Package 'SmartMeterAnalytics'

April 19, 2025

Type Package

Title Methods for Smart Meter Data Analysis

Version 1.1.1

Date 2025-04-18

Description Methods for analysis of energy consumption data (electricity, gas, water) at different data measurement intervals. The package provides feature extraction methods and algorithms to prepare data for data mining and machine learning applications. Deatiled descriptions of the methods and their application can be found in Hopf (2019, ISBN:978-3-86309-669-4) ``Predictive Analytics for Energy Efficiency and Energy Retailing'' <doi:10.20378/irbo-54833> and Hopf et al. (2016) <doi:10.1007/s12525-018-0290-9>

`Enhancing energy efficiency in the residential sector with smart meter data analytics".

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.3.2

Imports plyr, futile.logger, FNN, stinepack, zoo

Suggests stringr, knitr, rmarkdown, ROCR, randomForest, caret, dplyr

NeedsCompilation no

Author Konstantin Hopf [aut, cre] (<https://orcid.org/0000-0002-5452-0672>), Andreas Weigert [ctb], Ilya Kozlovskiy [ctb], Thorsten Staake [ctb] (<https://orcid.org/0000-0003-1399-4676>)

Maintainer Konstantin Hopf <konstantin.hopf@uni-bamberg.de>

Repository CRAN

Date/Publication 2025-04-19 21:32:04 UTC

Contents

calc_features15_consumption .												•	•										2
calc_features30_consumption .			•	•					•			•					•	•	•	•		•	3
calc_features60_consumption .			•	•	•		•	•	•	•		•		•		•	•	•	•	•	•		4

alc_featuresco_consumption	5
alc_featuresda_consumption	6
alc_featureshtnt_consumption2	7
alc_featuresnt_consumption	8
alc_features_daily_multipleTS	9
alc_features_weather	0
ncode_p_val_stars	0
eatures_all_subsets	1
etDay_ISO8601_week	2
etDay_US_week	2
nterpolate_missingReadings	3
aInf_omit	4
ccupancy_cluster	5
repareFeatureSet	5
emove_empty_features	7
eplaceNAsFeatures	8
mote	9
2	20

Index

calc_features15_consumption

Calculates features from 15-min smart meter data

Description

Calculates features from 15-min smart meter data

Usage

```
calc_features15_consumption(
    B,
    rowname = NULL,
    featsCoarserGranularity = FALSE,
    replace_NA_with_defaults = TRUE
)
```

Arguments

В	a vector with length $4*24*7 = 672$ measurements in one day in seven days a week
rowname	the row name of the resulting feature vector
featsCoarserGra	nularity
	are the features of finer granularity levels also to be calculated (TRUE/FALSE)
replace_NA_with	_defaults
	replaces missing (NA) or infinite values that may appear during calculation with
	default values

Value

a data.frame with the calculated features as columns and a specified rowname, if given

Author(s)

Konstantin Hopf <konstantin.hopf@uni-bamberg.de>

References

Hopf, K. (2019). Predictive Analytics for Energy Efficiency and Energy Retailing (1st ed.). Bamberg: University of Bamberg. doi:10.20378/irbo54833

Hopf, K., Sodenkamp, M., Kozlovskiy, I., & Staake, T. (2014). Feature extraction and filtering for household classification based on smart electricity meter data. Computer Science-Research and Development, (31) 3, 141–148. doi:10.1007/s0045001402944

Hopf, K., Sodenkamp, M., & Staake, T. (2018). Enhancing energy efficiency in the residential sector with smart meter data analytics. Electronic Markets, 28(4). doi:10.1007/s1252501802909

Examples

```
# Create a random time series of 15-minute smart meter data (672 measurements per week)
smd <- runif(n=672, min=0, max=2)
# Calculate the smart meter data features
calc_features15_consumption(smd)</pre>
```

calc_features30_consumption Calculates features from 30-min smart meter data

Description

Calculates features from 30-min smart meter data

Usage

```
calc_features30_consumption(
    B,
    rowname = NULL,
    featsCoarserGranularity = FALSE,
    replace_NA_with_defaults = TRUE
)
```

Arguments

В	a vector with length $2*24*7 = 336$ measurements in one day in seven days a week			
rowname	the row name of the resulting feature vector			
featsCoarserGranularity				
	are the features of finer granularity levels also to be calculated (TRUE/FALSE)			
replace_NA_with	n_defaults			
	replaces missing (NA) or infinite values that may appear during calculation with			
	default values			

Value

a data.frame with the calculated features as columns and a specified rowname, if given

Author(s)

Konstantin Hopf <konstantin.hopf@uni-bamberg.de>

References

Hopf, K. (2019). Predictive Analytics for Energy Efficiency and Energy Retailing (1st ed.). Bamberg: University of Bamberg. doi:10.20378/irbo54833

Hopf, K., Sodenkamp, M., Kozlovskiy, I., & Staake, T. (2014). Feature extraction and filtering for household classification based on smart electricity meter data. Computer Science-Research and Development, (31) 3, 141–148. doi:10.1007/s0045001402944

Hopf, K., Sodenkamp, M., & Staake, T. (2018). Enhancing energy efficiency in the residential sector with smart meter data analytics. Electronic Markets, 28(4). doi:10.1007/s1252501802909

Beckel, C., Sadamori, L., Staake, T., & Santini, S. (2014). Revealing household characteristics from smart meter data. Energy, 78, 397–410. doi:10.1016/j.energy.2014.10.025

Examples

Create a random time series of 30-minute smart meter data (336 measurements per week)
smd <- runif(n=336, min=0, max=2)
Calculate the smart meter data features
calc_features30_consumption(smd)</pre>

calc_features60_consumption

Calculates features from 15-min smart meter data

Description

Calculates features from 15-min smart meter data

Usage

```
calc_features60_consumption(B, rowname = NULL, replace_NA_with_defaults = TRUE)
```

Arguments

B a vector with length 24*7 = 168 measurements in one day in seven days a week rowname the row name of the resulting feature vector replace_NA_with_defaults replaces missing (NA) or infinite values that may appear during calculation with default values

Value

a data.frame with the calculated features as columns and a specified rowname, if given the row name of the resulting feature vector

Author(s)

Konstantin Hopf <konstantin.hopf@uni-bamberg.de>

Examples

```
# Create a random time series of 60-minute smart meter data (168 measurements per week)
smd <- runif(n=168, min=0, max=2)
# Calculate the smart meter data features
calc_features60_consumption(smd)</pre>
```

calc_featuresco_consumption

Calculates consumption features from weekly consumption only

Description

Calculates consumption features from weekly consumption only

Usage

```
calc_featuresco_consumption(B, rowname = NULL)
```

Arguments

В	a vector of any length with measurements
rowname	the row name of the resulting feature vector

Value

a data.frame with the calculated features as columns and a specified rowname, if given

Author(s)

Konstantin Hopf <konstantin.hopf@uni-bamberg.de>

References

Hopf, K. (2019). Predictive Analytics for Energy Efficiency and Energy Retailing (1st ed.). Bamberg: University of Bamberg. doi:10.20378/irbo54833

Hopf, K., Sodenkamp, M., Kozlovskiy, I., & Staake, T. (2014). Feature extraction and filtering for household classification based on smart electricity meter data. Computer Science-Research and Development, (31) 3, 141–148. doi:10.1007/s0045001402944

Hopf, K., Sodenkamp, M., & Staake, T. (2018). Enhancing energy efficiency in the residential sector with smart meter data analytics. Electronic Markets, 28(4). doi:10.1007/s1252501802909

calc_featuresda_consumption

Calculates consumption features from daily smart meter data

Description

Calculates consumption features from daily smart meter data

Usage

```
calc_featuresda_consumption(
    B,
    rowname = NULL,
    featsCoarserGranularity = FALSE,
    replace_NA_with_defaults = TRUE
)
```

Arguments

В	a vector with length 7 measurements			
rowname	the row name of the resulting feature vector			
featsCoarserGranularity				
	are the features of finer granularity levels also to be calculated (TRUE/FALSE)			
replace_NA_with_defaults				
	replaces missing (NA) or infinite values that may appear during calculation with			
	default values			

Value

a data.frame with the calculated features as columns and a specified rowname, if given

Author(s)

Konstantin Hopf <konstantin.hopf@uni-bamberg.de>

References

Hopf, K. (2019). Predictive Analytics for Energy Efficiency and Energy Retailing (1st ed.). Bamberg: University of Bamberg. doi:10.20378/irbo54833

calc_featureshtnt_consumption2

Calculates consumption features from daily (HT / NT) smart meter data

Description

The division in HT / NT is done from the input smart meter data

Usage

```
calc_featureshtnt_consumption2(
  HTCons,
  NTCons,
  rowname = NULL,
  featsCoarserGranularity = FALSE
)
```

Arguments

HTCons	a vector with 7 measurements for HT consumption in one week (beginning with monday)
NTCons	a vector with 7 measurements for NT consumption in one week (beginning with monday)
rowname	the row name of the resulting feature vector
featsCoarserGra	nularity
	are the features of finer granularity levels also to be calculated (T/FALSE)

Author(s)

Konstantin Hopf <konstantin.hopf@uni-bamberg.de>

References

Hopf, K. (2019). Predictive Analytics for Energy Efficiency and Energy Retailing (1st ed.). Bamberg: University of Bamberg. doi:10.20378/irbo54833

```
calc_featuresnt_consumption
```

Calculates consumption features from daily (HT / NT) smart meter data

Description

The division in HT / NT is done from the input smart meter data

Usage

```
calc_featuresnt_consumption(
    B,
    rowname = NULL,
    featsCoarserGranularity = FALSE,
    replace_NA_with_defaults = TRUE
)
```

Arguments

В	a vector with length $2*24*7 = 336$ measurements in one day in seven days a week				
rowname	the row name of the resulting feature vector				
featsCoarserGranularity					
	are the features of finer granularity levels also to be calculated (TRUE/FALSE)				
replace_NA_with_defaults					
	an optional boolean argument specifying if missing values will be replaced with standard values (i.e., zero values)				

Details

HT consumption is during the time 07:00-22:00

Author(s)

Konstantin Hopf <konstantin.hopf@uni-bamberg.de>

References

Hopf, K. (2019). Predictive Analytics for Energy Efficiency and Energy Retailing (1st ed.). Bamberg: University of Bamberg. doi:10.20378/irbo54833

Hopf, K., Sodenkamp, M., Kozlovskiy, I., & Staake, T. (2014). Feature extraction and filtering for household classification based on smart electricity meter data. Computer Science-Research and Development, (31) 3, 141–148. doi:10.1007/s0045001402944

Hopf, K., Sodenkamp, M., & Staake, T. (2018). Enhancing energy efficiency in the residential sector with smart meter data analytics. Electronic Markets, 28(4). doi:10.1007/s1252501802909

calc_features_daily_multipleTS

Calculates feature from multiple time series data vectors

Description

This function is intended to compute features for daily consumption data from electricity, gas, and water consumption time series data.

Usage

```
calc_features_daily_multipleTS(
  el = NULL,
  gas = NULL,
  wa = NULL,
  rowname = NULL,
  cor.useNA = "complete.obs"
)
```

Arguments

el	electricity consumption
gas	gas consumption
wa	water consumption
rowname	the name of the consumer (e.g., a household ID in a study database)
cor.useNA	an optional character string for the cor function, specifying a method for com- puting covariances in the presence of missing values.

Value

a data frame with feature values as columns, named by 'rowname'

Author(s)

Konstantin Hopf <konstantin.hopf@uni-bamberg.de>

References

Hopf, K. (2019). Predictive Analytics for Energy Efficiency and Energy Retailing (1st ed.). Bamberg: University of Bamberg. doi:10.20378/irbo54833

calc_features_weather Calculates features from one environmental time-series variable and smart meter data

Description

Calculates features from one environmental time-series variable and smart meter data

Usage

calc_features_weather(SMD, WEATHER, rowname = NULL)

Arguments

SMD	the load trace for one week (vector with 672 or 336 elements)
WEATHER	weather observations (e.g. temperature) in 30-minute readings (vector with 336 elements)
rowname	the row name of the current data point

Author(s)

Konstantin Hopf <konstantin.hopf@uni-bamberg.de>, Ilya Kozlovslkiy

References

Hopf, K. (2019). Predictive Analytics for Energy Efficiency and Energy Retailing (1st ed.). Bamberg: University of Bamberg. doi:10.20378/irbo54833

Hopf, K., Sodenkamp, M., Kozlovskiy, I., & Staake, T. (2014). Feature extraction and filtering for household classification based on smart electricity meter data. Computer Science-Research and Development, (31) 3, 141–148. doi:10.1007/s0045001402944

Hopf, K., Sodenkamp, M., & Staake, T. (2018). Enhancing energy efficiency in the residential sector with smart meter data analytics. Electronic Markets, 28(4). doi:10.1007/s1252501802909

encode_p_val_stars	Encodes p-values with a star rating according to the Significance
	code:

Description

'.' for p-value < 0.1, '*' for < 0.05, '**' for < 0.01, '***' for < 0.001

Usage

```
encode_p_val_stars(pval)
```

features_all_subsets

Arguments

pval the p-value

Value

character with the encoding

Author(s)

Konstantin Hopf <konstantin.hopf@uni-bamberg.de>

features_all_subsets Creates a set of all combinations of features

Description

Creates a set of all combinations of features

Usage

```
features_all_subsets(set)
```

Arguments

set vector of available festures that are premutated

Value

a list of subsets of the input vector

Author(s)

Konstantin Hopf <konstantin.hopf@uni-bamberg.de>, Ilya Kozlovskiy

Examples

```
features_all_subsets(c("A", "B", "C"))
```

getDay_IS08601_week Retrieves the date of the monday in a ISO8601 week-string

Description

Example date formats defined by ISO 8601: * Single days are written in yyy-mm-dd (y: year, m: month, d: day); e.g., 2016-07-19 * Weeks are written in yyyy-Www; e.g., 2016-W29

Usage

```
getDay_IS08601_week(
    theweek,
    day = c("Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun")
)
```

Arguments

theweek	the string with the week name
day	the weekday that shall be returned

Details

The function uses format und as.Date internally and can therefore not handle ISO8601 week formats. Therefore, a workaround is implemented that can lead to suspicious behavior in future versions

Value

the date of the weekday in the given week

Author(s)

Konstantin Hopf <konstantin.hopf@uni-bamberg.de>

getDay_US_week	Retrieves the date of the monday in a US week-string (as implemented
	by R as.Date)

Description

According to date formats defined by ISO 8601: * Single days are written in yyy-mm-dd (y: year, m: month, d: day); e.g., 2016-07-19 * Weeks are written in yyyy-WUww; e.g., 2016-WU29 (typically with the first Sunday of the year as day 1 of week 1)

Usage

```
getDay_US_week(
   theweek,
   day = c("Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun")
)
```

Arguments

theweek	the string with the week name
day	the weekday that shall be returned

Value

the date of the weekday in the given week

Author(s)

Konstantin Hopf <konstantin.hopf@uni-bamberg.de>

interpolate_missingReadings

Interpolate missing readings

Description

Interpolate missing readings

Usage

```
interpolate_missingReadings(timeseries, option = "linear", ...)
```

Arguments

timeseries	Numeric Vector (vector) or Time Series (ts) object in which missing values shall be replaced
option	Algorithm to be used. Accepts the following input:
	• "linear" - for linear interpolation using approx
	• "spline" - for spline interpolation using spline
	• "stine" - for Stineman interpolation using stinterp
	Additional parameters to be passed through to approx or spline interpolation functions

Details

Missing values get replaced by values of a approx, spline or stinterp interpolation.

Value

Vector (vector) or Time Series (ts) object (dependent on given input at parameter x)

Author(s)

The implementation is adopted from the package imputeTS, function na.interpolate (https://github.com/SteffenMoritz/impute

naInf_omit

Removes the rows with NA or Inf values

Description

Cleans up a data.frame or matrix which is useful for cases wehere you need complete datasets

Usage

naInf_omit(V)

Arguments

V A data.frame or matrix which has to be cleaned

Value

A cleaned version of data.frame or matrix

Author(s)

Konstantin Hopf <konstantin.hopf@uni-bamberg.de>

See Also

replaceNAsFeatures, remove_empty_features

occupancy_cluster Determines two clusters of high and low consumption times (e.g., nonocupancy during holidays)

Description

Determines two clusters of high and low consumption times (e.g., non-ocupancy during holidays)

Usage

```
occupancy_cluster(consumption, n_days_check = 4, sds_between_clusters = 1.5)
```

Arguments

consumptionthe consumption time seriesn_days_checknumber of consecutive days that should be considered as a minimal clustersds_between_clustersthe multiples of standatd deviation that must be at least between the cluster centers (decimal number)

Value

list with cluster assignments and the k-Means clustering model

Author(s)

Konstantin Hopf <konstantin.hopf@uni-bamberg.de>

prepareFeatureSet Compiles a list of features from energy consumption data

Description

Returns a vector of feature names that can be calculated by methods in the *SmartMeterAnalytics* package obtains the feature set according

Usage

```
prepareFeatureSet(
  features.granularity = NA,
  features.w_adj = FALSE,
  features.anonymized = FALSE,
  features.categorical = FALSE,
  features.geo = "osm-v1",
  features.temperature = TRUE,
  features.weather = TRUE,
  features.neighborhood = FALSE
)
```

Arguments

features.granularity

Character: The granularity of the input data, either "15-min" (only 15-min features), "30-min" (only 30-minute features), "all_30min_to_week" (all features on daily, weekly, hourly, ..., up to 30-min data), "all_15_week" (all up to 15-min dara), "week" (only the consumption of one week as a single feature).

features.w_adj Boolean: are the features to be weather adjusted with DiD-Class (NOT IMPLE-MENTED YET!)

features.anonymized

Boolean: are anonymized geographic features used (NOT IMPLEMENTED YET!)

features.categorical

Boolean: use categorical features additionally (if only numeric features are used)

features.geo Character: Version of the geographic feature set (either "none", "osm-v1", "osm-v2")

features.temperature

Boolean, if features for the temperature should be included

features.weather

Boolean, if other weather features should be included

features.neighborhood

Boolean, if features for the neighborhood should be included

Value

Character vector

Author(s)

Konstantin Hopf <konstantin.hopf@uni-bamberg.de>

References

Hopf, K. (2019). Predictive Analytics for Energy Efficiency and Energy Retailing (1st ed.). Bamberg: University of Bamberg. doi:10.20378/irbo54833

Hopf, K., Sodenkamp, M., Kozlovskiy, I., & Staake, T. (2014). Feature extraction and filtering for household classification based on smart electricity meter data. Computer Science-Research and Development, (31) 3, 141–148. doi:10.1007/s0045001402944

Hopf, K., Sodenkamp, M., & Staake, T. (2018). Enhancing energy efficiency in the residential sector with smart meter data analytics. Electronic Markets, 28(4). doi:10.1007/s1252501802909

Beckel, C., Sadamori, L., Staake, T., & Santini, S. (2014). Revealing household characteristics from smart meter data. Energy, 78, 397–410. doi:10.1016/j.energy.2014.10.025

remove_empty_features Removes variables with no necessary information from a data.frame

Description

Removes variable names from a list of variables that contain only, or a large portion of, NA values or have zero bandwidth (if they are numeric) and returns the variable names.

Usage

```
remove_empty_features(
  all.features,
  dataset,
 percentage_NA_allowed = NA,
 bandwidth = (.Machine$double.eps^0.5),
  verbose = FALSE
)
```

Arguments

all.features	a character vector with all column names of dataset that should be considered by the function
dataset the dataset as a data.frame percentage_NA_allowed	
	the percentage of missing values per vector that should be allowed without re- moving the feature. All features with NA values that are higher than this level are excluded.
bandwidth	The length of the interval that values of variable must exceed to be not removed. By default, half of .Machine\$double.eps is used.
verbose	boolean if debug messages should be printed when a variable is removed from the list (uses flog.debug)

Details

The function checks all given column names for the portion of NA values. If the number of NA of Inf exceeds percentage_NA_allowed, the column name is removed from the variable set. Besides, all numeric variables are checked if they have almost zero bandwidth, are removed.

Value

a vector of variable names that are not considered as empty

Author(s)

Konstantin Hopf <konstantin.hopf@uni-bamberg.de>

See Also

naInf_omit, replaceNAsFeatures

replaceNAsFeatures Replaces NA values with a given ones

Description

Taks a data.frame and replaces all NA values with a certain value.

Usage

```
replaceNAsFeatures(indata, features, replacement = 0)
```

Arguments

indata	a data.frame
features	a vector of variable names (must be colum names of indata that are to be used for $\ensuremath{NA}\xspace$ -replacement
replacement	the alternative value, NA values should be replaced with, zero by default

Value

the modified data.frame with replaced values

Author(s)

Konstantin Hopf <konstantin.hopf@uni-bamberg.de>

See Also

naInf_omit, remove_empty_features

smote

Description

Performs oversampling by creating new instances.

Usage

```
smote(
   Variables,
   Classes,
   subset_use = NULL,
   k = 5,
   use_nearest = TRUE,
   proportions = 0.9,
   equalise_with_undersampling = FALSE,
   safe = FALSE
)
```

Arguments

Variables	the data.frame of independent variables that should be used to create new in- stances
Classes	the class labels in the prediction problem
<pre>subset_use</pre>	a specific subset only is used for the oversampling. If NULL, everything is used.
k	the number of neigbours for generation
use_nearest	should only the nearest neighbours be used? (very slow)
proportions	to which proportion (of the biggest class) should the classes be equalized
equalise_with_undersampling	
	should additional undersampling be performed?
safe	should a safe version of SMOTE be used?

Details

SMOTE is used to generate synthetic datapoints of a smaller class, for example to overcome the problem of imbalanced classes in classification.

Value

a list containing new independent variables data.frame and new class labels

Author(s)

Ilya Kozlovskiy, Konstantin Hopf <konstantin.hopf@uni-bamberg.de>

Index

approx, 13 calc_features15_consumption, 2 calc_features30_consumption, 3 calc_features60_consumption, 4 calc_features_daily_multipleTS,9 calc_features_weather, 10 calc_featuresco_consumption, 5 calc_featuresda_consumption, 6 calc_featureshtnt_consumption2,7 calc_featuresnt_consumption, 8cor, 9 data.frame, 14, 17-19 encode_p_val_stars, 10 features_all_subsets, 11 flog.debug, 17 getDay_ISO8601_week, 12 getDay_US_week, 12 Inf, *14*, *17* interpolate_missingReadings, 13 matrix, 14 NA, 14, 17, 18 naInf_omit, 14, 18 NULL, 19 occupancy_cluster, 15 prepareFeatureSet, 15 remove_empty_features, 14, 17, 18 replaceNAsFeatures, 14, 18, 18 smote, 19 spline, 13 stinterp, 13

ts, *13*, *14*

vector, 13, 14