys are listed below.

Use value = NULL to remove an existing option. Leaving value blank will return the current value
of the option specified by ‘key’.

To reset all options to their default values, use ‘reset = TRUE’. When reset = TRUE, ‘key’ and
‘value’ are ignored.

If the ‘model’ argument is set to NULL, the default optimizer option (i.e those applying to all
models by default) will be set.

To see the defaults, use getOption('mxOptions').

Before the model is submitted to the back-end, all keys and values are converted into strings using
the as.character function.

Optimizer specific options

The “Default optimizer” option can only be set globally (i.e., with model=NULL), and not locally
(i.e., specifically to a given MxModel). Although the checkpointing options may be set globally,

250 mxOption

OpenMx’s behavior is only affected by locally set checkpointing options (that is, global checkpoint-
ing options are ignored at runtime).

Gradient-based optimizers require the gradient of the fit function. When analytic derivatives are
not available, the gradient is estimated numerically. There are a variety of options to control the
numerical estimation of the gradient. One option for CSOLNP and SLSQP is the gradient algo-
rithm. CSOLNP uses the forward method by default, while SLSQP uses the central method.
The forward method requires 1 time “Gradient iterations” function evaluation per parameter per
gradient, while central method requires 2 times “Gradient iterations” function evaluations per pa-
rameter per gradient. Users can change the default methods for either of these optimizers by setting
the “Gradient algorithm” option. NPSOL usually uses the forward method, but adaptively switches
to central under certain circumstances.

Options “Gradient step size”, “Gradient iterations”, and “Function precision” have on-load global
defaults of "Auto". If value "Auto" is in effect for any of these three options at runtime, then
OpenMx selects a reasonable numerical value in its place. These automated numerical values are
intended to (1) adjust for the limited precision of the algorithm for computing multivariate-normal
probability integrals, and (2) calculate accurate numeric derivatives at the optimizer’s solution. If
the user replaces "Auto" with a valid numerical value, then OpenMx uses that value as-is.

By default, CSOLNP uses a step size of 10^-7 whereas SLSQP uses 10^-5. The purpose of this
difference is to obtain roughly the same accuracy given other differences in numerical procedure.
If you set a non-default “Gradient step size”, it will be used as-is. NPSOL ignores “Gradient step
size”, and instead uses a function of mxOption “Function precision” to determine its gradient step
size.

Option “Analytic Gradients” affects all three optimizers, but some options only affect certain op-
timizers. Option “Gradient algorithm” is used by CSOLNP and SLSQP, and ignored by NPSOL.
Option “Gradient iterations” only affects SLSQP. Option “Gradient step size” is used slightly dif-
ferently by SLSQP and CSOLNP, and is ignored by NPSOL (see mxComputeGradientDescent()
for details).

If an mxModel contains mxConstraints, NPSOL is given .4 times the value of the option “Feasibility
tolerance”. If there are no constraints, NPSOL is given a hard-coded value of 1e-5 (its own native
default).

Note: Where constraints are present, NPSOL is given 0.4 times the value of the mxOption “Feasi-
bility Tolerance”, and this is about a million times bigger than NPSOL’s own native default. Values
of “Feasibility Tolerance” around 1e-5 may be needed to get constraint performance similar to
NPSOL’s default. Note also that NPSOL’s criterion for returning a status code of 0 versus 1 for a
given solution depends partly on “Optimality tolerance”.

For a block of n ordinal variables, the maximum number of integration points that OpenMx may use
to calculate multivariate-normal probability integrals is given by mvnMaxPointsA + mvnMaxPointsB*n
+ mvnMaxPointsC*n*n + exp(mvnMaxPointsD + mvnMaxPointsE * n * log(mvnRelEps)). Integral
approximation is stopped once either ‘mvnAbsEps’ or ‘mvnRelEps’ is satisfied. Use of ‘mvnAb-
sEps’ is deprecated.

The maximum number of major iterations (the option “Major iterations”) for optimization for
NPSOL can be specified either by using a numeric value (such as 50, 1000, etc) or by specify-
ing a user-defined function. The user-defined function should accept two arguments as input, the
number of parameters and the number of constraints, and return a numeric value as output.

OpenMx options

mxOption 251

Calculate Hessian [Yes | No] calculate the Hessian explicitly after optimization.
Standard Errors [Yes | No] return standard error estimates from the explicitly calculate hessian.

Default optimizer [NPSOL | SLSQP | CSOLNP] the gradient-descent optimizer to use
Number of Threads [0|1|2|...|10|...] number of threads used for optimization. Default value is taken from the environment variable OMP_NUM_THREADS or, if that is not set, 1.

Feasibility tolerance r the maximum acceptable absolute violations in linear and nonlinear constraints.
Optimality tolerance r the accuracy with which the final iterate approximates a solution to the optimization problem; roughly, the number of reliable significant figures that the fitfunction value should have at the solution.

Gradient algorithm see list finite difference method, either ’forward’ or ’central’.
Gradient iterations 1:4 the number of Richardson extrapolation iterations
Gradient step size r amount of change made to free parameters when numerically calculating gradient

Analytic Gradients [Yes | No] should the optimizer use analytic gradients (if available)?
loglikelihoodScale i factor by which the loglikelihood is scaled.

Parallel diagnostics [Yes | No] whether to issue diagnostic messages about use of multiple threads
Nudge zero starts [TRUE | FALSE] Should OpenMx "nudge" starting values of zero to 0.1 at runtime?

Status OK character vector Status codes that are considered to indicate a successful optimization
Max minutes numeric Maximum backend elapsed time, in minutes

NPSOL-specific options

Nolist this option suppresses printing of the options
Print level i the value of i controls the amount of printout produced by the major iterations

Minor print level i the value of i controls the amount of printout produced by the minor iterations
Print file i for i > 0 a full log is sent to the file with logical unit number i .

Summary file i for i > 0 a brief log will be output to file i .
Function precision r a measure of accuracy with which the fitfunction and constraint functions can be computed.
Infinite bound size r if r > 0 defines the "infinite" bound bigbnd.

Major iterations i or a function the maximum number of major iterations before termination.
Verify level [-1:3 | Yes | No] see NPSOL manual.

Line search tolerance r controls the accuracy with which a step is taken.
Derivative level [0-3] see NPSOL manual.

Hessian [Yes | No] return the Hessian (Yes) or the transformed Hessian (No).
Step Limit r maximum change in free parameters at first step of linesearch.

Checkpointing options

Always Checkpoint [Yes | No] whether to checkpoint all models during optimization.
Checkpoint Directory path the directory into which checkpoint files are written.

Checkpoint Prefix string the string prefix to add to all checkpoint filenames.
Checkpoint Fullpath path overrides the directory and prefix (useful to output to /dev/fd/2)

Checkpoint Units see list the type of units for checkpointing: ’minutes’, ’iterations’, or ’evaluations’.
Checkpoint Count i the number of units between checkpoint intervals.

Model transformation options

Error Checking [Yes | No] whether model consistency checks are performed in the OpenMx front-end
No Sort Data character vector of model names for which FIML data sorting is not performed

252 mxOption

RAM Inverse Optimization [Yes | No] whether to enable solve(I - A) optimization
RAM Max Depth i the maximum depth to be used when solve(I - A) optimization is enabled

Multivariate normal integration parameters

maxOrdinalPerBlock i maximum number of ordinal variables to evaluate together
mvnMaxPointsA i base number of integration points
mvnMaxPointsB i number of integration points per ordinal variable
mvnMaxPointsC i number of integration points per squared ordinal variables
mvnMaxPointsD i see details
mvnMaxPointsE i see details

mvnAbsEps i absolute error tolerance
mvnRelEps i relative error tolerance

Value

If a model is provided, it is returned with the optimizer option either set or cleared. If value is
empty, the current value is returned.

References

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.

See Also

See mxModel(), as almost all uses of mxOption() are via an mxModel whose options are set or
cleared. See mxComputeGradientDescent() for details on how different optimizers are affected
by different options. See as.statusCode for information about the Status OK option.

Examples

set the Numbder of Threads (cores to use)
mxOption(key="Number of Threads", value=imxGetNumThreads())

testModel <- mxModel(model = "testModel5") # make a model to use for example
testModel$options # show the model options (none yet)
options()$mxOptions # list all mxOptions (global settings)

testModel <- mxOption(testModel, "Function precision", 1e-5) # set precision
testModel <- mxOption(testModel, "Function precision", NULL) # clear precision
N.B. This is model-specific precision (defaults to global setting)

may optimize for speed
at cost of not getting standard errors
testModel <- mxOption(testModel, "Calculate Hessian", "No")
testModel <- mxOption(testModel, "Standard Errors" , "No")

testModel$options # see the list of options you set

https://openmx.ssri.psu.edu/documentation/

MxOptionalChar-class 253

MxOptionalChar-class An optional character

Description

An optional character

MxOptionalCharOrNumber-class

A character, integer, or NULL

Description

A character, integer, or NULL

MxOptionalDataFrame-class

An optional data.frame

Description

An optional data.frame

MxOptionalDataFrameOrMatrix-class

An optional data.frame or matrix

Description

An optional data.frame or matrix

MxOptionalInteger-class

An optional integer

Description

An optional integer

254 mxParametricBootstrap

MxOptionalLogical-class

An optional logical

Description

This is an internal class, the union of NULL and logical.

MxOptionalMatrix-class

An optional matrix

Description

An optional matrix

MxOptionalNumeric-class

An optional numeric

Description

An optional numeric

mxParametricBootstrap Assess whether potential parameters should be freed using parametric
bootstrap

Description

Data is simulated from ‘nullModel’. The parameters named by ‘labels’ are freed to obtain the
alternative model. The alternative model is fit against each simulated data set.

Usage

mxParametricBootstrap(nullModel, labels,
alternative=c("two.sided", "greater", "less"),
..., alpha=0.05, correction=p.adjust.methods,
previousRun=NULL, replications=400, checkHess=FALSE,
signif.stars = getOption("show.signif.stars"))

mxParametricBootstrap 255

Arguments

nullModel The model specifying the null distribution

labels A character vector of parameters to free to obtain the alternative model

alternative a character string specifying the alternative hypothesis

... Not used. Forces remaining arguments to be specified by name.

alpha The false positive rate

correction How to adjust the p values for multiple tests.

replications The number of resampling replications. If available, replications from prior
invocation will be reused.

previousRun Results to re-use from a previous bootstrap.

checkHess Whether to approximate the Hessian in each replication

signif.stars logical. If TRUE, ‘significance stars’ are printed for each coefficient.

Details

When the model has a default compute plan and ‘checkHess’ is kept at FALSE then the Hessian
will not be approximated or checked. On the other hand, ‘checkHess’ is TRUE then the Hessian
will be approximated by finite differences. This procedure is of some value because it can be
informative to check whether the Hessian is positive definite (see mxComputeHessianQuality).
However, approximating the Hessian is often costly in terms of CPU time. For bootstrapping, the
parameter estimates derived from the resampled data are typically of primary interest.

Value

A data frame is returned containing the test results. Details of the bootstrap replications are stored
in the ‘bootData’ attribute on the data frame.

Examples

library(OpenMx)

data(demoOneFactor)
manifests <- names(demoOneFactor)
latents <- c("G")

base <- mxModel(
"OneFactorCov", type="RAM",
manifestVars = manifests,
latentVars = latents,
mxPath(from=latents, to=manifests, values=0, free=FALSE, labels=paste0('l',1:length(manifests))),
mxPath(from=manifests, arrows=2, values=rlnorm(length(manifests)), lbound=.01),
mxPath(from=latents, arrows=2, free=FALSE, values=1.0),
mxPath(from = 'one', to = manifests, values=0, free=TRUE, labels=paste0('m',1:length(manifests))),
mxData(demoOneFactor, type="raw"))

base <- mxRun(base)

256 mxPath

use more replications, 8 is for demonstration purpose only
mxParametricBootstrap(base, paste0('l', 1:length(manifests)),

"two.sided", replications=8)

mxPath Create List of Paths

Description

This function creates a list of paths.

Usage

mxPath(from, to = NA, connect = c("single", "all.pairs", "unique.pairs",
"all.bivariate", "unique.bivariate"), arrows = 1,
free = TRUE, values = NA, labels = NA,
lbound = NA, ubound = NA, ..., joinKey = as.character(NA), step = c())

Arguments

from character vector. These are the sources of the new paths.

to character vector. These are the sinks of the new paths.

connect String. Specifies the type of source to sink connection: "single", "all.pairs",
"all.bivariate", "unique.pairs", "unique.bivariate". Default value is "single".

arrows numeric value. Must be either 0 (for Pearson selection), 1 (for single-headed),
or 2 (for double-headed arrows).

free boolean vector. Indicates whether paths are free or fixed.

values numeric vector. The starting values of the parameters.

labels character vector. The names of the paths.

lbound numeric vector. The lower bounds of free parameters.

ubound numeric vector. The upper bounds of free parameters.

... Not used. Allows OpenMx to catch the use of the deprecated ‘all’ argument.

joinKey character vector. The name of the foreign key to join against some other model
to create a cross model path (regression or factor loading.

step numeric vector. The priority for processing arrows=0 paths. For example, step
1 is processed before step 2.

mxPath 257

Details

The mxPath function creates MxPath objects. These consist of a list of paths describing the relation-
ships between variables in a model using the RAM modeling approach (McArdle and MacDonald,
1984). Variables are referenced by name, and these names must appear in the ‘manifestVars’ and
‘latentVars’ arguments of the mxModel function.

Paths are specified as going "from" one variable (or set of variables) "to" another variable or set of
variables using the ‘from’ and ‘to’ arguments, respectively. If ‘to’ is left empty, it will be set to the
value of ‘from’.

‘connect’ has five possible connection types: "single", "all.pairs", "all.bivariate", "unique.pairs",
"unique.bivariate". The default value is "single". Assuming the values c(‘a’,‘b’,‘c’) for the ‘to’ and
‘from’ fields the paths produced by each connection type are as follows:

"all.pairs": (a,a), (a,b), (a,c), (b,a), (b,b), (b,c), (c,a), (c,b), (c,c).

"unique.pairs": (a,a), (a,b), (a,c), (b,b), (b,c), (c,c).

"all.bivariate": (a,b), (a,c), (b,a), (b,c), (c,a), (c,b).

"unique.bivariate": (a,b), (a,c), (b,c).

"single": (a,a), (b,b), (c,c).

Multiple variables may be input as a vector of variable names. If the ‘connect’ argument is set to
"single", then paths are created going from each entry in the ‘from’ vector to the corresponding
entry in the ‘to’ vector. If the ‘to’ and ‘from’ vectors are of different lengths when the ‘connect’
argument is set to "single", the shorter vector is repeated to make the vectors of equal length.

The ‘free’ argument specifies whether the paths created by the mxPath function are free or fixed
parameters. This argument may take either TRUE for free parameters, FALSE for fixed parameters,
or a vector of TRUEs and FALSEs to be applied in order to the created paths.

The ‘arrows’ argument specifies the type of paths created. A value of 1 indicates a one-headed
arrow representing regression. This path represents a regression of the ‘to’ variable on the ‘from’
variable, such that the arrow points to the ‘to’ variable in a path diagram. A value of 2 indicates a
two-headed arrow, representing a covariance or variance. If multiple paths are created in the same
mxPath function, then the ‘arrows’ argument may take a vector of 1s and 2s to be applied to the set
of created paths.

The ‘values’ is a numeric vectors containing the starting values of the created paths. ‘values’ gives
a starting value for estimation. The ‘labels’ argument specifies the names of the resulting MxPath
object. The ‘lbound’ and ‘ubound’ arguments specify lower and upper bounds for the created paths.

Value

Returns a list of paths.

Note

The previous implementation of ‘all’ had unsafe features. Its use is now deprecated, and has been
replaced by the new mechanism ‘connect’ which supports safe and controlled generation of desired
combinations of paths.

258 mxPath

References

McArdle, J. J. and MacDonald, R. P. (1984). Some algebraic properties of the Reticular Action
Model for moment structures. British Journal of Mathematical and Statistical Psychology, 37, 234-
251.

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.

See Also

mxMatrix for a matrix-based approach to path specification; mxModel for the container in which
mxPaths are embedded. More information about the OpenMx package may be found here.

Examples

A simple Example: 1 factor Confirmatory Factor Analysis

library(OpenMx)

data(demoOneFactor)
manifests <- names(demoOneFactor)
latents <- c("G")
factorModel <- mxModel(model="One Factor", type="RAM",

manifestVars = manifests,
latentVars = latents,
mxPath(from=latents, to=manifests),
mxPath(from=manifests, arrows=2),
mxPath(from=latents, arrows=2,free=FALSE, values=1.0),
mxData(cov(demoOneFactor), type="cov",numObs=500)

)
factorFit <-mxRun(factorModel)
summary(factorFit)

A more complex example using features of R to compress
what would otherwise be a long and error-prone script

list of 100 variable names: "01" "02" "03"...
myManifest <- sprintf("%02d", c(1:100))

the latent variables for the model
myLatent <- c("G1", "G2", "G3", "G4", "G5")

Start building the model:
Define its type, and add the manifest and latent variable name lists
testModel <- mxModel(model="testModel6", type = "RAM",

manifestVars = myManifest, latentVars = myLatent)

Create covariances between the latent variables and add to the model
Here we use combn to create the covariances
nb: To create the variances and covariances in one operation you could use
expand.grid(myLatent,myLatent) to specify from and to

https://openmx.ssri.psu.edu/documentation/

mxPearsonSelCov 259

uniquePairs <- combn(myLatent,2)
covariances <- mxPath(from = uniquePairs[1,],

to=uniquePairs[2,], arrows = 2, free = TRUE, values = 1)
testModel <- mxModel(model=testModel, covariances)

Create variances for the latent variables
variances <- mxPath(from = myLatent,

to=myLatent, arrows = 2, free = TRUE, values = 1)
testModel <- mxModel(model=testModel, variances) # add variances to the model

Make a list of paths from each packet of 20 manifests
to one of the 5 latent variables
nb: The first loading to each latent is fixed to 1 to scale its variance.
singles <- list()
for (i in 1:5) {

j <- i*20
singles <- append(singles, mxPath(

from = myLatent[i], to = myManifest[(j - 19):j],
arrows = 1,
free = c(FALSE, rep(TRUE, 19)),
values = c(1, rep(0.75, 19))))

}

add single-headed paths to the model
testModel <- mxModel(model=testModel, singles)

mxPearsonSelCov Perform Pearson Aitken selection

Description

[Maturing] These functions implement the Pearson Aitken selection formulae.

Usage

mxPearsonSelCov(origCov, newCov)
mxPearsonSelMean(origCov, newCov, origMean)

Arguments

origCov covariance matrix. The covariance prior to selection.

newCov covariance matrix. A subset of origCov to replace.

origMean column vector. A mean vector to adjust.

260 mxPearsonSelCov

Details

Which dimensions to condition on can be communicated in one of two ways: (1) newCov is a
submatrix of origCov. The dimnames are matched to determine which partition of origCov to
replace with newCov. Or (2) newCov is the same dimension as origCov. The matrix entries are
inspected to determine which entries have changed. The changed entries determine which partition
of origCov to replace with newCov.

Let the n × n covariance matrix R (origCov) be partitioned into non-empty, disjoint sets p and q.
Let Rij denote the covariance matrix between the p and q variables where the subscripts denote the
variable subsets (e.g. Rpq). Let column vectors µp and µq contain the means of p and q variables,
respectively. We wish to compute the conditional covariances of the variables in q for a subset of
the population where Rpp and µp are known (or partially known)—that is, we wish to condition the
covariances and means of q on those of p. Let Vpp (newCov) be an arbitrary covariance matrix of the
same dimension as Rpp. If we replace Rpp by Vpp then the mean of q (origMean) is transformed as

µq → µq +RqpR
−1
pp µp

and the covariance of p and q are transformed as[
Rpp Rpq

Rqp Rqq

]
→

[
Vpp VppR

−1
pp Rpq

RqpR
−1
pp Vpp Rqq −Rqp(R

−1
pp −R−1

pp VppR
−1
pp)Rpq

]

References

Aitken, A. (1935). Note on selection from a multivariate normal population. Proceedings of the
Edinburgh Mathematical Society (Series 2), 4(2), 106-110. doi:10.1017/S0013091500008063

Examples

library(OpenMx)

m1 <- mxModel(
'selectionTest',
mxMatrix('Full', 10, 10, values=rWishart(1, 20, toeplitz((10:1)/10))[,,1],

dimnames=list(paste0('c',1:10),paste0('c',1:10)), name="m1"),
mxMatrix('Full', 2, 2, values=diag(2),

dimnames=list(paste0('c',1:2),paste0('c',1:2)), name="m2"),
mxMatrix('Full', 10, 1, values=runif(10),

dimnames=list(paste0('c',1:10),c('v')), name="u1"),
mxAlgebra(mxPearsonSelCov(m1, m2), name="c1"),
mxAlgebra(mxPearsonSelMean(m1, m2, u1), name="u2")

)

m1 <- mxRun(m1)

mxPenalty 261

mxPenalty This function creates a penalty object

Description

This function creates a penalty object

Usage

mxPenalty(
what,
epsilon = 1e-05,
scale = 1,
how = imxPenaltyTypes,
smoothProportion = 0.05,
hyperparams = c(),
hpranges = list(),
name = NULL

)

Arguments

what A character vector of parameters to regularize

epsilon how close to zero is zero?

scale a given parameter is divided by scale before comparison with epsilon

how what kind of function to use
smoothProportion

what proportion of the region between epsilon and zero should be used to
smooth the penalty function

hyperparams a character vector of hyperparameter names

hpranges a named list of hyperparameter ranges. Used in search if no ranges are specified.

name Name of the regularizer object

Details

mxPenalty expects to find an mxMatrix with free parameters that correspond to all named hyper-
parameters.

Gradient descent optimizers are designed for and work best on smooth functions. All of the
regularization penalties implemented traditionally contain discontinuities. By default, OpenMx
uses smoothed versions of these functions. Smoothing is controlled by smoothProportion. If
smoothProportion is zero then the traditional discontinuous functions are used. Otherwise, smoothProportion
of the region between epsilon and zero is used for smoothing.

262 mxPenaltyElasticNet

MxPenalty-class MxPenalty

Description

This is an internal class and should not be used directly.

mxPenaltyElasticNet mxPenaltyElasticNet

Description

Elastic net regularization

Usage

mxPenaltyElasticNet(
what,
name,
alpha = 0,
alpha.step = 0.1,
alpha.max = 1,
lambda = 0,
lambda.step = 0.1,
lambda.max = 0.4,
alpha.min = NA,
lambda.min = NA,
epsilon = 1e-05,
scale = 1,
...,
hyperparams = c("alpha", "lambda")

)

Arguments

what A character vector of parameters to regularize

name Name of the regularizer object

alpha strength of the mixing parameter to be applied at start (default 0.5). Note that 0
indicates a ridge regression with penalty

lambda

2

, and 1 indicates a LASSO regression with penalty lambda.

alpha.step alpha step during penalty search (default 0.1)

mxPenaltyLASSO 263

alpha.max when to end the alpha search (default 1)

lambda strength of the penalty to be applied at starting values (default 0)

lambda.step step function for lambda step (default .01)

lambda.max end of lambda range (default .4)

alpha.min beginning of the alpha range (default 0)

lambda.min beginning of the lambda range (default lambda)

epsilon how close to zero is zero?

scale a given parameter is divided by scale before comparison with epsilon

... Not used. Forces remaining arguments to be specified by name

hyperparams a character vector of hyperparameter names

Details

Applies elastic net regularization. Elastic net is a weighted combination of ridge and LASSO penal-
ties.

mxPenaltyLASSO mxPenaltyLASSO

Description

Least Absolute Selection and Shrinkage Operator regularization

Usage

mxPenaltyLASSO(
what,
name,
lambda = 0,
lambda.step = 0.01,
lambda.max = NA,
lambda.min = NA,
epsilon = 1e-05,
scale = 1,
...,
hyperparams = c("lambda")

)

Arguments

what A character vector of parameters to regularize

name Name of the regularizer object

lambda strength of the penalty to be applied at starting values (default 0)

lambda.step step function for lambda step (default .01)

264 mxPenaltyRidge

lambda.max end of lambda range (default .4)

lambda.min minimum lambda value (default lambda)

epsilon how close to zero is zero?

scale a given parameter is divided by scale before comparison with epsilon

... Not used. Forces remaining arguments to be specified by name

hyperparams a character vector of hyperparameter names

mxPenaltyRidge mxPenaltyRidge

Description

Ridge regression regularization

Usage

mxPenaltyRidge(
what,
name,
lambda = 0,
lambda.step = 0.01,
lambda.max = 0.4,
lambda.min = NA,
epsilon = 1e-05,
scale = 1,
...,
hyperparams = c("lambda")

)

Arguments

what A character vector of parameters to regularize

name Name of the regularizer object

lambda strength of the penalty to be applied at start (default 0)

lambda.step lambda step during penalty search (default 0.01)

lambda.max when to end the lambda search (default 0.4)

lambda.min minimum lambda value (default lambda)

epsilon how close to zero is zero?

scale a given parameter is divided by scale before comparison with epsilon

... Not used. Forces remaining arguments to be specified by name

hyperparams a character vector of hyperparameter names

mxPenaltySearch 265

mxPenaltySearch mxPenaltySearch

Description

Grid search for the best MxPenalty hyperparameters. Uses omxDefaultComputePlan with penaltySearch=TRUE.
Specifically, wraps mxComputeGradientDescent with mxComputePenaltySearch and passes the
model to the backend.

Usage

mxPenaltySearch(
model,
...,
silent = FALSE,
suppressWarnings = FALSE,
unsafe = FALSE,
checkpoint = FALSE,
useSocket = FALSE,
onlyFrontend = FALSE,
beginMessage = !silent

)

Arguments

model A MxModel object to be optimized.

... Not used. Forces remaining arguments to be specified by name

silent A boolean indicating whether to print status to terminal.

suppressWarnings

A boolean indicating whether to suppress warnings.

unsafe A boolean indicating whether to ignore errors.

checkpoint A boolean indicating whether to periodically write parameter values to a file.

useSocket A boolean indicating whether to periodically write parameter values to a socket.

onlyFrontend A boolean indicating whether to run only front-end model transformations.

beginMessage A boolean indicating whether to print the number of parameters before invoking
the backend.

266 mxPowerSearch

mxPenaltyZap mxPenaltyZap

Description

Fix any free parameters within epsilon of zero to zero. These parameters are no longer estimated.
Remove all MxPenalty objects from the model. This is envisioned to be used after using mxPenal-
tySearch to locate the best penalty hyperparameters and apply penalties to model estimation. While
penalties can simplify a model, they also bias parameters toward zero. By re-estimating the model
after using mxPenaltyZap, parameters that remain free are likely to exhibit less bias.

Usage

mxPenaltyZap(model, silent = FALSE)

Arguments

model an MxModel

silent whether to suppress diagnostic output

mxPowerSearch Power curve

Description

mxPower is used to evaluate the power to distinguish between a hypothesized effect (trueModel)
and a model where this effect is set to the value of the null hypothesis (falseModel).

mxPowerSearch evaluates power across a range of sample sizes or effect sizes, choosing intelligent
values of, for example, sample size to explore.

Both functions are flexible, with multiple options to control n, sig.level, method, and other fac-
tors. Several parameters can take a vector as input. These options are described in detail below.

Evaluation can either use the non-centrality parameter (which can be very quick) or conduct an
empirical evaluation.

note: During longer evaluations, the functions printout helpful progress consisting of a note about
what task is being conducted, e.g. "Search n:power relationship for ’A11’" and, beneath that, an
update on the run, the model being evaluated, and the current candidate value being considered, e.g.
"R 15 1p N 79"

mxPowerSearch 267

Usage

mxPowerSearch(trueModel, falseModel, n=NULL, sig.level=0.05, ...,
probes=300L, previousRun=NULL,
gdFun=mxGenerateData,
method=c('empirical', 'ncp'),
grid=NULL,
statistic=c('LRT','AIC','BIC'),

OK=mxOption(trueModel, "Status OK"),
checkHess=FALSE,
silent=!interactive())

mxPower(trueModel, falseModel, n=NULL, sig.level=0.05, power=0.8, ...,
probes=300L, gdFun=mxGenerateData,
method=c('empirical', 'ncp'),
statistic=c('LRT','AIC','BIC'),
OK=mxOption(trueModel, "Status OK"), checkHess=FALSE,
silent=!interactive())

Arguments

trueModel The true generating model for the data.

falseModel Model representing the null hypothesis that we wish to reject.

n Total rows summing across all submodels proportioned as given in the true-
Model. Default = NULL. If provided, result (power or alpha) solved-for at the
given total sample size.

sig.level A single value for the p-value (aka false positive or type-1 error rate). Default =
.05.

power One or values for power (a.k.a. 1 - type 2 error) to evaluate. Default = .80

... Not used.

probes The number of probes to use when method = ‘empirical’.

previousRun Output from a prior run of ‘mxPowerSearch’ to build on.

gdFun The function invoked to generate new data for each Monte Carlo probe. Default
= mxGenerateData

method To estimate power: ‘empirical’ (Monte Carlo method) or ‘ncp’ (average non-
centrality method).

grid A vector of locations at which to evaluate the power. If not provided, a reason-
able default will be chosen.

statistic Which test to use to compare models (Default = ’LRT’).

OK The set of status codes that are considered successful.

checkHess Whether to approximate the Hessian in each replication.

silent Whether to show a progress indicator.

268 mxPowerSearch

Details

Power is the chance of obtaining a significant difference when there is a true difference, i.e., (1 -
false negative rate). The likelihood ratio test is used by default. There are two methods available
to produce a power curve. The default, method = empirical, works for any model where the like-
lihood ratio test works. For example, definition variables and missing data are fine, but parameters
estimated at upper or lower bounds will cause problems. The method = empirical can require a
lot of time because the models need to be fit 100s of times. An alternate approach, method = ncp, is
much more efficient and takes advantage of the fact that the non-null distribution of likelihood ratio
test statistic is often χ2(df1 − df0, Nλ). That is, the non-centrality parameter, λ(lambda), can be
assumed, on average, to contribute equally per row. This permits essentially instant power curves
without the burden of tedious simulation. However, definition variables, missing data, or unconven-
tional models (e.g., mixture distributions) can violate this assumption. Therefore, we recommend
verifying that the output from method = empirical roughly matches method = ncp on the model of
interest before relying on method = ncp.

note: Unlike method = empirical, method = ncp does not use the gdFun argument and can be used
with models that have summary statistics rather than raw data.

When method = ncp, parameters of both ‘trueModel’ and ‘falseModel’ are assumed to be converged
to their desired values. In contrast, when method = empirical, ‘trueModel’ need not be run or
even contain data. On each replication, data are generated from ‘trueModel’ at the given parameter
vector. Then both ‘trueModel’ and ‘falseModel’ are fit against these data.

When statistic = 'LRT' then the models must be nested and sig.level is used to determine
whether the test is rejected. For ‘AIC’ and ‘BIC’, the test is regarded as rejected when the ‘true-
Model’ obtains a lower score than the ‘falseModel’. In contrast to statistic='LRT', there is no
nesting requirement. For example, ‘AIC’ can be used to compare a ‘trueModel’ against its corre-
sponding saturated model.

mxPower operates in many modes. When power is passed as NULL then power is calculated and
returned. When power (as a scalar or vector) is given then sample or effect size is (are) returned.
If you pass a list of models for ‘falseModel’, each model will be checked in turn and the results
returned as a vector. If you pass a vector of sample sizes, each sample size will be checked in turn
and the results returns as a vector.

mxPowerSearch
In contrast to mxPower, mxPowerSearch attempts to model the whole relationship between sample
size or effect size and power. A naive Monte Carlo estimate of power examines a single candidate
sample size at a time. To obtain the whole curve, and simultaneously, to reduce the number of
simulation probes, mxPowerSearch employs a binomial family generalized linear model with a
logit link to predict the power curve across the sample sizes of interest (similar to Schoemann et al,
2014).

The mxPowerSearch algorithm works in 3 stages. Without loss of generality, our description will
use the sample size to power relationship, but a similar process is used when evaluating the relation-
ship of parameter value to power. In the first stage, a crude binary search is used to find the range
reasonable values for N. This stage is complete once we have at least two rejections and at least
two non-rejections. At this point, the binomial intercept and slope model is fit to these data. If the
p-value for the slope is less than 0.25 then we jump to stage 3. Otherwise, we fit an intercept only
binomial model. Our goal is to nail down the intercept (where power=0.5) because this is the easiest
point to find and is a necessary prerequisite to estimate the variance (a.k.a. slope). Therefore, we
probe at the median of previous probes stepping by 10% in the direction of the model’s predicted

mxPowerSearch 269

intercept. Eventually, after enough probes, we reach stage 3 where the p-value for the slope is less
than 0.25. At stage 3, our goal is to nail down the interesting part of the power curve. Therefore, we
cycle serially through probes at 0, 1, and 2 logits from the intercept. This process is continued for
the permitted number of probes. Occasionally, the p-value for the slope in the stage 3 model grows
larger than 0.25. In this case, we switch back to stage 2 (intercept only) until the stage 3 model start
working again. There are no other convergence criteria. Accuracy continues to improves until the
probe limit is reached.

note: After mxPowerSearch returns, you might find you wanted to run additional probes (i.e.,
bounds are wider than you’d like). You can run more probes without starting from scratch by
passing the previous result back into the function using the previousRun argument.

When ‘n’ is fixed then mxPowerSearch helps answer the question, “how small of a true effect is
likely to be detected at a particular sample size?” Only one parameter can be considered at a time.
The way the simulation works is that a candidate value for the parameter of interest is loaded into
the trueModel, data are generated, then both the true and false model are fit to the data to obtain
the difference in fit. The candidate parameter is initially set to halfway between the trueModel and
falseModel. The power curve will reflect the smallest distance, relative to the false model, required
to have a good chance to reject the false model according to the chosen statistic.

Note that the default grid is chosen to show the interesting part of the power curve (from 0.25 to
0.97). Especially for method=ncp, this curve is practically identical for any pair of models (but
located at a different range of sample sizes). However, if you wish to align power curves from more
than one power analysis, you should select your own grid points (perhaps pass in the power array
from the first to subsequent using grid =).

Note: CI is not given for method=ncp: The estimates are exact (to the precision of the true and
null/false model solutions provided by the user).

Value

mxPower returns a vector of sample sizes, powers, or effect sizes.

mxPowerSearch returns a data.frame with one row for each ‘grid’ point. The first column is either
the sample size ‘N’ (given as the proportion of rows provided in trueModel) or the parameter
label. The second column is the power. If method=empirical, lower and upper provide a +/-2 SE
confidence interval (CI95) for the power (as estimated by the binomial logit linear model). When
method=empirical then the ‘probes’ attribute contains a data.frame record of the power estimation
process.

References

Schoemann, A. M., Miller, P., Pornprasertmanit, S. & Wu, W. (2014). Using Monte Carlo simu-
lations to determine power and sample size for planned missing designs. International Journal of
Behavioral Development, 38, 471-479.

See Also

mxCompare, mxRefModels

270 MxRAMModel-class

Examples

library(OpenMx)

Make a 1-factor model of 5 correlated variables
data(demoOneFactor)
manifests <- names(demoOneFactor)
latents <- c("G")
factorModel <- mxModel("One Factor", type="RAM",

manifestVars = manifests,
latentVars = latents,
mxPath(from= latents, to= manifests, values= 0.8),
mxPath(from= manifests, arrows= 2,values= 1),
mxPath(from= latents, arrows= 2, free= FALSE, values= 1),
mxPath(from= "one", to= manifests),
mxData(demoOneFactor, type= "raw")

)
factorModelFit <- mxRun(factorModel)

The loading of x1 on G is estimated ~ 0.39
Let's test fixing it to .3
indModel <- factorModelFit
indModelAvalues['x1','G'] <- 0.3
indModelAfree['x1','G'] <- FALSE
indModel <- mxRun(indModel)

What power do we have at different sample sizes
to detect that the G to x1 factor loading is
really 0.3 instead of 0.39?
mxPowerSearch(factorModelFit, indModel, method='ncp')

If we want to conduct a study with 80% power to
find that the G to x1 factor loading is
really 0.3 instead of 0.39, what sample size
should we use?
mxPower(factorModelFit, indModel, method='ncp')

MxRAMGraph-class MxRAMGraph

Description

This is an internal class and should not be used directly. It is a class for RAM directed graphs.

MxRAMModel-class MxRAMModel

Description

This is an internal class and should not be used directly.

mxRAMObjective 271

mxRAMObjective DEPRECATED: Create MxRAMObjective Object

Description

WARNING: Objective functions have been deprecated as of OpenMx 2.0.

Please use mxExpectationRAM() and mxFitFunctionML() instead. As a temporary workaround,
mxRAMObjective returns a list containing an MxExpectationNormal object and an MxFitFunc-
tionML object.

All occurrences of

mxRAMObjective(A, S, F, M = NA, dimnames = NA, thresholds = NA, vector = FALSE, thresh-
names = dimnames)

Should be changed to

mxExpectationRAM(A, S, F, M = NA, dimnames = NA, thresholds = NA, threshnames = dim-
names) mxFitFunctionML(vector = FALSE)

Arguments

A A character string indicating the name of the ’A’ matrix.

S A character string indicating the name of the ’S’ matrix.

F A character string indicating the name of the ’F’ matrix.

M An optional character string indicating the name of the ’M’ matrix.

dimnames An optional character vector to be assigned to the column names of the ’F’ and
’M’ matrices.

thresholds An optional character string indicating the name of the thresholds matrix.

vector A logical value indicating whether the objective function result is the likelihood
vector.

threshnames An optional character vector to be assigned to the column names of the thresh-
olds matrix.

Details

NOTE: THIS DESCRIPTION IS DEPRECATED. Please change to using mxExpectationRAM and
mxFitFunctionML as shown in the example below.

Objective functions were functions for which free parameter values are chosen such that the value
of the objective function was minimized. The mxRAMObjective provided maximum likelihood
estimates of free parameters in a model of the covariance of a given MxData object. This model
is defined by reticular action modeling (McArdle and McDonald, 1984). The ’A’, ’S’, and ’F’
arguments must refer to MxMatrix objects with the associated properties of the A, S, and F matrices
in the RAM modeling approach.

The ’dimnames’ arguments takes an optional character vector. If this argument is not a single NA,
then this vector be assigned to be the column names of the ’F’ matrix and optionally to the ’M’
matrix, if the ’M’ matrix exists.

272 mxRAMObjective

The ’A’ argument refers to the A or asymmetric matrix in the RAM approach. This matrix consists
of all of the asymmetric paths (one-headed arrows) in the model. A free parameter in any row
and column describes a regression of the variable represented by that row regressed on the variable
represented in that column.

The ’S’ argument refers to the S or symmetric matrix in the RAM approach, and as such must be
square. This matrix consists of all of the symmetric paths (two-headed arrows) in the model. A free
parameter in any row and column describes a covariance between the variable represented by that
row and the variable represented by that column. Variances are covariances between any variable at
itself, which occur on the diagonal of the specified matrix.

The ’F’ argument refers to the F or filter matrix in the RAM approach. If no latent variables are
included in the model (i.e., the A and S matrices are of both of the same dimension as the data
matrix), then the ’F’ should refer to an identity matrix. If latent variables are included (i.e., the A
and S matrices are not of the same dimension as the data matrix), then the ’F’ argument should
consist of a horizontal adhesion of an identity matrix and a matrix of zeros.

The ’M’ argument refers to the M or means matrix in the RAM approach. It is a 1 x n matrix,
where n is the number of manifest variables + the number of latent variables. The M matrix must
be specified if either the mxData type is “cov” or “cor” and a means vector is provided, or if the
mxData type is “raw”. Otherwise the M matrix is ignored.

The MxMatrix objects included as arguments may be of any type, but should have the properties
described above. The mxRAMObjective will not return an error for incorrect specification, but
incorrect specification will likely lead to estimation problems or errors in the mxRun function.

mxRAMObjective evaluates with respect to an MxData object. The MxData object need not
be referenced in the mxRAMObjective function, but must be included in the MxModel object.
mxRAMObjective requires that the ’type’ argument in the associated MxData object be equal to
’cov’ or ’cor’.

To evaluate, place MxRAMObjective objects, the mxData object for which the expected covariance
approximates, referenced MxAlgebra and MxMatrix objects, and optional MxBounds and MxCon-
straint objects in an MxModel object. This model may then be evaluated using the mxRun function.
The results of the optimization can be found in the ’output’ slot of the resulting model, and may be
obtained using the mxEval function..

Value

Returns a list containing an MxExpectationRAM object and an MxFitFunctionML object.

References

McArdle, J. J. and MacDonald, R. P. (1984). Some algebraic properties of the Reticular Action
Model for moment structures. British Journal of Mathematical and Statistical Psychology, 37, 234-
251.

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.

Examples

Create and fit a model using mxMatrix, mxAlgebra,
mxExpectationNormal, and mxFitFunctionML

https://openmx.ssri.psu.edu/documentation/

mxRename 273

library(OpenMx)

Simulate some data

x=rnorm(1000, mean=0, sd=1)
y= 0.5*x + rnorm(1000, mean=0, sd=1)
tmpFrame <- data.frame(x, y)
tmpNames <- names(tmpFrame)

Define the matrices

matrixS <- mxMatrix(type = "Full", nrow = 2, ncol = 2, values=c(1,0,0,1),
free=c(TRUE,FALSE,FALSE,TRUE), labels=c("Vx", NA, NA, "Vy"),
name = "S")

matrixA <- mxMatrix(type = "Full", nrow = 2, ncol = 2, values=c(0,1,0,0),
free=c(FALSE,TRUE,FALSE,FALSE), labels=c(NA, "b", NA, NA),
name = "A")

matrixF <- mxMatrix(type="Iden", nrow=2, ncol=2, name="F")
matrixM <- mxMatrix(type = "Full", nrow = 1, ncol = 2, values=c(0,0),

free=c(TRUE,TRUE), labels=c("Mx", "My"), name = "M")

Define the expectation

expFunction <- mxExpectationRAM(M="M", dimnames = tmpNames)

Choose a fit function

fitFunction <- mxFitFunctionML()

Define the model

tmpModel <- mxModel(model="exampleRAMModel",
matrixA, matrixS, matrixF, matrixM,
expFunction, fitFunction,
mxData(observed=cov(tmpFrame), type="cov", numObs=nrow(tmpFrame),

means = colMeans(tmpFrame)))

Fit the model and print a summary

tmpModelOut <- mxRun(tmpModel)
summary(tmpModelOut)

mxRename Rename a model or submodel

Description

This function re-names a model. By default, the top model will be renamed. To rename a specific
model, set oldname (see examples). Importantly, all internal references to the old model name (e.g.
in algebras) will be updated to reference the new name.

274 mxRestore

Usage

mxRename(model, newname, oldname = NA)

Arguments

model a MxModel object.

newname the new name of the model.

oldname the name of the target model to rename. If NA then rename top model.

Value

Return a mxModel object with the target model renamed.

References

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.

Examples

library(OpenMx)

Create a parent model with two submodels:
modelC <- mxModel(model= 'modelC',
mxModel(model= 'modelA'),
mxModel(model= 'modelB')
)

Rename modelC (the top model) to "model1"
model1 <- mxRename(modelC, 'model_1')

Rename submodel "modelB" to "model_2"
model1 <- mxRename(model1, oldname = 'modelB', newname = 'model_2')

model1

mxRestore Restore model state from a checkpoint file

Description

Restore model state from a checkpoint file

https://openmx.ssri.psu.edu/documentation/

mxRestore 275

Usage

mxRestore(
model,
chkpt.directory = mxOption(model, "Checkpoint directory"),
chkpt.prefix = mxOption(model, "Checkpoint Prefix"),
line = NULL,
strict = FALSE

)

mxRestoreFromDataFrame(model, checkpoint, line = NULL)

Arguments

model an MxModel object
chkpt.directory

character. Directory where the checkpoint file is located

chkpt.prefix character. Prefix of the checkpoint file

line integer. Which line from the checkpoint file to restore (defaults to the last line)

strict logical. Require that the checkpoint name and model name match

checkpoint a data.frame containing the model state

Details

In general, the arguments ‘chkpt.directory’ and ‘chkpt.prefix’ should be identical to the mxOption:
‘Checkpoint Directory’ and ‘Checkpoint Prefix’ that were specified on the model before execution.

Alternatively, the checkpoint file can be manually loaded as a data.frame in R and passed to
mxRestoreFromDataFrame. Use read.table with the options header=TRUE, sep="\t", stringsAsFactors=FALSE,
check.names=FALSE.

Value

Returns an MxModel object with free parameters updated to the last saved values. When ‘line’ is
provided, the MxModel is updated to the values on that line within the checkpoint file.

References

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation

See Also

Other model state: mxComputeCheckpoint(), mxSave()

Examples

library(OpenMx)

Simulate some data

https://openmx.ssri.psu.edu/documentation

276 mxRetro

x=rnorm(1000, mean=0, sd=1)
y= 0.5*x + rnorm(1000, mean=0, sd=1)
tmpFrame <- data.frame(x, y)
tmpNames <- names(tmpFrame)

dir <- tempdir() # safe place to create files
mxOption(key="Checkpoint Directory", value=dir)

Create a model that includes an expected covariance matrix,
an expectation function, a fit function, and an observed covariance matrix

data <- mxData(cov(tmpFrame), type="cov", numObs = 1000)
expCov <- mxMatrix(type="Symm", nrow=2, ncol=2, values=c(.2,.1,.2), free=TRUE, name="expCov")
expFunction <- mxExpectationNormal(covariance="expCov", dimnames=tmpNames)
fitFunction <- mxFitFunctionML()
testModel <- mxModel(model="testModel", expCov, data, expFunction, fitFunction)

#Use mxRun to optimize the free parameters in the expected covariance matrix
modelOut <- mxRun(testModel, checkpoint = TRUE)
modelOut$expCov

#Use mxRestore to load the last checkpoint saved state of the model
modelRestore <- mxRestore(testModel)
modelRestore$expCov

mxRetro Return random classic Mx error message

Description

This function allows you to obtain a classic Mx error message. The message returned is random.

Usage

mxRetro()

Details

If you’re a nostalgic old sod and you miss the warm, fuzzy feelings you got from reading one of
Mike Neale’s patented error messages, then this function is here to save you from the depths of dire
depression. All credit for this function is due to Sarah Medland, but of course the wisdom is from
Mike Neale.

References

- https://en.wikipedia.org/wiki/OpenMx

See Also

- omxBrownie

https://en.wikipedia.org/wiki/OpenMx

mxRObjective 277

Examples

require(OpenMx)
mxRetro()

mxRObjective DEPRECATED: Create MxRObjective Object

Description

WARNING: Objective functions have been deprecated as of OpenMx 2.0.

Please use mxFitFunctionR() instead. As a temporary workaround, mxRObjective returns a list
containing a NULL MxExpectation object and an MxFitFunctionR object.

All occurrences of

mxRObjective(fitfun, ...)

Should be changed to

mxFitFunctionR(fitfun, ...)

Arguments

objfun A function that accepts two arguments.

... The initial state information to the objective function.

Details

NOTE: THIS DESCRIPTION IS DEPRECATED. Please change to using mxExpectationNormal
and mxFitFunctionML as shown in the example below.

The fitfun argument must be a function that accepts two arguments. The first argument is the
mxModel that should be evaluated, and the second argument is some persistent state information
that can be stored between one iteration of optimization to the next iteration. It is valid for the
function to simply ignore the second argument.

The function must return either a single numeric value, or a list of exactly two elements. If the
function returns a list, the first argument must be a single numeric value and the second element
will be the new persistent state information to be passed into this function at the next iteration. The
single numeric value will be used by the optimizer to perform optimization.

The initial default value for the persistent state information is NA.

Throwing an exception (via stop) from inside fitfun may result in unpredictable behavior. You may
want to wrap your code in tryCatch while experimenting.

Value

Returns a list containing a NULL mxExpectation object and an MxFitFunctionR object.

References

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.

https://openmx.ssri.psu.edu/documentation/

278 mxRowObjective

Examples

Create and fit a model using mxFitFunctionR

library(OpenMx)

A <- mxMatrix(nrow = 2, ncol = 2, values = c(1:4), free = TRUE, name = 'A')
squared <- function(x) { x ^ 2 }

Define the objective function in R

objFunction <- function(model, state) {
values <- modelAvalues
return(squared(values[1,1] - 4) + squared(values[1,2] - 3) +

squared(values[2,1] - 2) + squared(values[2,2] - 1))
}

Define the expectation function

fitFunction <- mxFitFunctionR(objFunction)

Define the model

tmpModel <- mxModel(model="exampleModel", A, fitFunction)

Fit the model and print a summary

tmpModelOut <- mxRun(tmpModel)
summary(tmpModelOut)

mxRowObjective DEPRECATED: Create MxRowObjective Object

Description

WARNING: Objective functions have been deprecated as of OpenMx 2.0.

Please use mxFitFunctionRow() instead. As a temporary workaround, mxRowObjective returns a
list containing a NULL MxExpectation object and an MxFitFunctionRow object.

All occurrences of

mxRowObjective(rowAlgebra, reduceAlgebra, dimnames, rowResults = "rowResults", filteredDataRow
= "filteredDataRow", existenceVector = "existenceVector")

Should be changed to

mxFitFunctionRow(rowAlgebra, reduceAlgebra, dimnames, rowResults = "rowResults", filtered-
DataRow = "filteredDataRow", existenceVector = "existenceVector")

mxRowObjective 279

Arguments

rowAlgebra A character string indicating the name of the algebra to be evaluated row-wise.

reduceAlgebra A character string indicating the name of the algebra that collapses the row re-
sults into a single number which is then optimized.

dimnames A character vector of names corresponding to columns be extracted from the
data set.

rowResults The name of the auto-generated "rowResults" matrix. See details.
filteredDataRow

The name of the auto-generated "filteredDataRow" matrix. See details.
existenceVector

The name of the auto-generated "existenceVector" matrix. See details.

Details

Objective functions are functions for which free parameter values are chosen such that the value
of the objective function is minimized. The mxRowObjective function evaluates a user-defined
MxAlgebra object called the ‘rowAlgebra’ in a row-wise fashion. It then stores results of the row-
wise evaluation in another MxAlgebra object called the ‘rowResults’. Finally, the mxRowObjective
function collapses the row results into a single number which is then used for optimization. The
MxAlgebra object named by the ‘reduceAlgebra’ collapses the row results into a single number.

The ‘filteredDataRow’ is populated in a row-by-row fashion with all the non-missing data from the
current row. You cannot assume that the length of the filteredDataRow matrix remains constant
(unless you have no missing data). The ‘existenceVector’ is populated in a row-by-row fashion with
a value of 1.0 in column j if a non-missing value is present in the data set in column j, and a value of
0.0 otherwise. Use the functions omxSelectRows, omxSelectCols, and omxSelectRowsAndCols to
shrink other matrices so that their dimensions will be conformable to the size of ‘filteredDataRow’.

Value

Please use mxFitFunctionRow() instead. As a temporary workaround, mxRowObjective returns a
list containing a NULL MxExpectation object and an MxFitFunctionRow object.

References

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.

Examples

Model that adds two data columns row-wise, then sums that column
Notice no optimization is performed here.

library(OpenMx)

xdat <- data.frame(a=rnorm(10), b=1:10) # Make data set
amod <- mxModel(model="example1",

mxData(observed=xdat, type='raw'),
mxAlgebra(sum(filteredDataRow), name = 'rowAlgebra'),
mxAlgebra(sum(rowResults), name = 'reduceAlgebra'),

https://openmx.ssri.psu.edu/documentation/

280 mxRun

mxFitFunctionRow(
rowAlgebra='rowAlgebra',
reduceAlgebra='reduceAlgebra',
dimnames=c('a','b'))

)
amodOut <- mxRun(amod)
mxEval(rowResults, model=amodOut)
mxEval(reduceAlgebra, model=amodOut)

Model that find the parameter that minimizes the sum of the
squared difference between the parameter and a data row.

bmod <- mxModel(model="example2",
mxData(observed=xdat, type='raw'),
mxMatrix(values=.75, ncol=1, nrow=1, free=TRUE, name='B'),
mxAlgebra((filteredDataRow - B) ^ 2, name='rowAlgebra'),
mxAlgebra(sum(rowResults), name='reduceAlgebra'),
mxFitFunctionRow(

rowAlgebra='rowAlgebra',
reduceAlgebra='reduceAlgebra',
dimnames=c('a'))

)
bmodOut <- mxRun(bmod)
mxEval(B, model=bmodOut)
mxEval(reduceAlgebra, model=bmodOut)
mxEval(rowResults, model=bmodOut)

mxRun Run an OpenMx model

Description

This function sends ‘model’ to the optimizer, and returns the optimized model if it ran without error.

If intervals = TRUE, then confidence intervals will be computed on any mxCIs added to the model.

During a run, ‘mxRun’ will print the context (e.g. optimizer name or step in the analysis e.g.
MxComputeNumericDeriv), followed by the current evaluation count, fit value, and the change in
fit compared to the last status report. e.g.:

MxComputeGradientDescent(CSOLNP) evaluations 1258 fit 37702.6 change -0.05861

This may be followed by progress on the numeric derivative

MxComputeNumericDeriv 313/528

note: For models that prove difficult to run, you might try using mxTryHard in place of mxRun.

Usage

mxRun(model, ..., intervals = NULL, silent = FALSE, suppressWarnings = FALSE,
unsafe = FALSE, checkpoint = FALSE, useSocket = FALSE, onlyFrontend = FALSE,
useOptimizer = TRUE, beginMessage=!silent)

mxRun 281

Arguments

model A MxModel object to be optimized.

... Not used. Forces remaining arguments to be specified by name.

intervals A boolean indicating whether to compute the specified confidence intervals.

silent A boolean indicating whether to print status to terminal.
suppressWarnings

A boolean indicating whether to suppress warnings.

unsafe A boolean indicating whether to ignore errors.

checkpoint A boolean indicating whether to periodically write parameter values to a file.

useSocket A boolean indicating whether to periodically write parameter values to a socket.

onlyFrontend A boolean indicating whether to run only front-end model transformations.

useOptimizer A boolean indicating whether to run only the log-likelihood of the current free
parameter values but not move any of the free parameters.

beginMessage A boolean indicating whether to print the number of parameters before invoking
the backend.

Details

The mxRun function is used to optimize free parameters in MxModel objects based on an expec-
tation function and fit function. MxModel objects included in the mxRun function must include an
appropriate expectation and fit functions.

If the ‘silent’ flag is TRUE, then model execution will not print any status messages to the terminal.

If the ‘suppressWarnings’ flag is TRUE, then model execution will not issue a warning if NPSOL
returns a non-zero status code.

If the ‘unsafe’ flag is TRUE, then many error conditions will not be detected. Any error condition
detected will be downgraded to warnings. It is strongly recommended to use this feature only for
debugging purposes.

Free parameters are estimated or updated based on the expectation and fit functions. These esti-
mated values, along with estimation information and model fit, can be found in the ’output’ slot of
MxModel objects after mxRun has been used.

If a model is dependent on or shares parameters with another model, both models must be included
as arguments in another MxModel object. This top-level MxModel object must include expectation
and fit functions in both submodels, as well as an additional fit function describing how the results
of the first two should be combined (e.g. mxFitFunctionMultigroup).

Value

Returns an MxModel object with free parameters updated to their final values. The return value
contains an "output" slot with the results of optimization.

References

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation.

https://openmx.ssri.psu.edu/documentation

282 mxRun

See Also

mxTryHard for running models which prove difficult to optimize; summary to print a summary of
a run model; mxModel for more on the model itself; More information about the OpenMx package
may be found here.

Examples

Create and run the 1-factor CFA on the openmx.ssri.psu.edu front page

1. Load OpenMx and the demoOneFactor dataframe

library(OpenMx)
data(demoOneFactor)

2. Define the manifests (5 demo variables) and latents for use in the model

manifests <- names(demoOneFactor)
latents <- c("G")

3. Build the model, adding paths and data
model <- mxModel(model="One Factor", type="RAM",

manifestVars = manifests,
latentVars = latents,
mxPath(from=latents, to=manifests, labels=paste("b", 1:5, sep="")),
mxPath(from=manifests, arrows=2, labels=paste("u", 1:5, sep="")),
mxPath(from=latents , arrows=2, free=FALSE, values=1.0),
mxData(cov(demoOneFactor), type="cov", numObs=500)

)

4. Run the model, returning the result into model
model <- mxRun(model)

5. Show a summary of the fitted model and parameter values
summary(model)

6. Print SE-based CIs for the fitted parameter values

confint(model)

7. Add likelihood-based CIs to the model and run these

model = mxModel(model, mxCI(paste0("b", 1:5)))
model <- mxRun(model, intervals = TRUE)
summary(model)$CI

lbound estimate ubound note
b1 0.3675940 0.3967545 0.4285895
b2 0.4690663 0.5031569 0.5405838
b3 0.5384588 0.5766635 0.6186705
b4 0.6572678 0.7020702 0.7514609
b5 0.7457231 0.7954529 0.8503486

mxSave 283

8. Demonstrate mxTryHard

model <- mxTryHard(model, intervals = TRUE)

mxSave Save model state to a checkpoint file

Description

The function saves the last state of a model to a checkpoint file.

Usage

mxSave(model, chkpt.directory = ".", chkpt.prefix = "")

Arguments

model an MxModel object

chkpt.directory

character. Directory where the checkpoint file is located

chkpt.prefix character. Prefix of the checkpoint file

Details

In general, the arguments ‘chkpt.directory’ and ‘chkpt.prefix’ should be identical to the mxOption:
‘Checkpoint Directory’ and ‘Checkpoint Prefix’ that were specified on the model before execution.

Alternatively, the checkpoint file can be manually loaded as a data.frame in R. Use read.table
with the options header=TRUE, sep="\t", stringsAsFactors=FALSE, check.names=FALSE.

Value

Returns a logical indicating the success of writing the checkpoint file to the checkpoint directory.

References

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation

See Also

Other model state: mxComputeCheckpoint(), mxRestore()

https://openmx.ssri.psu.edu/documentation

284 mxSE

Examples

library(OpenMx)

Simulate some data

x=rnorm(1000, mean=0, sd=1)
y= 0.5*x + rnorm(1000, mean=0, sd=1)
tmpFrame <- data.frame(x, y)
tmpNames <- names(tmpFrame)

dir <- tempdir() # safe place to create files
mxOption(key="Checkpoint Directory", value=dir)

Create a model that includes an expected covariance matrix,
an expectation function, a fit function, and an observed covariance matrix

data <- mxData(cov(tmpFrame), type="cov", numObs = 1000)
expCov <- mxMatrix(type="Symm", nrow=2, ncol=2, values=c(.2,.1,.2), free=TRUE, name="expCov")
expFunction <- mxExpectationNormal(covariance="expCov", dimnames=tmpNames)
fitFunction <- mxFitFunctionML()
testModel <- mxModel(model="testModel", expCov, data, expFunction, fitFunction)

#Use mxRun to optimize the free parameters in the expected covariance matrix
modelOut <- mxRun(testModel)
modelOut$expCov

Save the ending state of modelOut in a checkpoint file
mxSave(modelOut)

Restore the saved model from the checkpoint file
modelSaved <- mxRestore(testModel)
modelSaved$expCov

mxSE Compute standard errors in OpenMx

Description

This function allows you to obtain standard errors for arbitrary expressions, named entities, and
algebras.

Usage

mxSE(
x,
model,
details = FALSE,
cov,
forceName = FALSE,

mxSE 285

silent = FALSE,
...,
defvar.row = as.integer(NA),
data = "data"

)

Arguments

x the parameter to get SEs on (reference or expression)

model the mxModel to use.

details logical. Whether to provide further details, e.g. the full sampling covariance
matrix of x.

cov optional matrix of covariances among the free parameters. If missing, the in-
verse Hessian from the fitted model is used.

forceName logical; defaults to FALSE. Set to TRUE if x is an R symbol that refers to a char-
acter string.

silent logical; defaults to FALSE. If TRUE, message-printing is suppressed.

... further named arguments passed to mxEval

defvar.row which row to load for any definition variables

data name of data from which to load definition variables

Details

x can be the name of an algebra, a bracket address, named entity or arbitrary expression. When the
details argument is TRUE, the full sampling covariance matrix of x is also returned as part of a
list. The square root of the diagonals of this sampling covariance matrix are the standard errors.

When supplying the cov argument, take care that the free parameter covariance matrix is given, not
the information matrix. These two are inverses of one another.

This function uses the delta method to compute the standard error of arbitrary and possibly nonlin-
ear functions of the free parameters. The delta method makes a first-order Taylor approximation of
the nonlinear function. The nonlinear function is a map from all the free parameters to some trans-
formed subset of parameters: the linearization of this map is given by the Jacobian J . In equation
form, the delta method computes standard errors by the following:

JTCJ

where J is the Jacobian of the nonlinear parameter transformation and C is the covariance matrix
of the free parameters (e.g., two times the inverse of the Hessian of the minus two log likelihood
function).

Value

SE value(s) returned as a matrix when details is FALSE. When details is TRUE, a list of the SE
value(s) and the full sampling covariance matrix.

286 mxSetDefaultOptions

References

- https://en.wikipedia.org/wiki/Standard_error

See Also

- mxCI

Examples

library(OpenMx)
data(demoOneFactor)
===============================
= Make and run a 1-factor CFA =
===============================

latents = c("G") # the latent factor
manifests = names(demoOneFactor) # manifest variables to be modeled
===========================
= Make and run the model! =
===========================
m1 <- mxModel("One Factor", type = "RAM",
manifestVars = manifests, latentVars = latents,
mxPath(from = latents, to = manifests, labels=paste0('lambda', 1:5)),
mxPath(from = manifests, arrows = 2),
mxPath(from = latents, arrows = 2, free = FALSE, values = 1),
mxData(cov(demoOneFactor), type = "cov", numObs = 500)
)
m1 = mxRun(m1)
mxSE(lambda5, model = m1)
mxSE(lambda1^2, model = m1)

mxSetDefaultOptions Reset global options to the default

Description

Reset global options to the default

Usage

mxSetDefaultOptions()

https://en.wikipedia.org/wiki/Standard_error

mxSimplify2Array 287

mxSimplify2Array Like simplify2array but works with vectors of different lengths

Description

Vectors are filled column-by-column into a matrix. Shorter vectors are padded with NAs to fill
whole columns.

Usage

mxSimplify2Array(x, higher = FALSE)

Arguments

x a list of vectors

higher whether to produce a higher rank array (defaults to FALSE)

Examples

v1 <- 1:3
v2 <- 4:5
v3 <- 6:10
mxSimplify2Array(list(v1,v2,v3))

[,1] [,2] [,3]
[1,] 1 4 6
[2,] 2 5 7
[3,] 3 NA 8
[4,] NA NA 9
[5,] NA NA 10

mxStandardizeRAMpaths Standardize RAM models’ path coefficients

Description

Provides a dataframe containing the standardized values of all nonzero path coefficients appearing
in the A and S matrices of models that use RAM expectation (either of type="RAM" or containing an
explicit mxExpectationRAM() statement). These standardized values are what the path coefficients
would be if all variables in the analysis–both manifest and latent–were standardized to zero mean
and unit variance. If the means are being modeled in addition to the covariance structure, then the
dataframe will also contain values of the nonzero elements of the M matrix after they have been
re-scaled to standard deviation units. Can optionally include asymptotic standard errors for the
standardized and re-scaled coefficients, computed via the delta method. Not intended for use with
models that contain definition variables.

288 mxStandardizeRAMpaths

Usage

mxStandardizeRAMpaths(model,SE=FALSE,cov=NULL)

Arguments

model An mxModel object, that either uses RAM expectation or contains at least one
submodel that does.

SE Logical. Should standard errors be included with the standardized point esti-
mates? Defaults to FALSE. Certain conditions are required for use of SE=TRUE;
see "Details" below.

cov A repeated-sampling covariance matrix for the free-parameter estimates–say,
from the robust "sandwich estimator," or from bootstrapping–used to calculate
SEs for the standardized path coefficients. Defaults to NULL, in which case twice
the inverse of the Hessian matrix at the ML solution is used. See below for
details concerning concerning cases when model contains independent RAM
submodels.

Details

Matrix A contains the Asymmetric paths, i.e. the single-headed arrows. Matrix S contains the
Symmetric paths, i.e. the double-headed arrows. The function will work even if mxMatrix objects
named "A" and "S" are absent from the model, since it identifies which matrices in the model have
been assigned the roles of A and S in the mxExpectationRAM statement. Note that, in models of
type="RAM", the necessary matrices and expectation statement are automatically assembled from
the mxPath objects. If present, the M matrix will contain the means of exogenous variables and the
intercepts of endogenous variables.

If model contains any submodels with independent=TRUE that use RAM expectation, mxStandardizeRAMpaths()
automatically applies itself recursively over those submodels. However, if a non-NULL matrix has
been supplied for argument cov, that matrix is only used for the "container" model, and is not passed
as argument to the recursive calls of the function. To provide a covariance matrix for calculating
SEs in an independent submodel, use mxStandardizeRAMpaths() directly on that submodel.

Use of SE=TRUE requires that package numDeriv be installed. It also requires that model contain
no mxConstraint statements. Finally, if cov=NULL, it requires model to have a nonempty hessian
element in its output slot. There are three common reasons why the latter condition may not be met.
First, the model may not have been run yet, i.e. it was not output by mxRun(). Second, mxOption
"Hessian" might be set to "No". Third, computing the Hessian matrix might possibly have been
skipped per a user-defined mxCompute* statement (if any are present in the model). If model con-
tains RAM-expectation submodels with independent=TRUE, these conditions are checked sepa-
rately for each such submodel.

In any event, using these standard errors for hypothesis-testing or forming confidence intervals is
not generally advised. Instead, it is considered best practice to conduct likelihood-ratio tests or
compute likelihood-based confidence intervals (from mxCI()), as in examples below.

The user should note that mxStandardizeRAMpaths() only cares whether an element of A or S (or
M) is nonzero, and not whether it is a fixed or free parameter. So, for instance, if the function is
used on a model not yet run, any free parameters in A or S initialized at zero will not appear in the
function’s output.

mxStandardizeRAMpaths 289

The user is warned to interpret the output of mxStandardizeRAMpaths() cautiously if any ele-
ments of A or S depend upon "definition variables" (you have definition variables in your model if the
labels of any MxPath or MxMatrix begin with "data."). Typically, either mxStandardizeRAMpaths()’s
results will be valid only for the first row of the raw dataset (and any rows identical to it), or some
of the standardized coefficients will be incorrectly reported as zero.

Value

If argument model is a single-group model that uses RAM expecation, then mxStandardizeRAMpaths()
returns a dataframe, with one row for each nonzero path coefficient in A and S (and M, if present),
and with the following columns:

name Character strings that uniquely identify each nonzero path coefficient in terms of
the model name, the matrix ("A", "S", or "M"), the row number, and the column
number.

label Character labels for those path coefficients that are labeled elements of an mxMatrix
object, and NA for those that are not. Note that path coefficients having the same
label (and therefore the same UNstandardized value) can have different stan-
dardized values, and therefore the same label may appear more than once in this
dataframe.

matrix Character strings of "A", "S", or "M", depending on which matrix contains the
given path coefficient.

row Character. The rownames of the matrix containing each path coefficient; row
numbers are used instead if the matrix has no rownames.

col Character. The colnames of the matrix containing each path coefficient; column
numbers are used instead if the matrix has no colnames.

Raw.Value Numeric values of the raw (i.e., UNstandardized) path coefficients.

Raw.SE Numeric values of the asymptotic standard errors of the raw path coefficients if
if SE=TRUE, or "not_requested" otherwise.

Std.Value Numeric values of the standardized path coefficients.

Std.SE Numeric values of the asymptotic standard errors of the standardized path coef-
ficients if SE=TRUE, or "not_requested" otherwise.

If model is a multi-group model containing at least one submodel with RAM expectation, then
mxStandardizeRAMpaths() returns a list. The list has a number of elements equal to the number
of submodels that either have RAM expectation or contain a submodel that does. List elements cor-
responding to RAM-expectation submodels contain a dataframe, as described above. List elements
corresponding to "container" submodels are themselves lists, of the kind described here.

See Also

mxBootstrapStdizeRAMpaths()

Examples

library(OpenMx)
data(demoOneFactor)
manifests <- names(demoOneFactor)

290 mxThreshold

latents <- c("G")
factorModel <- mxModel(model="One Factor", type="RAM",

manifestVars = manifests,
latentVars = latents,
mxPath(from=latents, to=manifests),
mxPath(from=manifests, arrows=2, values=0.1),
mxPath(from=latents, arrows=2,free=FALSE, values=1.0),
mxData(cov(demoOneFactor), type="cov",numObs=500)

)
factorFit <-mxRun(factorModel)
summary(factorFit)$parameters
mxStandardizeRAMpaths(model=factorFit,SE=FALSE)

Likelihood ratio test of variable x1's factor loading:
factorModelNull <- omxSetParameters(factorModel,labels="One Factor.A[1,6]",

values=0,free=FALSE)
factorFitNull <- mxRun(factorModelNull)
mxCompare(factorFit,factorFitNull)[2,"p"] #<--p-value

Confidence intervals for all standardized paths:
factorModel2 <- mxModel(model=factorModel,

mxMatrix(type="Iden",nrow=nrow(factorModel$A),name="I"),
mxAlgebra(vec2diag(diag2vec(solve(I-A)%*%S%*%t(solve(I-A)))%^%-0.5) ,

name="InvSD"),
mxAlgebra(InvSD %*% A %*% solve(InvSD),

name="Az",dimnames=dimnames(factorModel$A)),
mxAlgebra(InvSD %*% S %*% InvSD,

name="Sz",dimnames=dimnames(factorModel$S)),
mxCI(c("Az","Sz"))

)

factorFit2 <- mxRun(factorModel2,intervals=TRUE)
Contains point values and confidence limits for all paths:
summary(factorFit2)$CI

mxThreshold Create List of Thresholds

Description

This function creates a list of thresholds which mxModel can use to set up a thresholds matrix for a
RAM model.

Usage

mxThreshold(vars, nThresh=NA,
free=FALSE, values=mxNormalQuantiles(nThresh), labels=NA,
lbound=NA, ubound=NA)

mxThreshold 291

Arguments

vars character vector. These are the variables for which thresholds are to be specified.

nThresh numeric vector. These are the number of thresholds for each variables listed in
‘vars’.

free boolean vector. Indicates whether threshold parameters are free or fixed.

values numeric vector. The starting values of the parameters.

labels character vector. The names of the parameters.

lbound numeric vector. The lower bounds of free parameters.

ubound numeric vector. The upper bounds of free parameters.

Details

If you are new to ordinal data modeling and just want something quick to make your ordinal data
work, we recommend you try the umxThresholdMatrix function in the umx package.

The mxPath function creates MxThreshold objects. These consist of a list of ordinal variables and
the thresholds that define the relationship between the observed ordinal variable and the continuous
latent variable assumed to underlie it. This function directly mirrors the usage of mxPath, but is
used to specify thresholds rather than means, variances and bivariate relationships.

The ‘vars’ argument specifies which variables you wish to specify thresholds for. Variables are
referenced by name, and these names must appear in the ‘manifestVar’ argument of the mxModel
function if thresholds are to be correctly processed. Additionally, variables for which thresholds are
specified must be specified as ordinal factors in whatever data is included in the model.

The ‘nThresh’ argument specifies how many thresholds are to be specified for the variable or vari-
ables included in the ‘vars’ argument. The number of thresholds for a particular variable should be
one fewer than the number of categories specified for that variable.

The ‘free’ argument specifies whether the thresholds created by the mxThreshold function are free
or fixed parameters. This argument may take either TRUE for free parameters, FALSE for fixed
parameters, or a vector of TRUEs and FALSEs to be applied in order to the created thresholds.

‘values’ is a numeric vector containing the starting values of the created thresholds. This gives
a starting point for estimation. The ‘labels’ argument specifies the names of the parameters in
the resulting MxThreshold object. The ‘lbound’ and ‘ubound’ arguments specify lower and upper
bounds for the created threshold parameters.

Thresholds for multiple variables may be specified simultaneously by including a vector of variable
names to the ‘vars’ argument. When multiple variables are included in the ‘vars’ argument, the
length of the ‘vars’ argument must be evenly divisable by the length of the ‘nThresh’ argument. All
subsequent arguments (‘free’ through ‘ubound’) should have their lengths be a factor of the total
number of thresholds specified for all variables.

If four variables are included in the ‘vars’ argument, then the ‘nThresh’ argument should contain ei-
ther one, two or four elements. If the ‘nThresh’ argument specifies two thresholds for each variable,
then ‘free’, ‘values’, and all subsequent arguments should specify eight values by including one,
two, four or eight elements. Whenever fewer values are specified than are required (e.g., specify
two values for eight thresholds), then the entire vector of values is repeated until the required num-
ber of values is reached, and will return an error if the correct number of values cannot be achieved
by repeating the entire vector.

292 mxTryHard

Value

Returns a list of thresholds.

References

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.

See Also

umxThresholdMatrix demo("mxThreshold") mxPath for comparable specification of paths. mx-
Matrix for a matrix-based approach to thresholds specification; mxModel for the container in which
mxThresholds are embedded. More information about the OpenMx package may be found here.

Examples

library(OpenMx)
threshold objects for three variables: 2 binary, and one ordinal.
mxThreshold(vars = c("z1", "z2", "z3"), nThresh = c(1,1,2),

free = TRUE, values = c(-1, 0, -.5, 1.2))

mxTryHard Make multiple attempts to run a model

Description

Makes multiple attempts to fit an MxModel object with mxRun() until the optimizer yields an ac-
ceptable solution or the maximum number of attempts (set by extraTries) is reached. Between
attempts, start values are perturbed by random numbers (see details). Optimization-control param-
eters may also be altered. From among its attempts, the function returns the fitted model with the
best fit (smallest fit-function value). If bestInitsOutput is TRUE, then in addition the start values
used for the best-fitting model will be printed to the console.

note: If the model contains mxConstraints, or if mxFitFunctionWLS is being used, the Hessian
cannot be checked, and so checkHess will be coerced to FALSE.

Usage

mxTryHard(model, extraTries = 10, greenOK = FALSE, loc = 1, scale = 0.25,
initialGradientStepSize = imxAutoOptionValue("Gradient step size"),
initialGradientIterations = imxAutoOptionValue('Gradient iterations'),
initialTolerance=as.numeric(mxOption(NULL,'Optimality tolerance')),
checkHess = TRUE, fit2beat = Inf, paste = TRUE,iterationSummary=FALSE,
bestInitsOutput=TRUE, showInits=FALSE, verbose=0, intervals = FALSE,
finetuneGradient=TRUE, jitterDistrib=c("runif","rnorm","rcauchy"), exhaustive=FALSE,
maxMajorIter=3000, OKstatuscodes, wtgcsv=c("prev","best","initial"), silent=interactive())

mxTryHardOrig(model, finetuneGradient=FALSE, maxMajorIter=NA,
wtgcsv=c("prev","best"), silent=FALSE, ...)

https://openmx.ssri.psu.edu/documentation/

mxTryHard 293

mxTryHardctsem(model, initialGradientStepSize = .00001,
initialGradientIterations = 1,
initialTolerance=1e-12,jitterDistrib="rnorm", ...)

mxTryHardWideSearch(model, finetuneGradient=FALSE, jitterDistrib="rcauchy",
exhaustive=TRUE, wtgcsv="prev", ...)

mxTryHardOrdinal(model, greenOK = TRUE,checkHess = FALSE,
finetuneGradient=FALSE, exhaustive=TRUE,
OKstatuscodes=c(0,1,5,6), wtgcsv=c("prev","best"), ...)

Arguments

model The MxModel to be run.

extraTries The number of attempts to run the model in addition to the first. In effect, is the
maximum number of attempts mxTryHard() will make, since the function will
stop once an acceptable solution is reached. Defaults to 10 (for mxTryHard()),
in which case a maximum of 11 total attempts will be made.

greenOK Logical; is a solution with Mx status GREEN (optimizer status code 1) accept-
able? Defaults to FALSE (for mxTryHard()). Ignored if a value is provided for
OKstatuscodes.

loc, scale Numeric. The location and scale parameters of the distribution from which ran-
dom values are drawn to perturb start values between attempts, defaulting re-
spectively to 1 and 0.25. See below, under "Details," for additional information.

initialGradientStepSize, initialGradientIterations, initialTolerance
Numeric. Initial values of optimization-control parameters passed to mxComputeGradientDescent()
if model is using the default compute plan.

checkHess Logical; is a positive-definite Hessian a requirement for an acceptable solution?
Defaults to TRUE (for mxTryHard()). If TRUE, the Hessian and standard errors
are calculated with each fit attempt, irrespective of the value of relevant options.
The exception is if model or any of its submodels contains MxConstraints, in
which case checkHess is coerced to FALSE.

fit2beat Numeric upper limit to the fitfunction value that an acceptable solution may
have. Useful if a nested submodel of model has already been fitted, since
model, with its additional free parameters, should not yield a fitfunction value
any greater than that of the submodel.

paste Logical. If TRUE (default), start values for the returned fitted model are printed
to console as a comma-separated string. This is useful if the user wants to copy-
paste these values into an R script, say, in an omxSetParameters() statement.
If FALSE, the vector of start values is printed as-is. Note that this vector, from
omxGetParameters(), has names corresponding to the free parameters; these
names are not displayed when paste=TRUE.

iterationSummary

Logical. If TRUE, displays parameter estimates and fit values for every fit at-
tempt, even if silent=TRUE. Defaults to FALSE.

294 mxTryHard

bestInitsOutput

Logical. If TRUE and if silent=FALSE, mxTryHard() displays the starting val-
ues that resulted in the best fit, according to format specified by paste argument.
Defaults to TRUE.

showInits Logical. If TRUE, displays starting values for every fit attempt, even if silent=TRUE.
Defaults to FALSE.

verbose If model is using the default compute plan, is passed to mxComputeGradientDescent()
to specify level of output printed to console during optimization.

intervals Logical. If TRUE, OpenMx will estimate any specified confidence intervals.
finetuneGradient

Logical. If TRUE (default for mxTryHard()), then as repeated fit attempts ap-
pear to be improving, mxTryHard() will adjust optimization-control param-
eters gradientStepSize, gradientIterations, and tolerance, as well as
argument scale, to "fine-tune" its convergence toward an optimal solution.
finetuneGradient=FALSE is recommended for analyses involving thresholds.

jitterDistrib Character string naming which random-number distribution–either uniform (rect-
angular), normal (Gaussian), or Cauchy–to be used to perturb start values. De-
faults to the uniform distribution (for mxTryHard()). See below, under "De-
tails," for additional information.

exhaustive Logical. If FALSE (default for mxTryHard()), mxTryHard() stops making ad-
ditional attempts once it reaches an acceptable solution. If TRUE, the func-
tion instead continues until it reaches its maximum number of attempts (as per
extraTries), and returns the best solution it found.

maxMajorIter Integer; passed to mxComputeGradientDescent(). Defaults to 3000, which
was the internally hard-coded value mxTryHard() used in a prior version of
OpenMx. Value of NA is permitted, in which case mxTryHard() will calculate a
value via the on-load default formula for the "Major iterations" option.

OKstatuscodes Optional integer vector containing optimizer status codes that an acceptable so-
lution is permitted to have. mxTryHard() always considers a status code of
0 to be acceptable, this argument notwithstanding. By default, mxTryHard()
will consider status code 0 acceptable, and, if greenOK=TRUE, status code 1 as
well. If a value is supplied for OKstatuscodes that conflicts with greenOK,
OKstatuscodes controls.

wtgcsv Character vector. "Where to get current start values." See below, under "De-
tails," for additional information.

silent Logical; for mxTryHard(), defaults to TRUE if running interactively, and to
FALSE otherwise. If TRUE, persistent message-printing during execution of mxTryHard()
is suppressed, and non-persistent printing is used instead. The two exceptions
are the persistent printing requested by TRUE values of iterationSummary and
showInits.

... Additional arguments to be passed to mxTryHard().

Details

mxTryHardOrig(), mxTryHardctsem(), mxTryHardWideSearch(), and mxTryHardOrdinal() are
wrapper functions to the main workhorse function mxTryHard(). Each wrapper function has de-
fault values for certain arguments that are tailored toward a specific purpose. mxTryHardOrig()

mxTryHard 295

imitates the functionality of the earliest implementations of mxTryHard() in OpenMx’s history; its
chief purpose is to find good start values that lead to an acceptable solution. mxTryHardctsem()
uses mxTryHard() to "zero in" on an acceptable solution with models that can be difficult to opti-
mize, such as continuous-time state-space models. mxTryHardWideSearch() uses mxTryHard()
to search a wide region of the parameter space, in hope of avoiding local fitfunction minima.
mxTryHardOrdinal() attempts to use mxTryHard() as well as it can be used with models involving
ordinal data.

Argument wtgcsv dictates where mxTryHard() is permitted to find free-parameter values, at the
start of each fit attempt after the first, before randomly perturbing them to create the current fit
attempt’s start values. If "prev" is included, then mxTryHard() is permitted to use the parameter
estimates of the most recent non-error fit attempt. If "best" is included, then mxTryHard() is
permitted to use the parameter estimates at the best solution so far. If "initial" is included, then
mxTryHard() is permitted to use the initial start values in model, as provided by the user. The
default is to permit all three, in which case mxTryHard() is written to use the best solution’s values
if available, and otherwise to use the most recent solution’s values, but to periodically revert to the
initial values if recent fit attempts have not improved on the best solution.

Once the start values are located for the current fit attempt, they are randomly perturbed before
being assigned to the MxModel. The distributional family from which the perturbations are ran-
domly generated is dictated by argument jitterDistrib. The distribution is parameterized by
arguments loc and scale, respectively the location and scale parameters. The location parameter
is the distribution’s median. For the uniform distribution, scale is the absolute difference between
its median and extrema (i.e., half the width of the rectangle); for the normal distribution, scale is
its standard deviation; and for the Cauchy, scale is one-half its interquartile range. Start values are
first multiplied by random draws from a distribution with the provided loc and scale, then added
to random draws from a distribution with the same scale but with a median of zero.

Value

Usually, mxTryHard() returns a post-mxRun() MxModel object. Specifically, this will be the fitted
model having the smallest fit-function value found by mxTryHard() during its attempts. The start
values used to obtain this fitted model are printed to console if bestInitsOutput=TRUE.

If every attempt at running model fails, mxTryHard() returns an object of class ’try-error’.

mxTryHard() throws a warning if the returned MxModel object has a nonzero status code (unless
nonzero status codes are considered acceptable per argument greenOK or OKstatuscodes).

See Also

mxRun(), mxComputeTryHard

Examples

library(OpenMx)

data(demoOneFactor) # load the demoOneFactor dataframe

manifests <- names(demoOneFactor) # set the manifest to the 5 demo variables
latents <- c("G") # define 1 latent variable
model <- mxModel(model="One Factor", type="RAM",

manifestVars = manifests,

296 mxVersion

latentVars = latents,
mxPath(from=latents, to=manifests, labels=paste("b", 1:5, sep="")),
mxPath(from=manifests, arrows=2, labels=paste("u", 1:5, sep="")),
mxPath(from=latents , arrows=2, free=FALSE, values=1.0),
mxData(cov(demoOneFactor), type="cov", numObs=500)

)
model <- mxTryHard(model) # Run the model, returning the result into model
summary(model) # Show summary of the fitted model

mxTypes List Currently Available Model Types

Description

This function returns a vector of the currently available type names.

Usage

mxTypes()

Value

Returns a character vector of type names.

Examples

mxTypes()

mxVersion Returns Current Version String

Description

This function returns a string with the current version number of OpenMx. Optionally (with ver-
bose = TRUE (the default)), it prints a message containing the version of R, the platform, and the
optimizer.

Usage

mxVersion(model = NULL, verbose = TRUE)

Arguments

model optional MxModel to request optimizer from (default = NULL)

verbose Whether to print version information to the console (default = TRUE)

MxVersionType-class 297

References

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.

Examples

Print useful version information.
mxVersion()
If you just want the version, use this call.
x = mxVersion(verbose=FALSE)

library(OpenMx)
data(demoOneFactor) # load the demoOneFactor dataframe
manifests <- names(demoOneFactor) # set the manifest to the 5 demo variables
latents <- c("G") # define 1 latent variable
model <- mxModel(model = "One Factor", type = "RAM",

manifestVars = manifests,
latentVars = latents,
mxPath(from = latents, to = manifests, labels = paste("b", 1:5, sep = "")),
mxPath(from = manifests, arrows = 2 , labels = paste("u", 1:5, sep = "")),
mxPath(from = latents , arrows = 2 , free = FALSE, values = 1.0),
mxData(cov(demoOneFactor), type = "cov", numObs = 500)

)
mxVersion(model, verbose = TRUE)

MxVersionType-class A package_version or character

Description

A package_version or character

myAutoregressiveData Example data with autoregressively related columns

Description

Data set used in some of OpenMx’s examples.

Usage

data("myAutoregressiveData")

https://openmx.ssri.psu.edu/documentation/

298 myFADataRaw

Format

A data frame with 100 observations on the following variables.

x1 x variable and time 1

x2 x variable and time 2

x3 x variable and time 3

x4 x variable and time 4

x5 x variable and time 5

Details

The rows are independently and identically distributed, but the columns are and auto-correlation
structure.

Source

Simulated.

References

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.

Examples

data(myAutoregressiveData)
round(cor(myAutoregressiveData), 2)
note the sub-diagonal correlations (lag 1)
x1-x2, x2-x3, x3-x4, x4-x5
and the second sub-diagonal correlations (lag 2)
x1-x3, x2-x4, x3-x5

myFADataRaw Example 500-row dataset with 12 generated variables

Description

Twelve columns of generated numeric data: x1 x2 x3 x4 x5 x6 y1 y2 y3 z1 z2 z3.

Usage

data(myFADataRaw)

https://openmx.ssri.psu.edu/documentation/

myGrowthKnownClassData 299

Details

The x variables intercorrelate around .6 with each other.

The y variables intercorrelate around .5 with each other, and correlate around .3 with the X vars.

There are three ordinal variables, z1, z2, and z3.

The data are used in some OpenMx examples, especially confirmatory factor analysis.

There are no missing data.

Examples

data(myFADataRaw)
str(myFADataRaw)

myGrowthKnownClassData

Data for a growth mixture model with the true class membership

Description

Data set used in some of OpenMx’s examples.

Usage

data("myGrowthKnownClassData")

Format

A data frame with 500 observations on the following variables.

x1 x variable and time 1

x2 x variable and time 2

x3 x variable and time 3

x4 x variable and time 4

x5 x variable and time 5

c Known class membership variable

Details

The same as myGrowthMixtureData, but with the class membership variable.

Source

Simulated.

References

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.

https://openmx.ssri.psu.edu/documentation/

300 myGrowthMixtureData

Examples

data(myGrowthKnownClassData)

#plot the observed trajectories
blue lines are class 1, green lines are class 2
colSel <-c('blue', 'green')[myGrowthKnownClassData$c]
matplot(t(myGrowthKnownClassData[,-6]), type='l', lty=1, col=colSel)

myGrowthMixtureData Data for a growth mixture model

Description

Data set used in some of OpenMx’s examples.

Usage

data("myGrowthMixtureData")

Format

A data frame with 500 observations on the following variables.

x1 x variable and time 1

x2 x variable and time 2

x3 x variable and time 3

x4 x variable and time 4

x5 x variable and time 5

Details

The same as myGrowthKnownClassData, but without the class membership variable.

Source

Simulated.

References

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.

https://openmx.ssri.psu.edu/documentation/

myLongitudinalData 301

Examples

data(myGrowthMixtureData)

matplot(t(myGrowthMixtureData), type='l', lty=1)

data(myGrowthKnownClassData)
all(myGrowthKnownClassData[,-6]==myGrowthMixtureData)

myLongitudinalData Data for a linear latent growth curve model

Description

Data set used in some of OpenMx’s examples.

Usage

data("myLongitudinalData")

Format

A data frame with 500 observations on the following variables.

x1 x variable and time 1

x2 x variable and time 2

x3 x variable and time 3

x4 x variable and time 4

x5 x variable and time 5

Details

Linear growth model with mean intercept around 10, and slope of about 1.5.

Source

Simulated.

References

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.

Examples

data(myLongitudinalData)

matplot(t(myLongitudinalData), type='l', lty=1)

https://openmx.ssri.psu.edu/documentation/

302 myRegData

myRegData Example regression data with correlated predictors

Description

Data set used in some of OpenMx’s examples.

Usage

data("myRegData")

Format

A data frame with 100 observations on the following variables.

w Predictor variable

x Predictor variable

y Predictor variable

z Outcome variable

Details

w, x, and y are predictors of z. x and y are correlated.

Source

Simulated.

References

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.

Examples

data(myRegData)
summary(lm(z ~ ., data=myRegData))

https://openmx.ssri.psu.edu/documentation/

myRegDataRaw 303

myRegDataRaw Example regression data with correlated predictors

Description

Data set used in some of OpenMx’s examples.

Usage

data("myRegDataRaw")

Format

A data frame with 100 observations on the following variables.

w Predictor variable

x Predictor variable

y Predictor variable

z Outcome variable

Details

w, x, and y are predictors of z. x and y are correlated. Equal to myRegData.

Source

Simulated.

References

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.

Examples

data(myRegData)
data(myRegDataRaw)

all(myRegDataRaw == myRegData)

https://openmx.ssri.psu.edu/documentation/

304 myTwinData

myTwinData Duplicate of twinData

Description

Legacy dataset from early teaching examples. See twinData for a more current file.

Usage

data("myTwinData")

Format

A data frame with 3808 observations on the following variables.

fam Family ID variable
age Age of the twin pair. Range: 17 to 88.
zyg Integer codes for zygosity and gender combinations
part Cohort
wt1 Weight in kilograms for twin 1
wt2 Weight in kilograms for twin 2
ht1 Height in meters for twin 1
ht2 Height in meters for twin 2
htwt1 Product of ht and wt for twin 1
htwt2 Product of ht and wt for twin 2
bmi1 Body Mass Index for twin 1
bmi2 Body Mass Index for twin 2

Details

Height and weight are highly correlated, and each individually highly heritable. These data present
and opportunity for multivariate behavior genetics modeling.

Source

Timothy Bates

References

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.

Examples

data(myTwinData)

plot(ht1 ~ wt1, myTwinData)

https://openmx.ssri.psu.edu/documentation/

mzfData 305

mzfData Example twin extended kinship data: MZ female twins

Description

Data for extended twin example ETC88.R

Usage

data("mzfData")

Format

A data frame with 3099 observations on the following 37 variables.

famid a numeric vector

e1 a numeric vector

e2 a numeric vector

e3 a numeric vector

e4 a numeric vector

e5 a numeric vector

e6 a numeric vector

e7 a numeric vector

e8 a numeric vector

e9 a numeric vector

e10 a numeric vector

e11 a numeric vector

e12 a numeric vector

e13 a numeric vector

e14 a numeric vector

e15 a numeric vector

e16 a numeric vector

e17 a numeric vector

e18 a numeric vector

a1 a numeric vector

a2 a numeric vector

a3 a numeric vector

a4 a numeric vector

a5 a numeric vector

a6 a numeric vector

306 mzmData

a7 a numeric vector

a8 a numeric vector

a9 a numeric vector

a10 a numeric vector

a11 a numeric vector

a12 a numeric vector

a13 a numeric vector

a14 a numeric vector

a15 a numeric vector

a16 a numeric vector

a17 a numeric vector

a18 a numeric vector

Examples

data(mzfData)
str(mzfData)

mzmData Example twin extended kinship data: MZ Male data

Description

Data for extended twin example ETC88.R

Usage

data("mzmData")

Format

A data frame with 3019 observations on the following 37 variables.

famid a numeric vector

e1 a numeric vector

e2 a numeric vector

e3 a numeric vector

e4 a numeric vector

e5 a numeric vector

e6 a numeric vector

e7 a numeric vector

e8 a numeric vector

mzmData 307

e9 a numeric vector

e10 a numeric vector

e11 a numeric vector

e12 a numeric vector

e13 a numeric vector

e14 a numeric vector

e15 a numeric vector

e16 a numeric vector

e17 a numeric vector

e18 a numeric vector

a1 a numeric vector

a2 a numeric vector

a3 a numeric vector

a4 a numeric vector

a5 a numeric vector

a6 a numeric vector

a7 a numeric vector

a8 a numeric vector

a9 a numeric vector

a10 a numeric vector

a11 a numeric vector

a12 a numeric vector

a13 a numeric vector

a14 a numeric vector

a15 a numeric vector

a16 a numeric vector

a17 a numeric vector

a18 a numeric vector

Examples

data(mzmData)
str(mzmData)

308 nhanesDemo

Named-entity Named Entities

Description

A named entity is an S4 object that can be referenced by name.

Details

Every named entity is guaranteed to have a slot called "name". Within a model, the named entities
of that model can be accessed using the $ operator. Access is limited to one nesting depth, such that
if ’B’ is a submodel of ’A’, and ’C’ is a matrix of ’B’, then ’C’ must be accessed using ABC.

The following S4 classes are named entities in the OpenMx library: MxAlgebra, MxConstraint,
MxMatrix, MxModel, MxData, and MxObjective.

Examples

library(OpenMx)

Create a model, add a matrix to it, and then access the matrix by name.

testModel <- mxModel(model="anEmptyModel")

testMatrix <- mxMatrix(type="Full", nrow=2, ncol=2, values=c(1,2,3,4), name="yourMatrix")

yourModel <- mxModel(testModel, testMatrix, name="noLongerEmpty")

yourModel$yourMatrix

nhanesDemo Modified National Health and Nutrition Examination Survey demo-
graphic data

Description

This is a national survey run by CDC from 2015-16. More information at: https://wwwn.cdc.gov/Nchs/Nhanes/analyticguidelines.aspx

Usage

data("nhanesDemo")

Format

A data frame with 9971 observations and 53 variables.

nuclear_twin_design_data 309

Source

https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/DEMO_I.XPT

Examples

data(nhanesDemo)

nuclear_twin_design_data

Twin data from a nuclear family design

Description

Data set used in some of OpenMx’s examples.

Usage

data("nuclear_twin_design_data")

Format

A data frame with 1743 observations on the following variables.

Twin1

Twin2

Father

Mother

zyg Zygosity of the twin pair

Details

This is a wide format data set. A single variable has values for different member of the same nuclear
family.

Source

Likely simulated.

References

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.

Examples

data(nuclear_twin_design_data)

cor(nuclear_twin_design_data[,-5], use="pairwise.complete.obs")

https://openmx.ssri.psu.edu/documentation/

310 numHess2

numHess1 numeric Hessian data 1

Description

data file used by the HessianTest.R script

Usage

data("numHess1")

Format

A 12 by 12 data frame containing Hessian (numeric variables a-l)

Examples

data(numHess1)
str(numHess1)

numHess2 numeric Hessian data 2

Description

data file used by the HessianTest.R script

Usage

data("numHess2")

Format

A 12 by 12 data frame containing Hessian matrix (numeric variables a-l)

Examples

data(numHess2)
str(numHess2)

omxAllInt 311

omxAllInt All Interval Multivariate Normal Integration

Description

omxAllInt computes the probabilities of a large number of cells of a multivariate normal distri-
bution that has been sliced by a varying number of thresholds in each dimension. While the same
functionality can be achieved by repeated calls to omxMnor, omxAllInt is more efficient for re-
peated operations on a single covariance matrix. omxAllInt returns an nx1 matrix of probabilities
cycling from lowest to highest thresholds in each column with the rightmost variable in covariance
changing most rapidly.

Usage

omxAllInt(covariance, means, ...)

Arguments

covariance the covariance matrix describing the multivariate normal distribution.

means a row vector containing means of the variables of the underlying distribution.

... a matrix or set of matrices containing one column of thresholds for each column
of covariance. Each column must contain a strictly increasing set of thresholds
for the corresponding variable of the underlying distribution. NA values in these
thresholds indicate that the list of thresholds in that column has ended.

Details

covariance and means contain the covariances and means of the multivariate distribution from
which probabilities are to be calculated.

covariance must be a square covariance or correlation matrix with one row and column for each
variable.

means must be a vector of length nrows(covariance) that contains the mean for each correspond-
ing variable.

All further arguments are considered threshold matrices.

Threshold matrices contain locations of the hyperplanes delineating the intervals to be calculated.
The first column of the first matrix corresponds to the thresholds for the first variable represented
by the covariance matrix. Subsequent columns of the same matrix correspond to thresholds for
subsequent variables in the covariance matrix. If more variables exist in the covariance matrix than
in the first threshold matrix, the first column of the second threshold matrix will be used, and so
on. That is, if covariance is a 4x4 matrix, and the three threshold matrices are specified, one with
a single column and the others with two columns each, the first column of the first matrix will
contain thresholds for the first variable in covariance , the two columns of the second matrix will
correspond to the second and third variables of covariance , respectively, and the first column of the
third threshold matrix will correspond to the fourth variable. Any extra columns will be ignored.

312 omxAllInt

Each column in the threshold matrices must contain some number of strictly increasing thresholds,
delineating the boundaries of a cell of integration. That is, if the integral from -1 to 0 and 0 to 1 are
required for a given variable, the corresponding threshold column should contain the values -1, 0,
and 1, in that order. Thresholds may be set to Inf or -Inf if a boundary at positive or negative infinity
is desired.

Within a threshold column, a value of +Inf, if it exists, is assumed to be the largest threshold, and
any rows after it are ignored in that column. A value of NA, if it exists, indicates that there are no
further thresholds in that column, and is otherwise ignored. A threshold column consisting of only
+Inf or NA values will cause an error.

For all i>1, the value in row i must be strictly larger than the value in row i-1 in the same column.

The return value of omxAllInt is a matrix consisting of a single column with one row for each
combination of threshold levels.

See Also

omxMnor

Examples

data(myFADataRaw)

covariance <- cov(myFADataRaw[,1:5])
means <- colMeans(myFADataRaw[,1:5])

Integrate from -Infinity to 0 and 0 to 1 on first variable
thresholdForColumn1 <- cbind(c(-Inf, 0, 1))
Note: The first variable will never be calculated from 1 to +Infinity.

These columns will be integrated from -Inf to -1, -1 to 0, etc.
thresholdsForColumn2 <- cbind(c(-Inf, -1, 0, 1, Inf))
thresholdsForColumns3and4 <- cbind(c(-Inf, 1.96, 2.326, Inf),

c(-Inf, -1.96, 2.326, Inf))

The integration
omxAllInt(covariance, means,

thresholdForColumn1, thresholdsForColumn2,
thresholdsForColumns3and4, thresholdsForColumn2)

Notice that columns 2 and 5 are assigned identical thresholds.

#---
An alternative specification of the same calculation follows
covariance <- cov(myFADataRaw[,1:5])
means <- colMeans(myFADataRaw[,1:5])

Note NAs to indicate the end of the sequence of thresholds.
thresholds <- cbind(c(-Inf, 0, 1, NA, NA),

c(-Inf, -1, 0, 1, Inf),
c(-Inf, 1.96, 2.32, Inf, NA),
c(-Inf, -1.96, 2.32, Inf, NA),
c(-Inf, -1, 0, 1, Inf))

omxAllInt(covariance, means, thresholds)

omxApply 313

omxApply On-Demand Parallel Apply

Description

If the snowfall library is loaded, then this function calls sfApply. Otherwise it invokes apply.

Usage

omxApply(x, margin, fun, ...)

Arguments

x a vector (atomic or list) or an expressions vector. Other objects (including
classed objects) will be coerced by as.list.

margin a vector giving the subscripts which the function will be applied over.

fun the function to be applied to each element of x.

... optional arguments to fun.

See Also

omxLapply, omxSapply

Examples

x <- cbind(x1 = 3, x2 = c(4:1, 2:5))
dimnames(x)[[1]] <- letters[1:8]
omxApply(x, 2, mean, trim = .2)

omxAssignFirstParameters

Assign First Available Values to Model Parameters

Description

Sometimes you may have a free parameter with two different starting values in your model. OpenMx
will not run a model until all instances of a free parameter have the same starting value. It is often
sufficient to arbitrarily select one of those starting values for optimization.

This function accomplishes that task of assigning valid starting values to the free parameters of a
model. It selects an arbitrary current value (the "first" value it finds, where "first" is not defined) for
each free parameter and uses that value for all instances of that parameter in the model.

314 omxAugmentDataWithWLSSummary

Usage

omxAssignFirstParameters(model, indep = FALSE)

Arguments

model a MxModel object.

indep assign parameters to independent submodels.

See Also

omxGetParameters, omxSetParameters

Examples

A <- mxMatrix('Full', 3, 3, values = c(1:9), labels = c('a','b', NA),
free = TRUE, name = 'A')

model <- mxModel(model=A, name = 'model')
model <- omxAssignFirstParameters(model)

Note: All cells with the same label now have the same start value.
Note also that NAs are untouched.

model$matrices$A

$labels
[,1] [,2] [,3]
[1,] "a" "a" "a"
[2,] "b" "b" "b"
[3,] NA NA NA
#
$values
[,1] [,2] [,3]
[1,] 1 1 1
[2,] 2 2 2
[3,] 3 6 9

omxAugmentDataWithWLSSummary

Estimate summary statistics used by the WLS fit function

Description

The summary statistics are returned in the observedStats slot of the MxData object.

omxBrownie 315

Usage

omxAugmentDataWithWLSSummary(
mxd,
type = c("WLS", "DWLS", "ULS"),
allContinuousMethod = c("cumulants", "marginals"),
...,
exogenous = c(),
fullWeight = TRUE,
returnModel = FALSE,
silent = TRUE

)

Arguments

mxd an MxData object containing raw data

type the type of WLS weight matrix
allContinuousMethod

which method to use when all indicators are continuous

... Not used. Forces remaining arguments to be specified by name.

exogenous names variables to be modelled as exogenous

fullWeight whether to produce a fullWeight matrix

returnModel whether to return the whole mxModel (TRUE) or just the mxData (FALSE)

silent logical. Whether to print status to terminal.

See Also

mxFitFunctionWLS

Examples

omxAugmentDataWithWLSSummary(mxData(Bollen[,1:8], 'raw'))

omxBrownie Make Brownies in OpenMx

Description

This function returns a brownie recipe.

Usage

omxBrownie(quantity=1, walnuts=TRUE, wfpb=FALSE)

316 omxBrownie

Arguments

quantity Number of batches of brownies desired. Defaults to one.

walnuts Logical. Indicates whether walnuts are to be included in the brownies. Defaults
to TRUE.

wfpb Logical. Indicates whether to display the whole food plant based version. De-
faults to FALSE.

Details

Returns a brownie recipe. Alter the ‘quantity‘ variable to make more pans of brownies. Ingredients,
equipment and procedure are listed, but neither ingredients nor equipment are provided.

Raw cocoa powder can be used instead of Dutch processed cocoa for approximately double the
antioxidants and flavonols. However, raw cocoa powder is not as smooth and delicious in taste.

For the whole food plant based (wfpb) version of the recipe, we substitute coconut butter for dairy
butter because dairy butter contains a large proportion of saturated fat that raises deadly LDL
cholesterol (Trumbo & Shimakawa, 2011). In contrast, coconut butter has so much fiber that the
considerable saturated fat that it contains is mostly not absorbed (Padmakumaran, Rajamohan &
Kurup, 1999). You can substitute erythritol (den Hartog et al, 2010) for sucanat (Lustig, Schmidt,
& Brindis, 2012) to improve the glycemic index and reduce calorie density. We substitute whole
wheat flour for all-purpose wheat flour because whole grains are associated with improvement in
blood pressure (Tighe et al, 2010).

Value

Returns a brownie recipe.

References

Padmakumaran Nair K.G, Rajamohan T, Kurup P.A. (1999). Coconut kernel protein modifies the
effect of coconut oil on serum lipids. Plant Foods Hum Nutr. 53(2):133-44.

Tighe P, Duthie G, Vaughan N, Brittenden J, Simpson W.G, Duthie S, Mutch W, Wahle K, Horgan
G, Thies F. (2010). Effect of increased consumption of whole-grain foods on blood pressure and
other cardiovascular risk markers in healthy middle-aged persons: a randomized controlled trial.
Am. J. Clin. Nutr. 92(4), 733-40.

R H Lustig, L A Schmidt, C D Brindis. (2012). Public health: The toxic truth about sugar. Nature.
482 27-29.

den Hartog G.J, Boots A.W, Adam-Perrot A, Brouns F, Verkooijen I.W, Weseler A.R, Haenen G.R,
Bast A. (2010). Erythritol is a sweet antioxidant. Nutrition. 26(4), 449-58.

Trumbo P.R, Shimakawa T. (2011). Tolerable upper intake levels for trans fat, saturated fat, and
cholesterol. Nutr. Rev. 69(5), 270-8. doi: 10.1111/j.1753-4887.2011.00389.x.

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.

See Also

More information about the OpenMx package may be found here.

https://openmx.ssri.psu.edu/documentation/

omxBuildAutoStartModel 317

Examples

Return a brownie recipe
omxBrownie()

omxBuildAutoStartModel

Build the model used for mxAutoStart

Description

Build the model used for mxAutoStart

Usage

omxBuildAutoStartModel(model, type = c("ULS", "DWLS"))

Arguments

model The MxModel for which starting values are desired

type The type of starting values to obtain, currently unweighted or diagonally weighted
least squares, ULS or DWLS

Value

an MxModel that can be run to obtain starting values

See Also

mxAutoStart

omxCheckCloseEnough Approximate Equality Testing Function

Description

This function tests whether two numeric vectors or matrixes are approximately equal to one another,
within a specified threshold.

Usage

omxCheckCloseEnough(a, b, epsilon = 10^(-15))

318 omxCheckEquals

Arguments

a a numeric vector or matrix

b a numeric vector or matrix

epsilon a non-negative tolerance threshold

Details

Arguments ‘a’ and ‘b’ must be of the same type, ie. they must be either vectors of equal dimension
or matrices of equal dimension. The two arguments are compared element-wise for approximate
equality. If the absolute value of the difference of any two values is greater than the threshold, then
an error will be thrown.

References

The OpenMx User’s guide can be found at <https://openmx.ssri.psu.edu/documentation>.

See Also

omxCheckWithinPercentError, omxCheckIdentical, omxCheckSetEquals, omxCheckTrue, omxCheckEquals

Examples

omxCheckCloseEnough(c(1, 2, 3), c(1.1, 1.9 ,3.0), epsilon = 0.5)
omxCheckCloseEnough(matrix(3, 3, 3), matrix(4, 3, 3), epsilon = 2)
Throws an error
try(omxCheckCloseEnough(c(1, 2, 3), c(1.1, 1.9 ,3.0), epsilon = 0.01))

omxCheckEquals Equality Testing Function

Description

This function tests whether two objects are equal using the ‘==’ operator.

Usage

omxCheckEquals(...)

Arguments

... arguments forwarded to expect_equivalent

Details

Performs the ‘==’ comparison on the two arguments. If the two arguments are not equal, then an
error will be thrown.

omxCheckError 319

References

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.

See Also

omxCheckCloseEnough, omxCheckWithinPercentError, omxCheckSetEquals, omxCheckTrue, omxCheckIdentical

Examples

omxCheckEquals(c(1, 2, 3), c(1, 2, 3))

omxCheckEquals(FALSE, FALSE)

Throws an error
try(omxCheckEquals(c(1, 2, 3), c(2, 1, 3)))

omxCheckError Correct Error Message Function

Description

This function tests whether the correct error message is thrown.

Usage

omxCheckError(expression, message)

Arguments

expression an R expression that produces an error

message a character string with the desired error message

Details

Arguments ‘expression’ and ‘message’ give the expression that generates the error and the message
that is supposed to be generated, respectively.

References

The OpenMx User’s guide can be found at <https://openmx.ssri.psu.edu/documentation>.

See Also

omxCheckWarning omxCheckWithinPercentError, omxCheckIdentical, omxCheckSetEquals,
omxCheckTrue, omxCheckEquals

https://openmx.ssri.psu.edu/documentation/

320 omxCheckIdentical

omxCheckIdentical Exact Equality Testing Function

Description

This function tests whether two objects are equal.

Usage

omxCheckIdentical(...)

Arguments

... arguments forwarded to expect_identical

Details

Performs the ‘identical’ comparison on the two arguments. If the two arguments are not equal, then
an error will be thrown.

References

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.

See Also

omxCheckCloseEnough, omxCheckWithinPercentError, omxCheckSetEquals, omxCheckTrue, omxCheckEquals

Examples

omxCheckIdentical(c(1, 2, 3), c(1, 2, 3))

omxCheckIdentical(FALSE, FALSE)

Throws an error
try(omxCheckIdentical(c(1, 2, 3), c(2, 1, 3)))

https://openmx.ssri.psu.edu/documentation/

omxCheckNamespace 321

omxCheckNamespace omxCheckNamespace

Description

This is an internal function exported for those people who know what they are doing.

Usage

omxCheckNamespace(model, namespace)

Arguments

model model

namespace namespace

Details

This function checks that the named entities in the model are valid.

omxCheckSetEquals Set Equality Testing Function

Description

This function tests whether two vectors contain the same elements.

Usage

omxCheckSetEquals(...)

Arguments

... arguments forwarded to expect_setequal

Details

Performs the ‘setequal’ function on the two arguments. If the two arguments do not contain the
same elements, then an error will be thrown.

References

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.

See Also

omxCheckCloseEnough, omxCheckWithinPercentError, omxCheckIdentical, omxCheckTrue, omxCheckEquals

https://openmx.ssri.psu.edu/documentation/

322 omxCheckTrue

Examples

omxCheckSetEquals(c(1, 1, 2, 2, 3), c(3, 2, 1))

omxCheckSetEquals(matrix(1, 1, 1), matrix(1, 3, 3))

Throws an error
try(omxCheckSetEquals(c(1, 2, 3, 4), c(2, 1, 3)))

omxCheckTrue Boolean Equality Testing Function

Description

This function tests whether an object is equal to TRUE.

Usage

omxCheckTrue(a)

Arguments

a the value to test.

Details

Checks element-wise whether an object is equal to TRUE. If any of the elements are false, then an
error will be thrown.

References

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.

See Also

omxCheckCloseEnough, omxCheckWithinPercentError, omxCheckIdentical, omxCheckSetEquals,
omxCheckEquals

Examples

omxCheckTrue(1 + 1 == 2)

omxCheckTrue(matrix(TRUE, 3, 3))

Throws an error
try(omxCheckTrue(FALSE))

https://openmx.ssri.psu.edu/documentation/

omxCheckWarning 323

omxCheckWarning Correct Warning Message Function

Description

This function tests whether the correct warning message is thrown. Arguments ‘expression’ and
‘message’ give the expression that generates the warning and the message that is supposed to be
generated, respectively.

Usage

omxCheckWarning(expression, message)

Arguments

expression an R expression that produces a warning

message a character string with the desired warning message

Details

note: to test for no warning, set message = NA.

References

The OpenMx User’s guide can be found at <https://openmx.ssri.psu.edu/documentation>.

See Also

omxCheckError omxCheckWithinPercentError, omxCheckIdentical, omxCheckSetEquals, omxCheckTrue,
omxCheckEquals

Examples

foo <- omxCheckWarning(mxFIMLObjective('cov', 'mean'), "deprecated")

Test for no warning
omxCheckWarning(2+2, message = NA)

324 omxCheckWithinPercentError

omxCheckWithinPercentError

Approximate Percent Equality Testing Function

Description

This function tests whether two numeric vectors or matrixes are approximately equal to one another,
within a specified percentage.

Usage

omxCheckWithinPercentError(a, b, percent = 0.1)

Arguments

a a numeric vector or matrix.

b a numeric vector or matrix.

percent a non-negative percentage.

Details

Arguments ‘a’ and ‘b’ must be of the same type, ie. they must be either vectors of equal dimension
or matrices of equal dimension. The two arguments are compared element-wise for approximate
equality. If the absolute value of the difference of any two values is greater than the percentage
difference of ‘a’, then an error will be thrown.

References

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.

See Also

omxCheckCloseEnough, omxCheckIdentical, omxCheckSetEquals, omxCheckTrue, omxCheckEquals

Examples

omxCheckWithinPercentError(c(1, 2, 3), c(1.1, 1.9 ,3.0), percent = 50)

omxCheckWithinPercentError(matrix(3, 3, 3), matrix(4, 3, 3), percent = 150)

Throws an error
try(omxCheckWithinPercentError(c(1, 2, 3), c(1.1, 1.9 ,3.0), percent = 0.01))

https://openmx.ssri.psu.edu/documentation/

omxConstrainMLThresholds 325

omxConstrainMLThresholds

omxConstrainMLThresholds

Description

Add constraint to ML model to keep thresholds in order

Usage

omxConstrainMLThresholds(model, dist = 0.1)

Arguments

model the MxModel to which constraints should be added

dist unused

Details

This function adds a nonlinear constraint to an ML model. The constraint keeps the thresholds in
order. Constraints often slow model estimation, however, keeping the thresholds in increasing order
helps ensure the likelihood function is well-defined. If you’re having problems with ordinal data,
this is one of the things to try.

Value

a new MxModel object with the constraints added

See Also

demo("omxConstrainMLThresholds")

omxDefaultComputePlan Construct default compute plan

Description

This function generates a default compute plan, where "default compute plan" refers to an object
of class MxComputeSequence which is appropriate for use in a wide variety of cases. The exact
specification of the plan will depend upon the arguments provided to omxDefaultComputePlan().

Usage

omxDefaultComputePlan(modelName=NULL, intervals=FALSE,
useOptimizer=TRUE, optionList=options()$mxOption, penaltySearch=FALSE)

326 omxDetectCores

Arguments

modelName Optional (defaults to NULL) character string, providing the name of the MxModel
the fitfunction of which is to be evaluated, and usually, optimized.

intervals Logical; will confidence intervals be computed? Defaults to FALSE.

useOptimizer Logical; will a fitfunction be minimized? Defaults to TRUE.

optionList List of mxOptions. Defaults to the current list of global mxOptions.

penaltySearch Logical; whether to wrap the optimizer step with mxComputePenaltySearch

Details

At minimum, argument optionList must include “Gradient algorithm”, “Gradient iterations”,
“Gradient step size”, “Calculate Hessian”, and “Standard Errors”.

Value

Returns an object of class MxComputeSequence.

Examples

foo <- omxDefaultComputePlan(modelName="bar")
str(foo)

omxDetectCores omxDetectCores

Description

Detects the number of cores on the local machine

Usage

omxDetectCores(...)

Arguments

... unused

Examples

omxDetectCores()

omxGetBootstrapReplications 327

omxGetBootstrapReplications

omxGetBootstrapReplications

Description

Checks a variety of conditions to ensure that bootstrap replications are available and valid. Throws
exception if things go wrong. Otherwise, replications are returned to the caller.

Usage

omxGetBootstrapReplications(model)
omxBootstrapCov(model)

Arguments

model an MxModel object

Value

a matrix or covariance matrix of bootstrap parameter estimates

omxGetNPSOL omxGetNPSOL

Description

Get the non-CRAN version of OpenMx from the OpenMx website.

Usage

omxGetNPSOL()

Details

This function

Value

Invisible NULL

328 omxGetParameters

omxGetParameters Fetch Model Parameters

Description

Return a vector of the chosen parameters from the model.

Usage

omxGetParameters(model, indep = FALSE, free = c(TRUE, FALSE, NA),
fetch = c('values', 'free', 'lbound', 'ubound', 'all'),
labels = c())

Arguments

model a MxModel object

indep fetch parameters from independent submodels.

free fetch either free parameters (TRUE), or fixed parameters or both types. Default
value is TRUE.

fetch which attribute of the parameters to fetch. Default choice is ‘values’.

labels additional labels to fetch

Details

The argument ‘free’ dictates whether to return only free parameters or only fixed parameters or both
free and fixed parameters. The function can return unlabeled free parameters (parameters with a la-
bel of NA). These anonymous free parameters will be identified as ‘modelname.matrixname[row,col]’.
It will not return fixed parameters that have a label of NA.

If provided, the argument ‘labels’ takes precedent over the selection criteria specified by ‘free’. Any
labels mentioned in ‘labels’, including those of the form ‘modelname.matrixname[row,col]’, will
be returned.

No distinction is made between ordinary labels, definition variables, and square bracket constraints.
The function will return either a vector of parameter values, or free/fixed designations, or lower
bounds, or upper bounds, depending on the ‘fetch’ argument. Using fetch with ‘all’ returns a data
frame that is populated with all of the attributes.

See Also

omxSetParameters, omxLocateParameters, omxAssignFirstParameters

Examples

library(OpenMx)

A <- mxMatrix('Full', 2, 2, labels = c("A11", "A12", "A21", NA), values= 1:4,
free = c(TRUE,TRUE,FALSE,TRUE), byrow=TRUE, name = 'A')

omxGetParameters 329

model <- mxModel(A, name = 'model')

Request all free parameters in model
omxGetParameters(model)

A11 A12 model.A[2,2]
1 2 4

Request fixed parameters from model
omxGetParameters(model, free = FALSE)
A21
3

A$labels
[,1] [,2]
[1,] "A11" "A12"
[2,] "A21" NA

A$free
[,1] [,2]
[1,] TRUE TRUE
[2,] FALSE TRUE

A$values
[,1] [,2]
[1,] 1 2
[2,] 3 4

Example using un-labelled parameters

Read in some demo data
data(demoOneFactor)
Grab the names for manifestVars
manifestVars <- names(demoOneFactor)
nVar = length(manifestVars) # 5 variables
factorModel <- mxModel("One Factor",

mxMatrix(name="A", type="Full", nrow=nVar, ncol=1, values=0.2, free=TRUE,
lbound = 0.0, labels=letters[1:nVar]),

mxMatrix(name="L", type="Symm", nrow=1, ncol=1, values=1, free=FALSE),
the "U" matrix has nVar (5) anonymous free parameters
mxMatrix(name="U", type="Diag", nrow=nVar, ncol=nVar, values=1, free=TRUE),
mxAlgebra(expression=A %&% L + U, name="R"),
mxExpectationNormal(covariance="R", dimnames=manifestVars),
mxFitFunctionML(),
mxData(observed=cov(demoOneFactor), type="cov", numObs=500)

)

Get all free parameters
params <- omxGetParameters(factorModel)
lbound <- omxGetParameters(factorModel, fetch="lbound")
Set new values for these params, saving them in a new model
newFactorModel <- omxSetParameters(factorModel, names(params), values = 1:10)
Read out the values from the new model

330 omxGraphviz

newParams <- omxGetParameters(newFactorModel)

omxGetRAMDepth omxGetRAMDepth

Description

Get the potency of a matrix for inversion speed-up

Usage

omxGetRAMDepth(A, maxdepth = nrow(A) - 1)

Arguments

A MxMatrix object

maxdepth Numeric. maximum depth to check

Details

This function is used internally by the mxExpectationRAM function to determine how far to expand
(I − A)−1 = I + A+ A2 + A3 + It is similarly used by mxExpectationLISREL in expanding
(I −B)−1 = I +B+B2 +B3 + In many situations A2 is a zero matrix (nilpotent of order 2).
So when A has large dimension it is much faster to compute I +A than (I −A)−1.

omxGraphviz Show RAM Model in Graphviz Format

Description

The function accepts a RAM style model and outputs a visual representation of the model in
Graphviz format. The function will output either to a file or to the console. The recommended
file extension for an output file is ".dot".

Usage

omxGraphviz(model, dotFilename = "")

Arguments

model An RAM-type model.

dotFilename The name of the output file. Use "" to write to console.

omxHasDefaultComputePlan 331

Value

Invisibly returns a string containing the model description in Graphviz format.

References

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.

omxHasDefaultComputePlan

omxHasDefaultComputePlan

Description

Determine whether the model has a default complete plan (i.e., not custom).

Usage

omxHasDefaultComputePlan(model)

Arguments

model model

omxLapply On-Demand Parallel Lapply

Description

If the snowfall library is loaded, then this function calls sfLapply. Otherwise it invokes lapply.

Usage

omxLapply(x, fun, ...)

Arguments

x a vector (atomic or list) or an expressions vector. Other objects (including
classed objects) will be coerced by as.list.

fun the function to be applied to each element of x.

... optional arguments to fun.

See Also

omxApply, omxSapply

https://openmx.ssri.psu.edu/documentation/

332 omxLocateParameters

Examples

x <- list(a = 1:10, beta = exp(-3:3), logic = c(TRUE,FALSE,FALSE,TRUE))
compute the list mean for each list element
omxLapply(x,mean)

omxLocateParameters Get the location (model, matrix, row, column) and other info for a
parameter

Description

Returns a data.frame summarizing the free parameters in a model, possibly filtered using ‘labels’.

For each located parameter, the label, model, matrix, row, col, value, and lbound & ubound are
given as a row in the dataframe.

Duplicated labels return a row for each location in which they are found.

Usage

omxLocateParameters(model, labels = NULL, indep = FALSE, free = c(TRUE, FALSE, NA))

Arguments

model a MxModel object

labels optionally specify which free parameters to retrieve.

indep fetch parameters from independent submodels.

free fetch either free parameters (TRUE), or fixed parameters or both types. Default
value is TRUE.

Details

Invoking the function with the default value for the ‘labels’ argument retrieves all the free parame-
ters. The ‘labels’ argument can be used to select a subset of the free parameters. Note that ‘NA’ is
a valid input to ‘labels’.

See Also

omxGetParameters, omxSetParameters, omxAssignFirstParameters

omxLogical 333

Examples

A <- mxMatrix('Full', 2, 2, labels = c("A11", "A12", NA, "A11"), values= 1:4,
free = TRUE, byrow = TRUE, name = 'A')

model <- mxModel(A, name = 'model')

Request all free parameters in model
omxLocateParameters(model)

Request free parameters "A11" and all NAs
omxLocateParameters(model, c("A11", NA))

Works with submodel
B = mxMatrix(name = 'B', 'Full', 1, 2, labels = c("B11", "notme"),

free = c(TRUE, FALSE), values= pi)
model <- mxModel(model, mxModel(B, name = 'subB'))

nb: only returns free parameters ('notme' not shown)
omxLocateParameters(model)

omxLogical Logical mxAlgebra() operators

Description

omxNot computes the unary negation of the values of a matrix. omxAnd computes the binary and
of two matrices. omxOr computes the binary or of two matrices. omxGreaterThan computes a
binary greater than of two matrices. omxLessThan computes the binary less than of two matrices.
omxApproxEquals computes a binary equals within a specified epsilon of two matrices.

Usage

omxNot(x)
omxAnd(x, y)
omxOr(x, y)
omxGreaterThan(x, y)
omxLessThan(x, y)
omxApproxEquals(x, y, epsilon)

Arguments

x the first argument, the matrix which the logical operation will be applied to.

y the second argument, applicable to binary functions.

epsilon the third argument, specifies the error threshold for omxApproxEquals. Abs(x[i][j]-
y[i][j]) must be less than epsilon[i][j].

334 omxManifestModelByParameterJacobian

Examples

A <- mxMatrix(values = runif(25), nrow = 5, ncol = 5, name = 'A')
B <- mxMatrix(values = runif(25), nrow = 5, ncol = 5, name = 'B')
EPSILON <- mxMatrix(values = 0.04*1:25, nrow = 5, ncol = 5, name = "EPSILON")

model <- mxModel(A, B, EPSILON, name = 'model')

mxEval(omxNot(A), model)
mxEval(omxGreaterThan(A,B), model)
mxEval(omxLessThan(B,A), model)
mxEval(omxOr(omxNot(A),B), model)
mxEval(omxAnd(omxNot(B), A), model)
mxEval(omxApproxEquals(A,B, EPSILON), model)

omxManifestModelByParameterJacobian

Estimate the Jacobian of manifest model with respect to parameters

Description

The manifest model excludes any latent variables or processes. For RAM and LISREL models, the
manifest model contains only the manifest variables with free means, covariance, and thresholds.

Usage

omxManifestModelByParameterJacobian(model, defvar.row = 1, standardize = FALSE)

Arguments

model an mxModel
defvar.row which row to use for definition variables
standardize logical, whether or not to standardize the parameters

Details

The Jacobian is estimated by the central finite difference.

If the standardize argument is TRUE, then the Jacobian is for the standardized model. For Nor-
mal expectations the standardized manifest model has the covariances returned as correlations, the
variances returned as ones, the means returned as zeros, and the thresholds are returned as z-scores.
For the thresholds the z-scores are computed by using the model-implied means and variances.

Value

a matrix with manifests in the rows and original parameters in the columns

See Also

mxGetExpected

omxMatrixOperations 335

omxMatrixOperations MxMatrix operations

Description

omxCbind columnwise binding of two or more MxMatrices. omxRbind rowwise binding of two or
more MxMatrices. omxTranspose transpose of MxMatrix.

Usage

omxCbind(..., allowUnlabeled =
getOption("mxOptions")[["Allow Unlabeled"]],
dimnames = NA, name = NA)

omxRbind(..., allowUnlabeled =
getOption("mxOptions")[["Allow Unlabeled"]],
dimnames = NA, name = NA)

omxTranspose(matrix, allowUnlabeled =
getOption("mxOptions")[["Allow Unlabeled"]],
dimnames = NA, name = NA)

Arguments

... two or more MxMatrix objects

matrix MxMatrix input

allowUnlabeled whether or not to accept free parameters with NA labels

dimnames list. The dimnames attribute for the matrix: a list of length 2 giving the row
and column names respectively. An empty list is treated as NULL, and a list of
length one as row names. The list can be named, and the list names will be used
as names for the dimensions.

name an optional character string indicating the name of the MxMatrix object

omxMnor Multivariate Normal Integration

Description

Given a covariance matrix, a means vector, and vectors of lower and upper bounds, returns the
multivariate normal integral across the space between bounds.

Usage

omxMnor(covariance, means, lbound, ubound)

336 omxMnor

Arguments

covariance the covariance matrix describing the multivariate normal distribution.

means a row vector containing means of the variables of the underlying distribution.

lbound a row vector containing the lower bounds of the integration in each variable.

ubound a row vector containing the upper bounds of the integration in each variable.

Details

The order of columns in the ‘means’, ‘lbound’, and ‘ubound’ vectors are assumed to be the same as
that of the covariance matrix. That is, means[i] is considered to be the mean of the variable whose
variance is in covariance[i,i]. That variable will be integrated from lbound[i] to ubound[i] as part of
the integration.

The value of ubound[i] or lbound[i] may be set to Inf or -Inf if a boundary at positive or negative
infinity is desired.

For all i, ubound[i] must be strictly greater than lbound[i].

The algorithm for multivariate normal integration we use is Alan Genz’s FORTRAN implementa-
tion of the SADMVN routine described by Genz (1992).

References

Genz, A. (1992). Numerical Computation of Multivariate Normal Probabilities. Journal of Com-
putational Graphical Statistics, 1, 141-149.

Examples

data(myFADataRaw)

covariance <- cov(myFADataRaw[,1:3])
means <- colMeans(myFADataRaw[,1:3])
lbound <- c(-Inf, 0, 1) # Integrate from -Infinity to 0 on first variable
ubound <- c(0, Inf, 2.5) # From 0 to +Infinity on second, and from 1 to 2.5 on third
omxMnor(covariance, means, lbound, ubound)
0.0005995

An alternative specification of the bounds follows
Integrate from -Infinity to 0 on first variable
v1bound = c(-Inf, 0)
From 0 to +Infinity on second
v2bound = c(0, Inf)
and from 1 to 2.5 on third
v3bound = c(1, 2.5)
bounds <- cbind(v1bound, v2bound, v3bound)
lbound <- bounds[1,]
ubound <- bounds[2,]
omxMnor(covariance, means, lbound, ubound)

omxModelDeleteData 337

omxModelDeleteData Remove all instances of data from a model

Description

For very large data, it can be desirable to discard data after the model is run. That is what the
purpose of this function.

Data is discarded from the model and all submodels recursively.

Usage

omxModelDeleteData(model)

Arguments

model a MxModel object.

Examples

library(OpenMx)

data(demoOneFactor)
manifests <- names(demoOneFactor)
latents <- c("G")
factorModel <- mxModel(model="One Factor", type="RAM",

manifestVars = manifests,
latentVars = latents,
mxPath(from=latents, to=manifests),
mxPath(from=manifests, arrows=2),
mxPath(from=latents, arrows=2,free=FALSE, values=1.0),
mxData(cov(demoOneFactor), type="cov",numObs=500)

)
factorFit <-mxRun(factorModel)
object.size(factorFit)
factorFit <- omxModelDeleteData(factorFit)
object.size(factorFit)
factorFit$data

omxNameAnonymousParameters

omxNameAnonymousParameters

Description

Assign new names to the unnamed parameters

338 omxParallelCI

Usage

omxNameAnonymousParameters(model, indep = FALSE)

Arguments

model the MxModel
indep whether models are independent

Value

a list with components for the new MxModel with named parameters, and the new names.

omxParallelCI Calculate confidence intervals without re-doing the primary optimiza-
tion.

Description

OpenMx provides two functions to calculate confidence intervals for already-run MxModel objects
that contain an MxInterval object (i.e., an mxCI() statement), without recalculating point estimates,
fitfunction derivatives, or expectations.

The primary function is omxRunCI(). This is a wrapper for omxParallelCI() with arguments
run=TRUE and independentSubmodels=FALSE, and is the recommended interface.

omxParallelCI() does the work of calculating confidence intervals. The "parallel" in the func-
tion’s name refers to the not-yet-implemented feature of running independent submodels in parallel.

Usage

omxRunCI(model, verbose = 0, optimizer = "SLSQP")

omxParallelCI(model, run = TRUE, verbose = 0, independentSubmodels = TRUE,
optimizer = mxOption(NULL, "Default optimizer"))

Arguments

model An MxModel object that contains an MxInterval object (i.e., an mxCI() state-
ment).

run Logical; For omxParallelCI(), determines if the model with its new compute
plan is mxRun() before being returned. Hard-coded TRUE for omxRunCI.

verbose Integer; defaults to zero; verbosity level passed to MxCompute* objects.
independentSubmodels

Logical; For omxParallelCI() defaults to TRUE. Hard coded FALSE for omxRunCI().
Also see "Details."

optimizer Character string selecting the gradient-descent optimizer to be used to find con-
fidence limits; one of "NPSOL", "CSOLNP", or "SLSQP". The default for
omxParallelCI() is the current value of mxOption "Default optimizer", and
for omxRunCI(), is "SLSQP".

omxParallelCI 339

Details

When independentSubmodels=TRUE, omxParallelCI() creates an independent MxModel object
for each quantity specified in the ’reference’ slot of model’s MxInterval object, and places these in-
dependent MxModels inside model. Each of these independent submodels calculates the confidence
limits of its own quantity when the container model is run. When independentSubmodels=FALSE,
no submodels are added to model. Instead, model is provided with a dedicated compute plan con-
sisting only of an MxComputeConfidenceInterval step. Note that using independentSubmodels=FALSE
will overwrite any compute plan already inside model.

Value

The functions return model, augmented with independent submodels (if independentSubmodels=TRUE)
or with a non-default compute plan (if independentSubmodels=FALSE), and possibly having been
passed through mxRun() (if run=TRUE). Naturally, if run=FALSE, the user can subsequently run the
returned model to obtain confidence intervals. Users are cautioned that the returned model may
not be very amenable to being further modified and re-fitted (e.g., having some free parameters
fixed via omxSetParameters() and passed through mxRun() to get new point estimates) unless the
added submodels or the non-default compute plan are eliminated. The exception is if run=TRUE and
independentSubmodels=TRUE (which is always the case with omxRunCI()), since the non-default
compute plan is set to be non-persistent, and will automatically be replaced with a default compute
plan the next time the model is passed to mxRun().

See Also

mxCI(), MxInterval, mxComputeConfidenceInterval()

Examples

require(OpenMx)
1. Build and run a model, don't compute intervals yet
data(demoOneFactor)
manifests <- names(demoOneFactor)
latents <- c("G")
factorModel <- mxModel("One Factor", type="RAM",
manifestVars=manifests,
latentVars=latents,
mxPath(from=latents, to=manifests),

mxPath(from=manifests, arrows=2),
mxPath(from=latents, arrows=2, free=FALSE, values=1.0),
mxData(observed=cov(demoOneFactor), type="cov", numObs=500),
Add confidence intervals for (free) params in A and S matrices.
mxCI(c('A', 'S'))
)
factorRun <- mxRun(factorModel)

2. Compute the CIs on factorRun, and view summary
factorCI1 <- omxRunCI(factorRun)
summary(factorCI1)$CI

3. Use low-level omxParallelCI interface

340 omxRAMtoML

factorCI2 <- omxParallelCI(factorRun)

4. Build, but don't run the newly-created model
factorCI3 <- omxParallelCI(factorRun, run= FALSE)

omxQuotes omxQuotes

Description

Quote helper function, often for error messages.

Usage

omxQuotes(name)

Arguments

name a character vector

Details

This is a helper function for creating a nicely put together formatted string.

Value

a character string

Examples

omxQuotes(c("Oh", "blah", "dee", "Oh", "blah", "da"))
omxQuotes(c("A", "S", "F"))
omxQuotes("Hello World")

omxRAMtoML omxRAMtoML

Description

Convert a RAM model to an ML model

Usage

omxRAMtoML(model)

Arguments

model the MxModel

omxReadGRMBin 341

Details

This is a legacy function that was once used to convert RAM models to ML models in the old (1.0
release of OpenMx) objective function style.

Value

an ML model with an ML objective

omxReadGRMBin Read a GCTA-Format Binary GRM into R.

Description

This simple function is adapted from syntax in the GCTA User Manual. It loads a binary genomic-
relatedness matrix (GRM) from disk into R’s workspace.

Usage

omxReadGRMBin(prefix, AllN=FALSE, size=4, returnList=FALSE)

Arguments

prefix Character string: everything in the path, relative to R’s working directory, and
filenames of the GRM files preceding ’.grm.*’. See below, under "Details"

AllN Logical. If FALSE (default), then when omxReadGRMBin() calls readBin(), it
passes a value of 1 for argument n. if TRUE, then it instead passes a value equal
to the number of nonredundant elements in the GRM.

size Passed to readBin().

returnList Logical. If FALSE (default), omxReadGRMBin returns the GRM. If TRUE, then
omxReadGRMBin returns a list as described below, under "Value".

Details

A GRM calculated in GCTA that is saved to disk in binary format comprises three files, the file-
names of which have the same stem but different extensions. The first, with extension "grm.bin",
is the actual binary file containing the GRM elements. The second, with extension "grm.N.bin",
contains information about how many genetic markers were used to calculate the GRM. The third,
with extension "grm.id", is a text file containing two columns of data, respectively, the participant
family and individual IDs. omxReadGRMBin() is meant to be used with all three files together in the
same directory. Thus, argument prefix should be everything in the path (relative to R’s working
directory) and filenames of those GRM files, up to the first period in their extensions. In practice, it
is simplest to set R’s working directory to whichever directory contains the files, and simply provide
the filename stem for argument prefix.

omxReadGRMBin() opens three file connections, one for each file.

342 omxRMSEA

Value

If returnList=FALSE (the default), then the GRM itself is returned as a numeric matrix, with each
row and column named as the adhesion of the corresponding participant’s family ID and individual
ID, separated by an underscore. Otherwise, a list of the following four elements is returned:

1. "diag": Numeric vector containing the GRM’s diagonal elements.

2. "off": Numeric vector containing the GRM’s off-diagonal elements.

3. "id": Dataframe containing the family and individual IDs corresponding to the rows and
columns of the GRM.

4. "N": Numeric; number of markers used to calculate the GRM.

References

Yang J, Lee SH, Goddard ME, Visscher, PM. GCTA: A tool for genome-wide complex trait analysis.
American Journal of Human Genetics 2011;88:76-82. doi: 10.1016/j.ajhg.2010.11.011.

Yang J, Lee SH, Goddard ME, Visscher, PM. Genome-wide complex trait analysis (GCTA): Meth-
ods, data analyses, and interpretations. In Gondro, C et al. (Eds.), Genome-Wide Association
Studies and Genomic Prediction. New York: Springer;2013. p. 215-236.

GCTA website: https://cnsgenomics.com/software/gcta/#Overview.

Code for omxReadGRMBin() was adapted from syntax by Jiang Yang in the GCTA User Manual, ver-
sion 1.24, dated 28 July 2014, retrieved from http://cnsgenomics.com/software/gcta/GCTA_UserManual_v1.24.pdf
.

omxRMSEA Get the RMSEA with confidence intervals from model

Description

This function calculates the Root Mean Square Error of the Approximation (RMSEA) for a model
and computes confidence intervals for that fit statistic.

Usage

omxRMSEA(model, lower=.025, upper=.975, null=.05, ...)

Arguments

model An MxModel object for which the RMSEA is desired

lower The lower confidence bound for the confidence interval

upper The upper confidence bound for the confidence interval

null Value of RMSEA used to test for close fit

... Further named arguments passed to summary

https://cnsgenomics.com/software/gcta/#Overview

omxSapply 343

Details

To help users obtain fit statistics related to the RMSEA, this function confidence intervals and a test
for close fit. The user determines how close the fit is required to be by setting the null argument to
the value desired for comparison.

Value

A named vector with elements lower, est.rmsea, upper, null, and ‘Prob(x <= null)‘.

References

Browne, M. W. & Cudeck, R. (1992). Alternative Ways of Assessing Model Fit. Sociological
Methods and Research, 21, 230-258.

Examples

require(OpenMx)
data(demoOneFactor)
manifests <- names(demoOneFactor)
latents <- c("G")
factorModel <- mxModel("One Factor",

type="RAM",
manifestVars=manifests,
latentVars=latents,
mxPath(from=latents, to=manifests),
mxPath(from=manifests, arrows=2),
mxPath(from=latents, arrows=2, free=FALSE, values=1.0),
mxData(observed=cov(demoOneFactor), type="cov", numObs=500))

factorRun <- mxRun(factorModel)
factorSat <- mxRefModels(factorRun, run=TRUE)
summary(factorRun, refModels=factorSat)
Gives RMSEA with 95% confidence interval

omxRMSEA(factorRun, .05, .95, refModels=factorSat)
Gives RMSEA with 90% confidence interval
and probability of 'close enough' fit

omxSapply On-Demand Parallel Sapply

Description

If the snowfall library is loaded, then this function calls sfSapply. Otherwise it invokes sapply.

Usage

omxSapply(x, fun, ..., simplify = TRUE, USE.NAMES = TRUE)

344 omxSaturatedModel

Arguments

x a vector (atomic or list) or an expressions vector. Other objects (including
classed objects) will be coerced by as.list.

fun the function to be applied to each element of x.

... optional arguments to fun.

simplify logical; should the result be simplified to a vector or matrix if possible?

USE.NAMES logical; if TRUE and if x is a character, use x as names for the result unless it had
names already.

See Also

omxApply, omxLapply

Examples

x <- list(a = 1:10, beta = exp(-3:3), logic = c(TRUE,FALSE,FALSE,TRUE))
compute the list mean for each list element
omxSapply(x, quantile)

omxSaturatedModel Create Reference (Saturated and Independence) Models

Description

This function creates and, optionally, runs saturated and independence (null) models of a base model
or data set for use with mxSummary to enable fit indices that depend on these models. Note that
there are cases where this function is not valid for use, or should be used with caution (see below,
under "Warnings").

Usage

mxRefModels(x, run=FALSE, ..., distribution="default", equateThresholds = TRUE)

Arguments

x A MxModel object, data frame, or matrix.

run logical. If TRUE, runs the models before returning; otherwise returns built mod-
els without running.

... Not used. Forces remaining arguments to be specified by name.

distribution character. Which distribution to assume.
equateThresholds

logical. Whether ordinal thresholds should be constrained equal across groups.

omxSaturatedModel 345

Details

For typical structural equation models the saturated model is the free-est possible model. Not only
all variances (and, when possible, all means) are estimated, but also all covariances. In the case
of ordinal data, the ordinal means are fixed to zero and the thresholds are estimated. For binary
variables, those variances are also constrained to one. This is the free-est possible model that is
identified. The saturated model is used in calculating fit statistics such as the RMSEA, and Chi-
squared fit indices.

The independence model, sometimes called the null model, is a model in which each variable is
treated as being completely independent of every other variable. As such, all the variances and,
when possible, all means are estimated. However, covariances are set to zero. Ordinal variables
are handled the same for the independence and saturated models. The independence model is used,
along with the saturated model, to create CFI and TLI fit indices.

The saturated and independence models could be used to create further fit indices. However,
OpenMx does not recommend using GFI, AGFI, NFI (aka Bentler-Bonett), or SRMR. The page
for mxSummary has information about why.

When the mxFitFunctionMultigroup fit function is used, mxRefModels creates the appropriate
multi-group saturated and independence models. Saturated and independence models are created
separately for each group. Each group has its own saturated and independence model. The multi-
group saturated model is a multi-group model where each group has its own saturated model, and
similarly for the independence model.

When an MxModel has been run, some effort is made to make the reference models for only the
variables used in the model. For covariance data, all variables are modeled by default. For raw data
when the model has been run, only the modeled variables are used in the reference models. This
matches the behavior of mxModel.

In general, it is best practice to give mxRefModels a model that has already been run.

Multivariate normal models with all ordinal data and no missing values can use the saturated multi-
nomial distribution. This is much faster than estimation of the saturated multivariate normal model.
Use distribution='multinomial' to avail this option.

Warnings

One potentially important limitation of the mxRefModels function is for behavior-genetic models.
If variables ’x’, ’y’, and ’z’ are measured on twins 1 and 2 creating the modeled variables ’x1’, ’y1’,
’z1’, ’x2’, ’y2’, ’z2’, then this function may not create the intended saturated or independence mod-
els. In particular, the means of ’x1’ and ’x2’ are estimated separately. Similarly, the covariance of
’x1’ with ’y1’ and ’x2’ with ’y2’ are allowed be be distinct: cov(x1, y1)! = covx2, y2. Moreover,
the cross-twin covariances are estimated: e.g. cov(x1, y2)! = 0.

Another potential misuse of this function is for models with definition variables. If definition vari-
ables are used, the saturated and independence model may not be correct because they do not
account for the definition variables.

The are a few considerations specific to IFA models (mxExpectationBA81). The independence
model preserves equality constraints among item parameters from the original model. The saturated
model is a multinomial distribution with the proportions equal to the proportions in your data. For
example, if you have 2 dichotomous items then there are 4 possible response patterns: 00, 01, 10,
11. A multinomial distribution for these 2 items is fully specified by 3 proportions or 3 parameters:
a, b, c, 1.0 − (a + b + c). Hence, there is no need to optimize the saturated model. When there

346 omxSaturatedModel

is no missing data, the deviance is immediately known as −2 ∗ sum(logproportions). Typical
Bayesian priors involve latent factors (various densities on the pseudo-guessing lower bound, log
norm on loading, and uniqueness prior). These priors cannot be included in the independence model
because there are no latent factors. Therefore, exercise caution when comparing the independence
model to a model that includes Bayesian priors.

mxRefModels() is not compatible with GREML expectation, as there is no sensible general defini-
tion for a saturated GREML-type model.

References

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.

Examples

require(OpenMx)
data(demoOneFactor)
manifests <- names(demoOneFactor)
latents <- c("G")
factorModel <- mxModel("OneFactor", type = "RAM",

manifestVars = manifests, latentVars = latents,
mxPath(from = latents, to=manifests, values = diag(var(demoOneFactor))*.2),
mxPath(from = manifests, arrows = 2, values = diag(var(demoOneFactor))*.8),
mxPath(from = latents, arrows = 2, free = FALSE, values = 1),
mxData(cov(demoOneFactor), type = "cov", numObs = 500)

)
factorRun <- mxRun(factorModel)
factorSat <- mxRefModels(factorRun, run=TRUE)
summary(factorRun)
summary(factorRun, refModels=factorSat)

A raw-data example where using mxRefModels adds fit indices

m1 <- mxModel("OneFactor", type = "RAM",
manifestVars = manifests, latentVars = latents,
mxPath(latents, to=manifests, values = diag(var(demoOneFactor))*.2),
mxPath(manifests, arrows = 2, values = diag(var(demoOneFactor))*.8),
mxPath(latents, arrows = 2, free = FALSE, values = 1),
mxPath("one", to = latents, free = FALSE, values = 0),
mxPath("one", to = manifests, values = 0),
mxData(demoOneFactor, type = "raw")

)
m1 <- mxRun(m1)
summary(m1) # CFI, TLI, RMSEA missing
summary(m1, refModels=mxRefModels(m1, run = TRUE))

https://openmx.ssri.psu.edu/documentation/

omxSelectRowsAndCols 347

omxSelectRowsAndCols Filter rows and columns from an mxMatrix

Description

This function filters rows and columns from a matrix using a single row or column R matrix as a
selector.

Usage

omxSelectRowsAndCols(x, selector)
omxSelectRows(x, selector)
omxSelectCols(x, selector)

Arguments

x the matrix to be filtered

selector A single row or single column R matrix indicating which values should be fil-
tered from the mxMatrix.

Details

omxSelectRowsAndCols, omxSelectRows, and omxSelectCols returns the filtered entries in a target
matrix specified by a single row or single column selector matrix. Each entry in the selector matrix is
treated as a logical data indicating if the corresponding entry in the target matrix should be excluded
(0 or FALSE) or included (not 0 or TRUE). Typically the function is used to filter data from a target
matrix using an existence vector which specifies what data entries are missing. This can be seen in
the demo: RowObjectiveFIMLBivariateSaturated.

Value

Returns a new matrix with the filtered data.

References

The function is most often used when filtering data for missingness. This can be seen in the
demo: RowObjectiveFIMLBivariateSaturated. The OpenMx User’s guide can be found at https:
//openmx.ssri.psu.edu/documentation. The omxSelect* functions share some similarity to the
Extract function in the R programming language.

Examples

loadings <- matrix(1:9, 3, 3, byrow= TRUE)
existenceList <- c(1, 0, 1)
existenceList <- matrix(existenceList, 1, 3, byrow= TRUE)
rowsAndCols <- omxSelectRowsAndCols(loadings, existenceList)
rows <- omxSelectRows(loadings, existenceList)
cols <- omxSelectCols(loadings, existenceList)

https://openmx.ssri.psu.edu/documentation
https://openmx.ssri.psu.edu/documentation

348 omxSetParameters

omxSetParameters Assign Model Parameters

Description

Modify the attributes of parameters in a model. This function cannot modify parameters that have
NA labels. Often you will want to call omxAssignFirstParameters after using this, to force the
starting values of equated parameters to the same value (otherwise the model cannot begin to be
evaluated)

Usage

omxSetParameters(model, labels=names(coef(model)), free = NULL, values = NULL,
newlabels = NULL, lbound = NULL, ubound = NULL, indep = FALSE,
strict = TRUE, name = NULL)

Arguments

model an MxModel object.

labels a character vector of target parameter names.

free a boolean vector of parameter free/fixed designations.

values a numeric vector of parameter values.

newlabels a character vector of new parameter names.

lbound a numeric vector of lower bound values.

ubound a numeric vector of upper bound values.

indep boolean. set parameters in independent submodels.

strict boolean. If TRUE then throw an error when a label does not appear in the model.

name character string. (optional) a new name for the model.

See Also

omxGetParameters, omxAssignFirstParameters

Examples

A <- mxMatrix('Full', 3, 3, labels = c('a','b', NA), free = TRUE, name = 'A')
model <- mxModel(model="testModel7", A, name = 'model')

set value of cells labelled "a" and "b" to 1 and 2 respectively
model <- omxSetParameters(model, c('a', 'b'), values = c(1, 2))

set label of cell labelled "a" to "b" and vice versa
model <- omxSetParameters(model, c('a', 'b'), newlabels = c('b', 'a'))

set label of cells labelled "a" to "b"

omxSymbolTable 349

model <- omxSetParameters(model, c('a'), newlabels = 'b')

ensure initial values are the same for each instance of a labeled parameter
model <- omxAssignFirstParameters(model)

omxSymbolTable Internal OpenMx algebra operations

Description

This is an internal table used in the OpenMx backend.

OpenMx OpenMx: An package for Structural Equation Modeling and Matrix
Algebra Optimization

Description

OpenMx is a package for structural equation modeling, matrix algebra optimization and other sta-
tistical estimation problems. Try the example below. We try and have useful help files: for instance
help(mxRun) to learn more. Also the reference manual

Details

OpenMx solves algebra optimization and statistical estimation problems using matrix algebra. Most
users use it for Structural equation modeling.

The core function is mxModel, which makes a model. Models are containers for mxData, matrices,
mxPaths algebras, mxBounds, confidence intervals, and mxConstraints. Most models re-
quire an expectation (see the list below) to calculate the expectations for the model. Models
also need a fit function, several of which are built-in (see below). OpenMx also allows user-
defined fit functions for purposes not covered by the built-in functions. (e.g., mxFitFunctionR
or mxFitFunctionAlgebra).

Note, for mxModels of type="RAM", the expectation and fit-function are set for you automatically.

Running and summarizing a model
Once built, the resulting mxModel can be run (i.e., optimized) using mxRun. This returns the fitted
model.

You can summarize the results of the model using summary(yourModel)

Additional overview of model making and getting started
The OpenMx manual is online (see references below). However, mxRun, mxModel, mxMatrix all
have working examples that will help get you started as well.

The main OpenMx functions are: mxAlgebra, mxBounds, mxCI, mxConstraint, mxData, mxMatrix,
mxModel, and mxPath.

350 OpenMx

Expectation functions include mxExpectationNormal, mxExpectationRAM, mxExpectationLISREL,
and mxExpectationStateSpace;

Fit functions include mxFitFunctionML, mxFitFunctionAlgebra, mxFitFunctionRow and mxFit-
FunctionR.

Datasets built into OpenMx

OpenMx comes with over a dozen useful datasets built-in. Discover them using data(package="OpenMx"),
and open them with, for example, data("jointdata", package ="OpenMx", verbose= TRUE)

Please cite the ’OpenMx’ package in any publications that make use of it:

Michael C. Neale, Michael D. Hunter, Joshua N. Pritikin, Mahsa Zahery, Timothy R. Brick Robert
M. Kirkpatrick, Ryne Estabrook, Timothy C. Bates, Hermine H. Maes, Steven M. Boker. (2016).
OpenMx 2.0: Extended structural equation and statistical modeling. Psychometrika, 81, 535–549.
DOI: 10.1007/s11336-014-9435-8

Steven M. Boker, Michael C. Neale, Hermine H. Maes, Michael J. Wilde, Michael Spiegel, Tim-
othy R. Brick, Jeffrey Spies, Ryne Estabrook, Sarah Kenny, Timothy C. Bates, Paras Mehta, and
John Fox. (2011) OpenMx: An Open Source Extended Structural Equation Modeling Framework.
Psychometrika, 306-317. DOI:10.1007/s11336-010-9200-6

Steven M. Boker, Michael C. Neale, Hermine H. Maes, Michael J. Wilde, Michael Spiegel, Tim-
othy R. Brick, Ryne Estabrook, Timothy C. Bates, Paras Mehta, Timo von Oertzen, Ross J. Gore,
Michael D. Hunter, Daniel C. Hackett, Julian Karch, Andreas M. Brandmaier, Joshua N. Pritikin,
Mahsa Zahery, Robert M. Kirkpatrick, Yang Wang, and Charles Driver. (2016) OpenMx 2 User
Guide. http://openmx.ssri.psu.edu/docs/OpenMx/latest/OpenMxUserGuide.pdf

Author(s)

Maintainer: Robert M. Kirkpatrick <robert.kirkpatrick@vcuhealth.org>

Authors:

• Steven M. Boker

• Michael C. Neale

• Hermine H. Maes

• Michael Spiegel

• Timothy R. Brick

• Ryne Estabrook

• Timothy C. Bates

• Ross J. Gore

• Michael D. Hunter

• Joshua N. Pritikin

• Mahsa Zahery

Other contributors:

• Michael J. Wilde [contributor]

• Paras Mehta [contributor]

OpenMx 351

• Timo von Oertzen [contributor]

• Daniel C. Hackett [contributor]

• Julian Karch [contributor]

• Andreas M. Brandmaier [contributor]

• Yang Wang [contributor]

• Ben Goodrich <goodrich.ben@gmail.com> [contributor]

• Charles Driver <driver@mpib-berlin.mpg.de> [contributor]

• Massachusetts Institute of Technology [copyright holder]

• S. G. Johnson [copyright holder]

• Association for Computing Machinery [copyright holder]

• Dieter Kraft [copyright holder]

• Stefan Wilhelm [copyright holder]

• Sarah Medland [copyright holder]

• Carl F. Falk [copyright holder]

• Matt Keller [copyright holder]

• Manjunath B G [copyright holder]

• The Regents of the University of California [copyright holder]

• Lester Ingber [copyright holder]

• Wong Shao Voon [copyright holder]

• Juan Palacios [copyright holder]

• Jiang Yang [copyright holder]

• Gael Guennebaud [copyright holder]

• Jitse Niesen [copyright holder]

References

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation

See Also

Useful links:

• http://openmx.ssri.psu.edu

• https://github.com/OpenMx/OpenMx

• Report bugs at http://openmx.ssri.psu.edu/forums

https://openmx.ssri.psu.edu/documentation
http://openmx.ssri.psu.edu
https://github.com/OpenMx/OpenMx
http://openmx.ssri.psu.edu/forums

352 ordinalTwinData

Examples

library(OpenMx)
data(demoOneFactor)
===============================
= Make and run a 1-factor CFA =
===============================

latents = c("G") # the latent factor
manifests = names(demoOneFactor) # manifest variables to be modeled
====================
= Make the MxModel =
====================
m1 <- mxModel("One Factor", type = "RAM",
manifestVars = manifests, latentVars = latents,
mxPath(from = latents, to = manifests),
mxPath(from = manifests, arrows = 2),
mxPath(from = latents, arrows = 2, free = FALSE, values = 1.0),
mxData(cov(demoOneFactor), type = "cov", numObs = 500)
)

===============================
= mxRun it and get a summary! =
===============================

m1 = mxRun(m1)
summary(m1)

ordinalTwinData Data for ordinal twin model

Description

Example data for ordinal twin-data modelling. Three variables measured in each twin.

Usage

data("ordinalTwinData")

Format

A data frame with 139 observations on the following 7 variables.

zyg a numeric vector
var1_twin1 a numeric vector
var2_twin1 a numeric vector
var3_twin1 a numeric vector
var1_twin2 a numeric vector
var2_twin2 a numeric vector
var3_twin2 a numeric vector

Oscillator 353

Examples

data(ordinalTwinData)
str(ordinalTwinData)

Oscillator Oscillator Data for Latent Differential Equations

Description

Data set used in some of OpenMx’s examples, for instance the LDE demo. The data were simulated
by Steven M. Boker according to a noisy oscillator model.

Usage

data("Oscillator")

Format

A data frame with 100 observations on the following 1 numeric variable.

x Noisy oscillator value

Details

The data appear to be sinusoidal with exponential decay on the amplitude. The rows of data are
different times. The column is the variable.

Source

Simulated. Pulled from https://openmx.ssri.psu.edu/thread/144

References

Boker, S., Neale, M., & Rausch, J. (2004). Latent differential equation modeling with multivariate
multi-occasion indicators. In Recent developments on structural equation models van Montfort, K.,
Oud, H, and Satorra, A. (Eds.). 151-174. Springer, Dordrecht.

Examples

data(Oscillator)
plot(Oscillator$x, type='l')

https://openmx.ssri.psu.edu/thread/144

354 predict.MxModel

predict.MxModel predict method for MxModel objects

Description

predict method for MxModel objects

Usage

S3 method for class 'MxModel'
predict(
object,
newdata = NULL,
interval = c("none", "confidence", "prediction"),
method = c("ML", "WeightedML", "Regression", "Kalman"),
level = 0.95,
type = c("latent", "observed"),
...

)

Arguments

object an MxModel object from which predictions are desired

newdata an optional data.frame object. See details.

interval character indicating what kind of intervals are desired. ’none’ gives no intervals,
’confidence’, gives confidence intervals, ’prediction’ gives prediction intervals.

method character the method used to create the predictions. See details.

level the confidence or predictions level, ignored if not using intervals

type character the type of thing you want predicted: latent variables or manifest vari-
ables.

... further named arguments

Details

The newdata argument is either a data.frame or MxData object. In the latter case is replaces the
data in the top level model. In the former case, it is passed as the observed argument of mxData
with type='raw' and must accept the same further arguments as the data in the model passed in
the object argument.

The available methods for prediction are ’ML’, ’WeightedML’, ’Regression’, and ’Kalman’. See
the help page for mxFactorScores for details on the first three of these. The ’Kalman’ method uses
the Kalman filter to create predictions for state space models.

rvectorize 355

rvectorize Vectorize By Row

Description

This function returns the vectorization of an input matrix in a row by row traversal of the matrix.
The output is returned as a column vector.

Usage

rvectorize(x)

Arguments

x an input matrix.

See Also

cvectorize, vech, vechs

Examples

rvectorize(matrix(1:9, 3, 3))
rvectorize(matrix(1:12, 3, 4))

summary.MxModel Model Summary

Description

This function returns summary statistics of a model. These include model statistics (parameters,
degrees of freedom and likelihood), fit statistics such as AIC, parameter estimates and standard
errors (when available), as well as version and timing information and possible warnings about
estimates.

Usage

S3 method for class 'MxModel'
summary(object, ..., verbose=FALSE)

Arguments

object A MxModel object.

... Any number of named arguments (see below).

verbose Whether to include extra diagnostic information.

356 summary.MxModel

Details

mxSummary allows the user to set or override the following parameters of the model:

numObs Numeric. Specify the total number of observations for the model.

numStats Numeric. Specify the total number of observed statistics for the model.

refModels List of MxModel objects. Specify a saturated and independence likelihoods in single
argument for testing.

SaturatedLikelihood Numeric or MxModel object. Specify a saturated likelihood for testing.

SaturatedDoF Numeric. Specify the degrees of freedom of the saturated likelihood for testing.

IndependenceLikelihood Numeric or MxModel object. Specify an independence likelihood for
testing.

IndependenceDoF Numeric. Specify the degrees of freedom of the independence likelihood for
testing.

indep [Deprecated]
verbose logical. Changes the printing style for summary (see Details)

boot.quantile numeric. A vector of quantiles to be used to summarize bootstrap replication.

boot.SummaryType character. One of ‘quantile’ or ‘bcbci’.

Standard Output
The standard output consists of a table of free parameters, tables of model and fit statistics, infor-
mation on the time taken to run the model, the optimizer used, and the version of OpenMx.

Table of free parameters
Free parameters in the model are reported in a table with columns for the name (label) of the
parameter, the matrix, row and col containing the parameter, the parameter estimate itself, and any
lower or upper bounds set for the parameter.

Additional columns: standard errors, exclamation marks ("!"), and the ’A’ (asymmetry)
warning column
When the information matrix is available, either approximated by the Hessian or from bootstrap
resampling, standard errors are reported in the column "Std.Error".

An exclamation mark ("!") can appear in two places: after a lower or upper bound, and in the ’A’
column. When an exclamation mark appears after a bound in the lbound or ubound columns, it
indicates that the solution was sufficiently close to the bound that the optimizer could not ignore the
bound during its last few iterations.

An exclamation mark may also appear under the ’A’ column, but in this case it has a different
meaning. If the information matrix was estimated using finite differences then an additional diag-
nostic column ’A’ is displayed. An exclamation point in the ’A’ column indicates that the gradient
appears to be asymmetric and the standard error might not accurately reflect the sampling variabil-
ity of that parameter. As a precaution, it is recommended that you compare the SEs with profile
likelihood-based confidence intervals (mxCI) or bootstrap confidence intervals.

Fit statistics
AIC and BIC Information Criteria are reported in a table showing different versions of the
information criteria obtained using different penalties. AIC is reported with both a Parameters

summary.MxModel 357

Penalty and a Degrees of Freedom Penalty version. AIC generally takes the form Fit+2 ∗ k. With
the Parameters Penalty version, k is the number of free parameters: AIC.param = Fit + 2 ∗
param. With the Degrees of Freedom Penalty, k is minus one times the model degrees of freedom.
So the penalty is subtracted instead of added: AIC.param = Fit−2∗df . The Degrees of Freedom
penalty was used in Classic Mx. BIC is defined similarly: Fit + k ∗ log(N) where k is either the
number of free parameters or minus one times the model degrees of freedom. The Sample-Size-
Adjusted BIC is only defined for the parameters penalty: Fit+k ∗ log((N +2)/24). Similarly, the
Sample-Size-Adjusted AIC is Fit+2∗k+2∗k ∗ (k+1)/(N−k−1). For raw data models, Fit is
the minus 2 log likelihood, −2LL. For covariance data, Fit is the Chi-squared statistic. The −2LL
and saturated likelihood values reported under covariance data are not necessarily meaningful on
their own, but their difference yields the Chi-squared value.

Additional fit statistics

When the model has a saturated likelihood, several additional fit indices are printed, including
Chi-Squared, CFI, TLI, RMSEA and p RMSEA <= 0.05. For covariance data, saturated and inde-
pendence models are fitted automatically so all fit indices are reported.

For raw data (to save computational time), the reference models needed to compute these absolute
statistics are not estimated by default. They are available once you fit reference models.

The refModels, SaturatedLikelihood, SaturatedDoF, IndependenceLikelihood, and IndependenceDoF
arguments can be used to obtain these additional fit statistics. An easy way to make reference models
for most cases is provided by the mxRefModels function (see the example given in mxRefModels).

When the SaturatedLikelihood or IndependenceLikelihood arguments are used, OpenMx at-
tempts to calculate the appropriate degrees of freedom. However, depending on the model, it may
sometimes be necessary for the user to also explicitly provide the corresponding SaturatedDoF
and/or IndependenceDoF. Again, for the vast majority of cases, the mxRefModels function han-
dles these situations effectively and conveniently.

Notes on fit statistics

With regard to RMSEA, it is important to note that OpenMx does not currently make a multigroup
adjustment that some other structural equation modeling programs make. In particular, we do not
multiply the single-group RMSEA by the square root of the number of groups as suggested by
Steiger (1998). The RMSEA we use is based on the model likelihood (and degrees of freedom)
as compared to the saturated model likelihood (and degrees of freedom), and we do not feel the
adjustment is appropriate in this case.

OpenMx does not recommend (and does not compute) some fit indices including GFI, AGFI, NFI,
and SRMR. The Goodness of Fit Index (GFI) and Adjusted Goodness of Fit Index (AGFI) are
not recommended because they are strongly influenced by sample size and have rather high Type
I error rates (Sharma, Mukherjee, Kumar, & Dillon, 2005). The Normed Fit Index (NFI) has no
penalty for model complexity. That is, adding more parameters to a model always improves the
NFI, regardless of how useful those parameters are. Because the Non-Normed Fit Index (NNFI),
also known as the Tucker-Lewis Index (TLI), does adjust for model complexity it is used instead.
Lastly, the Standardized Root Mean Square Residual (SRMR) is not reported because it (1) only
applies to covariance models, having no direct extension to missing data, (2) has no penalty for
model complexity, similar to the NFI, and (3) is positively biased (Hu & Bentler, 1999).

verbose

The verbose argument changes the printing style for the summary of a model. When verbose=FALSE,
a relatively minimal amount of information is printed: the free parameters, the likelihood, and a few

358 summary.MxModel

fit indices. When verbose=TRUE, the compute plan, data summary, and additional timing informa-
tion are always printed. Moreover, available fit indices are printed regardless of whether or not they
are defined. The undefined fit indices are printed as NA. In addition, the condition number of the
information matrix, and the maximum absolute gradient may also be shown.

note: The verbose argument only changes the printing style, all of the same information is calcu-
lated and exists in the output of summary. More information is displayed when verbose=TRUE, and
less when verbose=FALSE.

Summary for bootstrap replications
Summarization of bootstrap replications is controlled by two options: ‘boot.quantile’ and ‘boot.SummaryType’.
To obtain a two-sided 95% width confidence interval, use boot.quantile=c(.025,.975). Options
for ‘boot.SummaryType’ are ‘quantile’ (using R’s standard stats::quantile function) and ‘bcbci’
for bias-corrected bootstrap confidence intervals. The latter, ‘bcbci’, is the default due to its superior
theoretical properties.

References

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.

Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis:
Conventional criteria versus new alternatives. Structural Equation Modeling, 6, 1-55.

Savalei, V. (2012). The relationship between root mean square error of approximation and model
misspecification in confirmatory factor analysis models. Educational and Psychological Measure-
ment, 72(6), 910-932.

Sharma, S., Mukherjee, S., Kumar, A., & Dillon, W.R. (2005). A simulation study to investigate
the use of cutoff values for assessing model fit in covariance structure models. Journal of Business
Research, 58, 935-43.

Steiger, J. H. (1998). A note on multiple sample extensions of the RMSEA fit index. Structural
Equation Modeling: A Multidisciplinary Journal, 5(4), 411-419. DOI: 10.1080/10705519809540115

See Also

mxBootstrap mxCI as.statusCode

Examples

library(OpenMx)
data(demoOneFactor) # load the demoOneFactor dataframe
manifests <- names(demoOneFactor) # set the manifest to the 5 demo variables
latents <- c("G") # define 1 latent variable
model <- mxModel(model="One Factor", type="RAM",

manifestVars = manifests,
latentVars = latents,
mxPath(from = latents, to=manifests, labels = paste("b", 1:5, sep = "")),
mxPath(from = manifests, arrows = 2, labels = paste("u", 1:5, sep = "")),
mxPath(from = latents, arrows = 2, free = FALSE, values = 1.0),
mxData(cov(demoOneFactor), type = "cov", numObs = 500)

)
model <- mxRun(model) # Run the model, returning the result into model

https://openmx.ssri.psu.edu/documentation/

tr 359

Show summary of the fitted model
summary(model)

Compute the summary and store in the variable "statistics"
statistics <- summary(model)

Access components of the summary
statistics$parameters
statistics$SaturatedLikelihood

Specify a saturated likelihood for testing
summary(model, SaturatedLikelihood = -3000)

Add a CI and view it in the summary
model = mxRun(mxModel(model=model, mxCI("b5")), intervals = TRUE)
summary(model)

tr trace

Description

This function returns the trace of an n-by-n square matrix x, defined to be the sum of the elements
on the main diagonal (the diagonal from the upper left to the lower right).

Usage

tr(x)

Arguments

x an input matrix. Must be square

Details

The input matrix must be square.

See Also

vech, rvectorize, cvectorize

Examples

tr(matrix(1:9, 3, 3))
tr(matrix(1:12, 3, 4))

360 twinData

twinData Australian twin sample biometric data.

Description

Australian twin data with 3,808 observations on the 12 variables including body mass index (BMI)
assessed in both MZ and DZ twins.

Questionnaires were mailed to 5,967 pairs age 18 years and over. These data consist of completed
questionnaires returned by both members of 3,808 (64 percent) pairs. There are two cohort blocks
in the data: a younger group (zyg 1:5), and an older group (zyg 6:10)

It is a wide dataset, with two individuals per line. Families are identified by the variable “fam”.

Data include zygosity (zyg), along with heights in meters, weights in kg, and the derived variables
BMI in kg/m^2 (stored as “htwt1” and “htwt2”), as well as the 7 times the natural log of this
variable, stored as bmi1 and bmi2. The logged values are more closely normally distributed while
scaling by 7 places them into a similar range to the original variable.

For convenience, zyg is broken out into separate “zygosity” and “cohort” factors. “zygosity” is
coded as a factor with 5-levels: MZFF, MZMM, DZFF, DZMM, DZOS. DZOS are in Female/Male
wide order.

Usage

data(twinData)

Format

A data frame with 3808 observations on the following 12 variables.

fam The family ID
age Age in years (of both twins)
zyg Code for zygosity and cohort (see details)
part A numeric vector
wt1 Weight of twin 1 (kg)
wt2 Weight of twin 2 (kg)
ht1 Height of twin 1 (m)
ht2 Height of twin 2 (m)
htwt1 Raw BMI of twin 1 (kg/m^2)
htwt2 Raw BMI of twin 2 (kg/m^2)
bmi1 7*log(BMI) of twin 1
bmi2 7*log(BMI) of twin 2
cohort Either “younger” or “older”
zygosity Zygosity factor with levels: MZFF, MZMM, DZFF, DZMM, DZOS
age1 Age of Twin 1
age2 Age of Twin 2

twin_NA_dot 361

Details

“zyg” codes twin-zygosity as follows: 1 == MZFF (i.e MZ females) 2 == MZMM (i.e MZ males)
3 == DZFF 4 == DZMM 5 == DZOS opposite sex pairs

Note: zyg 6:10 are for an older cohort in the sample. So: 6 == MZFF (i.e MZ females) 7 == MZMM
(i.e MZ males) 8 == DZFF 9 == DZMM 10 == DZOS opposite sex pairs

The “zygosity” and “cohort” variables take care of this for you (conventions differ).

References

Martin, N. G. & Jardine, R. (1986). Eysenck’s contribution to behavior genetics. In S. Modgil & C.
Modgil (Eds.), Hans Eysenck: Consensus and Controversy. Falmer Press: Lewes, Sussex.

Martin, N. G., Eaves, L. J., Heath, A. C., Jardine, R., Feingold, L. M., & Eysenck, H. J. (1986).
Transmission of social attitudes. Proceedings of the National Academy of Science, 83, 4364-4368.

Examples

data(twinData)
str(twinData)
plot(wt1 ~ wt2, data = twinData)
selVars = c("bmi1", "bmi2")
mzData <- subset(twinData, zyg == 1, selVars)
dzData <- subset(twinData, zyg == 3, selVars)

equivalently
mzData <- subset(twinData, zygosity == "MZFF", selVars)

Disregard sex, pick older cohort
mz <- subset(twinData, zygosity %in% c("MZFF","MZMM") & cohort == "older", selVars)

twin_NA_dot Twin biometric data (Practice cleaning: "." for missing data, wrong
data types etc.)

Description

Data set used in some of OpenMx’s examples.

Usage

data("twin_NA_dot")

362 twin_NA_dot

Format

A data frame with 3808 observations on the following variables.

fam Family ID variable

age Age of the twin pair. Range: 17 to 88, coded as factor

zyg Integer codes for zygosity and gender combinations

part Cohort

wt1 Weight in kilograms for twin 1 (this and following have "." embedded as NA...)

wt2 Weight in kilograms for twin 2

ht1 Height in meters for twin 1

ht2 Height in meters for twin 2

htwt1 Product of ht and wt for twin 1

htwt2 Product of ht and wt for twin 2

bmi1 Body Mass Index for twin 1

bmi2 Body Mass Index for twin 2

Details

Same as myTwinData but has . as the missing data value instead of NA.

Source

Timothy Bates

References

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.

Examples

data(twin_NA_dot)
summary(twin_NA_dot)
Note that all variables are treated as factors because of the missing data coding.

https://openmx.ssri.psu.edu/documentation/

vec2diag 363

vec2diag Create Diagonal Matrix From Vector

Description

Given an input row or column vector, vec2diag returns a diagonal matrix with the input argument
along the diagonal.

Usage

vec2diag(x)

Arguments

x a row or column vector.

Details

Similar to the function diag, except that the input argument is always treated as a vector of elements
to place along the diagonal.

See Also

diag2vec

Examples

vec2diag(matrix(1:4, 1, 4))
vec2diag(matrix(1:4, 4, 1))

vech Half-vectorization

Description

This function returns the half-vectorization of an input matrix as a column vector.

Usage

vech(x)

Arguments

x an input matrix.

364 vech2full

Details

The half-vectorization of an input matrix consists of the elements in the lower triangle of the matrix,
including the elements along the diagonal of the matrix, as a column vector. The column vector is
created by traversing the matrix in column-major order.

See Also

vech2full, vechs, rvectorize, cvectorize

Examples

vech(matrix(1:9, 3, 3))
vech(matrix(1:12, 3, 4))

vech2full Inverse Half-vectorization

Description

This function returns the symmetric matrix constructed from a half-vectorization.

Usage

vech2full(x)

Arguments

x an input single column or single row matrix.

Details

The half-vectorization of an input matrix consists of the elements in the lower triangle of the matrix,
including the elements along the diagonal of the matrix, as a column vector. The column vector is
created by traversing the matrix in column-major order. The inverse half-vectorization takes a
vector and reconstructs a symmetric matrix such that vech2full(vech(x)) is identical to x if x is
symmetric.

Note that very few vectors have the correct number of elements to construct a symmetric matrix.
For example, vectors with 1, 3, 6, 10, and 15 elements can be used to make a symmetric matrix, but
none of the other numbers between 1 and 15 can. An error is thrown if the number of elements in x
cannot be used to make a symmetric matrix.

See Also

vechs2full, vech, vechs, rvectorize, cvectorize

vechs 365

Examples

vech2full(1:10)

matrix(1:16, 4, 4)
vech(matrix(1:16, 4, 4))
vech2full(vech(matrix(1:16, 4, 4)))

vechs Strict Half-vectorization

Description

This function returns the strict half-vectorization of an input matrix as a column vector.

Usage

vechs(x)

Arguments

x an input matrix.

Details

The half-vectorization of an input matrix consists of the elements in the lower triangle of the matrix,
excluding the elements along the diagonal of the matrix, as a column vector. The column vector is
created by traversing the matrix in column-major order.

See Also

vech, rvectorize, cvectorize

Examples

vechs(matrix(1:9, 3, 3))
vechs(matrix(1:12, 3, 4))

366 vechs2full

vechs2full Inverse Strict Half-vectorization

Description

This function returns the symmetric matrix constructed from a strict half-vectorization.

Usage

vechs2full(x)

Arguments

x an input single column or single row matrix.

Details

The strict half-vectorization of an input matrix consists of the elements in the lower triangle of
the matrix, excluding the elements along the diagonal of the matrix, as a column vector. The
column vector is created by traversing the matrix in column-major order. The inverse strict half-
vectorization takes a vector and reconstructs a symmetric matrix such that vechs2full(vechs(x))
is equal to x with zero along the diagonal if x is symmetric.

Note that very few vectors have the correct number of elements to construct a symmetric matrix.
For example, vectors with 1, 3, 6, 10, and 15 elements can be used to make a symmetric matrix, but
none of the other numbers between 1 and 15 can. An error is thrown if the number of elements in x
cannot be used to make a symmetric matrix.

See Also

vech2full, vech, vechs, rvectorize, cvectorize

Examples

vechs2full(1:10)

matrix(1:16, 4, 4)
vechs(matrix(1:16, 4, 4))
vechs2full(vechs(matrix(1:16, 4, 4)))

Index

∗ Data Functions
mxDescribeDataWLS, 149

∗ Miscellaneous Utility Functions
mxAvailableOptimizers, 84

∗ classes
MxConstraint-class, 139
MxExpectationGREML-class, 159
MxFitFunctionGREML-class, 197
MxMatrix-class, 232
MxModel-class, 241

∗ datasets
Bollen, 12
demoOneFactor, 13
demoTwoFactor, 14
dzfData, 16
dzmData, 18
dzoData, 19
example1, 22
example2, 23
factorExample1, 24
factorScaleExample1, 25
factorScaleExample2, 26
HS.ability.data, 28
imxConstraintRelations, 32
imxDataTypes, 35
imxModelTypes, 51
imxPenaltyTypes, 52
imxReservedNames, 57
imxSeparatorChar, 60
imxVariableTypes, 64
jointdata, 68
latentMultipleRegExample1, 69
latentMultipleRegExample2, 70
lazarsfeld, 71
LongitudinalOverdispersedCounts,

72
multiData1, 73
myAutoregressiveData, 297
myFADataRaw, 298

myGrowthKnownClassData, 299
myGrowthMixtureData, 300
myLongitudinalData, 301
myRegData, 302
myRegDataRaw, 303
myTwinData, 304
mzfData, 305
mzmData, 306
nhanesDemo, 308
nuclear_twin_design_data, 309
numHess1, 310
numHess2, 310
omxSymbolTable, 349
ordinalTwinData, 352
Oscillator, 353
twin_NA_dot, 361
twinData, 360

∗ model state
mxComputeCheckpoint, 107
mxRestore, 274
mxSave, 283

[,MxCompare,ANY,ANY,ANY-method
(MxCompare-class), 106

[,MxMatrix,ANY,ANY,ANY-method
(MxMatrix-class), 232

[,MxMatrix-method (MxMatrix-class), 232
[<-,MxMatrix,ANY,ANY,ANY-method

(MxMatrix-class), 232
[<-,MxMatrix-method (MxMatrix-class),

232
[[,MxFlatModel-method

(MxFlatModel-class), 210
[[,MxMatrix-method (MxMatrix-class), 232
[[,MxModel-method (MxModel-class), 241
[[<-,MxFlatModel-method

(MxFlatModel-class), 210
[[<-,MxLISRELModel-method

(MxLISRELModel-class), 222
[[<-,MxMatrix-method (MxMatrix-class),

367

368 INDEX

232
[[<-,MxModel-method (MxModel-class), 241
[[<-,MxPenalty-method

(MxPenalty-class), 262
[[<-,MxRAMModel-method

(MxRAMModel-class), 270
$,BaseCompute-method

(BaseCompute-class), 11
$,DiscreteBase-method

(DiscreteBase-class), 16
$,MxAlgebra-method (MxAlgebra-class), 79
$,MxBaseExpectation-method

(MxBaseExpectation-class), 84
$,MxBaseFitFunction-method

(MxBaseFitFunction-class), 85
$,MxCompare-method (MxCompare-class),

106
$,MxConstraint-method

(MxConstraint-class), 139
$,MxData-method (MxData-class), 145
$,MxFlatModel-method

(MxFlatModel-class), 210
$,MxInterval-method (MxInterval-class),

218
$,MxMarginalNegativeBinomial-method

(mxMarginalNegativeBinomial),
227

$,MxMarginalPoisson-method
(mxMarginalPoisson), 228

$,MxMatrix-method (MxMatrix-class), 232
$,MxModel-method (MxModel-class), 241
$,MxPath-method (mxPath), 256
$,MxPenalty-method (MxPenalty-class),

262
$,MxThreshold-method (mxThreshold), 290
$<-,BaseCompute-method

(BaseCompute-class), 11
$<-,DiscreteBase-method

(DiscreteBase-class), 16
$<-,MxAlgebra-method (MxAlgebra-class),

79
$<-,MxBaseExpectation-method

(MxBaseExpectation-class), 84
$<-,MxBaseFitFunction-method

(MxBaseFitFunction-class), 85
$<-,MxConstraint-method

(MxConstraint-class), 139
$<-,MxData-method (MxData-class), 145

$<-,MxFlatModel-method
(MxFlatModel-class), 210

$<-,MxInterval-method
(MxInterval-class), 218

$<-,MxLISRELModel-method
(MxLISRELModel-class), 222

$<-,MxMarginalNegativeBinomial-method
(mxMarginalNegativeBinomial),
227

$<-,MxMarginalPoisson-method
(mxMarginalPoisson), 228

$<-,MxMatrix-method (MxMatrix-class),
232

$<-,MxModel-method (MxModel-class), 241
$<-,MxPath-method (mxPath), 256
$<-,MxPenalty-method (MxPenalty-class),

262
$<-,MxRAMModel-method

(MxRAMModel-class), 270
$<-,MxThreshold-method (mxThreshold),

290
%&% (mxAlgebra), 74
%^% (mxAlgebra), 74

algebras, 349
apply, 313
as.character, 249
as.data.frame.MxCompare

(MxCompare-class), 106
as.list, 313, 331, 344
as.statusCode, 10, 87, 107, 252, 358

BaseCompute-class, 11
Bollen, 12

Cauchy, 218, 294
Classes, 79, 94, 140, 240, 243
compressDataFrame, 155
compute plan, 339
confidence intervals, 326
cut, 212
cvectorize, 13, 77, 355, 359, 364–366

data.frame, 144, 146, 148
definition variables, 138
demoOneFactor, 13
demoTwoFactor, 14
diag, 15, 77, 363
diag2vec, 15, 77, 363

INDEX 369

DiagMatrix-class (MxMatrix-class), 232
dim,MxMatrix-method (MxMatrix-class),

232
dimnames, 171, 191
dimnames,MxAlgebra-method

(MxAlgebra-class), 79
dimnames,MxMatrix,ANY-method

(MxMatrix-class), 232
dimnames,MxMatrix-method

(MxMatrix-class), 232
dimnames<-,MxAlgebra,ANY-method

(MxAlgebra-class), 79
dimnames<-,MxAlgebra-method

(MxAlgebra-class), 79
dimnames<-,MxMatrix,ANY-method

(MxMatrix-class), 232
dimnames<-,MxMatrix-method

(MxMatrix-class), 232
DiscreteBase (DiscreteBase-class), 16
DiscreteBase-class, 16
dzfData, 16
dzmData, 18
dzoData, 19

EAPscores, 155
eigen, 21
eigenval, 76
eigenval (eigenvec), 21
eigenvec, 21
example1, 22, 23
example2, 22, 23
expect_equivalent, 318
expect_identical, 320
expect_setequal, 321
expm, 24, 77
Extract, 99, 101, 171, 191, 199, 208

factanal, 189
factor, 186, 187
factorExample1, 24
factorScaleExample1, 25, 27
factorScaleExample2, 26
FullMatrix-class (MxMatrix-class), 232

genericFitDependencies,MxBaseFitFunction-method,
27

gradient-descent, 138
gradientIterations, 294
gradientStepSize, 294

GREML expectation, 83, 346

here, 78, 82, 93, 94, 100, 101, 144, 146, 148,
159, 160, 194, 196, 198, 200, 202,
205, 206, 209, 217, 231, 234, 240,
244, 258, 282, 292, 316

HS.ability.data, 28

IdenMatrix-class (MxMatrix-class), 232
ieigenval (eigenvec), 21
ieigenvec (eigenvec), 21
imxAddDependency, 30
imxAutoOptionValue, 30
imxCheckMatrices, 31
imxCheckVariables, 31
imxConDecMatrixSlots, 32
imxConDecMatrixSlots,MxMatrix-method

(imxConDecMatrixSlots), 32
imxConstraintRelations, 32
imxConvertIdentifier, 32
imxConvertLabel, 33
imxConvertSubstitution, 33
imxCreateMatrix, 34, 234
imxCreateMatrix,DiagMatrix-method

(imxCreateMatrix), 34
imxCreateMatrix,FullMatrix-method

(imxCreateMatrix), 34
imxCreateMatrix,IdenMatrix-method

(imxCreateMatrix), 34
imxCreateMatrix,LowerMatrix-method

(imxCreateMatrix), 34
imxCreateMatrix,MxMatrix-method

(imxCreateMatrix), 34
imxCreateMatrix,SdiagMatrix-method

(imxCreateMatrix), 34
imxCreateMatrix,StandMatrix-method

(imxCreateMatrix), 34
imxCreateMatrix,SymmMatrix-method

(imxCreateMatrix), 34
imxCreateMatrix,UnitMatrix-method

(imxCreateMatrix), 34
imxCreateMatrix,ZeroMatrix-method

(imxCreateMatrix), 34
imxDataTypes, 35
imxDefaultGetSlotDisplayNames, 35
imxDeparse, 36, 140, 234
imxDeparse,IdenMatrix-method

(imxDeparse), 36

370 INDEX

imxDeparse,matrix-method (imxDeparse),
36

imxDeparse,MxAlgebra-method
(imxDeparse), 36

imxDeparse,MxConstraint-method
(imxDeparse), 36

imxDeparse,MxData-method (imxDeparse),
36

imxDeparse,MxMatrix-method
(imxDeparse), 36

imxDeparse,UnitMatrix-method
(imxDeparse), 36

imxDeparse,ZeroMatrix-method
(imxDeparse), 36

imxDependentModels, 36
imxDetermineDefaultOptimizer, 36
imxDmvnorm, 37
imxEvalByName, 37
imxExtractMethod, 38
imxExtractNames, 38
imxExtractReferences, 38
imxExtractSlot, 39
imxFlattenModel, 39
imxFreezeModel, 40
imxGenerateLabels, 40
imxGenerateNamespace, 40
imxGenericModelBuilder, 41
imxGenSwift, 41
imxGentleResize, 42
imxGetExpectationComponent

(mxGetExpected), 214
imxGetNumThreads, 42
imxGetSlotDisplayNames, 43
imxHasConstraint, 43
imxHasDefinitionVariable, 44
imxHasNPSOL, 44
imxHasOpenMP, 44
imxHasThresholds, 45
imxHasWLS, 45
imxIdentifier, 45
imxIndependentModels, 46
imxInitModel, 46, 244
imxInitModel,MxLISRELModel-method

(imxInitModel), 46
imxInitModel,MxModel-method

(imxInitModel), 46
imxInitModel,MxRAMModel-method

(imxInitModel), 46

imxIsDefinitionVariable, 46
imxIsMultilevel, 47
imxIsPath, 47
imxIsStateSpace, 47
imxJiggle (mxJiggle), 218
imxLocateFunction, 48
imxLocateIndex, 48
imxLocateLabel, 49
imxLog, 49
imxLookupSymbolTable, 49
imxModelBuilder, 50, 244
imxModelBuilder,MxLISRELModel-method

(imxModelBuilder), 50
imxModelBuilder,MxModel-method

(imxModelBuilder), 50
imxModelBuilder,MxRAMModel-method

(imxModelBuilder), 50
imxModelTypes, 51
imxMpiWrap, 51
imxOriginalMx, 51
imxPenaltyTypes, 52
imxPPML, 53
imxPPML.Test.Battery, 53
imxPPML.Test.Test, 54
imxPreprocessModel, 55
imxReplaceMethod, 55
imxReplaceModels, 55
imxReplaceSlot, 56
imxReportProgress, 56
imxReservedNames, 57
imxReverseIdentifier, 57
imxRobustSE, 58
imxRowGradients, 59
imxSameType, 59
imxSeparatorChar, 60
imxSfClient, 60
imxSimpleRAMPredicate, 60
imxSparseInvert, 61
imxSquareMatrix, 61, 234
imxSquareMatrix,DiagMatrix-method

(imxSquareMatrix), 61
imxSquareMatrix,IdenMatrix-method

(imxSquareMatrix), 61
imxSquareMatrix,LowerMatrix-method

(imxSquareMatrix), 61
imxSquareMatrix,MxMatrix-method

(imxSquareMatrix), 61
imxSquareMatrix,SdiagMatrix-method

INDEX 371

(imxSquareMatrix), 61
imxSquareMatrix,StandMatrix-method

(imxSquareMatrix), 61
imxSquareMatrix,SymmMatrix-method

(imxSquareMatrix), 61
imxSymmetricMatrix, 61, 234
imxSymmetricMatrix,LowerMatrix-method

(imxSymmetricMatrix), 61
imxSymmetricMatrix,MxMatrix-method

(imxSymmetricMatrix), 61
imxSymmetricMatrix,SdiagMatrix-method

(imxSymmetricMatrix), 61
imxSymmetricMatrix,StandMatrix-method

(imxSymmetricMatrix), 61
imxSymmetricMatrix,SymmMatrix-method

(imxSymmetricMatrix), 61
imxTypeName, 62, 244
imxTypeName,MxLISRELModel-method

(imxTypeName), 62
imxTypeName,MxModel-method

(imxTypeName), 62
imxTypeName,MxRAMModel-method

(imxTypeName), 62
imxUntitledName, 62
imxUntitledNumber, 62, 63
imxUntitledNumberReset, 63
imxUpdateModelValues, 63
imxVariableTypes, 64
imxVerifyMatrix, 64, 234
imxVerifyMatrix,DiagMatrix-method

(imxVerifyMatrix), 64
imxVerifyMatrix,FullMatrix-method

(imxVerifyMatrix), 64
imxVerifyMatrix,IdenMatrix-method

(imxVerifyMatrix), 64
imxVerifyMatrix,LowerMatrix-method

(imxVerifyMatrix), 64
imxVerifyMatrix,MxMatrix-method

(imxVerifyMatrix), 64
imxVerifyMatrix,SdiagMatrix-method

(imxVerifyMatrix), 64
imxVerifyMatrix,StandMatrix-method

(imxVerifyMatrix), 64
imxVerifyMatrix,SymmMatrix-method

(imxVerifyMatrix), 64
imxVerifyMatrix,UnitMatrix-method

(imxVerifyMatrix), 64
imxVerifyMatrix,ZeroMatrix-method

(imxVerifyMatrix), 64
imxVerifyModel, 64, 244
imxVerifyModel,MxLISRELModel-method

(imxVerifyModel), 64
imxVerifyModel,MxModel-method

(imxVerifyModel), 64
imxVerifyModel,MxRAMModel-method

(imxVerifyModel), 64
imxVerifyName, 65
imxVerifyReference, 65
imxWlsChiSquare, 66
imxWlsStandardErrors, 67

jointdata, 68

lapply, 331
latentMultipleRegExample1, 69, 70
latentMultipleRegExample2, 70
lazarsfeld, 71
length,MxMatrix-method

(MxMatrix-class), 232
lgamma1p (mxAlgebra), 74
logm, 72, 77
logp2z (mxAlgebra), 74
longData

(LongitudinalOverdispersedCounts),
72

LongitudinalOverdispersedCounts, 72
LowerMatrix-class (MxMatrix-class), 232

make.names, 226
make.unique, 226
matrices, 349
matrix, 144, 146, 148
message-printing, 294
Mod, 21
mpinv, 77
mpinv (mxAlgebra), 74
multiData1, 73
mvrnorm, 211
MxAlgebra, 74, 75, 78, 81, 94, 112, 137, 138,

140, 146, 157, 160, 166, 171, 174,
177, 179, 182, 184, 191, 193–195,
197, 206, 225, 233, 236, 237,
241–243, 272, 279, 308

MxAlgebra (MxAlgebra-class), 79
mxAlgebra, 74, 79, 80, 82, 89, 144, 146, 152,

194, 201, 231, 232, 239, 349
MxAlgebra-class, 79

372 INDEX

MxAlgebraFormula
(MxAlgebraFormula-class), 80

MxAlgebraFormula-class, 80
mxAlgebraFromString, 80
mxAlgebraObjective, 81
MxAlgebras, 99, 101, 242, 245
mxAutoStart, 11, 82, 317
mxAvailableOptimizers, 84
MxBaseExpectation-class, 84
MxBaseFitFunction-class, 85
MxBaseNamed (MxBaseNamed-class), 85
MxBaseNamed-class, 85
MxBaseObjectiveMetaData

(MxBaseObjectiveMetaData-class),
85

MxBaseObjectiveMetaData-class, 85
mxBootstrap, 11, 86, 89–91, 107, 358
mxBootstrapEval, 86, 87, 88, 91
mxBootstrapEvalByName

(mxBootstrapEval), 88
mxBootstrapStdizeRAMpaths, 86, 87, 90,

289
MxBounds, 81, 93, 166, 171, 174, 179, 184,

191, 193, 225, 237, 272
MxBounds (MxBounds-class), 94
mxBounds, 92, 94, 231, 239, 349
MxBounds-class, 94
MxCharOrList-class, 94
MxCharOrLogical-class, 95
MxCharOrNumber-class, 95
mxCheckIdentification, 11, 95, 201
MxCI, 98–100, 242
MxCI (MxCI-class), 101
mxCI, 98, 99, 101, 156, 218, 238–240, 243,

280, 286, 288, 338, 339, 349, 356,
358

MxCI-class, 101
mxCompare, 102, 106, 247, 269
MxCompare-class, 106
mxCompareMatrix (mxCompare), 102
MxCompute, 243
MxCompute (MxCompute-class), 106
MxCompute-class, 106
mxComputeBenchmark (mxComputeLoop), 121
mxComputeBootstrap, 87, 106
MxComputeBootstrap-class

(mxComputeBootstrap), 106
mxComputeCheckpoint, 107, 118–120, 136,

275, 283
MxComputeCheckpoint-class

(mxComputeCheckpoint), 107
MxComputeConfidenceInterval, 339
mxComputeConfidenceInterval, 100, 109,

339
MxComputeConfidenceInterval-class

(mxComputeConfidenceInterval),
109

mxComputeDefault, 110
MxComputeDefault-class

(mxComputeDefault), 110
mxComputeEM, 11, 111, 155, 156
MxComputeEM-class (mxComputeEM), 111
mxComputeGenerateData, 113
MxComputeGenerateData-class

(mxComputeGenerateData), 113
mxComputeGradientDescent, 11, 113, 250,

252, 265, 293, 294
MxComputeGradientDescent-class

(mxComputeGradientDescent), 113
mxComputeHessianQuality, 11, 87, 105, 115,

255
MxComputeHessianQuality-class

(mxComputeHessianQuality), 115
mxComputeIterate, 11, 116
MxComputeIterate-class

(mxComputeIterate), 116
mxComputeJacobian, 116
MxComputeJacobian-class

(mxComputeJacobian), 116
mxComputeLoadContext, 109, 117
MxComputeLoadContext-class

(mxComputeLoadContext), 117
mxComputeLoadData, 109, 118, 118, 120
MxComputeLoadData-class

(mxComputeLoadData), 118
mxComputeLoadMatrix, 109, 118, 119, 120
MxComputeLoadMatrix-class

(mxComputeLoadMatrix), 120
mxComputeLoop, 109, 121
MxComputeLoop-class (mxComputeLoop), 121
MxComputeNelderMead

(mxComputeNelderMead), 122
mxComputeNelderMead, 122
MxComputeNelderMead-class

(mxComputeNelderMead), 122
mxComputeNewtonRaphson, 11, 126

INDEX 373

MxComputeNewtonRaphson-class
(mxComputeNewtonRaphson), 126

mxComputeNothing, 127
mxComputeNumericDeriv, 11, 128, 134, 156
MxComputeNumericDeriv-class

(mxComputeNumericDeriv), 128
mxComputeOnce, 75, 112, 129
MxComputeOnce-class (mxComputeOnce), 129
mxComputePenaltySearch, 130, 265, 326
MxComputePenaltySearch-class

(mxComputePenaltySearch), 130
mxComputeReportDeriv, 131
MxComputeReportDeriv-class

(mxComputeReportDeriv), 131
mxComputeReportExpectation, 132
MxComputeReportExpectation-class

(mxComputeReportExpectation),
132

MxComputeSequence, 325, 326
mxComputeSequence, 132, 196
MxComputeSequence-class

(mxComputeSequence), 132
mxComputeSetOriginalStarts, 133
MxComputeSetOriginalStarts-class

(mxComputeSetOriginalStarts),
133

mxComputeSimAnnealing, 133
MxComputeSimAnnealing-class

(mxComputeSimAnnealing), 133
mxComputeStandardError, 135
MxComputeStandardError-class

(mxComputeStandardError), 135
mxComputeTryCatch, 135
MxComputeTryCatch-class

(mxComputeTryCatch), 135
mxComputeTryHard, 134, 136, 295
MxComputeTryHard-class

(mxComputeTryHard), 136
MxConstraint, 81, 137–139, 166, 171, 174,

179, 184, 191, 193, 196, 225, 237,
242, 243, 272, 293, 308

MxConstraint (MxConstraint-class), 139
mxConstraint, 79, 137, 139, 140, 231, 232,

238, 239, 288, 292, 349
MxConstraint-class, 139
mxConstraintFromString (mxConstraint),

137
MxConstraints, 123–125

mxConstraints, 250, 349
MxData, 141, 142, 144, 147, 148, 164, 166,

171, 173, 174, 176, 178, 179, 181,
183, 184, 191, 223, 225, 230, 236,
237, 239, 242, 243, 271, 272, 308

MxData (MxData-class), 145
mxData, 86, 141, 145–148, 155, 166, 171, 174,

179, 184, 191, 225, 237–240, 272,
349

MxData-class, 145
mxDataDynamic, 146, 155
MxDataDynamic-class (mxDataDynamic), 146
MxDataLegacyWLS-class (mxDataWLS), 147
MxDataStatic (MxDataStatic-class), 147
MxDataStatic-class, 147
mxDataWLS, 142, 144, 147, 211
mxDescribeDataWLS, 149
MxDirectedGraph

(MxDirectedGraph-class), 150
MxDirectedGraph-class, 150
mxEval, 81, 151, 166, 174, 179, 184, 193, 225,

237, 272, 285
mxEval(), 77
mxEvalByName (mxEval), 151
mxEvaluateOnGrid, 77, 152
MxExpectation, 243
MxExpectation (MxExpectation-class), 153
MxExpectation-class, 153
mxExpectationBA81, 84, 154, 239, 345
MxExpectationBA81-class

(mxExpectationBA81), 154
MxExpectationGREML, 157–159
MxExpectationGREML

(MxExpectationGREML-class), 159
mxExpectationGREML, 157, 159, 160, 196,

198, 217, 239
MxExpectationGREML-class, 159
mxExpectationHiddenMarkov, 161, 169, 239
MxExpectationHiddenMarkov-class

(mxExpectationHiddenMarkov),
161

mxExpectationLISREL, 84, 163, 211, 214,
239, 244, 330, 350

MxExpectationLISREL-class
(mxExpectationLISREL), 163

mxExpectationMixture, 162, 168, 239
MxExpectationMixture-class

(mxExpectationMixture), 168

374 INDEX

mxExpectationNormal, 84, 155, 170, 191,
199, 208, 211, 214, 236, 239, 277,
350

MxExpectationNormal-class
(mxExpectationNormal), 170

mxExpectationRAM, 84, 166, 172, 199, 208,
211, 214, 239, 244, 271, 287, 288,
330, 350

MxExpectationRAM-class
(mxExpectationRAM), 172

mxExpectationSSCT
(mxExpectationStateSpaceContinuousTime),
180

mxExpectationStateSpace, 84, 175, 181,
184, 211, 212, 221, 239, 350

MxExpectationStateSpace-class
(mxExpectationStateSpace), 175

mxExpectationStateSpaceContinuousTime,
176, 179, 180, 212, 239

mxFactor, 186, 212
mxFactorScores, 188, 354
mxFIMLObjective, 190
MxFitFunction, 243
MxFitFunction (MxFitFunction-class), 192
MxFitFunction-class, 192
mxFitFunctionAlgebra, 74, 78, 81, 85, 144,

146, 193, 196, 200–202, 205, 206,
209, 239, 349, 350

MxFitFunctionAlgebra-class
(mxFitFunctionAlgebra), 193

MxFitFunctionGREML, 195, 196
MxFitFunctionGREML

(MxFitFunctionGREML-class), 197
mxFitFunctionGREML, 85, 194, 195, 198, 200,

202, 205, 206, 209, 239
MxFitFunctionGREML-class, 197
mxFitFunctionML, 85, 142, 145, 146, 154,

161, 168, 171, 176, 181, 191, 194,
196, 198, 202, 205, 206, 209, 234,
236, 239, 271, 277, 350

MxFitFunctionML-class
(mxFitFunctionML), 198

mxFitFunctionMultigroup, 85, 193, 194,
196, 200, 201, 205, 206, 209, 239,
281, 345

MxFitFunctionMultigroup-class
(mxFitFunctionMultigroup), 201

mxFitFunctionR, 85, 194, 196, 200, 202, 204,

206, 209, 239, 349, 350
MxFitFunctionR-class (mxFitFunctionR),

204
mxFitFunctionRow, 85, 194, 196, 200, 202,

205, 205, 209, 239, 350
MxFitFunctionRow-class

(mxFitFunctionRow), 205
mxFitFunctionWLS, 85, 141–143, 147–150,

194, 196, 200, 202, 205, 206, 207,
239, 292, 315

MxFitFunctionWLS-class
(mxFitFunctionWLS), 207

MxFlatModel-class, 210
mxGenerateData, 144, 162, 169, 211
mxGetExpected, 117, 214, 334
mxGREMLDataHandler, 157, 216
MxInterval, 243, 338, 339
MxInterval (MxCI-class), 101
MxInterval-class, 218
mxJiggle, 218
mxKalmanScores, 189, 220
MxLISRELModel-class, 222
mxLISRELObjective, 222
MxListOrNull-class, 226
mxMakeNames, 226
mxMarginalNegativeBinomial, 16, 227
MxMarginalNegativeBinomial-class

(mxMarginalNegativeBinomial),
227

mxMarginalPoisson, 16, 228
MxMarginalPoisson-class

(mxMarginalPoisson), 228
mxMarginalProbit (mxThreshold), 290
MxMatrices, 99, 101, 122, 242, 245
MxMatrix, 75, 78, 80, 81, 88, 93, 94, 100, 137,

138, 151, 157, 160, 164, 166, 171,
174, 177–179, 182, 184, 191,
193–195, 197, 223, 225, 229–231,
237, 239, 241–243, 271, 272, 289,
308

MxMatrix (MxMatrix-class), 232
mxMatrix, 75, 78, 80, 93, 94, 100, 120, 144,

146, 171, 191, 229, 232, 234,
238–240, 258, 261, 288, 289, 292,
349

MxMatrix-class, 232
mxMI, 234
mxMLObjective, 236

INDEX 375

MxModel, 75, 81, 88, 93, 94, 98, 99, 101, 123,
138, 148, 151, 166, 171, 174, 178,
179, 184, 191, 193, 225, 230, 233,
236–240, 243, 245, 249, 265, 266,
272, 275, 281, 283, 295, 296, 308,
326, 338

MxModel (MxModel-class), 241
mxModel, 89, 97, 101, 102, 105, 142–144, 146,

152, 231, 232, 238, 243, 244, 252,
257, 258, 274, 282, 285, 288, 291,
292, 345, 349

MxModel-class, 241
mxModelAverage, 244
MxModels, 244
MxNonNullData-class (MxData-class), 145
mxNormalQuantiles, 248
mxOption, 11, 31, 84, 114, 122, 125, 134, 240,

243, 249, 250, 275, 283, 288, 326,
338

MxOptionalChar-class, 253
MxOptionalCharOrNumber-class, 253
MxOptionalDataFrame-class, 253
MxOptionalDataFrameOrMatrix-class, 253
MxOptionalInteger-class, 253
MxOptionalLogical-class, 254
MxOptionalMatrix-class, 254
MxOptionalNumeric-class, 254
mxParametricBootstrap, 254
MxPath, 146, 242, 257, 289
mxPath, 238–240, 242, 256, 288, 291, 292, 349
MxPath-class (mxPath), 256
mxPaths, 144
mxPearsonSelCov, 259
mxPearsonSelMean (mxPearsonSelCov), 259
MxPenalty, 243, 265, 266
mxPenalty, 261
MxPenalty-class, 262
mxPenaltyElasticNet, 262
mxPenaltyLASSO, 263
mxPenaltyRidge, 264
mxPenaltySearch, 265, 266
mxPenaltyZap, 266
mxPower (mxPowerSearch), 266
mxPowerSearch, 105, 266
MxRAMGraph (MxRAMGraph-class), 270
MxRAMGraph-class, 270
MxRAMModel-class, 270
mxRAMObjective, 225, 271

mxRefModels, 201, 269, 357
mxRefModels (omxSaturatedModel), 344
mxRename, 273
mxRestore, 109, 274, 283
mxRestoreFromDataFrame, 275
mxRestoreFromDataFrame (mxRestore), 274
mxRetro, 276
mxRObjective, 277
mxRobustLog (mxAlgebra), 74
mxRowObjective, 278
mxRun, 75, 81, 98, 101, 119, 125, 151, 166,

171, 174, 178, 179, 184, 191, 193,
225, 230, 232, 233, 237, 239, 242,
243, 272, 280, 288, 292, 295, 338,
339, 349

mxSave, 109, 275, 283
mxSE, 98, 100, 284
mxSetDefaultOptions, 286
mxSimplify2Array, 287
mxStandardizeRAMPaths

(mxStandardizeRAMpaths), 287
mxStandardizeRAMpaths, 91, 287, 288
mxSummary, 87, 91, 99, 344, 345
mxSummary (summary.MxModel), 355
MxThreshold, 291
mxThreshold, 290
MxThreshold-class (mxThreshold), 290
mxTryHard, 11, 124, 137, 218, 219, 280, 282,

292
mxTryHardctsem (mxTryHard), 292
mxTryHardOrdinal (mxTryHard), 292
mxTryHardOrig (mxTryHard), 292
mxTryHardWideSearch (mxTryHard), 292
mxTypes, 239, 296
mxVersion, 296
MxVersionType-class, 297
myAutoregressiveData, 297
myFADataRaw, 298
myGrowthKnownClassData, 299, 300
myGrowthMixtureData, 299, 300
myLongitudinalData, 301
myRegData, 302, 303
myRegDataRaw, 303
myTwinData, 304, 362
mzfData, 305
mzmData, 306

Named entities, 239, 243
named entities, 244

376 INDEX

named entity, 79, 101, 139, 145, 232, 241,
244

Named-entities (Named-entity), 308
named-entities, 239
named-entities (Named-entity), 308
Named-entity, 308
named-entity (Named-entity), 308
names, 143, 344
names,MxConstraint-method

(MxConstraint-class), 139
names,MxFlatModel-method

(MxFlatModel-class), 210
names,MxMatrix-method (MxMatrix-class),

232
names,MxModel-method (MxModel-class),

241
ncol,MxMatrix-method (MxMatrix-class),

232
nhanesDemo, 308
normal (Gaussian), 218, 294
nrow,MxMatrix-method (MxMatrix-class),

232
nuclear_twin_design_data, 309
NULL, 145
numHess1, 310
numHess2, 310

omxAICWeights (mxModelAverage), 244
omxAkaikeWeights (mxModelAverage), 244
omxAllInt, 77, 311
omxAnd, 77
omxAnd (omxLogical), 333
omxApply, 313, 331, 344
omxApproxEquals, 77
omxApproxEquals (omxLogical), 333
omxAssignFirstParameters, 313, 328, 332,

348
omxAugmentDataWithWLSSummary, 150, 314
omxBootstrapCov

(omxGetBootstrapReplications),
327

omxBootstrapEval (mxBootstrapEval), 88
omxBootstrapEvalByName

(mxBootstrapEval), 88
omxBootstrapEvalCov (mxBootstrapEval),

88
omxBrownie, 276, 315
omxBuildAutoStartModel, 317
omxCbind (omxMatrixOperations), 335

omxCheckCloseEnough, 317, 319–322, 324
omxCheckEquals, 318, 318, 319–324
omxCheckError, 319, 323
omxCheckIdentical, 318, 319, 320, 321–324
omxCheckNamespace, 321
omxCheckSetEquals, 318–320, 321, 322–324
omxCheckTrue, 318–321, 322, 323, 324
omxCheckWarning, 319, 323
omxCheckWithinPercentError, 318–323,

324
omxConstrainMLThresholds, 325
omxDefaultComputePlan, 110, 119, 265, 325
omxDetectCores, 42, 326
omxDnbinom (mxAlgebra), 74
omxExponential, 77
omxExponential (expm), 24
omxGetBootstrapReplications, 327
omxGetNPSOL, 327
omxGetParameters, 293, 314, 328, 332, 348
omxGetRAMDepth, 330
omxGraphviz, 330
omxGreaterThan, 77
omxGreaterThan (omxLogical), 333
omxHasDefaultComputePlan, 331
omxLapply, 313, 331, 344
omxLessThan, 77
omxLessThan (omxLogical), 333
omxLocateParameters, 328, 332
omxLogical, 333
omxManifestModelByParameterJacobian,

117, 334
omxMatrixOperations, 335
omxMnor, 77, 204, 311, 312, 335
omxModelDeleteData, 337
omxNameAnonymousParameters, 337
omxNormalQuantiles (mxNormalQuantiles),

248
omxNot, 77
omxNot (omxLogical), 333
omxOr, 77
omxOr (omxLogical), 333
omxParallelCI, 338
omxPnbinom (mxAlgebra), 74
omxQuotes, 340
omxRAMtoML, 340
omxRbind (omxMatrixOperations), 335
omxReadGRMBin, 341
omxRMSEA, 342

INDEX 377

omxRunCI (omxParallelCI), 338
omxSapply, 313, 331, 343
omxSaturatedModel, 344
omxSelectCols, 77, 206, 279
omxSelectCols (omxSelectRowsAndCols),

347
omxSelectRows, 77, 206, 279
omxSelectRows (omxSelectRowsAndCols),

347
omxSelectRowsAndCols, 77, 206, 279, 347
omxSetParameters, 293, 314, 328, 332, 339,

348
omxSymbolTable, 349
omxTranspose (omxMatrixOperations), 335
OpenMx, 349
OpenMx-package (OpenMx), 349
option, 229, 230, 294
options, 105, 293
ordinalTwinData, 352
Oscillator, 353

p2z (mxAlgebra), 74
parameters, 245
predict.MxModel, 354
print,BaseCompute-method

(BaseCompute-class), 11
print,MxAlgebra-method

(MxAlgebra-class), 79
print,MxAlgebraFormula-method

(MxAlgebraFormula-class), 80
print,MxCompare-method

(MxCompare-class), 106
print,MxConstraint-method

(MxConstraint-class), 139
print,MxDataDynamic-method

(mxDataDynamic), 146
print,MxDataStatic-method

(MxDataStatic-class), 147
print,MxExpectationBA81-method

(mxExpectationBA81), 154
print,MxExpectationHiddenMarkov-method

(mxExpectationHiddenMarkov),
161

print,MxExpectationLISREL-method
(mxExpectationLISREL), 163

print,MxExpectationMixture-method
(mxExpectationMixture), 168

print,MxExpectationNormal-method
(mxExpectationNormal), 170

print,MxExpectationRAM-method
(mxExpectationRAM), 172

print,MxExpectationStateSpace-method
(mxExpectationStateSpace), 175

print,MxFitFunctionAlgebra-method
(mxFitFunctionAlgebra), 193

print,MxFitFunctionML-method
(mxFitFunctionML), 198

print,MxFitFunctionR-method
(mxFitFunctionR), 204

print,MxFitFunctionRow-method
(mxFitFunctionRow), 205

print,MxFitFunctionWLS-method
(mxFitFunctionWLS), 207

print,MxFlatModel-method
(MxFlatModel-class), 210

print,MxInterval-method
(MxInterval-class), 218

print,MxMarginalNegativeBinomial-method
(mxMarginalNegativeBinomial),
227

print,MxMarginalPoisson-method
(mxMarginalPoisson), 228

print,MxMatrix-method (MxMatrix-class),
232

print,MxModel-method (MxModel-class),
241

print,MxNonNullData-method
(MxData-class), 145

print,MxPath-method (mxPath), 256
print,MxThreshold-method (mxThreshold),

290

RAM expectation, 90
read.table, 275, 283
readBin, 341
rmvnorm, 211
run, 125, 338, 339
runtime, 77, 122, 250
rvectorize, 13, 77, 355, 359, 364–366

sapply, 343
SdiagMatrix-class (MxMatrix-class), 232
sfApply, 313
sfLapply, 331
sfSapply, 343
show,BaseCompute-method

(BaseCompute-class), 11

378 INDEX

show,MxAlgebra-method
(MxAlgebra-class), 79

show,MxAlgebraFormula-method
(MxAlgebraFormula-class), 80

show,MxCompare-method
(MxCompare-class), 106

show,MxConstraint-method
(MxConstraint-class), 139

show,MxDataDynamic-method
(mxDataDynamic), 146

show,MxDataStatic-method
(MxDataStatic-class), 147

show,MxExpectationBA81-method
(mxExpectationBA81), 154

show,MxExpectationHiddenMarkov-method
(mxExpectationHiddenMarkov),
161

show,MxExpectationLISREL-method
(mxExpectationLISREL), 163

show,MxExpectationMixture-method
(mxExpectationMixture), 168

show,MxExpectationNormal-method
(mxExpectationNormal), 170

show,MxExpectationRAM-method
(mxExpectationRAM), 172

show,MxExpectationStateSpace-method
(mxExpectationStateSpace), 175

show,MxFitFunctionAlgebra-method
(mxFitFunctionAlgebra), 193

show,MxFitFunctionML-method
(mxFitFunctionML), 198

show,MxFitFunctionR-method
(mxFitFunctionR), 204

show,MxFitFunctionRow-method
(mxFitFunctionRow), 205

show,MxFitFunctionWLS-method
(mxFitFunctionWLS), 207

show,MxFlatModel-method
(MxFlatModel-class), 210

show,MxInterval-method
(MxInterval-class), 218

show,MxMarginalNegativeBinomial-method
(mxMarginalNegativeBinomial),
227

show,MxMarginalPoisson-method
(mxMarginalPoisson), 228

show,MxMatrix-method (MxMatrix-class),
232

show,MxModel-method (MxModel-class), 241
show,MxNonNullData-method

(MxData-class), 145
show,MxPath-method (mxPath), 256
show,MxThreshold-method (mxThreshold),

290
SLSQP, 125
StandMatrix-class (MxMatrix-class), 232
submodels, 338
summary, 98, 171, 191, 199, 208, 282, 349
summary.MxModel, 11, 355
SymmMatrix-class (MxMatrix-class), 232

THard (mxTryHard), 292
tolerance, 294
tr, 359
twin_NA_dot, 361
twinData, 304, 360

umxThresholdMatrix, 291, 292
uniform (rectangular), 218, 294
UnitMatrix-class (MxMatrix-class), 232
univariatePrior, 156

vec2diag, 15, 16, 77, 363
vech, 13, 77, 355, 359, 363, 364–366
vech2full, 77, 364, 364, 366
vechs, 13, 77, 355, 364, 365, 366
vechs2full, 77, 364, 366
vechs<- (vechs), 365

wideData
(LongitudinalOverdispersedCounts),
72

ZeroMatrix-class (MxMatrix-class), 232

	as.statusCode
	BaseCompute-class
	Bollen
	cvectorize
	demoOneFactor
	demoTwoFactor
	diag2vec
	DiscreteBase-class
	dzfData
	dzmData
	dzoData
	eigenvec
	example1
	example2
	expm
	factorExample1
	factorScaleExample1
	factorScaleExample2
	genericFitDependencies,MxBaseFitFunction-method
	HS.ability.data
	imxAddDependency
	imxAutoOptionValue
	imxCheckMatrices
	imxCheckVariables
	imxConDecMatrixSlots
	imxConstraintRelations
	imxConvertIdentifier
	imxConvertLabel
	imxConvertSubstitution
	imxCreateMatrix
	imxDataTypes
	imxDefaultGetSlotDisplayNames
	imxDeparse
	imxDependentModels
	imxDetermineDefaultOptimizer
	imxDmvnorm
	imxEvalByName
	imxExtractMethod
	imxExtractNames
	imxExtractReferences
	imxExtractSlot
	imxFlattenModel
	imxFreezeModel
	imxGenerateLabels
	imxGenerateNamespace
	imxGenericModelBuilder
	imxGenSwift
	imxGentleResize
	imxGetNumThreads
	imxGetSlotDisplayNames
	imxHasConstraint
	imxHasDefinitionVariable
	imxHasNPSOL
	imxHasOpenMP
	imxHasThresholds
	imxHasWLS
	imxIdentifier
	imxIndependentModels
	imxInitModel
	imxIsDefinitionVariable
	imxIsMultilevel
	imxIsPath
	imxIsStateSpace
	imxLocateFunction
	imxLocateIndex
	imxLocateLabel
	imxLog
	imxLookupSymbolTable
	imxModelBuilder
	imxModelTypes
	imxMpiWrap
	imxOriginalMx
	imxPenaltyTypes
	imxPPML
	imxPPML.Test.Battery
	imxPPML.Test.Test
	imxPreprocessModel
	imxReplaceMethod
	imxReplaceModels
	imxReplaceSlot
	imxReportProgress
	imxReservedNames
	imxReverseIdentifier
	imxRobustSE
	imxRowGradients
	imxSameType
	imxSeparatorChar
	imxSfClient
	imxSimpleRAMPredicate
	imxSparseInvert
	imxSquareMatrix
	imxSymmetricMatrix
	imxTypeName
	imxUntitledName
	imxUntitledNumber
	imxUntitledNumberReset
	imxUpdateModelValues
	imxVariableTypes
	imxVerifyMatrix
	imxVerifyModel
	imxVerifyName
	imxVerifyReference
	imxWlsChiSquare
	imxWlsStandardErrors
	jointdata
	latentMultipleRegExample1
	latentMultipleRegExample2
	lazarsfeld
	logm
	LongitudinalOverdispersedCounts
	multiData1
	mxAlgebra
	MxAlgebra-class
	MxAlgebraFormula-class
	mxAlgebraFromString
	mxAlgebraObjective
	mxAutoStart
	mxAvailableOptimizers
	MxBaseExpectation-class
	MxBaseFitFunction-class
	MxBaseNamed-class
	MxBaseObjectiveMetaData-class
	mxBootstrap
	mxBootstrapEval
	mxBootstrapStdizeRAMpaths
	mxBounds
	MxBounds-class
	MxCharOrList-class
	MxCharOrLogical-class
	MxCharOrNumber-class
	mxCheckIdentification
	mxCI
	MxCI-class
	mxCompare
	MxCompare-class
	MxCompute-class
	mxComputeBootstrap
	mxComputeCheckpoint
	mxComputeConfidenceInterval
	mxComputeDefault
	mxComputeEM
	mxComputeGenerateData
	mxComputeGradientDescent
	mxComputeHessianQuality
	mxComputeIterate
	mxComputeJacobian
	mxComputeLoadContext
	mxComputeLoadData
	mxComputeLoadMatrix
	mxComputeLoop
	mxComputeNelderMead
	mxComputeNewtonRaphson
	mxComputeNothing
	mxComputeNumericDeriv
	mxComputeOnce
	mxComputePenaltySearch
	mxComputeReportDeriv
	mxComputeReportExpectation
	mxComputeSequence
	mxComputeSetOriginalStarts
	mxComputeSimAnnealing
	mxComputeStandardError
	mxComputeTryCatch
	mxComputeTryHard
	mxConstraint
	MxConstraint-class
	mxData
	MxData-class
	mxDataDynamic
	MxDataStatic-class
	mxDataWLS
	mxDescribeDataWLS
	MxDirectedGraph-class
	mxEval
	mxEvaluateOnGrid
	MxExpectation-class
	mxExpectationBA81
	mxExpectationGREML
	MxExpectationGREML-class
	mxExpectationHiddenMarkov
	mxExpectationLISREL
	mxExpectationMixture
	mxExpectationNormal
	mxExpectationRAM
	mxExpectationStateSpace
	mxExpectationStateSpaceContinuousTime
	mxFactor
	mxFactorScores
	mxFIMLObjective
	MxFitFunction-class
	mxFitFunctionAlgebra
	mxFitFunctionGREML
	MxFitFunctionGREML-class
	mxFitFunctionML
	mxFitFunctionMultigroup
	mxFitFunctionR
	mxFitFunctionRow
	mxFitFunctionWLS
	MxFlatModel-class
	mxGenerateData
	mxGetExpected
	mxGREMLDataHandler
	MxInterval-class
	mxJiggle
	mxKalmanScores
	MxLISRELModel-class
	mxLISRELObjective
	MxListOrNull-class
	mxMakeNames
	mxMarginalNegativeBinomial
	mxMarginalPoisson
	mxMatrix
	MxMatrix-class
	mxMI
	mxMLObjective
	mxModel
	MxModel-class
	mxModelAverage
	mxNormalQuantiles
	mxOption
	MxOptionalChar-class
	MxOptionalCharOrNumber-class
	MxOptionalDataFrame-class
	MxOptionalDataFrameOrMatrix-class
	MxOptionalInteger-class
	MxOptionalLogical-class
	MxOptionalMatrix-class
	MxOptionalNumeric-class
	mxParametricBootstrap
	mxPath
	mxPearsonSelCov
	mxPenalty
	MxPenalty-class
	mxPenaltyElasticNet
	mxPenaltyLASSO
	mxPenaltyRidge
	mxPenaltySearch
	mxPenaltyZap
	mxPowerSearch
	MxRAMGraph-class
	MxRAMModel-class
	mxRAMObjective
	mxRename
	mxRestore
	mxRetro
	mxRObjective
	mxRowObjective
	mxRun
	mxSave
	mxSE
	mxSetDefaultOptions
	mxSimplify2Array
	mxStandardizeRAMpaths
	mxThreshold
	mxTryHard
	mxTypes
	mxVersion
	MxVersionType-class
	myAutoregressiveData
	myFADataRaw
	myGrowthKnownClassData
	myGrowthMixtureData
	myLongitudinalData
	myRegData
	myRegDataRaw
	myTwinData
	mzfData
	mzmData
	Named-entity
	nhanesDemo
	nuclear_twin_design_data
	numHess1
	numHess2
	omxAllInt
	omxApply
	omxAssignFirstParameters
	omxAugmentDataWithWLSSummary
	omxBrownie
	omxBuildAutoStartModel
	omxCheckCloseEnough
	omxCheckEquals
	omxCheckError
	omxCheckIdentical
	omxCheckNamespace
	omxCheckSetEquals
	omxCheckTrue
	omxCheckWarning
	omxCheckWithinPercentError
	omxConstrainMLThresholds
	omxDefaultComputePlan
	omxDetectCores
	omxGetBootstrapReplications
	omxGetNPSOL
	omxGetParameters
	omxGetRAMDepth
	omxGraphviz
	omxHasDefaultComputePlan
	omxLapply
	omxLocateParameters
	omxLogical
	omxManifestModelByParameterJacobian
	omxMatrixOperations
	omxMnor
	omxModelDeleteData
	omxNameAnonymousParameters
	omxParallelCI
	omxQuotes
	omxRAMtoML
	omxReadGRMBin
	omxRMSEA
	omxSapply
	omxSaturatedModel
	omxSelectRowsAndCols
	omxSetParameters
	omxSymbolTable
	OpenMx
	ordinalTwinData
	Oscillator
	predict.MxModel
	rvectorize
	summary.MxModel
	tr
	twinData
	twin_NA_dot
	vec2diag
	vech
	vech2full
	vechs
	vechs2full
	Index

