Package 'SpPOP'

January 20, 2025

Type Package

Title Generation of Spatial Population under Different Levels of Relationships among Variables

Version 0.1.0

Author Nobin Chandra Paul, Anil Rai, Ankur Biswas, Tauqueer Ahmad and Prachi Misra Sahoo

Maintainer Nobin Chandra Paul<nobin.niasm@outlook.com>

Description The developed package can be used to generate a spatial population for different levels of relationships among the dependent and auxiliary variables along with spatially varying model parameters. A spatial layout is designed as a [0,k-1]x[0,k-1] square region on which observations are collected at (k x k) lattice points with a unit distance between any two neighbouring points along the horizontal and vertical axes. For method details see Chao, Liu., Chuanhua, Wei. and Yunan, Su. (2018).<doi:10.1080/10485252.2018.1499907>.
The generated spatial population can be utilized in Geographically Weighted Regression model based analysis for studying the spatially varying relationships among the variables. Furthermore, various statistical analysis can be performed on this spatially generated data.

Imports stats, qpdf, numbers

License GPL (>= 2.0)

Encoding UTF-8

RoxygenNote 7.2.3

Suggests rmarkdown, knitr

VignetteBuilder knitr

NeedsCompilation no

Repository CRAN

Date/Publication 2023-04-24 10:00:10 UTC

Contents

SpPOP_linear1		2
SpPOP_linear2		3
SpPOP_linear3		4
SpPOP_linear4		5
SpPOP_linear5		6
SpPOP_nonlinear1	· · · · · · · · · · · · · · · · · · ·	7
SpPOP_nonlinear2		8
SpPOP_nonlinear3		9
SpPOP_nonlinear4		0
SpPOP_nonlinear5		1
		_
	1	2

Index

SpPOP_linear1	Generation of spatial population along with spatially varying model parameters generated based on linear function of latitudes and longi- tudes
	tudes

Description

Generation of spatial population along with spatially varying model parameters generated based on linear function of latitudes and longitudes

Usage

SpPOP_linear1(N, k, xlat, ylong)

Arguments

Ν	integer; population size i.e. N= (k * k)
k	integer
xlat	numeric vector
ylong	numeric vector

Value

The developed function returns a dataframe of spatially generated population consist of simulated response variable (i.e. Y) along with their spatial coordinates, spatially varying coefficients and one explanatory variable (i.e. X). The auxiliary variable has been generated following U(0,1) and the regression coefficients are generated as linear function of latitudes and longitudes.

References

1. Wang, Ning., Mei, Chang-Lin. and Yan, Xiao-Dong. (2008). Local Linear Estimation of Spatially Varying Coefficient Models: An Improvement on the Geographically Weighted Regression Technique. Environment and Planning A: Economy and Space, 40(4), 986-1005.<DOI:10.1068/a3941>.

2. Chao, Liu., Chuanhua, Wei. and Yunan, Su. (2018). Geographically weighted regression modelassisted estimation in survey sampling. Journal of Nonparametric Statistics. <DOI:10.1080/10485252.2018.1499907>.

Examples

```
sp_linear1<-SpPOP_linear1(100,10,c(1:10),c(1:10))</pre>
```

SpPOP_linear2	Generation of spatial population includes multiple auxiliary variables
	along with spatially varying model parameters generated based on
	linear function of latitudes and longitudes

Description

Generation of spatial population includes multiple auxiliary variables along with spatially varying model parameters generated based on linear function of latitudes and longitudes

Usage

SpPOP_linear2(N, k, xlat, ylong)

Arguments

Ν	integer; population size i.e. $N=(k * k)$
k	integer
xlat	numeric vector
ylong	numeric vector

Value

The developed function returns a dataframe of spatially generated population consist of simulated response variable (i.e. Y) along with their spatial coordinates, spatially varying coefficients and three explanatory variables (i.e. X1, X2, and X3). The auxiliary variables have been generated independently from uniform distribution U(0,1) and the regression coefficients are generated as linear function of latitudes and longitudes.

References

1. Wang, Ning., Mei, Chang-Lin. and Yan, Xiao-Dong. (2008). Local Linear Estimation of Spatially Varying Coefficient Models: An Improvement on the Geographically Weighted Regression Technique. Environment and Planning A: Economy and Space, 40(4), 986-1005.<DOI:10.1068/a3941>.

2. Chao, Liu., Chuanhua, Wei. and Yunan, Su. (2018). Geographically weighted regression model-assisted estimation in survey sampling. Journal of Nonparametric Statistics. <DOI:10.1080/10485252.2018.1499907>.

Examples

```
sp_linear2<-SpPOP_linear2(100,10,c(1:10),c(1:10))</pre>
```

SpPOP_linear3	Generation of spatial population along with spatially varying model
	parameters generated based on linear function of latitudes and longi-
	tudes

Description

Generation of spatial population along with spatially varying model parameters generated based on linear function of latitudes and longitudes

Usage

SpPOP_linear3(N, k, xlat, ylong)

Arguments

Ν	integer; population size i.e. N= (k * k)
k	integer
xlat	numeric vector
ylong	numeric vector

Value

The developed function returns a dataframe of spatially generated population consist of simulated response variable (i.e. Y) along with their spatial coordinates, spatially varying coefficients and one explanatory variable (i.e. X). The auxiliary variable has been generated following U(0,2) and the regression coefficients are generated as linear function of locations.

References

1. Wang, Ning., Mei, Chang-Lin. and Yan, Xiao-Dong. (2008). Local Linear Estimation of Spatially Varying Coefficient Models: An Improvement on the Geographically Weighted Regression Technique. Environment and Planning A: Economy and Space, 40(4), 986-1005.<DOI:10.1068/a3941>.

2. Chao, Liu., Chuanhua, Wei. and Yunan, Su. (2018). Geographically weighted regression modelassisted estimation in survey sampling. Journal of Nonparametric Statistics. <DOI:10.1080/10485252.2018.1499907>.

Examples

sp_linear3<-SpPOP_linear3(100,10,c(1:10),c(1:10))</pre>

SpPOP_linear4 Generation of spatial population along with spatially varying model parameters generated based on linear function of latitudes and longitudes

Description

Generation of spatial population along with spatially varying model parameters generated based on linear function of latitudes and longitudes

Usage

SpPOP_linear4(N, k, xlat, ylong)

Arguments

Ν	integer; population size i.e. $N=(k * k)$
k	integer
xlat	numeric vector
ylong	numeric vector

Value

The developed function returns a dataframe of spatially generated population consist of simulated response variable (i.e. Y) along with their spatial coordinates, spatially varying coefficients and one explanatory variable (i.e. X). The auxiliary variable has been generated following U(0,2) and the regression coefficients are generated as linear function of locations.

References

1. Wang, Ning., Mei, Chang-Lin. and Yan, Xiao-Dong. (2008). Local Linear Estimation of Spatially Varying Coefficient Models: An Improvement on the Geographically Weighted Regression Technique. Environment and Planning A: Economy and Space, 40(4), 986-1005.<DOI:10.1068/a3941>.

2. Chao, Liu., Chuanhua, Wei. and Yunan, Su. (2018). Geographically weighted regression modelassisted estimation in survey sampling. Journal of Nonparametric Statistics. <DOI:10.1080/10485252.2018.1499907>.

Examples

sp_linear4<-SpPOP_linear4(100,10,c(1:10),c(1:10))</pre>

SpPOP_linear5

Generation of spatial population along with spatially varying model parameters generated based on linear function of latitudes and longitudes

Description

Generation of spatial population along with spatially varying model parameters generated based on linear function of latitudes and longitudes

Usage

SpPOP_linear5(N, k, xlat, ylong)

Arguments

Ν	integer; population size i.e. N= (k * k)
k	integer
xlat	numeric vector
ylong	numeric vector

Value

The developed function returns a dataframe of spatially generated population consist of simulated response variable (i.e. Y) along with their spatial coordinates, spatially varying coefficients and two explanatory variables (i.e. X1 and X2). The auxiliary variables are independently drawn from the uniform distribution U(0,2) and normal distribution N(1,1) and the regression coefficients are generated as linear function of locations.

References

1. Wang, Ning., Mei, Chang-Lin. and Yan, Xiao-Dong. (2008). Local Linear Estimation of Spatially Varying Coefficient Models: An Improvement on the Geographically Weighted Regression Technique. Environment and Planning A: Economy and Space, 40(4), 986-1005.<DOI:10.1068/a3941>.

2. Chao, Liu., Chuanhua, Wei. and Yunan, Su. (2018). Geographically weighted regression modelassisted estimation in survey sampling. Journal of Nonparametric Statistics. <DOI:10.1080/10485252.2018.1499907>.

Examples

sp_linear5<-SpPOP_linear5(100,10,c(1:10),c(1:10))</pre>

SpPOP_nonlinear1Generation of spatial population along with spatially varying model
parameters generated based on non-linear function of latitudes and
longitudes

Description

Generation of spatial population along with spatially varying model parameters generated based on non-linear function of latitudes and longitudes

Usage

SpPOP_nonlinear1(N, k, xlat, ylong)

Arguments

Ν	integer; population size i.e. $N=(k * k)$
k	integer
xlat	numeric vector
ylong	numeric vector

Value

The developed function returns a dataframe of spatially generated population consist of simulated response variable (i.e. Y) along with their spatial coordinates, spatially varying coefficients and one explanatory variable (i.e. X). The auxiliary variable has been generated following U(0,1) and the regression coefficients are generated as non-linear function of latitudes and longitudes.

References

1. Wang, Ning., Mei, Chang-Lin. and Yan, Xiao-Dong. (2008). Local Linear Estimation of Spatially Varying Coefficient Models: An Improvement on the Geographically Weighted Regression Technique. Environment and Planning A: Economy and Space, 40(4), 986-1005.<DOI:10.1068/a3941>.

2. Chao, Liu., Chuanhua, Wei. and Yunan, Su. (2018). Geographically weighted regression modelassisted estimation in survey sampling. Journal of Nonparametric Statistics. <DOI:10.1080/10485252.2018.1499907>.

Examples

sp_nonlinear1<-SpPOP_nonlinear1(100,10,c(1:10),c(1:10))</pre>

SpPOP_nonlinear2

Generation of spatial population along with spatially varying model parameters generated based on non-linear function of latitudes and longitudes

Description

Generation of spatial population along with spatially varying model parameters generated based on non-linear function of latitudes and longitudes

Usage

SpPOP_nonlinear2(N, k, xlat, ylong)

Arguments

Ν	integer; population size i.e. N= (k * k)
k	integer
xlat	numeric vector
ylong	numeric vector

Value

The developed function returns a dataframe of spatially generated population consist of simulated response variable (i.e. Y) along with their spatial coordinates, spatially varying coefficients and one explanatory variable (i.e. X). The auxiliary variable has been generated following U(0,1) and the regression coefficients are generated as non-linear function of latitudes and longitudes.

References

1. Wang, Ning., Mei, Chang-Lin. and Yan, Xiao-Dong. (2008). Local Linear Estimation of Spatially Varying Coefficient Models: An Improvement on the Geographically Weighted Regression Technique. Environment and Planning A: Economy and Space, 40(4), 986-1005.<DOI:10.1068/a3941>.

2. Chao, Liu., Chuanhua, Wei. and Yunan, Su. (2018). Geographically weighted regression modelassisted estimation in survey sampling. Journal of Nonparametric Statistics. <DOI:10.1080/10485252.2018.1499907>.

Examples

sp_nonlinear2<-SpPOP_nonlinear2(100,10,c(1:10),c(1:10))</pre>

SpPOP_nonlinear3	Generation of spatial population includes multiple auxiliary variables
	along with spatially varying model parameters generated based on
	non-linear function of latitudes and longitudes

Description

Generation of spatial population includes multiple auxiliary variables along with spatially varying model parameters generated based on non-linear function of latitudes and longitudes

Usage

```
SpPOP_nonlinear3(N, k, xlat, ylong)
```

Arguments

Ν	integer; population size i.e. $N = (k * k)$
k	integer
xlat	numeric vector
ylong	numeric vector

Value

The developed function returns a dataframe of spatially generated population consist of simulated response variable (i.e. Y) along with their spatial coordinates, spatially varying coefficients and one explanatory variable (i.e. X1, X2, and X3). The auxiliary variables has been generated independently from uniform distribution U(0,1) and the regression coefficients are generated as non-linear function of latitudes and longitudes.

References

1. Wang, Ning., Mei, Chang-Lin. and Yan, Xiao-Dong. (2008). Local Linear Estimation of Spatially Varying Coefficient Models: An Improvement on the Geographically Weighted Regression Technique. Environment and Planning A: Economy and Space, 40(4), 986-1005.<DOI:10.1068/a3941>.

2. Chao, Liu., Chuanhua, Wei. and Yunan, Su. (2018). Geographically weighted regression modelassisted estimation in survey sampling. Journal of Nonparametric Statistics. <DOI:10.1080/10485252.2018.1499907>.

Examples

sp_nonlinear3<-SpPOP_nonlinear3(100,10,c(1:10),c(1:10))</pre>

SpPOP_nonlinear4

Generation of spatial population along with spatially varying model parameters generated based on non-linear function of latitudes and longitudes

Description

Generation of spatial population along with spatially varying model parameters generated based on non-linear function of latitudes and longitudes

Usage

```
SpPOP_nonlinear4(N, k, xlat, ylong)
```

Arguments

Ν	integer; population size i.e. N= (k * k)
k	integer
xlat	numeric vector
ylong	numeric vector

Value

The developed function returns a dataframe of spatially generated population consist of simulated response variable (i.e. Y) along with their spatial coordinates, spatially varying coefficients and one explanatory variable (i.e. X). The auxiliary variable has been generated following U(0,2) and the regression coefficients are generated as non-linear function of latitudes and longitudes.

References

1. Wang, Ning., Mei, Chang-Lin. and Yan, Xiao-Dong. (2008). Local Linear Estimation of Spatially Varying Coefficient Models: An Improvement on the Geographically Weighted Regression Technique. Environment and Planning A: Economy and Space, 40(4), 986-1005.<DOI:10.1068/a3941>.

2. Chao, Liu., Chuanhua, Wei. and Yunan, Su. (2018). Geographically weighted regression modelassisted estimation in survey sampling. Journal of Nonparametric Statistics. <DOI:10.1080/10485252.2018.1499907>.

Examples

sp_nonlinear4<-SpPOP_nonlinear4(100,10,c(1:10),c(1:10))</pre>

SpPOP_nonlinear5	Generation of spatial population along with spatially varying model
	parameters generated based on non-linear function of latitudes and longitudes

Description

Generation of spatial population along with spatially varying model parameters generated based on non-linear function of latitudes and longitudes

Usage

SpPOP_nonlinear5(N, k, xlat, ylong)

Arguments

Ν	integer; population size i.e. $N=(k * k)$
k	integer
xlat	numeric vector
ylong	numeric vector

Value

The developed function returns a dataframe of spatially generated population consist of simulated response variable (i.e. Y) along with their spatial coordinates, spatially varying coefficients and two explanatory variables (i.e. X1 and X2). The auxiliary variables are drawn independently from uniform distribution U(0,2) and normal distribution N(1,1) and the regression coefficients are generated as non-linear function of latitudes and longitudes.

References

1. Wang, Ning., Mei, Chang-Lin. and Yan, Xiao-Dong. (2008). Local Linear Estimation of Spatially Varying Coefficient Models: An Improvement on the Geographically Weighted Regression Technique. Environment and Planning A: Economy and Space, 40(4), 986-1005.<DOI:10.1068/a3941>.

2. Chao, Liu., Chuanhua, Wei. and Yunan, Su. (2018). Geographically weighted regression modelassisted estimation in survey sampling. Journal of Nonparametric Statistics. <DOI:10.1080/10485252.2018.1499907>.

Examples

```
sp_nonlinear5<-SpPOP_nonlinear5(100,10,c(1:10),c(1:10))</pre>
```

Index

SpPOP_linear1, 2 SpPOP_linear2, 3 SpPOP_linear3, 4 SpPOP_linear4, 5 SpPOP_linear5, 6 SpPOP_nonlinear1, 7 SpPOP_nonlinear2, 8 SpPOP_nonlinear3, 9 SpPOP_nonlinear4, 10 SpPOP_nonlinear5, 11