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bamlss-package Bayesian Additive Models for Location Scale and Shape (and Beyond)

Description

The bamlss package is a general tool for complex Bayesian regression modeling with structured
additive predictors based on Markov chain Monte Carlo simulation. The design of this package
substantially focuses on maximum flexibility and easy integration of new code and/or standalone
systems. The package makes heavy use of mgcv infrastructures to build up all necessary model ma-
trices and information from which it is relatively easy for the user to construct estimation algorithms
or interfaces to existing software packages. The package can also be seen as an harmonized frame-
work for regression modeling since it does not restrict to any type of problem. The main function in
this package is bamlss, which is a wrapper function that calls optimizer and/or sampling functions
for fitting Bayesian additive models for location scale and shape (and beyond). These model fitting
functions can be exchanged by the user. Moreover, the package contains numerous functions for
creating post-estimation results like summary statistics and effect plots etc.

Author(s)

Nikolaus Umlauf, Nadja Klein, Achim Zeileis.

References

Umlauf N, Klein N, Zeileis A (2019). BAMLSS: Bayesian Additive Models for Location, Scale
and Shape (and Beyond). Journal of Computational and Graphical Statistics, 27(3), 612–627.
doi:10.1080/10618600.2017.1407325

Umlauf N, Klein N, Simon T, Zeileis A (2021). bamlss: A Lego Toolbox for Flexible Bayesian
Regression (and Beyond). Journal of Statistical Software, 100(4), 1–53. doi:10.18637/jss.v100.i04

See Also

bamlss, bamlss.frame

BAMLSS Create distributions3 Object

Description

A single class and corresponding methods encompassing all bamlss.family distributions (from
the bamlss package) using the workflow from the distributions3 package.

Usage

BAMLSS(family, ...)

https://doi.org/10.1080/10618600.2017.1407325
https://doi.org/10.18637/jss.v100.i04
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Arguments

family object. BAMLSS family specifications recognized by bamlss.family, includ-
ing family.bamlss objects, family-generating functions (e.g., gaussian_bamlss),
or characters with family names (e.g., "gaussian" or "binomial").

... further arguments passed as parameters to the BAMLSS family. Can be scalars
or vectors.

Details

The constructor function BAMLSS sets up a distribution object, representing a distribution from
the BAMLSS (Bayesian additive model of location, scale, and shape) framework by the corre-
sponding parameters plus a family attribute, e.g., gaussian_bamlss for the normal distribution
or binomial_bamlss for the binomial distribution. The parameters employed by the family vary
across the families but typically capture different distributional properties (like location, scale,
shape, etc.).

All parameters can also be vectors, so that it is possible to define a vector of BAMLSS distributions
from the same family with potentially different parameters. All parameters need to have the same
length or must be scalars (i.e., of length 1) which are then recycled to the length of the other
parameters.

For the BAMLSS distribution objects there is a wide range of standard methods available to the gener-
ics provided in the distributions3 package: pdf and log_pdf for the (log-)density (PDF), cdf for
the probability from the cumulative distribution function (CDF), quantile for quantiles, random
for simulating random variables, and support for the support interval (minimum and maximum).
Internally, these methods rely on the usual d/p/q/r functions provided in bamlss, see the manual
pages of the individual families. The methods is_discrete and is_continuous can be used to
query whether the distributions are discrete on the entire support or continuous on the entire support,
respectively.

See the examples below for an illustration of the workflow for the class and methods.

Value

A BAMLSS distribution object.

See Also

bamlss.family

Examples

## package and random seed
library("distributions3")
set.seed(6020)

## three Weibull distributions
X <- BAMLSS("weibull", lambda = c(1, 1, 2), alpha = c(1, 2, 2))
X

## moments (FIXME: mean and variance not provided by weibull_bamlss)
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## mean(X)
## variance(X)

## support interval (minimum and maximum)
support(X)
is_discrete(X)
is_continuous(X)

## simulate random variables
random(X, 5)

## histograms of 1,000 simulated observations
x <- random(X, 1000)
hist(x[1, ], main = "Weibull(1,1)")
hist(x[2, ], main = "Weibull(1,2)")
hist(x[3, ], main = "Weibull(2,2)")

## probability density function (PDF) and log-density (or log-likelihood)
x <- c(2, 2, 1)
pdf(X, x)
pdf(X, x, log = TRUE)
log_pdf(X, x)

## cumulative distribution function (CDF)
cdf(X, x)

## quantiles
quantile(X, 0.5)

## cdf() and quantile() are inverses
cdf(X, quantile(X, 0.5))
quantile(X, cdf(X, 1))

## all methods above can either be applied elementwise or for
## all combinations of X and x, if length(X) = length(x),
## also the result can be assured to be a matrix via drop = FALSE
p <- c(0.05, 0.5, 0.95)
quantile(X, p, elementwise = FALSE)
quantile(X, p, elementwise = TRUE)
quantile(X, p, elementwise = TRUE, drop = FALSE)

## compare theoretical and empirical mean from 1,000 simulated observations
## (FIXME: mean not provided by weibull_bamlss)
## cbind(
## "theoretical" = mean(X),
## "empirical" = rowMeans(random(X, 1000))
## )

bamlss Fit Bayesian Additive Models for Location Scale and Shape (and Be-
yond)
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Description

This is the main model fitting function of the package. Function bamlss() is a wrapper func-
tion that parses the data and the model formula, or extended bamlss.formula, as well as the
bamlss.family into a bamlss.frame. The bamlss.frame then holds all model matrices and infor-
mation that is needed for setting up estimation engines. The model matrices are based on mgcv in-
frastructures, i.e., smooth terms are constructed using smooth.construct and smoothCon. There-
fore, all mgcv model term constructors like s, te, t2 and ti can be used. Identifiability conditions
are imposed using function gam.side.

After the bamlss.frame is set up function bamlss() applies optimizer and/or sampling functions.
These functions can also be provided by the user. See the details below on how to create new
engines to be used with function bamlss().

Finally, the estimated parameters and/or samples are used to create model output results like sum-
mary statistics or effect plots. The computation of results may also be controlled by the user.

Usage

bamlss(formula, family = "gaussian", data = NULL,
start = NULL, knots = NULL, weights = NULL,
subset = NULL, offset = NULL, na.action = na.omit,
contrasts = NULL, reference = NULL, transform = NULL,
optimizer = NULL, sampler = NULL, samplestats = NULL,
results = NULL, cores = NULL, sleep = NULL,
combine = TRUE, model = TRUE, x = TRUE,
light = FALSE, ...)

Arguments

formula A formula or extended formula, i.e., the formula can be a list of formulas
where each list entry specifies the details of one parameter of the modeled re-
sponse distribution, see bamlss.formula. For incorporating smooth terms, all
model term constructors implemented in mgcv such as s, te and ti can be used,
amongst others.

family A bamlss.family object, specifying the details of the modeled distribution such
as the parameter names, the density function, link functions, etc. Can be a char-
acter without the "_bamlss" extension of the bamlss.family name.

data A data.frame or list containing the model response variable(s) and covariates
specified in the formula. By default the variables are taken from environment(formula):
typically the environment from which bamlss is called.

start A named numeric vector containing starting values to be send to the optimizer
and/or sampler function. For a possible naming convention for the parameters
see function parameters, but this is not restrictive and engine specific.

knots An optional list containing user specified knots, see the documentation of func-
tion gam.

weights Prior weights on the data.

subset An optional vector specifying a subset of observations to be used in the fitting
process.
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offset Can be used to supply model offsets for use in fitting.

na.action A function which indicates what should happen when the data contain NA’s. The
default is set by the na.action setting of options, and is na.omit if set to
NULL.

contrasts An optional list. See the contrasts.arg of model.matrix.default.

reference A character specifying a reference category, e.g., when fitting a multinomial
model.

transform A transformer function that is applied on the bamlss.frame. See, e.g., function
randomize and bamlss.engine.setup.

optimizer An optimizer function that returns, e.g., posterior mode estimates of the param-
eters as a named numeric vector. The default optimizer function is opt_bfit. If
set to FALSE, no optimizer function will be used.

sampler A sampler function that returns a matrix of samples, the columns represent
the parameters, the rows the iterations. The returned matrix must be coerced
to an object of class "mcmc", see as.mcmc. The default sampler function is
sam_GMCMC. If set to FALSE, no sampler function will be used.

samplestats A function computing statistics from samples, per default function samplestats
is used. If set to FALSE, no samplestats function will be used. Note that this
option is crucial for very large datasets, as computing statistics from samples
this way may be very time consuming!

results A function computing results from the parameters and/or samples, e.g., for cre-
ating effect plots, see function link{results.bamlss.default}. If set FALSE
no results function will be used.

cores An integer specifying the number of cores that should be used for the sampler
function. This is based on function mclapply of the parallel package.

sleep Time the system should sleep before the next core is started.

combine If samples are computed on multiple cores, should the samples be combined into
one mcmc matrix?

model If set to FALSE the model frame used for modeling is not part of the return value.

x If set to FALSE the model matrices are not part of the return value.

light Should the returned object be lighter, i.e., if light = TRUE the returned object
will not contain the model.frame and design and penalty matrices are deleted.

... Arguments passed to the transformer, optimizer, sampler, results and
samplestats function.

Details

The main idea of this function is to provide infrastructures that make it relatively easy to create
estimation engines for new problems, or write interfaces to existing software packages.

The steps that are performed within the function are:

• First, the function parses the data, the formula or the extended bamlss.formula as well as
the bamlss.family into a model frame like object, the bamlss.frame. This object holds all
necessary model matrices and information that is needed for subsequent model fitting engines.
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Per default, all package mgcv smooth term constructor functions like s, te, t2 and ti can be
used (see also function smooth.construct), however, even special user defined constructors
can be included, see the manual of bamlss.frame.

• In a second step, the bamlss.frame can be transformed, e.g., if a mixed model representation
of smooth terms is needed, see function randomize.

• Then an optimizer function is started, e.g., a function that finds posterior mode estimates of
the parameters. A convention for model fitting engines is that such functions should have the
following arguments:
optimizer(x, y, family, start, weights, offset, ...)

Internally, function bamlss() will send the x object that holds all model matrices, the re-
sponse y object, the family object, starting values for the parameters, possible weights and
offsets of the created bamlss.frame to the optimizer function (see the manual of bamlss.frame
for more details on the x, y and other objects). The job of the optimizer is to return a named
numeric vector of optimum parameters. The names of the parameters should be such that they
can be uniquely mapped to the corresponding model matrices in x. See function parameters
for more details on parameter names. The default optimizer function is opt_bfit. The opti-
mizer can return more information than only the optimum parameters. It is possible to return
a list, the convention here is that an element named "parameters" then holds the named vec-
tor of estimated parameters. Possible other return values could be fitted values, the Hessian
matrix, information criteria or information about convergence of the algorithm, etc. Note that
the parameters are simply added to the bamlss.frame in an (list) entry named parameters.

• After the optimization step, a sampler function is started. The arguments of such sampler
functions are the same as for the optimizer functions
sampler(x, y, family, start, weights, offset, ...)

Sampler functions must return a matrix of samples, each row represents one iteration and the
matrix can be coerced to mcmc objects. The function may return a list of samples, e.g., if
multiple chains are returned each list entry then holds one sample matrix of one chain. The
column names of the sample matrix should be the same as the names of estimated parameters.
For a possible naming convention see function parameters, which ensures unique mapping
of samples with the model matrices in the x object of the bamlss.frame. The samples are
added to the bamlss.frame in an (list) entry named samples.

• Next, the samplestats function is applied. This function can compute any quantity from the
samples and the x object, the arguments of such functions are
samplestats(samples, x, y, family, ...)

where argument samples are the samples returned from the sampler function, and x, y and
family are the same objects as passed to the optimizer and or sampler functions. For example,
the default function in bamlss() for this task is also called samplestats and returns the mean
of the log-likelihood and the log-posterior computed of all samples, as well as the DIC.

• The last step is to compute more complex information about the model using the results
function. The arguments of such results functions are
results(bamlss.frame, ...)

here, the full bamlss.frame including possible parameters and samples is passed to the
function within bamlss(). The default function for this task is results.bamlss.default
which returns an object of class "bamlss.results" for which generic plotting functions are
and a summary function is provided. Hence, the user can control the output of the model, the
plotting and summary statistics, too.
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Note that function transform(), optimizer(), sampler(), samplestats() and results() can
be provided from the bamlss.family object, e.g., if a bamlss.family object has an element named
"optimizer", which represents a valid optimizer function such as opt_bfit, exactly this optimizer
function will be used as a default when using the family.

Value

An object of class "bamlss". The object is in principle only a slight extension of a bamlss.frame,
i.e., if an optimizer is applied it will hold the estimated parameters in an additional element named
"parameters". If a sampler function is applied it will additionally hold the samples in an element
named "samples". The same mechanism is used for results function.

If the optimizer function computes additional output next to the parameters, this will be saved in
an element named "model.stats". If a samplestats function is applied, the output will also be
saved in the "model.stats" element.

Additionally, all functions that are called are saved as attribute "functions" in the returned object.

Author(s)

Nikolaus Umlauf, Nadja Klein, Achim Zeileis.

References

Umlauf N, Klein N, Zeileis A (2019). BAMLSS: Bayesian Additive Models for Location, Scale
and Shape (and Beyond). Journal of Computational and Graphical Statistics, 27(3), 612–627.
doi:10.1080/10618600.2017.1407325

Umlauf N, Klein N, Simon T, Zeileis A (2021). bamlss: A Lego Toolbox for Flexible Bayesian
Regression (and Beyond). Journal of Statistical Software, 100(4), 1–53. doi:10.18637/jss.v100.i04

See Also

bamlss.frame, family.bamlss, bamlss.formula, randomize, bamlss.engine.setup, opt_bfit,
sam_GMCMC, continue, coef.bamlss, parameters, predict.bamlss, plot.bamlss

Examples

## Not run: ## Simulated data example.
d <- GAMart()
f <- num ~ s(x1) + s(x2) + s(x3) + te(lon, lat)
b <- bamlss(f, data = d)
summary(b)
plot(b)
plot(b, which = 3:4)
plot(b, which = "samples")

## Use of optimizer and sampler functions:
## * first run optimizer,
b1 <- bamlss(f, data = d, optimizer = opt_bfit, sampler = FALSE)
print(b1)
summary(b1)

https://doi.org/10.1080/10618600.2017.1407325
https://doi.org/10.18637/jss.v100.i04
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## * afterwards, start sampler with staring values,
b2 <- bamlss(f, data = d, start = coef(b1), optimizer = FALSE, sampler = sam_GMCMC)
print(b2)
summary(b2)

## Continue sampling.
b3 <- continue(b2, n.iter = 12000, burnin = 0, thin = 10)
plot(b3, which = "samples")
plot(b3, which = "max-acf")
plot(b3, which = "max-acf", burnin = 500, thin = 4)

## End(Not run)

bamlss.engine.helpers BAMLSS Engine Helper Functions

Description

These functions can be useful when setting up new model fitting engines that are based on the setup
function bamlss.engine.setup. See the examples.

Usage

## Functions to extract parameter states.
get.par(x, what = NULL)
get.state(x, what = NULL)
set.par(x, replacement, what)

## Function for setting starting values.
set.starting.values(x, start)

Arguments

x For function get.par() and set.par() argument x is a named numeric vector.
For function get.state() argument x is an object of the smooth.construct
list that is processed by function bamlss.engine.setup, i.e., which has a "state"
object. For function set.starting.values() argument x is the x list, as re-
turned from function bamlss.frame.

what The name of the parameter(s) that should be extracted or replaced.

replacement The value(s) that should be used for replacement.

start The named numeric vector of starting values. The name convention is based on
function parameters.

See Also

bamlss.engine.setup
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Examples

## Create a bamlss.frame.
d <- GAMart()
bf <- bamlss.frame(num ~ s(x1) + s(x2) + te(lon,lat), data = d, family = "gaussian")
names(bf$x$mu$smooth.construct)

## Use the setup function for
## adding state elements.
bf$x <- bamlss.engine.setup(bf$x, df = c("s(x1)" = 1, "s(x2)" = 3))
names(bf$x$mu$smooth.construct)

## Extract regression coefficients.
get.state(bf$x$mu$smooth.construct[["te(lon,lat)"]], "b")

## Extract smoothing variances.
get.state(bf$x$mu$smooth.construct[["te(lon,lat)"]], "tau2")

## More examples.
state <- bf$x$mu$smooth.construct[["te(lon,lat)"]]$state
get.par(state$parameters, "b")
get.par(state$parameters, "tau2")

state$parameters <- set.par(state$parameters, c(0.1, 0.5), "tau2")
get.par(state$parameters, "tau2")

## Setting starting values.
start <- c("mu.s.s(x1).b" = 1:9, "mu.s.s(x1).tau2" = 0.1)
bf$x <- set.starting.values(bf$x, start = start)
get.state(bf$x$mu$smooth.construct[["s(x1)"]], "b")
get.state(bf$x$mu$smooth.construct[["s(x1)"]], "tau2")

bamlss.engine.setup BAMLSS Engine Setup Function

Description

This function takes the x object of a bamlss.frame and adds additional objects that are useful for
model fitting engines. This is applied only for ’regular’ terms, e.g., as created by s and te. For
special model terms the corresponding smooth.construct method is in charge of this (see also the
examples for function bfit).

Usage

bamlss.engine.setup(x, update = "iwls", propose = "iwlsC_gp",
do.optim = NULL, df = NULL, parametric2smooth = TRUE, ...)
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Arguments

x The x list, as returned from function bamlss.frame, holding all model matrices
and other information that is used for fitting the model.

update Sets the updating function for model terms, see function bfit.

propose Sets the propose function for model terms, see function GMCMC.

do.optim Adds list element "do.optim" in the "state" element, see the details below.

df The initial degrees of freedom that should be assigned to a smooth model term,
based on the trace of the smoother matrix. Note that df can be a named numeric
vector. If the names match the labels of the model terms, the corresponding
df are used, e.g., df = c("s(x1)" = 1, "s(x2)" = 2) sets different dfs for each
term.

parametric2smooth

Should parametric model terms be transformed into an artificial smooth model
term and be added to the "smooth.construct" object within the x list? This
feature is handy, since algorithms can then cycle over the "smooth.construct"
object, only.

... Currently not used.

Details

For each model term in the "smooth.construct" object of the x list (as returned from bamlss.frame),
this function adds a named list called "state" with the following entries:

• "parameters": A numeric vector. Regression coefficients are named with "b", smooth vari-
ances are named with "tau2".

• "fitted.values": Given the "parameters", the actual fitted values of the model term.

• "edf": Given the smoothing variances, the actual equivalent degrees of freedom (edf) of the
model term.

• "do.optim": Should an optimizer function try to find optimum smoothing variances?

The state will be changed in each iteration and can be passed outside an updating function.

Additionally, if missing in the xt argument of a model term (see, e.g., function s for xt) the func-
tion adds the corresponding log-prior and its first and second order derivatives w.r.t. regression
coefficients in functions grad() and hess().

Also, objects named "lower" and "upper" are added to each model term. These indicate the lower
and upper boundaries of the parameter space.

Value

A transformed x list, as returned from function bamlss.frame.

See Also

bamlss.frame, bfit, GMCMC, get.par, set.par, get.state
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Examples

d <- GAMart()
bf <- bamlss.frame(num ~ s(x1) + s(x2), data = d, family = "gaussian")
names(bf$x$mu$smooth.construct)
bf$x <- bamlss.engine.setup(bf$x, df = c("s(x1)" = 1, "s(x2)" = 3))
names(bf$x$mu$smooth.construct)
names(bf$x$mu$smooth.construct[["s(x1)"]])
names(bf$x$mu$smooth.construct[["s(x1)"]]$state)
sapply(bf$x$mu$smooth.construct, function(x) {

c(x$state$edf, get.state(x, "tau2"))
})

bamlss.formula Formulae for BAMLSS

Description

This function creates an extended BAMLSS formula. In combination with a bamlss.family ob-
ject, each parameter of the response distribution is linked to a single formula. If no formula is sup-
plied for a parameter, a simple intercept only model is created. Moreover, the function identifies hi-
erarchical structures, see the examples. This function is useful for creating complex model.frames
for (hierarchical) multi-parameter models and is used by function bamlss.frame.

Usage

bamlss.formula(formula, family = NULL, specials = NULL, env = NULL, ...)

Arguments

formula A simple formula, or a list of simple formulae, or an extended Formula. For
formula lists or extended Formulae, each single formula represents one model
for the respective parameter as specified in the family object.

family A bamlss.family object.

specials A character vector specifying special functions to be used within formulae, see
terms.object.

env The environment that should be assigned to the formula.

... Arguments passed to the family.

Value

A named list of class "bamlss.formula". Each list entry specifies a model, e.g., for one parameter
of a provided bamlss.family object. Each entry (parameter model) then holds:

formula A simple formula.

fake.formula A formula with all function calls being dropped, e.g., the formula y ~ s(x1) +
s(x2) is represented in the fake.formula entry as y ~ x1 + x2. The fake.formula
is useful for creating model frames.
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See Also

bamlss, bamlss.frame, bamlss.family

Examples

## Simple formula without family object.
f <- bamlss.formula(y ~ x1 + s(x2))
print(f)
print(str(f))

## Complex formula with list of formulae.
f <- list(

y1 ~ x1 + s(x2),
y2 ~ x3 + te(lon, lat),
u ~ x4 + x1

)

f <- bamlss.formula(f)
print(f)
print(names(f))

## Same formula but using extended formulae
## of package Formula.
f <- y1|y2|u ~ x1 + s(x2)|x3 + te(lon,lat)|x4 + x1
f <- bamlss.formula(f)
print(f)
print(names(f))

## Using a bamlss family object, e.g., gaussian_bamlss().
## The family has two parameters, mu and sigma, for
## each parameter one formula is returned. If no
## formula is specified an intercept only model is
## generated for the respective parameter.
f <- bamlss.formula(y ~ x1 + s(x2), family = gaussian_bamlss)

## Note, same as:
f <- bamlss.formula(y ~ x1 + s(x2), family = "gaussian")
print(f)

## Specify model for parameter sigma, too
f <- list(

y ~ x1 + s(x2),
sigma ~ x2 + te(lon, lat)

)
f <- bamlss.formula(f, family = "gaussian")
print(f)

## With complex hierarchical structures,
## each parameter is another list of formulae,
## indicated by the h1,...,hk, names.
f <- list(

y ~ x1 + s(x2) + id1,
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sigma ~ x2 + te(lon, lat) + id2,
id1 ~ s(x3) + x4 + s(id3),
id3 ~ x5 + s(x5, x6),
id2 ~ x7

)
f <- bamlss.formula(f, family = "gaussian")
print(f)

bamlss.frame Create a Model Frame for BAMLSS

Description

This function parses the data and the model formula, or extended bamlss.formula, as well as
the bamlss.family into a bamlss.frame object. The bamlss.frame then holds all model matrices
and information that is needed for setting up estimation engines.

Usage

bamlss.frame(formula, data = NULL, family = "gaussian",
weights = NULL, subset = NULL, offset = NULL,
na.action = na.omit, contrasts = NULL,
knots = NULL, specials = NULL, reference = NULL,
model.matrix = TRUE, smooth.construct = TRUE,
ytype = c("matrix", "vector", "integer"),
scale.x = FALSE, scale.d = FALSE, ...)

Arguments

formula A formula or extended formula, i.e., the formula can be a list of formulas
where each list entry specifies the details of one parameter of the modeled re-
sponse distribution, see bamlss.formula. For incorporating smooth terms, all
model term constructors implemented in mgcv such as s, te and ti can be used,
amongst others.

data A data.frame or list containing the model response variable(s) and covariates
specified in the formula. By default the variables are taken from environment(formula):
typically the environment from which bamlss is called.

family A bamlss.family object, specifying the details of the modeled distribution such
as the parameter names, the density function, link functions, etc.

weights Prior weights on the data.

subset An optional vector specifying a subset of observations to be used in the fitting
process.

offset Can be used to supply model offsets for use in fitting.

na.action A function which indicates what should happen when the data contain NA’s. The
default is set by the na.action setting of options, and is na.omit if set to
NULL.
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contrasts An optional list. See the contrasts.arg of model.matrix.default.
knots An optional list containing user specified knots, see the documentation of func-

tion gam.
specials Specify new special terms here to be used with the bamlss.formula, see also

terms.object.
reference A character specifying a reference category, e.g., when fitting a multinomial

model.
model.matrix Logical, should model matrices for linear parts be returned?
smooth.construct

Logical, should model matrices, e.g., as returned from smooth.construct and
smoothCon be part of returned bamlss.frame?.

ytype For categorical responses, should the response be a vector or matrix. If ytype
== "matrix" bamlss.frame() uses function model.matrix to construct the re-
sponse matrix from levels. If the response is a factor ytype == "integer" will
create an integer response.

scale.x Logical, should the model matrices of the linear parts be scaled?
scale.d Logical, should the numeric variables in the model frame be scaled?
... Arguments passed to function smooth.construct.bamlss.frame.

Details

The function parses the data, the formula or the extended bamlss.formula as well as the bamlss.family
into a model frame like object, the bamlss.frame. This object holds all necessary model matrices
and information that is needed for model fitting engines. Per default, all package mgcv smooth
term constructor functions like s, te, t2 and ti can be used (see also function smooth.construct),
however, even special user defined constructors can be included, see the examples below.

Function bamlss.frame() uses function model.matrix.bamlss.frame to compute all design ma-
trices for simple linear parts, all smooth terms are parsed with function smooth.construct.bamlss.frame.

It is also possible to create a "bamlss.frame" using hierarchical formulae, see the example below.

Value

An list of class "bamlss.frame" with the following elements:

call The initial call.
model.frame The model.frame used to compute all design matrices.
formula The bamlss.formula.
family The bamlss.family object.
terms The terms.bamlss object.
x A named list, the elements correspond to the parameters that are specified within

the bamlss.family object. For each parameter the corresponding formula, a
fake.formula only holding the covariate names, a terms object, a model.matrix
for the linear part and a list smooth.construct holding all information for
smooth terms as returned from function link{smooth.construct.bamlss.frame}
is created.

y The response data.
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See Also

bamlss, bamlss.formula, bamlss.family, smooth.construct.bamlss.frame, model.matrix.bamlss.frame

Examples

## Create a 'bamlss.frame'.
d <- GAMart()
f <- list(

num ~ fac + s(x1) + s(x2) + te(lon, lat),
sigma ~ id + s(x2) + s(x3)

)
bf <- bamlss.frame(f, data = d, family = "gaussian")

## Show parts of the 'bamlss.frame'.
print(bf)

## Categorical responses.
f <- list(

cat ~ fac + s(x1) + s(x2)
)

bf <- bamlss.frame(f, data = d, family = "multinomial", reference = "low")
print(bf)

## The response is a matrix per default.
head(bf$y)

## 0/1 responses.
d <- cbind(d, model.matrix(~ -1 + cat, data = d))

f <- list(
catnone ~ fac + s(x1),
catlow ~ s(x2),
catmedium ~ s(x3)

)

bf <- bamlss.frame(f, data = d, family = "multinomial")
print(bf)

## Hierarchical structures.
f <- list(

num ~ s(x1) + s(x2) + id,
id ~ te(lon, lat),
sigma ~ s(x1) + fac

)

bf <- bamlss.frame(f, data = d, family = "gaussian")
print(bf)

## Special model term constructors,
## set up "new" constructor function and eval
## with bamlss.frame().
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s77 <- function(...) {
sm <- s(...)
sm$label <- paste("s77(", paste(sm$term, collapse = ","), ")", sep = "")
sm

}

f <- list(
num ~ s77(x1) + s(x2) + id,
sigma ~ s77(x1)

)

bf <- bamlss.frame(f, data = d, family = "gaussian", specials = "s77")
print(bf)
names(bf$x$mu$smooth.construct)

bboost Bootstrap Boosting

Description

Wrapper function for applying bootstrap estimation using gradient boosting.

Usage

## Bootstrap boosting.
bboost(..., data, type = 1, cores = 1,

n = 2, prob = 0.623, fmstop = NULL,
trace = TRUE, drop = FALSE, replace = FALSE)

## Plotting function.
bboost_plot(object, col = NULL)

## Predict method.
## S3 method for class 'bboost'
predict(object, newdata, ..., cores = 1, pfun = NULL)

Arguments

... Arguments passed to bamlss and predict.bamlss.

data The data frame to be used for modeling.

type Type of algorithm, type = 1 uses all observations and samples with replacement,
type = 2 uses only a fraction specified in prob and samples with replacement.

cores The number of cores to be used.

n The number of bootstrap iterations.

prob The fraction that should be used to fit the model in each bootstrap iteration.
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fmstop The function that should return the optimum stopping iteration. The function
must have two arguments: (1) the model end (2) the data. The function must
return a list with two named arguments: (1) "mstop" the optimum stopping
iteration and (2) a vector of the objective criterion that should be evaluated by
the hold out sample data during each bootstrap iteration. See the examples.

trace Prints out the current state of the bootstrap algorithm.

drop Should only the best set of parameters be saved?

replace Sampling with replacement, or sampling ceiling(nobs * prob) rows of the
data for fitting the n models.

object The "bboost" object used for prediction and plotting.

col The color that should be used for plotting.

newdata The data frame predictions should be made for.

pfun The prediction function that should be used, for example predictn could be
used, too. Note that this is experimental.

Value

A list of bamlss objects.

See Also

bamlss, boost, lasso, BayesX

Examples

## Not run: ## Simulate data.
set.seed(123)
d <- GAMart()

## Estimate model.
f <- num ~ s(x1) + s(x2) + s(x3) + s(lon,lat)

## Function for evaluation of hold out sample
## criterion to find the optimum mstop.
fmstop <- function(model, data) {

p <- predict(model, newdata = data, model = "mu")
mse <- NULL
for(i in 1:nrow(model$parameters))

mse <- c(mse, mean((data$num - p[, i])^2))
list("MSE" = mse, "mstop" = which.min(mse))

}

## Bootstrap boosted models.
b <- bboost(f, data = d, n = 50, cores = 3, fmstop = fmstop)

## Plot hold out sample MSE.
bboost_plot(b)

## Predict for each bootstrap sample.
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nd <- data.frame("x2" = seq(0, 1, length = 100))
p <- predict(b, newdata = nd, model = "mu", term = "x2")
plot2d(p ~ x2, data = nd)

## End(Not run)

boost2 Some Shortcuts

Description

Some simple shortcuts to model fitting engines.

Usage

## BayesX.
bayesx2(...)

## Gradient boosting.
boost2(...)

## Lasso.
lasso2(...)

Arguments

... Arguments passed to bamlss and predict.bamlss.

Value

A bamlss object.

See Also

bamlss, boost, lasso, BayesX

Examples

## Not run: ## Simulate data.
set.seed(123)
d <- GAMart()

## Estimate model.
f <- num ~ s(x1) + s(x2) + s(x3) + s(lon,lat)

## Boosted model.
b <- boost2(f, data = d)

## Plot estimated effects.
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plot(b)

## End(Not run)

c95 Compute 95% Credible Interval and Mean

Description

Small helper function that computes the 2.5% and 97.5% quantiles and the mean of a vector. Useful
for example when using function predict.bamlss.

Usage

c95(x)

Arguments

x A numeric vector.

See Also

predict.bamlss, coef.bamlss

Examples

x <- rnorm(100)
c95(x)

## Not run: ## Example computing predictions.
set.seed(123)
d <- data.frame("x" = seq(-3, 3, length = 30))
d$y <- sin(d$x) + rnorm(30, sd = 0.3)

## Estimate model and compute predictions.
## with c95().
b <- bamlss(y ~ s(x), data = d)
p <- predict(b, model = "mu", FUN = c95)
plot(d)
matplot(d$x, p, type = "l", lty = c(2, 1, 2),

col = "black", add = TRUE)

## Example extracting coefficients.
coef(b, FUN = c95)

## End(Not run)
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coef.bamlss Extract BAMLSS Coefficients

Description

Methods to extract coefficients of fitted bamlss objects, either coefficients returned from optimizer
functions, or samples from a sampler functions.

Method confint.bamlss() produces credible intervals or parameter samples using quantiles.

Usage

## S3 method for class 'bamlss'
coef(object, model = NULL, term = NULL,
FUN = NULL, parameters = NULL,
pterms = TRUE, sterms = TRUE,
hyper.parameters = TRUE, list = FALSE,
full.names = TRUE, rescale = FALSE, ...)

## S3 method for class 'bamlss'
confint(object, parm, level = 0.95,
model = NULL, pterms = TRUE, sterms = FALSE,
full.names = FALSE, hyper.parameters = FALSE, ...)

Arguments

object An object of class "bamlss"
model Character or integer. For which model should coefficients be extracted?
term Character or integer. For which term should coefficients be extracted?
FUN A function that is applied on the parameter samples.
parameters If is set to TRUE, additionally adds estimated parameters returned from an opti-

mizer function (if available).
pterms Should coefficients of parametric terms be included?
sterms Should coefficients of smooths terms be included?
hyper.parameters

For smooth terms, should hyper parameters such as smoothing variances be in-
cluded?

list Should the returned object have a list structure for each distribution parameter?
full.names Should full names be assigned, indicating whether a term is parametric "p" or

smooth "s".
rescale Should parameters of the linear parts be rescaled if the scale.d argument in

bamlss.frame is set to TRUE.
parm Character or integer. For which term should coefficients intervals be extracted?
level The credible level which defines the lower and upper quantiles that should be

computed from the samples.
... Arguments to be passed to FUN and function samples.
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Value

Depending on argument list and the number of distributional parameters, either a list or vec-
tor/matrix of model coefficients.

See Also

bamlss.

Examples

## Not run: ## Simulate data.
d <- GAMart()

## Model formula.
f <- list(

num ~ s(x1) + s(x2) + s(x3),
sigma ~ s(x1) + s(x2) + s(x3)

)

## Estimate model.
b <- bamlss(f, data = d)

## Extract coefficients based on MCMC samples.
coef(b)

## Now only the mean.
coef(b, FUN = mean)

## As list without the full names.
coef(b, FUN = mean, list = TRUE, full.names = FALSE)

## Coefficients only for "mu".
coef(b, model = "mu")

## And "s(x2)".
coef(b, model = "mu", term = "s(x2)")

## With optimizer parameters.
coef(b, model = "mu", term = "s(x2)", parameters = TRUE)

## Only parameteric part.
coef(b, sterms = FALSE, hyper.parameters = FALSE)

## For sigma.
coef(b, model = "sigma", sterms = FALSE,

hyper.parameters = FALSE)

## 95 perc. credible interval based on samples.
confint(b)

## End(Not run)
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colorlegend Plot a Color Legend

Description

Function to generate a color legend, the legend may be added to an existing plot or drawn in a
separate plotting window.

Usage

colorlegend(color = NULL, ncol = NULL, x = NULL, breaks = NULL,
pos = "center", shift = 0.02, side.legend = 1L, side.ticks = 1L,
range = NULL, lrange = NULL, width = 0.25, height = 0.05,
scale = TRUE, xlim = NULL, ylim = NULL, plot = NULL, full = FALSE,
add = FALSE, col.border = "black", lty.border = 1L, lwd.border = 1L,
ticks = TRUE, at = NULL, col.ticks = "black", lwd.ticks = 1L,
lty.ticks = 1L, length.ticks = 0.3, labels = NULL,
distance.labels = 0, col.labels = "black", cex.labels = 1L,
digits = 2L, swap = FALSE, symmetric = TRUE, xpd = NULL,
title = NULL, side.title = 2, shift.title = c(0, 0),
cex.title = 1, ...)

Arguments

color Character, integer. The colors for the legend, may also be a function, e.g.
colors = heat.colors.

ncol Integer, the number of different colors that should be generated if color is a
function.

x Numeric, values for which the color legend should be drawn.

breaks Numeric, a set of breakpoints for the colors: must give one more breakpoint
than ncol.

pos Character, numeric. The position of the legend. Either a numeric vector, e.g. pos
= c(0.1, 0.2) will add the legend at the 10% point in the x-direction and at the
20% point in the y-direction of the plotting window, may also be negative, or one
of the following: "bottomleft", "topleft", "topright", "bottomright",
"left", "right", "top", "bottom" and "center".

shift Numeric, if argument pos is a character, shift determines the distance of the
legend from the plotting box.

side.legend Integer, if set to 2 the legend will be flipped by 90 degrees.

side.ticks Integer, if set to 2, the ticks and labels will be on the opposite site of the legend.

range Numeric, specifies a range for x values for which the legend should be drawn.

lrange Numeric, specifies the range of legend.

width Numeric, the width of the legend, if scale = TRUE the width is proportional to
the x-limits of the plotting window.
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height Numeric, the height of the legend, if scale = TRUE the height is proportional to
the y-limits of the plotting window.

scale Logical, if set to TRUE, the width and height of the legend will be calculated
proportional to the x- and y-limits of the plotting window.

xlim Numeric, the x-limits of the plotting window the legend should be added for,
numeric vector, e.g., returned from function range.

ylim Numeric, the y-limits of the plotting window the legend should be added for,
numeric vector, e.g., returned from function range.

plot Logical, if set to TRUE, the legend will be drawn in a separate plotting window.

full Logical, if set to TRUE, the legend will be drawn using the full window range.

add Logical, if set to TRUE, the legend will be added to an existing plot.

col.border The color of the surrounding border line of the legend.

lty.border The line type of the surrounding border line of the legend.

lwd.border The line width of the surrounding border line of the legend.

ticks Logical, if set to TRUE, ticks will be added to the legend.

at Numeric, specifies at which locations ticks and labels should be added.

col.ticks The colors of the ticks.

lwd.ticks The line width of the ticks.

lty.ticks The line type of the ticks.

length.ticks Numeric, the length of the ticks as percentage of the height or width of the
colorlegend.

labels Character, specifies labels that should be added to the ticks.
distance.labels

Numeric, the distance of the labels to the ticks, proportional to the length of the
ticks.

col.labels The colors of the labels.

cex.labels Text size of the labels.

digits Integer, the decimal places if labels are numerical.

swap Logical, if set to TRUE colors will be represented in reverse order.

symmetric Logical, if set to TRUE, a symmetric legend will be drawn corresponding to the
+- max(abs(x)) value.

xpd Sets the xpd parameter in function par.

title Character, a title for the legend.

side.title Integer, 1 or 2. Specifies where the legend is placed, either on top if side.title
= 1 or at the bottom if side.title = 2.

shift.title Numeric vector of length 2. Specifies a possible shift of the title in either x- or
y-direction.

cex.title Text size for the title.

... Other graphical parameters to be passed to function text.
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Value

A named list with the colors generated, the breaks and the function map, which may be used for
mapping of x values to the colors specified in argument colors, please see the examples below.

Examples

## Play with colorlegend.
colorlegend()
colorlegend(side.legend = 2)
colorlegend(side.legend = 2, side.ticks = 2)
colorlegend(height = 2)
colorlegend(width = 1, height = 0.8, scale = FALSE,

pos = c(0, 0.2), length.ticks = 0.5)
colorlegend(color = heat.colors, ncol = 9)
colorlegend(color = heat.colors, ncol = 9, swap = TRUE)
colorlegend(pos = "bottomleft")
colorlegend(pos = "topleft")
colorlegend(pos = "topright")
colorlegend(pos = "bottomright")

## Take x values for the color legend.
x <- runif(100, -2, 2)
colorlegend(color = diverge_hcl, x = x)
colorlegend(color = diverge_hcl, x = x, at = c(-1.5, 0, 1.5))
colorlegend(color = diverge_hcl, x = x, at = c(-1.5, 0, 1.5),

labels = c("low", "middle", "high"))
colorlegend(color = rainbow_hcl, x = x, at = c(-1.5, 0, 1.5),

labels = c("low", "middle", "high"), length.ticks = 1.5)
colorlegend(color = heat_hcl, x = x, at = c(-1.5, 0, 1.5),

labels = c("low", "middle", "high"), length.ticks = 1.5,
lwd.border = 2, lwd.ticks = 2, cex.labels = 1.5, font = 2)

colorlegend(color = topo.colors, x = x, at = c(-1.5, 0, 1.5),
labels = c("low", "middle", "high"), length.ticks = 1.5,
lwd.border = 2, lwd.ticks = 2, cex.labels = 1.5, font = 2,
col.border = "green3", col.ticks = c(2, 5, 2),
col.labels = c(6, 4, 3))

colorlegend(color = diverge_hsv, x = x, at = c(-1.5, 0, 1.5),
labels = c("low", "middle", "high"), length.ticks = 1.5,
lwd.border = 2, lwd.ticks = 2, cex.labels = 1.5, font = 2,
col.border = "green3", col.ticks = c(2, 5, 2),
col.labels = c(6, 4, 3), lty.border = 2, lty.ticks = c(2, 3, 2))

colorlegend(color = diverge_hsv, x = x, at = c(-1.5, 0, 1.5),
labels = c("low", "middle", "high"), length.ticks = 1.5,
lwd.border = 2, lwd.ticks = 2, cex.labels = 1.5, font = 2,
col.border = "green3", col.ticks = c(2, 5, 2),
col.labels = c(6, 4, 3), lty.border = 2, lty.ticks = c(2, 3, 2),
ncol = 3)

colorlegend(color = c("red", "white", "red"), x = x, at = c(-1.5, 0, 1.5),
labels = c("low", "middle", "high"), length.ticks = 1.5,
lwd.border = 2, lwd.ticks = 2, cex.labels = 1.5, font = 2,
col.border = "green3", col.ticks = c(2, 5, 2),
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col.labels = c(6, 4, 3), lty.border = 2, lty.ticks = c(2, 3, 2),
ncol = 3, breaks = c(-2, -1, 1, 2))

colorlegend(color = diverge_hcl, x = x, range = c(-3, 3))
colorlegend(color = diverge_hcl, x = x, range = c(-3, 3), lrange = c(-6, 6))

## Combine plot with color legend.
n <- 100
x <- y <- seq(-3, 3, length.out = n)
z <- outer(sin(x), cos(x))
pal <- colorlegend(color = diverge_hcl, x = z, plot = FALSE)
op <- par(no.readonly = TRUE)
par(mar = c(4.1, 4.1, 1.1, 1.1))
layout(matrix(c(1, 2), nrow = 1), widths = c(1, 0.3))
image(x = x, y = y, z = z, col = pal$colors, breaks = pal$breaks)
par(mar = c(4.1, 0.1, 1.1, 3.1))
colorlegend(color = diverge_hcl, x = z, plot = TRUE, full = TRUE,

side.legend = 2, side.ticks = 2)
par(op)

## Another example with different plot.
n <- 50
x <- sin(seq(-3, 3, length.out = n))
pal <- colorlegend(color = diverge_hcl, x = x, plot = FALSE)
op <- par(no.readonly = TRUE)
par(mar = c(7.1, 4.1, 1.1, 1.1))
barplot(x, border = "transparent", col = pal$map(x))
colorlegend(color = diverge_hcl, x = x, plot = FALSE, add = TRUE,

xlim = c(0, 60), ylim = c(-1, 1), pos = c(0, -0.15), xpd = TRUE,
scale = FALSE, width = 60, height = 0.15,
at = seq(min(x), max(x), length.out = 9))

par(op)

continue Continue Sampling

Description

This function takes a bamlss object which was created using a sampler function and continues
sampling from the last state of the MCMC chain.

Usage

continue(object, cores = NULL, combine = TRUE,
sleep = NULL, results = TRUE, ...)
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Arguments

object A bamlss object which contains samples.

cores An integer specifying the number of cores that should be used for the sampler
function. This is based on function mclapply of the parallel package.

combine Should the new samples be combined with the old samples into one mcmc ma-
trix? Note that if combine = FALSE and the number of iterations differ from one
sampling step to the other there will be an error since the start and end points in
the samples mcmc objects are different!

sleep Time the system should sleep before the next core is started.

results If a results function was used to create the bamlss object, should the results
function be applied using the new samples?

... Arguments passed to the sampler function.

Value

A bamlss object.

See Also

bamlss

Examples

## Not run: ## Simulate and run model with MCMC.
set.seed(123)
d <- GAMart()
b <- bamlss(num ~ s(x1) + s(x2) + s(x3) + te(lon,lat), data = d)

## Continue sampling.
a <- continue(b)

## Plot all samples.
## plot(a, which = "samples")

## End(Not run)

cox_predict Cox Model Prediction

Description

This function takes a fitted Cox model, i.e., a model estimated by opt_Cox or sam_Cox and com-
putes predictions given a new data set or the original values. Survival probabilities are computed
using numerical integration, therefore, computation may take some time. To avoid problems with
computer memory, the prediction of survival probabilities can be split into chunks and computed
parallel on different cores.
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Usage

cox_predict(object, newdata,
type = c("link", "parameter", "probabilities"),
FUN = function(x) { mean(x, na.rm = TRUE) },
time = NULL, subdivisions = 100, cores = NULL,
chunks = 1, verbose = FALSE, ...)

Arguments

object A "bamlss" object as returned from function bamlss using the optimizer opt_Cox
or sampler function sam_Cox.

newdata A data frame or list containing the values of the model covariates at which pre-
dictions are required. If missing newdata is the model.frame of the provided
model.

type Specifies the type of predictions that should be computed.

FUN A function that should be applied on each row of the samples of the additive
predictor, parameter or probabilities. Per default the function computes means
of samples, however, other functions like quantile can be supplied.

time numeric, specifies the time for which survival probabilities should be computed
if type = "probabilities". Note that this overwrites survival times that are
supplied in argument newdata.

subdivisions How many time points should be created for each individual.

cores Specifies the number of cores that should be used for prediction. The problem
is split into core chunks, each chunk is then processed by one core.

chunks The number of chunks that should be processed sequentially on one core. This
way memory problems can be avoided when computing survival times for large
problems.

verbose Print progress information.

... Arguments passed to predict.bamlss.

Value

Depending on the type of function provided in argument FUN, a numeric vector or matrix.

See Also

sam_Cox, cox_bamlss, surv_transform, simSurv, bamlss, predict.bamlss

Examples

## Not run: library("survival")
set.seed(123)

## Simulate survival data.
d <- simSurv(n = 500)

## Formula of the survival model, note
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## that the baseline is given in the first formula by s(time).
f <- list(

Surv(time, event) ~ s(time) + s(time, by = x3),
gamma ~ s(x1) + s(x2)

)

## Cox model with continuous time.
## Note the the family object cox_bamlss() sets
## the default optimizer and sampler function!
## First, posterior mode estimates are computed
## using function opt_Cox(), afterwards the
## sampler sam_Cox() is started.
b <- bamlss(f, family = "cox", data = d)

## Predict survival probabilities P(T > t).
p <- predict(b, type = "probabilities",

time = 3, subdivisions = 100, FUN = c95)

## End(Not run)

Crazy Crazy simulated data

Description

This function creates simulated data based on a crazy function.

Usage

Crazy(n = 1000)

Arguments

n The number of observations to be simulated.

Value

A data frame with response y and covariate x.

See Also

GAMart

Examples

d <- Crazy(1000)
head(d)
plot(d)
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CRPS Continuous Rank Probability Score

Description

The function computes the continuous rank probability score (CRPS). Note that the function uses
numerical integration, for highly efficient computation please see the scoringRules package.

Usage

CRPS(object, newdata = NULL,
interval = c(-Inf, Inf), FUN = mean,
term = NULL, ...)

Arguments

object An object returned from bamlss.
newdata Optional new data that should be used for calculation.
interval The interval that should be used for numerical integration
FUN Function to be applied on the CRPS scores.
term If required, specify the model terms that should be used within the predict.bamlss

function.
... Arguments passed to function FUN.

References

Gneiting T, Raftery AE (2007). Strictly Proper Scoring Rules, Prediction, and Estimation." Journal
of the American Statistical Association, 102(477), 359–378. doi:10.1198/016214506000001437cd
..
Gneiting T, Balabdaoui F, Raftery AE (2007). Probabilistic Forecasts, Calibration and Sharpness.
Journal of the Royal Statistical Society B, 69(2), 243–268. doi:10.1111/j.14679868.2007.00587.x

Examples

## Not run: ## Simulate data.
d <- GAMart()

## Model only including covariate x1.
b1 <- bamlss(num ~ s(x1), data = d)

## Now, also including x2 and x2.
b2 <- bamlss(num ~ s(x1) + s(x2) + s(x3), data = d)

## Compare using the CRPS score.
CRPS(b1)
CRPS(b2)

## End(Not run)

https://doi.org/10.1198/016214506000001437
https://doi.org/10.1111/j.1467-9868.2007.00587.x
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ddnn Deep Distributional Neural Network

Description

This function interfaces keras infrastructures for high-level neural networks. The function can be
used as a standalone model fitting engine such as bamlss or as an on top model engine to capture
special features in the data that could not be captures by other model fitting engines.

Usage

## Deep distributional neural net.
ddnn(object, optimizer = "adam",
learning_rate = 0.01,
epochs = 100, batch_size = NULL,
nlayers = 2, units = 100, activation = "relu",
l1 = NULL, l2 = NULL,
validation_split = 0.2, early_stopping = TRUE, patience = 50,
verbose = TRUE, ...)

## Predict method.
## S3 method for class 'ddnn'
predict(object, newdata,
model = NULL, type = c("link", "parameter"),
drop = TRUE, ...)

## CV method for optimizing
## the number of epochs using
## the CRPS.
cv_ddnn(formula, data, folds = 10,
min_epochs = 300, max_epochs = 400,
interval = c(-Inf, Inf), ...)

Arguments

object An object of class "bamlss" or a bamlss.formula.

optimizer Character or call to optimizer functions to be used within fit. For character,
options are: "adam" "sgd", "rmsprop", "adagrad", "adadelta", "adamax",
"adam". The default is optimizer_rmsprop with learning rate set to 1e-04.

learning_rate The learning rate of the optimizer.

epochs Number of times to iterate over the training data arrays, see fit.

batch_size Number of samples per gradient update, see fit.

nlayers Number of hidden layers.

units Number of nodes per hidden layer, can be a vector.

activation Activation functions used for the hidden layers, can be a vector.
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l1 Shrinkage parameter for L1 penalty.

l2 Shrinkage parameter for L2 penalty.

validation_split

Proportion of data that should be used for validation.

early_stopping Logical, should early stopping of the optimizer be applied?

patience Integer, number of iterations the optimizer waits until early stopping is applied
after changes get small in validation data set.

verbose Print information during runtime of the algorithm.

newdata A list or data.frame that should be used for prediction.

model Character or integer specifying for which distributional parameter predictions
should be computed.

type If type = "link" the predictor of the corresponding model is returned. If type
= "parameter" predictions on the distributional parameter scale are returned.

drop If predictions for only one model are returned, the list structure is dropped.

formula The model formula.

data The data used for estimation.

folds The number of folds that should be generated.

min_epochs, max_epochs
Defines the minimum and maximum epochs thet should be used.

interval Response interval, see function CRPS.

... Arguments passed to bamlss.frame.

Details

The default keras model is a sequential model with two hidden layers with "relu" activation func-
tion and 100 units in each layer. Between each layer is a dropout layer with 0.1 dropout rate.

Value

For function ddnn() an object of class "ddnn". Note that extractor functions fitted and residuals.bamlss
can be applied. For function predict.ddnn() a list or vector of predicted values.

WARNINGS

The deep learning infrastructure is experimental!

See Also

bamlss.frame, bamlss
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Examples

## Not run: ## Simulate data.
set.seed(123)
n <- 300
x <- runif(n, -3, 3)
fsigma <- -2 + cos(x)
y <- sin(x) + rnorm(n, sd = exp(fsigma))

## Setup model formula.
f <- list(

y ~ x,
sigma ~ x

)

## Fit neural network.
library("keras")
b <- ddnn(f, epochs = 2000)

## Plot estimated functions.
par(mfrow = c(1, 2))
plot(x, y)
plot2d(fitted(b)$mu ~ x, add = TRUE)
plot2d(fitted(b)$sigma ~ x,

ylim = range(c(fitted(b)$sigma, fsigma)))
plot2d(fsigma ~ x, add = TRUE, col.lines = "red")

## Predict with newdata.
nd <- data.frame(x = seq(-6, 6, length = 100))
nd$p <- predict(b, newdata = nd, type = "link")

par(mfrow = c(1, 2))
plot(x, y, xlim = c(-6, 6), ylim = range(c(nd$p$mu, y)))
plot2d(p$mu ~ x, data = nd, add = TRUE)
plot2d(p$sigma ~ x, data = nd,

ylim = range(c(nd$p$sigma, fsigma)))
plot2d(fsigma ~ x, add = TRUE, col.lines = "red")

## Plot quantile residuals.
e <- residuals(b)
plot(e)

## End(Not run)

DIC Deviance Information Criterion

Description

Generic function returning the deviance information criterion (DIC) of a fitted model object.
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Usage

DIC(object, ...)

Arguments

object A fitted model object for which there exists a DIC method.

... Optionally more fitted model objects.

Examples

## Not run: d <- GAMart()
b1 <- bamlss(num ~ s(x1), data = d)
b2 <- bamlss(num ~ s(x1) + s(x2), data = d)
DIC(b1, b2)

## End(Not run)

dist_mvnchol Cholesky MVN (disttree)

Description

disttree Families for MVN with Cholesky Parameterization

Usage

dist_mvnchol(k, r = k - 1L, type = c("basic", "modified", "chol"), ...)

Arguments

k integer. The dimension of the multivariate distribution.

r Integer, the number of off-diagonals to model (AD-r covariance).

type character. Choose "basic" Cholesky decomposition or "modified" Cholesky
decomposition. (For back compatibility "chol" is identical to "basic".)

... not used.

Details

NOTE: These functions are under development!! disttree families that models a multivariate Normal
(Gaussian) distribution by (modified) Cholesky decomposition of the covariance matrix.

Value

a bamlss family.
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engines Show Available Engines for a Family Object

Description

The function shows available optimizer and sampling engines for a given family object.

Usage

engines(family, ...)

Arguments

family A family object or the name of the family.

... Further family objects or names.

Examples

engines(gaussian_bamlss, "gamma", cox_bamlss)

family.bamlss Distribution Families in bamlss

Description

Family objects in bamlss specify the information that is needed for using (different) model fitting
engines, e.g., the parameter names and corresponding link functions, the density function, deriva-
tives of the log-likelihood w.r.t. the predictors, and so forth. The optimizer or sampler functions
that are called by bamlss must know how much information is needed to interpret the model since
the family objects are simply passed through. Family objects are also used for computing post-
modeling statistics, e.g., for residual diagnostics or random number generation. See the details and
examples.

Usage

## Family objects in bamlss:
ALD_bamlss(..., tau = 0.5, eps = 0.01)
beta_bamlss(...)
binomial_bamlss(link = "logit", ...)
cnorm_bamlss(...)
cox_bamlss(...)
dw_bamlss(...)
DGP_bamlss(...)
dirichlet_bamlss(...)
ELF_bamlss(..., tau = 0.5)
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gaussian_bamlss(...)
gaussian2_bamlss(...)
Gaussian_bamlss(...)
gamma_bamlss(...)
logNN_bamlss(...)
multinomial_bamlss(...)
mvnorm_bamlss(k = 2, ...)
mvnormAR1_bamlss(k = 2, ...)
poisson_bamlss(...)
gpareto_bamlss(...)
glogis_bamlss(...)
AR1_bamlss(...)
beta1_bamlss(ar.start, ...)
nbinom_bamlss(...)
ztnbinom_bamlss(...)
lognormal_bamlss(...)
weibull_bamlss(...)
Sichel_bamlss(...)
GEV_bamlss(...)
gumbel_bamlss(...)
mix_bamlss(f1, f2, ...)
ZANBI_bamlss(...)

## Extractor functions:
## S3 method for class 'bamlss'
family(object, ...)
## S3 method for class 'bamlss.frame'
family(object, ...)

Arguments

object An object of class "bamlss" or "bamlss.frame", see function bamlss and
bamlss.frame.

k The dimension of the multivariate normal. Note, if k = 1 function gaussian_bamlss()
is called.

ar.start Logical vector of length equal to the number of rows of the full data set used
for modeling. Must hold entries TRUE indicating the start of a time series of a
section. If ar.start = NULL lagged residuals are computed by simple shifting.
See also bam.

link Possible link functions.

tau The quantile the should be fitted.

eps Constant to be used for the approximation of the absolute function.

f1, f2 A family of class "gamlss.family", see package gamlss.dist.

... Arguments passed to functions that are called within the family object.
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Details

The following lists the minimum requirements on a bamlss family object to be used with bamlss
and bamlss.frame:

• The family object must return a list of class "family.bamlss".

• The object must contain the family name as a character string.

• The object must contain the names of the parameters as a character string, as well as the
corresponding link functions as character string.

For most optimizer and sampling functions at least the density function, including a log argument,
should be provided. When using generic model fitting engines like opt_bfit or sam_GMCMC, as well
as for computing post-modeling statistics with function samplestats, and others, it is assumed that
the density function in a family object has the following arguments:

d(y, par, log = FALSE, ...)

where argument y is the response (possibly a matrix) and par is a named list holding the evaluated
parameters of the distribution, e.g., using a normal distribution par has two elements, one for the
mean par$mu and one for the standard deviation par$sigma. The dots argument is for passing
special internally used objects, depending on the type of model this feature is usually not needed.

Similarly, for derivative based algorithms, e.g. using iteratively weighted least squares (IWLS, see
function opt_bfit, the family object holds derivative functions evaluating derivatives of the log-
likelihood w.r.t. the predictors (or expectations of derivatives). For each parameter, these functions
also hold the following arguments:

score(y, par, ...)

for computing the first derivative of the log-likelihood w.r.t. a predictor and

hess(y, par, ...)

for computing the negative second derivatives. Within the family object these functions are orga-
nized in a named list, see the examples below.

In addition, for the cumulative distribution function (p(y, par, ...)), for the quantile function
(q(y, par, ...)) or for creating random numbers (r(n, par, ...)) the same structure is assumed.
See, e.g., the code of function gaussian.bamlss().

Some model fitting engines can initialize the distributional parameters which oftentimes leads to
much faster convergence. The initialize functions are again organized within a named list, one
entry for each parameter, similar to the score and hess functions, e.g., see the code of family
object gaussian.bamlss.

Using function bamlss, residuals.bamlss and predict.bamlss the family objects may also
specify the transform()er, optimizer(), sampler(), samplestats(), results(), residuals()
and predict() function that should be used with this family. See for example the setup of cox_bamlss.

For using specialized estimation engines like sam_JAGS it is recommended to supply any extra
arguments needed by those engines with an additional list entry within the family object, e.g., using
gaussian_bamlss() with sam_JAGS the family objects holds special details in an element named
"bugs".

The examples below illustrate this setup. See also the code of the bamlss family functions.
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See Also

bamlss, bamlss.frame

Examples

## New family object for the normal distribution,
## can be used by function opt_bfit() and sam_GMCMC().
normal_bamlss <- function(...) {

f <- list(
"family" = "normal",
"names" = c("mu", "sigma"),
"links" = c("identity", "log"),
"d" = function(y, par, log = FALSE) {

dnorm(y, mean = par$mu, sd = par$sigma, log = log)
},
"score" = list(

"mu" = function(y, par, ...) {
drop((y - par$mu) / (par$sigma^2))

},
"sigma" = function(y, par, ...) {

drop(-1 + (y - par$mu)^2 / (par$sigma^2))
}

),
"hess" = list(

"mu" = function(y, par, ...) {
drop(1 / (par$sigma^2))

},
"sigma" = function(y, par, ...) {

rep(2, length(y))
}

)
)
class(f) <- "family.bamlss"
return(f)

}

## Not run: ## Test on simulated data.
d <- GAMart()
b <- bamlss(num ~ s(x1) + s(x2) + s(x3),

data = d, family = "normal")
plot(b)

## Compute the log-likelihood using the family object.
f <- family(b)
sum(f$d(y = d$num, par = f$map2par(fitted(b)), log = TRUE))

## For using JAGS() more details are needed.
norm4JAGS_bamlss <- function(...) {

f <- normal_bamlss()
f$bugs <- list(

"dist" = "dnorm",
"eta" = BUGSeta,
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"model" = BUGSmodel,
"reparam" = c(sigma = "1 / sqrt(sigma)")

)
return(f)

}

## Now with opt_bfit() and sam_JAGS().
b <- bamlss(num ~ s(x1) + s(x2) + s(x3), data = d,

optimizer = opt_bfit, sampler = sam_JAGS, family = "norm4JAGS")
plot(b)

## End(Not run)

fatalities Weekly Number of Fatalities in Austria

Description

This data set includes weekly fatalities in Austria from 2000 to 46 weeks in 2020. The data is taken
from the Eurostat data base.

Usage

data("fatalities")

Format

The fatalities data contains the following variables:

num: Integer, the number of fatalities.

year: Integer, the corresponding year fatalities are recorded.

week: Integer, the corresponding week fatalities are recorded..

References

Eurostat Database (2020). Population and social conditions, demography and migration, mortality,
weekly deaths, deaths by week and NUTS 3 region, Austria https://ec.europa.eu/eurostat/

Examples

data("fatalities")
plot(num ~ week, data = fatalities)

https://ec.europa.eu/eurostat/
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fitted.bamlss BAMLSS Fitted Values

Description

Function to compute fitted values for bamlss models. The function calls predict.bamlss to com-
pute fitted values from samples.

Usage

## S3 method for class 'bamlss'
fitted(object, model = NULL, term = NULL,
type = c("link", "parameter"), samples = TRUE,
FUN = c95, nsamps = NULL, ...)

Arguments

object An object of class "bamlss"

model Character or integer, specifies the model for which fitted values should be com-
puted.

term Character or integer, specifies the model terms for which fitted values are re-
quired. Note that if samples = TRUE, e.g., term = c("s(x1)", "x2") will com-
pute the combined fitted values s(x1) + x2.

type If type = "link" the predictor of the corresponding model is returned. If type
= "parameter" fitted values on the distributional parameter scale are returned.

samples Should fitted values be computed using samples of parameters or estimated
parameters as returned from optimizer functions (e.g., function bfit returns
"fitted.values"). The former results in a call to predict.bamlss, the latter
simply extracts the "fitted.values" of the bamlss object and is not model
term specific.

FUN A function that should be applied on the samples of predictors or parameters,
depending on argument type.

nsamps If the fitted bamlss object contains samples of parameters, computing fitted val-
ues may take quite some time. Therefore, to get a first feeling it can be useful to
compute fitted values only based on nsamps samples, i.e., nsamps specifies the
number of samples which are extracted on equidistant intervals.

... Arguments passed to function predict.bamlss.

Value

Depending on arguments model, FUN and the structure of the bamlss model, a list of fitted values
or simple vectors or matrices of fitted values.

See Also

bamlss, predict.bamlss.
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Examples

## Not run: ## Generate some data.
d <- GAMart()

## Model formula.
f <- list(

num ~ s(x1) + s(x2) + s(x3) + te(lon,lat),
sigma ~ s(x1) + s(x2) + s(x3) + te(lon,lat)

)

## Estimate model.
b <- bamlss(f, data = d)

## Fitted values returned from optimizer.
f1 <- fitted(b, model = "mu", samples = FALSE)

## Fitted values returned from sampler.
f2 <- fitted(b, model = "mu", samples = TRUE, FUN = mean)

plot(f1, f2)

## End(Not run)

GAMart GAM Artificial Data Set

Description

This function creates artificial GAM-type data.frames. The function is mainly used for testing
purposes.

Usage

GAMart(n = 500, sd = 0.1, seed = FALSE,
ti = c("none", "vcm", "main", "both"))

Arguments

n The number of observations.

sd Standard deviation of the normal errors.

seed Sets the seed to 111.

ti For tensor product interaction term, the type of interaction.
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Examples

d <- GAMart()
head(d)

## Not run: b <- bamlss(num ~ s(x1) + s(x2) + s(x3) + te(lon,lat), data = d)
plot(b)

## End(Not run)

gamlss_distributions Extract Distribution families of the gamlss.dist Package

Description

The functions searches in the gamlss.dist namespace for available distributions. It returns a named
list of faily functions which can be used with bamlss.

Usage

gamlss_distributions(type = c("continuous", "discrete"))

Arguments

type Character specifying the type of distribution to be extracted.

See Also

bamlss

Examples

## Not run:
dists <- gamlss_distributions(type = "continuous")
print(dists)

## End(Not run)
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gF Get a BAMLSS Family

Description

Function to get a family.bamlss object to be used for fitting. The main purpose of this function is
to ease the handling of extra arguments to the family object.

Usage

gF(x, ...)

Arguments

x The name of the family.bamlss without the ".bamlss" extension.

... Arguments passed to the family object.

Value

A family.bamlss object.

See Also

family.bamlss.

Examples

f <- gF(gaussian)
print(f)

Golf Prices of Used Cars Data

Description

This dataset is taken from the Regression Book and is about prices of used VW Golf cars.

Usage

data("Golf")
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Format

The Golf data contains the following variables:

price: Numeric, sale price in 1000 Euro.

age: Numeric, age of the car in month.

kilometer: Numeric, kilometer reading in 1000 kilometers.

tia: Numeric, month until the next TIA appointment (German TUEV).

abs: Factor, does the car have abs?

sunroof: Factor, does the car have a sunroof?

References

Fahrmeir, L., Kneib, T., Lang, S. and Marx, B. (2013). Regression - Models, Methods and Appli-
cations, Springer. https://www.uni-goettingen.de/de/551357.html.

Examples

data("Golf")
plot(price ~ age, data = Golf)
plot(price ~ kilometer, data = Golf)

homstart_data HOMSTART Precipitation Data

Description

This function downloads and compiles the HOMSTART-project data set. The data is downloaded
from the Zentralanstalt fuer Meteorologie und Geodynamik (ZAMG, http://www.zamg.ac.at)
and funded by the Austrian Climate Research Programme (ACRP) and is free for research purposes.

Usage

homstart_data(dir = NULL, load = TRUE, tdir = NULL)

Arguments

dir The directory where the homstart.rda file should be stored.

load Should the homstart data be loaded?

tdir An optional temporary directory where all downloaded files are processed.

http://www.zamg.ac.at
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Value

A data frame containing the following variables:

raw The daily precipitation observations.

cens Precipitation observations censored at 0.

bin Factor with levels "yes" or "no" indicating precipitation.

cat Factor with levels "none", "low", "medium" and "high" indicating the amount
of precipitation.

trend A numeric time trend

month Month of of the observation.

year Year of the observation.

day Day of the year.

lon The longitude coordinate of the corresponding meteorological station.

lat The latitude coordinate of the corresponding meteorological station.

id Factor, meteorological station identifier.

cos1, cos2, sin1, sin2
Transformed time trend for harmonic regression.

weekend Factor, with levels "yes" and "no" indication if the observation was measured
on a weekend.

elevation Numeric, the elevation of the meteorological station.

References

Nemec J, Gruber C, Chimani B, Auer I (2012). Trends in extreme temperature indices in Austria
based on a new homogenised dataset. International Journal of Climatology. DOI 10.1002/joc.3532.

Nemec J, Chimani B, Gruber C, Auer I (2011). Ein neuer Datensatz homogenisierter Tagesdaten.
OEGM Bulletin, 1, 19–20. https://www.meteorologie.at/docs/OEGM_bulletin_2011_1.pdf

Umlauf N, Mayr G, Messner J, Zeileis A (2012). Why does it always rain on me? A spatio-temporal
analysis of precipitation in Austria. Austrian Journal of Statistics, 41(1), 81–92. doi:10.17713/
ajs.v41i1.190

Examples

## Not run: homstart_data(load = TRUE)
head(homstart)

## End(Not run)

https://www.meteorologie.at/docs/OEGM_bulletin_2011_1.pdf
https://doi.org/10.17713/ajs.v41i1.190
https://doi.org/10.17713/ajs.v41i1.190
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jm_bamlss Fit Flexible Additive Joint Models

Description

Family object to fit a flexible additive joint model for longitudinal and survival data under a Bayesian
approach as presented in Koehler et al. (2017a, b). All parts of the joint model can be specified as
structured additive predictors. See the details and examples.

Usage

## JM family object.
jm_bamlss(...)

## "bamlss.frame" transformer function
## to set up joint models.
jm_transform(x, y, data, terms, knots, formula, family, subdivisions = 25,

timedependent = c("lambda", "mu", "alpha", "dalpha"), timevar = NULL,
idvar = NULL, alpha = .Machine$double.eps, mu = NULL, sigma = NULL,
sparse = TRUE, nonlinear = FALSE, edf_alt = FALSE, start_mu = NULL,
k_mu = 6, ...)

## Posterior mode optimizing engine.
opt_JM(x, y, start = NULL, weights = NULL, offset = NULL,
criterion = c("AICc", "BIC", "AIC"), maxit = c(100, 1),
nu = c("lambda" = 0.1, "gamma" = 0.1, "mu" = 1, "sigma" = 1,
"alpha" = 1, "dalpha" = 1),

update.nu = FALSE, eps = 0.0001, alpha.eps = 0.001, ic.eps = 1e-08,
nback = 40, verbose = TRUE, digits = 4, ...)

jm_mode(x, y, start = NULL, weights = NULL, offset = NULL,
criterion = c("AICc", "BIC", "AIC"), maxit = c(100, 1),
nu = c("lambda" = 0.1, "gamma" = 0.1, "mu" = 1, "sigma" = 1,
"alpha" = 1, "dalpha" = 1),

update.nu = FALSE, eps = 0.0001, alpha.eps = 0.001, ic.eps = 1e-08,
nback = 40, verbose = TRUE, digits = 4, ...)

## Sampler function.
sam_JM(x, y, family, start = NULL, weights = NULL, offset = NULL,
n.iter = 1200, burnin = 200, thin = 1, verbose = TRUE, digits = 4,
step = 20, ...)

jm_mcmc(x, y, family, start = NULL, weights = NULL, offset = NULL,
n.iter = 1200, burnin = 200, thin = 1, verbose = TRUE, digits = 4,
step = 20, ...)

## Predict function, set to default in jm_bamlss().
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jm_predict(object, newdata,
type = c("link", "parameter", "probabilities", "cumhaz", "loglik"),
dt, steps, id, FUN = function(x) { mean(x, na.rm = TRUE) },
subdivisions = 100, cores = NULL, chunks = 1,
verbose = FALSE, ...)

## Survival plot.
jm_survplot(object, id = 1, dt = NULL, steps = 10,
points = TRUE, rug = !points)

Arguments

x The x list, as returned from function bamlss.frame (and transformed by func-
tion jm_transform()), holding all model matrices and other information that is
used for fitting the model.

y The model response, as returned from function bamlss.frame.

data A data.frame or list containing the model response variable(s) and covariates
specified in the formula in long format. By default the variables are taken
from environment(formula): typically the environment from which bamlss
is called.

terms The corresponding terms.bamlss object needed for processing.

knots An optional list containing user specified knots, see the documentation of func-
tion gam.

formula The corresponding bamlss.formula.

family The bamlss.family object.

subdivisions How many time points should be created for each individual.

timedependent A character vector specifying the names of parameters in x that are time-dependent.
Time grid design matrices are only computed for these parameters.

timevar A character specifying the name of the survival time variable in the data set.

idvar Depending on the type of data set, this is the name of the variable specifying
identifier of individuals.

alpha Numeric, a starting value for the intercept of the association parameter alpha.

mu Numeric, a starting value for the intercept of the mu parameter.

sigma Numeric, a starting value for the intercept of the sigma parameter.

sparse Logical, indicating if sparse matrix structures are used for updating and sam-
pling of mu parameter model terms.

nonlinear Logical, indicating if association is nonlinear in mu. See Details on the different
model specifications.

edf_alt Logical, indicating if an alternative computation of estimated degrees of free-
dom for penalized model terms should be used.

start_mu Starting values for the computation of mu. For estimating associations which
are nonlinear in mu, knot placement is based on these starting values which can
improve stability.
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k_mu Number of knots for spline basis of association nonlinear in mu. Reducing this
number improves stability of the estimation.

start A named numeric vector containing possible starting values, the names are
based on function parameters.

weights Currently not supported.

offset Currently not supported.

criterion Information criterion to be used, e.g., for smoothing variance selection. Options
are the corrected AIC "AICc" (see Details), the "BIC" and "AIC". Defaults to
"AICc"?

maxit Vector containing the maximum number of iterations for the backfitting algo-
rithm with maxit[1] defining the iterations for the full model and maxit[2]
the iterations within each predictor. maxit[2] defaults to 1 if only one value is
specified.

nu Vector of step lengths for parameter updates of one Newton-Raphson update for
each predictor of the joint model.

update.nu Should the updating step length be optimized in each iteration of the backfitting
algorithm? Uses nu as starting value if set to TRUE.

eps The relative convergence tolerance of the backfitting algorithm.

alpha.eps The relative convergence tolerance of the backfitting algorithm for predictor al-
pha.

ic.eps The relative convergence tolerance of the information criterion used, e.g., for
smoothing variance selection.

nback For computing ic.eps, how many iterations back should be included when com-
puting relative convergence tolerance of the information criterion.

verbose Print information during runtime of the algorithm.

digits Set the digits for printing when verbose = TRUE.

n.iter the number of MCMC iterations.

burnin the burn-in phase of the sampler, i.e., the number of starting samples that should
be removed.

thin the thinning parameter for MCMC simulation. E.g., thin = 10 means, that only
every 10th sampled parameter will be stored.

step How many times should algorithm runtime information be printed, divides n.iter.

object A "bamlss" object processed with the JM optimizer function opt_JM() ans/or
sampler function sam_JM() for which the survival plot should be created.

newdata Dataset for which to create predictions. Not needed for conditional survival
probabilities.

type Character string indicating which type of predictions to compute. link returns
estimates for all predictors with the respective link functions applied, "parameter"
returns the estimates for all pedictors, "probabilities" returns the survival
probabilities conditional on the survival up to the last longitudinal measurement,
and "cumhaz" return the cumulative hazard up to the survival time or for a time
window after the last longitudinal measurement. If type is set to "loglik", the
log-likelihood of the joint model is returned.
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id Integer or character, that specifies the individual for which the plot should be
created.

dt The time window after the last observed measurement for which predictions
should be computed. The default is 0.4 * max(obstime) and obstime are the
individual’s longitudinal measurement times.

steps Integer, the number of steps for which to evaluate the conditional survival prob-
ability up to dt.

FUN A function that should be applied on the samples of predictors or parameters,
depending on argument type.

cores Specifies the number of cores that should be used for prediction. Note that this
functionality is based on the parallel package.

chunks Should computations be split into chunks? Prediction is then processed sequen-
tially.

points Should longitudinal observations be added to the plot.
rug Should longitudinal observed time points be added on the x-axis to the plot.
... Currently not used.

Details

We refer to the papers of Koehler et al. (2017a, b) for details on the flexible additive joint model.
In short, we model the hazard of subject i an event at time t as

hi(t) = exp[ηλi(t) + ηγi + ηαi(ηµi(t), t)]

with predictor ηλ for all survival covariates that are time-varying or have a time-varying coefficient
(including the log baseline hazard), predictor ηγ for baseline survival covariates, predictor ηα rep-
resenting the potentially time-varying or nonlinear association between the longitudinal marker ηµ
and the hazard. The longitudinal response yij at time points tij is modeled as

yij = ηµi(tij) + eij

with independent normal errors N(0, exp[ησi(tij)]
2).

Each predictor ηki is a structured additive predictor, i.e. a sum of functions of covariates ηki =∑Mk

m=1 fkm(xki). Each of these functions can be modeled parametrically or using basis function
evaluations from the smooth constructors in mgcv such as s, te and ti and can include smooth
time-varying, random or spatial effects. For the Bayesian estimation of these effects we specify cor-
responding priors: For linear or parametric terms we use vague normal priors, smooth and random
effect terms are regularized by placing generic multivariate normal priors on the coefficients and
for anisotropic smooths, when multiple smoothing variance parameters are involved, more complex
prior are in place (cf. Koehler et al., 2017a). We use inverse Gamma hyper-priors, i.e. IG(0.001,
0.001) to obtain an inverse Gamma full conditional for the variance parameters. We estimate the
posterior mode by maximizing the log-posterior of the model using a Newton-Raphson procedure,
the posterior mean is obtained via derivative-based Metropolis-Hastings sampling. We recommend
to use posterior mode estimates for a quick model assessment. In order to draw correct inferences
from the model, posterior mean estimates should be computed. We approximate integration in the
survival part of the likelihood using trapezoidal rule. For posterior mode estimation.

A variety specifications of the association ηαi(ηµi(t), t) are possible with an important distinction
between associations which are nonlinear in ηµ for nonlinear = TRUE (Koehler et al. 2017b) or
linear where ηαi(ηµi(t), t) = ηαi(t)ηµi(t) for nonlinear = FALSE (Koehler et al. 2017a).
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Note

The indicator nonlinear for associations with are linear or nonlinear in ηµ was named interaction]
in earlier versions stages of the development.

References

Koehler M, Umlauf N, Beyerlein, A., Winkler, C. Ziegler, A.-G., Greven S (2017). Flexible
Bayesian Additive Joint Models with an Application to Type 1 Diabetes Research. Biometrical
Journal. doi:10.1002/bimj.201600224

Meike Koehler, Nikolaus Umlauf, and Sonja Greven (2018). Nonlinear association structures in
flexible Bayesian additive joint models. Statistics in Medicine. doi:10.1002/sim.7967

See Also

bamlss, bamlss.frame.

Examples

## Not run:

set.seed(123)
## Simulate survival data
## with random intercepts/slopes and a linear effect of time,
## constant association alpha and no effect of the derivative
d <- simJM(nsub = 200, long_setting = "linear",

alpha_setting = "constant",
dalpha_setting = "zero", full = FALSE)

## Formula of the according joint model
f <- list(

Surv2(survtime, event, obs = y) ~ s(survtime, bs = "ps"),
gamma ~ s(x1, bs = "ps"),
mu ~ obstime + s(id, bs = "re") +

s(id, obstime, bs = "re"),
sigma ~ 1,
alpha ~ 1,
dalpha ~ -1

)

## Joint model estimation
## jm_bamlss() sets the default optimizer and sampler function.
## First, posterior mode estimates are computed using function
## opt_JM(), afterwards the sampler sam_JM() is started.
b <- bamlss(f, data = d, family = "jm",

timevar = "obstime", idvar = "id")

## Plot estimated effects.
plot(b)

## Predict event probabilities for two individuals
## at 12 time units after their last longitudinal measurement.

https://doi.org/10.1002/bimj.201600224
https://doi.org/10.1002/sim.7967
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## The event probability is conditional on their survival
## up to their last observed measurement.
p <- predict(b, type = "probabilities", id = c(1, 2), dt = 12, FUN = c95)
print(p)

## Plot of survival probabilities and
## corresponding longitudinal effects
## for individual id.
jm_survplot(b, id = 3)
jm_survplot(b, id = 30)

## Simulate survival data
## with functional random intercepts and a nonlinear effect
## of time, time-varying association alpha and no effect
## of the derivative.
## Note: This specification is the simJM default.
d <- simJM(nsub = 200, full = FALSE)

## Formula of the according joint model
## number of knots for the smooth nonlinear effect of time
klong <- 8
f <- list(

Surv2(survtime, event, obs = y) ~ s(survtime, bs = "ps"),
gamma ~ s(x1, bs = "ps"),
mu ~ ti(id, bs = "re") +
ti(obstime, bs = "ps", k = klong) +
ti(id, obstime, bs = c("re", "ps"),

k = c(nlevels(d$id), klong)) +
s(x2, bs = "ps"),

sigma ~ 1,
alpha ~ s(survtime, bs = "ps"),
dalpha ~ -1

)

## Estimating posterior mode only using opt_JM()
b_mode <- bamlss(f, data = d, family = "jm",

timevar = "obstime", idvar = "id",
sampler = FALSE)

## Estimating posterior means using sam_JM()
## with starting values generated from posterior mode
b_mean <- bamlss(f, data = d, family = "jm",

timevar = "obstime", idvar = "id", optimizer = FALSE,
start = parameters(b_mode), results = FALSE)

## Plot effects.
plot(b_mean, model = "alpha")

## Simulate survival data
## with functional random intercepts and an association nonlinear in mu
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set.seed(234)
d <- simJM(nsub = 300, long_setting = "functional", alpha_setting = "nonlinear",

nonlinear = TRUE, full = FALSE, probmiss = 0.9)

## Calculate longitudinal model to obtain starting values for mu
long_df <- 7
f_start <- y ~ ti(id, bs = "re") + ti(obstime, bs = "ps", k = long_df) +

ti(id, obstime, bs = c("re", "ps"), k = c(nlevels(d$id), long_df)) +
s(x2, bs = "ps")

b_start <- bamlss(f_start, data = d, sampler = FALSE)
mu <- predict(b_start)$mu

## Fit joint model with nonlinear association (nonlinear = TRUE)
f <- list(

Surv2(survtime, event, obs = y) ~ s(survtime, bs = "ps"),
gamma ~ x1,
mu ~ ti(id, bs = "re") + ti(obstime, bs = "ps", k = long_df) +

ti(id, obstime, bs = c("re", "ps"), k = c(nlevels(d$id), long_df)) +
s(x2, bs = "ps"),

sigma ~ 1,
alpha ~ 1,
dalpha ~ -1

)
b <- bamlss(f, data = d, family = "jm", timevar = "obstime", idvar = "id",

nonlinear = TRUE, start_mu = mu,
n.iter = 6000, burnin = 2000, thin = 2)

plot(b)
samplestats(b$samples)

## End(Not run)

la Lasso Smooth Constructor

Description

Smooth constructors and optimizer for Lasso penalization with bamlss. The penalization is based
on a Taylor series approximation of the Lasso penalty.

Usage

## Smooth constructor function.
la(formula, type = c("single", "multiple"), ...)

## Single Lasso smoothing parameter optimizer.
opt_lasso(x, y, start = NULL, adaptive = TRUE, lower = 0.001, upper = 1000,
nlambda = 100, lambda = NULL, multiple = FALSE, verbose = TRUE,
digits = 4, flush = TRUE, nu = NULL, stop.nu = NULL,
ridge = .Machine$double.eps^0.5, zeromodel = NULL, ...)
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lasso(x, y, start = NULL, adaptive = TRUE, lower = 0.001, upper = 1000,
nlambda = 100, lambda = NULL, multiple = FALSE, verbose = TRUE,
digits = 4, flush = TRUE, nu = NULL, stop.nu = NULL,
ridge = .Machine$double.eps^0.5, zeromodel = NULL, ...)

## Lasso transformation function to set
## adaptive weights from an unpenalized model.
lasso_transform(x, zeromodel, nobs = NULL, ...)

## Plotting function for opt_lasso() optimizer.
lasso_plot(x, which = c("criterion", "parameters"),
spar = TRUE, model = NULL, name = NULL, mstop = NULL,
retrans = FALSE, color = NULL, show.lambda = TRUE,
labels = NULL, digits = 2, ...)

## Extract optimum stopping iteration for opt_lasso() optimizer.
## Based on the minimum of the information criterion.
lasso_stop(x)

## Extract retransformed Lasso coefficients.
lasso_coef(x, ...)

Arguments

formula A formula like ~ x1 + x2 + ... + xk of variables which should be penalized with
Lasso.

type Should one single penalty parameter be used or multiple parameters, one for
each covariate in formula.

x For function opt_lasso() and lasso_transform() the x list, as returned from
function bamlss.frame, holding all model matrices and other information that
is used for fitting the model. For the plotting function and lasso_stop()/lasso_coef()
the corresponding bamlss object fitted with the opt_lasso() optimizer.

y The model response, as returned from function bamlss.frame.

start A vector of starting values. Note, Lasso smoothing parameters will be dropped.

adaptive Should adaptive weights be used for fused Lasso terms?

lower Numeric. The minimum lambda value.

upper Numeric. The maximum lambda value.

nlambda Integer. The number of smoothing parameters for which coefficients should be
estimated, i.e., the vector of smoothing parameters is build up as a sequence
from lower to upper with length nlambda.

lambda Numeric. A sequence/vector of lambda parameters that should be used.

multiple Logical. Should the lambda grid be exapnded to search for multiple lambdas,
one for each distributional parameter.

verbose Print information during runtime of the algorithm.

digits Set the digits for printing when verbose = TRUE. If the optimum lambda value is
plotted, the number of decimal decimal places to be used within lasso_plot().
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flush use flush.console for displaying the current output in the console.
nu Numeric or logical. Defines the step length for parameter updating of a model

term, useful when the algorithm encounters convergence problems. If nu = TRUE
the step length parameter is optimized for each model term in each iteration of
the backfitting algorithm.

stop.nu Integer. Should step length reduction be stopped after stop.nu iterations of the
Lasso algorithm?

ridge A ridge penalty parameter that should be used when finding adaptive weights,
i.e., parameters from an unpenalized model. The ridge penalty is used to stabi-
lize the estimation in complex models.

zeromodel A model containing the unpenalized parameters, e.g., for each la() terms one
can place a simple ridge penalty with la(x, ridge = TRUE, sp = 0.1). This
way it is possible to find the unpenalized parameters that can be used as adaptive
weights for fusion penalties.

nobs Integer, number of observations of the data used for modeling. If not supplied
nobs is taken from the number of rows from the model term design matrices.

which Which of the two provided plots should be created, character or integer 1 and 2.
spar Should graphical parameters be set by the plotting function?
model Character selecting for which model the plot shpuld be created.
name Character, the name of the coefficient group that should be plotted. Note that

the string provided in name will be removed from the labels on the 4th axis.
mstop Integer vector, defines the path length to be plotted.
retrans Logical, should coefficients be re-transformed before plotting?
color Colors or color function that creates colors for the group paths.
show.lambda Logical. Should the optimum value of the penalty parameter lambda be shown?
labels A character string of labels that should be used on the 4 axis.
... Arguments passed to the subsequent smooth constructor function. lambda con-

trols the starting value of the penalty parameter, const the constant that is added
within the penalty approximation. Moreover, fuse = 1 enforces nominal fusion
of categorical variables and fuse = 2 ordered fusion within la() Note that la()
terms with and without fusion should not be mixed when using the opt_lasso()
optimizer function. For the optimizer opt_lasso() arguments passed to func-
tion bfit.

Value

For function la(), similar to function s a simple smooth specification object.

For function opt_lasso() a list containing the following objects:

fitted.values A named list of the fitted values based on the last lasso iteration of the modeled
parameters of the selected distribution.

parameters A matrix, each row corresponds to the parameter values of one boosting itera-
tion.

lasso.stats A matrix containing information about the log-likelihood, log-posterior and the
information criterion for each lambda.
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References

Andreas Groll, Julien Hambuckers, Thomas Kneib, and Nikolaus Umlauf (2019). Lasso-type pe-
nalization in the framework of generalized additive models for location, scale and shape. Computa-
tional Statistics & Data Analysis. doi:10.1016/j.csda.2019.06.005

Oelker Margreth-Ruth and Tutz Gerhard (2015). A uniform framework for combination of penalties
in generalized structured models. Adv Data Anal Classif. doi:10.1007/s116340150205y

See Also

s, smooth.construct

Examples

## Not run: ## Simulated fusion Lasso example.
bmu <- c(0,0,0,2,2,2,4,4,4)
bsigma <- c(0,0,0,-2,-2,-2,-1,-1,-1)
id <- factor(sort(rep(1:length(bmu), length.out = 300)))

## Response.
set.seed(123)
y <- bmu[id] + rnorm(length(id), sd = exp(bsigma[id]))

## Estimate model:
## fuse=1 -> nominal fusion,
## fuse=2 -> ordinal fusion,
## first, unpenalized model to be used for adaptive fusion weights.
f <- list(y ~ la(id,fuse=2,fx=TRUE), sigma ~ la(id,fuse=1,fx=TRUE))
b0 <- bamlss(f, sampler = FALSE)

## Model with single lambda parameter.
f <- list(y ~ la(id,fuse=2), sigma ~ la(id,fuse=1))
b1 <- bamlss(f, sampler = FALSE, optimizer = opt_lasso,

criterion = "BIC", zeromodel = b0)

## Plot information criterion and coefficient paths.
lasso_plot(b1, which = 1)
lasso_plot(b1, which = 2)
lasso_plot(b1, which = 2, model = "mu", name = "mu.s.la(id).id")
lasso_plot(b1, which = 2, model = "sigma", name = "sigma.s.la(id).id")

## Extract coefficients for optimum Lasso parameter.
coef(b1, mstop = lasso_stop(b1))

## Predict with optimum Lasso parameter.
p1 <- predict(b1, mstop = lasso_stop(b1))

## Full MCMC, needs lasso_transform() to assign the
## adaptive weights from unpenalized model b0.
b2 <- bamlss(f, optimizer = FALSE, transform = lasso_transform,

zeromodel = b0, nobs = length(y), start = coef(b1, mstop = lasso_stop(b1)),
n.iter = 4000, burnin = 1000)

https://doi.org/10.1016/j.csda.2019.06.005
https://doi.org/10.1007/s11634-015-0205-y
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summary(b2)
plot(b2)

ci <- confint(b2, model = "mu", pterms = FALSE, sterms = TRUE)
lasso_plot(b1, which = 2, model = "mu", name = "mu.s.la(id).id", spar = FALSE)
for(i in 1:8) {

abline(h = ci[i, 1], lty = 2, col = "red")
abline(h = ci[i, 2], lty = 2, col = "red")

}

## End(Not run)

lin Linear Effects for BAMLSS

Description

This smooth constructor implements simple linear effects. The columns of the design matrix are
automatically scaled. The main advantage of this constructor is speed when used in the BAMLSS
boosting algorithm boost. Optionally, a ridge penalty can be added, please see the example.

Usage

## Linear smooth constructor.
lin(...)

## For mgcv.
## S3 method for class 'linear.smooth.spec'
smooth.construct(object, data, knots, ...)

Arguments

... For function lin() a formula of the type ~x1+x2+x3 that specifies the covariates
that should be modeled.

object, data, knots
See smooth.construct.

Value

Function lin(), similar to function s a simple smooth specification object.

See Also

bamlss, predict.bamlss, bfit, boost
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Examples

## Not run: ## Simulate data.
set.seed(123)
d <- GAMart()

## Estimate model.
f <- num ~ lin(~x1+x2+x3+fac,ridge=TRUE)

b <- bamlss(f, data = d)

summary(b)

## End(Not run)

LondonFire London Fire Data

Description

Provides the compiled dwelling fire data of London in 2015. The data is provided as a SpatialPointsDataFrame
in object LondonFire. In addition the boundary and borough information is provided in objects
LondonBoundaries and LondonBoroughs. Locations of all fire stations in London of 2015 are
provided in object LondonFStations.

Usage

data("LondonFire")

Format

The LondonFire data contains the following variables:

arrivaltime: Numeric, the time after the emergency call until the first fire engine arrived.

daytime: Numeric, The time of day at which the emergency call was received.

fsintens: Numeric, the fire station intensity at the location of the fire scene. The intensity is mea-
sured using a kernel density estimate of the LondonFStations using the spatstat package.

References

London Fire (2015). London Fire Brigade Incident Records. London Data Store, UK Open Govern-
ment Licence (OGL v2). https://data.london.gov.uk/dataset/london-fire-brigade-incident-records

London Boroughs/Boundaries (2015). Statistical GIS Boundary Files for London. London Data
Store, UK Open Government Licence (OGL v2). https://data.london.gov.uk/dataset/statistical-gis-boundary-files-london

London Fire Stations (2015). London Fire Brigade, https://www.london-fire.gov.uk/. (old
url http://www.london-fire.gov.uk/A-ZFireStations.asp)

Taylor BM (2016). Spatial Modelling of Emergency Service Response Times. Journal of the Royal
Statistical Society: Series A (Statistics in Society), 180(2), 433–453. doi:10.1111/rssa.12192

https://data.london.gov.uk/dataset/london-fire-brigade-incident-records
https://data.london.gov.uk/dataset/statistical-gis-boundary-files-london
https://doi.org/10.1111/rssa.12192
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Examples

data("LondonFire")
plot(LondonFire, col = "red")
plot(LondonFStations, col = "blue", cex = 1.5, pch = 16, add = TRUE)
plot(LondonBoroughs, lwd = 0.5, add = TRUE)
plot(LondonBoundaries, add = TRUE, lwd = 1.5)
head(LondonFire@data)

make_formula Formula Generator

Description

Generate a formula for a MVN Cholesky model.

Usage

make_formula(formula, type = "basic")

Arguments

formula formula.

type character. Type of Cholesky decomposition.

Details

This is a helper to generate a formula for a bamlss model with k-dimensional multi-variate normal
distribution and Cholesky decomposed variance-covariance matrix. It is helpful if one formula
should be used for means, another for all diagonal entries of the Cholesky factor, and a third one for
all lower triangular entries of the Cholesky factor. The left hand side has k elements separated by
|. The right hand side has one to three elements separated by | specifying the formulas used for all
means, diagonal entries of the Cholesky factor and lower triangular entries of the Cholesky factor,
respectively.

See Also

mvnchol_bamlss

Examples

f <- O | C | E | A | N ~ s(x1) + s(x2) | s(y) | z
f2 <- make_formula(f)
f2
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model.frame.bamlss BAMLSS Model Frame

Description

Extracts the model frame of a bamlss or bamlss.frame object.

Usage

## S3 method for class 'bamlss'
model.frame(formula, ...)

## S3 method for class 'bamlss.frame'
model.frame(formula, ...)

## Internal helper function for creating
## the model frame.
bamlss.model.frame(formula, data, family = gaussian_bamlss(),
weights = NULL, subset = NULL, offset = NULL,
na.action = na.omit, specials = NULL, contrasts.arg = NULL,
drop.unused.levels = TRUE, ...)

Arguments

formula An object of class "bamlss" or "bamlss.frame".

data A data.frame or list containing the model response variable(s) and covariates
specified in the formula. By default the variables are taken from environment(formula).

family A bamlss.family object, see function bamlss.

weights Prior weights on the data.

subset An optional vector specifying a subset of observations to be used in the fitting
process.

offset Can be used to supply model offsets for use in fitting.

na.action A function which indicates what should happen when the data contain NA’s. The
default is set by the na.action setting of options, and is na.omit if set to
NULL.

specials Special function in formulas, see terms.object.

contrasts.arg An optional list. See the contrasts.arg of model.matrix.default.
drop.unused.levels

Should factors have unused levels dropped?

... Arguments to be passed to bamlss.model.frame() and others.

Value

The data.frame containing the variables used for modeling with function bamlss.
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See Also

bamlss, bamlss.frame, model.matrix.bamlss.frame.

Examples

## Not run: ## Generate some data.
d <- GAMart()

## Model formula.
f <- list(

log(pnum) ~ s(x1) + log(x2),
sigma ~ s(x3)

)

## Estimate model.
b <- bamlss(f, data = d)

## Extract the model frame.
head(model.frame(b))

## End(Not run)

model.matrix.bamlss.frame

Construct/Extract BAMLSS Design Matrices

Description

The function creates design (or model) matrices for BAMLSS, i.e., for each parameter of a bamlss.family
object.

Usage

## S3 method for class 'bamlss.frame'
model.matrix(object, data = NULL, model = NULL,
drop = TRUE, scale.x = FALSE, ...)

## S3 method for class 'bamlss.formula'
model.matrix(object, data = NULL, model = NULL,
drop = TRUE, scale.x = FALSE, ...)

## S3 method for class 'bamlss.terms'
model.matrix(object, data = NULL, model = NULL,
drop = TRUE, scale.x = FALSE, ...)



mvnchol_bamlss 63

Arguments

object A bamlss.frame, bamlss.formula or terms.bamlss object.

data A data frame or list.

model Character or integer, specifies the model for which design matrices should be
returned.

drop If model matrices for only one model are returned, the list structure is dropped.

scale.x Logical, should the model matrices of the linear parts be scaled?

... Not used.

Value

Depending on the type of model a named list of model matrices or a single model matrix.

See Also

model.matrix, bamlss.frame, bamlss.formula, terms.bamlss.

Examples

## Generate some data.
d <- GAMart()

## Model formula.
f <- list(

num ~ x1 + x2 + id,
sigma ~ x3 + fac + lon + lat

)

## Create a "bamlss.frame".
bf <- bamlss.frame(f, data = d)

## Get the model matrices.
X <- model.matrix(bf)
head(X$sigma)

## Same with "bamlss.formula".
X <- model.matrix(bamlss.formula(f), data = d)
head(X$sigma)

mvnchol_bamlss Cholesky MVN

Description

BAMLSS Families for MVN with Cholesky Parameterization



64 mvn_chol

Usage

mvnchol_bamlss(k, type = c("basic", "modified", "chol"), ...)

Arguments

k integer. The dimension of the multivariate distribution.

type character. Choose "basic" Cholesky decomposition or "modified" Cholesky
decomposition. (For back compatibility "chol" is identical to "basic".)

... not used.

Details

BAMLSS families that models a multivariate Normal (Gaussian) distribution by (modified) Cholesky
decomposition of the covariance matrix.

For examples see TempIbk.

Value

a bamlss family.

See Also

simdata, TempIbk

mvn_chol Cholesky MVN

Description

BAMLSS Family for MVN with Cholesky Parameterization

Usage

mvn_chol(k = 2L, ...)

Arguments

k integer. The dimension of the multivariate distribution.

... not used.

Details

This is a prototype implementation of a BAMLSS family that models a multivariate Normal (Gaus-
sian) distribution by a Cholesky decomposition of the covariance matrix.
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Value

a bamlss family.

See Also

mvnchol_bamlss

mvn_modchol Modified Cholesky MVN

Description

BAMLSS Family for MVN with Modified Cholesky Parameterization

Usage

mvn_modchol(k = 2L, ...)

Arguments

k integer. The dimension of the multivariate distribution.

... not used.

Details

This is a prototype implementation of a BAMLSS family that models a multivariate Normal (Gaus-
sian) distribution by a modified Cholesky decomposition of the covariance matrix.

Value

a bamlss family.

See Also

mvnchol_bamlss
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n Neural Networks for BAMLSS

Description

This smooth constructor implements single hidden layer neural networks.

Usage

## The neural network smooth constructor.
n(..., k = 10, type = 2)

## Initialize weights.
n.weights(nodes, k, r = NULL, s = NULL,

type = c("sigmoid", "gauss", "softplus", "cos", "sin"),
x = NULL, ...)

## Second weights initializer, internally calls n.weights.
make_weights(object, data, dropout = 0.2)

## Boosted neural net predictions.
predictn(object, newdata, model = NULL,
mstop = NULL, type = c("link", "parameter"))

Arguments

... For function n() a formula of the type ~x1+x2+x3 that specifies the covariates
that should be modeled by the neural network. For function predictn(), argu-
ments to be passed to predict.bamlss.

k For function n(), the number of hidden nodes of the network. Note that one can
set an argument split = TRUE to split up the neural network into, e.g., nsplit =
5 parts with k nodes each. For function n.weights(), argument k is the number
of input variables of the network (number of covariates).

type Integer. Type 1 fits a complete network in each boosting iteration, type = 2 se-
lects the best fitting node in each boosting iteration. for function n.weights(),
the type of activation function that should be used. For function predictn(),
the type of prediction that should be computed.

nodes Number of nodes for each layer, i.e., can also be a vector.

r, s Parameters controlling the shape of the activation functions.

x A scaled covariate matrix, the data will be used to identify the range of the
weights.

object, data See smooth.construct. For function predictn(), a boosted "bamlss" object.

dropout The fraction of inner weights that should be set to zero.

newdata The data frame that should be used for prediction.
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model For which parameter of the distribution predictions should be computed.
mstop The stopping iteration for which predictions should be computed. The default is

to return a matrix of predictions, each column represents the prediction of one
boosting iteration.

Value

Function n(), similar to function s a simple smooth specification object.

See Also

bamlss, predict.bamlss, bfit, boost

Examples

## ... coming soon ...!

neighbormatrix Compute a Neighborhood Matrix from Spatial Polygons

Description

The function takes a SpatialPolygonsDataFrame and computes the neighbor penalty matrix that
can be used to fit a Markov random field, e.g., using the smooth constructor smooth.construct.mrf.smooth.spec.

Usage

## Compute the neighborhood matrix.
neighbormatrix(x, type = c("boundary", "dist", "delaunay", "knear"),
k = 1, id = NULL, nb = FALSE, names = NULL, ...)

## Plot neighborhood structure.
plotneighbors(x, add = FALSE, ...)

Arguments

x An object of class "SpatialPolygons" or "SpatialPolygonsDataFrame".
type Which type of neighborhood structure should be used, "boundary" uses poly2nb,

"dist" uses function dnearneigh, "delaunay" uses function tri2nb and op-
tion "knear" applies function knn2nb.

k For type = "knear", specifies number of nearest neighbors.
id An identifier variable for which the penalty matrix should be computed.
nb Should only the neighborhood object be returned.
names Specifies the column where the regions names are provided in the data slot in

the "SpatialPolygonsDataFrame"

add Should the neighborhood structure be added to an existing plot?
... Arguments to be passed to function poly2nb, dnearneigh, tri2nb or knn2nb.
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See Also

smooth.construct.mrf.smooth.spec, dnearneigh, tri2nb, knn2nb.

Examples

## Not run: data("LondonFire")

## Compute polygon boundary based
## neighborhood matrix.
nm <- neighbormatrix(LondonBoroughs)
print(nm)

## Plot neighborhood structures.
plotneighbors(LondonBoroughs)
plotneighbors(LondonBoroughs, type = "delaunay")
plotneighbors(LondonBoroughs, type = "dist", d1 = 0, d2 = 0.15)

## End(Not run)

opt_bbfit Batchwise Backfitting

Description

Batchwise backfitting estimation engine for GAMLSS using very large data sets.

Usage

## Batchwise backfitting engine.
opt_bbfit(x, y, family, shuffle = TRUE, start = NULL, offset = NULL,

epochs = 1, nbatch = 10, verbose = TRUE, ...)

bbfit(x, y, family, shuffle = TRUE, start = NULL, offset = NULL,
epochs = 1, nbatch = 10, verbose = TRUE, ...)

## Parallel version.
opt_bbfitp(x, y, family, mc.cores = 1, ...)

## Loglik contribution plot.
contribplot(x, ...)

Arguments

x For function bfit() the x list, as returned from function bamlss.frame, holding
all model matrices and other information that is used for fitting the model. For
the updating functions an object as returned from function smooth.construct
or smoothCon. For function contribplot(), a "bamlss" object using bbfit()
with argument select = TRUE.
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y The model response, as returned from function bamlss.frame.

family A bamlss family object, see family.bamlss.

shuffle Should observations be shuffled?

start A named numeric vector containing possible starting values, the names are
based on function parameters.

offset Can be used to supply model offsets for use in fitting, returned from function
bamlss.frame.

epochs For how many epochs should the algorithm run?

nbatch Number of batches. Can also be a number between 0 and 1, i.e., determining the
fraction of observations that should be used for fitting.

verbose Print information during runtime of the algorithm.

mc.cores On how many cores should estimation be started?

... For bbfitp() all arguments to be passed to bbfit().

Details

The algorithm uses batch-wise estimation of regression coefficients and smoothing variances. The
smoothing variances are estimated on an hold-out batch. This way, models for very large data sets
can be estimated. Note, the algorithm can work in combination with the ff and ffbase package, i.e.,
the entire data is never in the computer RAM. Therefore, the data can either to be stored as comma
separated file on disc or provided as "ffdf" data frame, see also the examples.

The optimizer functions use additional arguments:

• batch_ids. This argument can either be a list of indices specifying the batches that should
be used for estimation, or a vector of length 2, where the first element specifies the number
of observations that should be sampled for each batch and the second argument specifies the
number of batches, see the example.

• nu, the step length control parameter. Defaults to nu = 0.05. If argument slice = TRUE then
nu = 1.

• loglik, defaults to loglik = FALSE. If set to loglik = TRUE the "out-of-sample" log-likelihood
is used for smoothing variance estimation.

• aic, defaults to aic = FALSE, If set to aic = TRUE the "out-of-sample" AIC is used for smooth-
ing variance estimation.

• eps_loglik, defaults to eps_loglik = 0.01. This argument specifies the relative change in
the "out-of-sample" log-likelihood that is needed such that a model term gets updated.

• select, defaults to select = FALSE. If set to select = TRUE, the algorithm only selects the
model term with the largest contribution in the "out-of-sample" log-likelihood for updating in
each iteration/batch.

• always, defaults to always = FALSE. If set to always = TRUE no log-likelihood contribution
checks will be used and model terms are always updated.

• K, defaults to K = 2. This argument controls the penalty on the degrees of freedom in the
computation of the AIC.
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• slice, defaults to slice = FALSE. If set to slice = TRUE, slice sampling using the "out-of-
sample" log-likelihood or AIC is used for smoothing variance estimation. Moreover, always
= TRUE, eps_loglik = -Inf and nu = 1. If slice is an integer n, slice sampling is started after
n iterations, before smoothing variances are optimized.

When using function opt_bbfitp, the parameter updates are stored as "mcmc" objects. In this case
the traceplots can be visualized using plot.bamlss.

Value

For function opt_bbfit() a list containing the following objects:

fitted.values A named list of the fitted values of the modeled parameters of the selected dis-
tribution.

parameters The estimated set regression coefficients and smoothing variances.

shuffle Logical

runtime The runtime of the algorithm.

See Also

bamlss, bfit

Examples

## Not run: ## Simulate data.
set.seed(123)
d <- GAMart(n = 27000, sd = -1)

## Write data to disc.
tf <- tempdir()
write.table(d, file.path(tf, "d.raw"), quote = FALSE, row.names = FALSE, sep = ",")

## Model formula.
f <- list(

y ~ s(x1,k=40) + s(x2,k=40) + s(x3,k=40) + te(lon,lat,k=10),
sigma ~ s(x1,k=40) + s(x2,k=40) + s(x3,k=40) + te(lon,lat,k=10)

)

## Specify 50 batches with 1000 observations.
batch_ids <- c("nobs" = 1000, "nbatch" = 50)

## Note, can also be a list of indices, e.g.
## batch_ids <- lapply(1:50, function(i) { sample(1:nrow(d), size = 1000) })

## Different flavors:
## (1) Using "out-of-sample" aic for smoothing
## variance estimation. Update is only accepted
## if the "out-of-sample" log-likelihood is
## increased. If data is a filepath, the data set is
## read into R using package ff and model and
## design matrices are processed with ff. This may
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## take some time depending on the size of the data.
set.seed(1)
b1 <- bamlss(f, data = file.path(tf, "d.raw"),

sampler = FALSE, optimizer = opt_bbfit,
batch_ids = batch_ids, nu = 0.1, aic = TRUE, eps_loglik = -Inf,
always = FALSE)

## Plot estimated effects.
## plot(b1)

## Plot coefficient paths for x3 in mu.
## pathplot(b1, name = "mu.s.s(x3).b")

## (2) Same but always update, this mimics the classic SGD.
## Note, for prediction only the last iteration is
## used in this case. To use more iterations use opt_bbfitp(),
## Then iterations are stored as "mcmc" object and we can
## predict using the burnin argment, e.g.,
## p <- predict(b2, model = "mu", burnin = 35)
set.seed(2)
b2 <- bamlss(f, data = file.path(tf, "d.raw"),

sampler = FALSE, optimizer = opt_bbfit,
batch_ids = batch_ids, nu = 0.1, aic = TRUE, eps_loglik = -Inf,
always = TRUE)

## Plot coefficient paths for x3 in mu.
## pathplot(b2, name = "mu.s.s(x3).b")

## (3) Boosting type flavor, only update model term with
## the largest contribution in the "out-of-sample"
## log-likelihood. In this case, if edf = 0 during
## runtime of the algorithm, no model has an additional
## contribution and the algorithm converges. This
## behavior is controlled by argument eps_loglik, the
## higher eps_loglik, the more restrictive is the
## updating step.

## Initialize intercepts.
set.seed(0)

batch_ids <- lapply(1:400, function(i) { sample(1:nrow(d), size = 1000) })

b0 <- bamlss(y ~ 1, data = d, sampler = FALSE, optimizer = opt_bbfitp,
batch_ids = batch_ids)

## Compute starting values, remove the first
## 10 iterates and compute the mean of the
## remaining iterates.
start <- coef(b0, FUN = mean, burnin = 200)

## Start boosting, only update if change in
## "out-of-sample" log-likelihood is 0.1
## eps_loglik = 0.001.
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b3 <- bamlss(f, data = d, sampler = FALSE, optimizer = opt_bbfit,
batch_ids = batch_ids, nu = 0.1, aic = TRUE, eps_loglik = 0.001,
select = TRUE, always = FALSE, start = start)

## Plot log-likelihood contributions.
## contribplot(b3)
## In this case, the algorithm did not converge,
## we need more iterations/batches.

## Note, prediction uses last iterate.
p3 <- predict(b3, model = "mu")

## (4) Use slice sampling under the "out-of-sample"
## log likelihood for estimation of smoothing
## variances. In this case model terms are always
## updated ad parameter paths behave like a MCMC
## chain. Therefore, use opt_bbfitp(), which stores
## parameter paths as "mcmc" objects and we can
## inspect using traceplots. Note nu = 1 if
## slice = TRUE.
set.seed(4)
b4 <- bamlss(f, data = d, sampler = FALSE, optimizer = opt_bbfitp,

batch_ids = batch_ids, aic = TRUE, slice = TRUE)

## plot(b4)

## Plot parameter updates/samples.
## plot(b4, which = "samples")

## Predict with burnin and compute mean
## prediction of the last 20 iterates.
p4 <- predict(b4, model = "mu", burnin = 30, FUN = mean)

## End(Not run)

opt_bfit Fit BAMLSS with Backfitting

Description

This optimizer function is a generic tool for fitting BAMLSS using a backfitting algorithm. The
backfitting procedure is based on iteratively weighted least squares (IWLS) for finding posterior
mode estimates, however, the updating methods for model terms can be more general, see the
details section. In addition, the default IWLS updating scheme implements optimum smoothing
variance selection based on information criteria using a stepwise approach.

Usage

## Optimizer functions:
opt_bfit(x, y, family, start = NULL, weights = NULL, offset = NULL,
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update = "iwls", criterion = c("AICc", "BIC", "AIC"),
eps = .Machine$double.eps^0.25, maxit = 400,
outer = NULL, inner = FALSE, mgcv = FALSE,
verbose = TRUE, digits = 4, flush = TRUE,
nu = TRUE, stop.nu = NULL, ...)

bfit(x, y, family, start = NULL, weights = NULL, offset = NULL,
update = "iwls", criterion = c("AICc", "BIC", "AIC"),
eps = .Machine$double.eps^0.25, maxit = 400,
outer = NULL, inner = FALSE, mgcv = FALSE,
verbose = TRUE, digits = 4, flush = TRUE,
nu = TRUE, stop.nu = NULL, ...)

## Model term updating functions:
bfit_iwls(x, family, y, eta, id, weights, criterion, ...)
bfit_iwls_Matrix(x, family, y, eta, id, weights, criterion, ...)
bfit_lm(x, family, y, eta, id, weights, criterion, ...)
bfit_optim(x, family, y, eta, id, weights, criterion, ...)
bfit_glmnet(x, family, y, eta, id, weights, criterion, ...)

Arguments

x For function opt_bfit() the x list, as returned from function bamlss.frame,
holding all model matrices and other information that is used for fitting the
model. For the updating functions an object as returned from function smooth.construct
or smoothCon.

y The model response, as returned from function bamlss.frame.

family A bamlss family object, see family.bamlss.

start A named numeric vector containing possible starting values, the names are
based on function parameters.

weights Prior weights on the data, as returned from function bamlss.frame.

offset Can be used to supply model offsets for use in fitting, returned from function
bamlss.frame.

update Sets the updating function for model terms, e.g. for a term s(x) in the model for-
mula. Per default this is set to "iwls", a character pointing to the set of updating
functions, see above. Other options are "optim" and "lm" etc., however, this is
more experimental and should not be set by the user. Another option is to pass a
full updating function which should be used for each model term, the structure
of updating functions is described in the details below. Model terms may also
have different updating functions, see the example section implementing a new
model term constructor for Gompertz growth curves using this feature.

criterion Set the information criterion that should be used, e.g., for smoothing variance
selection. Options are the corrected AIC "AICc", the "BIC" and "AIC".

eps The relative convergence tolerance of the backfitting algorithm.

maxit The maximum number of iterations for the backfitting algorithm
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outer Should the current working observations and weights be computed in one outer
iteration, otherwise the working observations are computed anew for each model
term updating step. The default will run one outer iteration first, afterwards
model weights are computed for each term anew.

inner Should the model terms for one parameter of the modeled distribution be fully
updated until convergence in an inner iteration, i.e., the algorithm waits until
coefficients for the current distribution parameter do not change anymore before
updating the next parameter.

mgcv Should the mgcv gam function be used for computing updates in an inner iter-
ation with working observations provided in an outer iteration.

verbose Print information during runtime of the algorithm.

digits Set the digits for printing when verbose = TRUE.

flush use flush.console for displaying the current output in the console.

nu Logical, numeric or NULL. Function opt_bfit() uses step length optimization
of parameters when updating a model term, useful to encounter convergence
problems of the algorithm. If nu = TRUE the step length parameter is optimized
for each model term in each iteration of the backfitting algorithm. If nu is nu-
meric, e.g. nu = 1, then nu is halfed until an improvement in the log-posterior
is obtained or nu is smaller than .Machine$double.eps. If nu = NULL, no step
length optimization is performed. Note, using very large data sets it is usually
better to switch of step length optimization.

stop.nu Integer. Should step length reduction be stopped after stop.nu iterations of the
backfitting algorithm?

eta The current value of the predictors, provided as a named list, one list entry for
each parameter. The names correspond to the parameter names in the family
object, see family.bamlss. E.g., when using the gaussian_bamlss family
object, the current values for the mean can be extracted by eta\$mu and for the
standard deviation by eta\$sigma.

id Character, the name of the current parameter for which the model term should
be updated.

... For function opt_bfit(), arguments passed to function bamlss.engine.setup.
For updating functions, within the dots argument the actual iteration number
of the backfitting algorithm, the actual total number of equivalent degrees of
freedom edf and vectors z and hess only if argument outer = TRUE are pro-
vided.

Details

This algorithm is based on iteratively weighted least squares (IWLS) for BAMLSS, i.e., a Newton-
Raphson or Fisher scoring algorithm is applied, similar to Rigby~and~Stasinopoulos~(2005). The
algorithm utilizes the chain rule for computing derivatives of the log-posterior w.r.t. regression
coefficients, therefore, to compute the working observations and weights only the derivatives of the
log-likelihood w.r.t. the predictors are required.

It is assumed that the provided family object holds functions for computing the first and sec-
ond order derivatives of the log-likelihood w.r.t. the predictors. These Functions are provided
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within the named lists "score" and "hess" within the family object. See the documentation of
family.bamlss and the code of the provided families, e.g. gaussian_bamlss, for examples of the
required structure.

The algorithm either updates each model term over all distributional parameters sequentially, or
does a full update until convergence for model terms for one distributional parameter before updat-
ing the next parameter, see argument inner. Additionally, working observations and weights can
be computed only once in an outer iteration.

Starting values of regression coefficients and smoothing variances can be supplied, moreover, if a
family object holds functions for initializing the distributional parameters, see also family.bamlss,
starting values are based on the initialize functions.

The default updating function for model terms is based on IWLS, which is assigned by function
bamlss.engine.setup, however, special updating functions can be used. This is achieved by
providing an updating function to argument update, which should be used for all model terms.
Another option is to set the updating function within the xt argument of the mgcv smooth term
constructor functions, see e.g. function s. If the xt list then holds an element named "update",
which is a valid updating function, this updating function is used for the corresponding model term.
This way it is possible to call different (special) updating functions for specific terms, e.g., that do
not fit in the IWLS scheme. See the examples below. Note that this does not work if mgcv = TRUE,
since the gam function assumes a strict linear representation of smooth terms.

A model term updating function has the following arguments:

update(x, family, y, eta, id, weights, criterion, ...)

Here x is an object as returned from function smooth.construct or smoothCon. The x object
is preprocessed by function bamlss.engine.setup, i.e., an element called "state" is assigned.
The state element represents the current state of the model term holding the current values of the
parameters with corresponding fitted values, as well as equivalent degrees of freedom, see also
the values that are returned by such functions below. The backfitting algorithm uses the state of a
model term for generating updates of the parameters. Note that for special model terms the state list
should already be provided within the call to the corresponding smooth constructor function, see
the growth curve example below.

In addition, for special model terms the fitted values may not be computed by a linear combina-
tion of the design matrix and the coefficients. Therefore, the x object should hold an element named
"fit.fun" which is a function for computing the fitted values. See also smooth.construct.bamlss.frame
and predict.bamlss that use this setup. The arguments of fitting functions are

fit.fun(X, b, ...)

where X is the design matrix and b is the vector of coefficients. Hence, for usual IWLS updating the
fitted values are computed by X %*% b. For special terms like nonlinear growth curves this may not
be the case, see the example below. The fitting functions are assigned by bamlss.engine.setup,
unless the function is already provided after calling the constructor function smooth.construct or
smoothCon. Note that the dots argument is usually not needed by the user.

The default updating function is bfit_iwls(). Function bfit_iwls_Matrix() uses the sparse
matrix infrastructures of package Matrix. The Matrix package and bfit_iwls_Matrix() is used
for model terms where the maximum number of non-zero entries in the design matrix is less than
half of the total number of columns, if an additional argument force.Matrix is set to TRUE in the
opt_bfit() call.

The IWLS updating functions find optimum smoothing variances according to an information cri-
terion using a stepwise approach, i.e., in each iteration and for each model term update the updating
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functions try to find a better smoothing variance to control the trade-off between over-smoothing
and nonlinear functional estimation. The search interval is centered around the current state of
the smoothing variances, hence, in each iteration only a slight improvement is achieved. This al-
gorithm is based on Belitz~and~Lang~(2008) and can also be viewed as a boosting approach for
optimization.

Value

For function opt_bfit() a list containing the following objects:

fitted.values A named list of the fitted values of the modeled parameters of the selected dis-
tribution.

parameters The estimated set regression coefficients and smoothing variances.

edf The equivalent degrees of freedom used to fit the model.

logLik The value of the log-likelihood.

logPost The value of the log-posterior.

IC The value of the information criterion.

converged Logical, indicating convergence of the backfitting algorithm.

For updating functions a list providing the current state

fitted.values The resulting fitted values after updating.

parameters The resulting named numeric vector of updated model term parameters. Coeffi-
cients should be named with "b1", . . . , "bk", where k is the total number of co-
efficients. Smoothing variances should be named with "tau21", . . . , "tau2m",
where m is the total number of smoothing variances assigned to the model term.

edf The equivalent degrees of freedom used to produce the fitted values.

hessian Optional, the coefficient Hessian information

log.prior Optional, the value of the log-prior of the model term.

References

Belitz C, Lang S (2008). Simultaneous Selection of Variables and Smoothing Parameters in Struc-
tured Additive Regression Models. Computational Statistics & Data Analysis, 53, pp 61-81.

Umlauf N, Klein N, Zeileis A (2016). Bayesian Additive Models for Location Scale and Shape
(and Beyond). (to appear)

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and
shape, (with discussion), Appl. Statist., 54, part 3, pp 507-554.

See Also

bamlss, bamlss.frame, bamlss.engine.setup, set.starting.values, s2
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Examples

## Not run: ## Simulated data example illustrating
## how to call the optimizer function.
## This is done internally within
## the setup of function bamlss().
d <- GAMart(n = 200)
f <- num ~ s(x1) + s(x2) + s(x3)
bf <- bamlss.frame(f, data = d, family = "gaussian")
opt <- with(bf, opt_bfit(x, y, family))
print(str(opt))

## Same with bamlss().
b <- bamlss(f, data = d, family = "gaussian", sampler = FALSE)
plot(b)
summary(b)

## Use of different updating function.
b <- bamlss(f, data = d, family = "gaussian",

sampler = FALSE, update = bfit_lm)
plot(b)

## Use mgcv gam() function for updating.
b <- bamlss(f, data = d, family = "gaussian",

sampler = FALSE, mgcv = TRUE)
plot(b)

## Special smooth constructor including updating/sampler
## function for nonlinear Gompertz curves.
## Note: element special.npar is needed here since this
## function has 3 parameters but the design matrix only
## one column!
smooth.construct.gc.smooth.spec <- function(object, data, knots)
{

object$X <- matrix(as.numeric(data[[object$term]]), ncol = 1)
center <- if(!is.null(object$xt$center)) {
object$xt$center

} else TRUE
object$by.done <- TRUE
if(object$by != "NA")

stop("by variables not supported!")
object$fit.fun <- function(X, b, ...) {

f <- b[1] * exp(-b[2] * exp(-b[3] * drop(X)))
if(center)

f <- f - mean(f)
f

}
object$update <- bfit_optim
object$propose <- GMCMC_slice
object$prior <- function(b) { sum(dnorm(b, sd = 1000, log = TRUE)) }
object$fixed <- TRUE
object$state$parameters <- c("b1" = 0, "b2" = 0.5, "b3" = 0.1)
object$state$fitted.values <- rep(0, length(object$X))
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object$state$edf <- 3
object$special.npar <- 3 ## Important!
class(object) <- c("gc.smooth", "no.mgcv", "special")
object

}

## Work around for the "prediction matrix" of a growth curve.
Predict.matrix.gc.smooth <- function(object, data, knots)
{

X <- matrix(as.numeric(data[[object$term]]), ncol = 1)
X

}

## Heteroscedastic growth curve data example.
set.seed(111)

d <- data.frame("time" = 1:30)
d$y <- 2 + 1 / (1 + exp(0.5 * (15 - d$time))) +

rnorm(30, sd = exp(-3 + 2 * cos(d$time/30 * 6 - 3)))

## Special model terms must be called with s2()!
f <- list(

y ~ s2(time, bs = "gc"),
sigma ~ s(time)

)

## Fit model with special model term.
b <- bamlss(f, data = d,

optimizer = opt_bfit, sampler = sam_GMCMC)

## Plot the fitted curves.
plot(b)

## Predict with special model term.
nd <- data.frame("time" = seq(1, 30, length = 100))
p <- predict(b, newdata = nd, model = "mu", FUN = c95)
plot(d, ylim = range(c(d$y, p)))
matplot(nd$time, p, type = "l",

lty = c(2, 1, 2), col = "black", add = TRUE)

## End(Not run)

opt_boost Boosting BAMLSS

Description

Optimizer functions for gradient and likelihood boosting with bamlss. In each boosting iteration
the function selects the model term with the largest contribution to the log-likelihood, AIC or BIC.
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Usage

## Gradient boosting optimizer.
opt_boost(x, y, family, weights = NULL,
offset = NULL, nu = 0.1, nu.adapt = TRUE, df = 4, maxit = 400,
mstop = NULL, maxq = NULL, qsel.splitfactor = FALSE,
verbose = TRUE, digits = 4, flush = TRUE,
eps = .Machine$double.eps^0.25,
nback = NULL, plot = TRUE, initialize = TRUE,
stop.criterion = NULL, select.type = 1,
force.stop = TRUE, hatmatrix = !is.null(stop.criterion),
reverse.edf = FALSE, approx.edf = FALSE,
always = FALSE, ...)

boost(x, y, family, weights = NULL,
offset = NULL, nu = 0.1, nu.adapt = TRUE, df = 4, maxit = 400,
mstop = NULL, maxq = NULL, qsel.splitfactor = FALSE,
verbose = TRUE, digits = 4, flush = TRUE,
eps = .Machine$double.eps^0.25,
nback = NULL, plot = TRUE, initialize = TRUE,
stop.criterion = NULL, select.type = 1,
force.stop = TRUE, hatmatrix = !is.null(stop.criterion),
reverse.edf = FALSE, approx.edf = FALSE,
always = FALSE, ...)

## Modified likelihood based boosting.
opt_boostm(x, y, family, offset = NULL,
nu = 0.1, df = 3, maxit = 400, mstop = NULL,
verbose = TRUE, digits = 4, flush = TRUE,
eps = .Machine$double.eps^0.25, plot = TRUE,
initialize = TRUE, stop.criterion = "BIC",
force.stop = !is.null(stop.criterion),
do.optim = TRUE, always = FALSE, ...)

boostm(x, y, family, offset = NULL,
nu = 0.1, df = 3, maxit = 400, mstop = NULL,
verbose = TRUE, digits = 4, flush = TRUE,
eps = .Machine$double.eps^0.25, plot = TRUE,
initialize = TRUE, stop.criterion = "BIC",
force.stop = !is.null(stop.criterion),
do.optim = TRUE, always = FALSE, ...)

## Boosting summary extractor.
boost_summary(object, ...)

## Plot all boosting paths.
boost_plot(x, which = c("loglik", "loglik.contrib", "parameters",
"aic", "bic", "user"), intercept = TRUE, spar = TRUE, mstop = NULL,
name = NULL, drop = NULL, labels = NULL, color = NULL, ...)
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## Boosting summary printing and plotting.
## S3 method for class 'boost_summary'
print(x, summary = TRUE, plot = TRUE,
which = c("loglik", "loglik.contrib"), intercept = TRUE,
spar = TRUE, ...)

## S3 method for class 'boost_summary'
plot(x, ...)

## Model frame for out-of-sample selection.
boost_frame(formula, train, test, family = "gaussian", ...)

Arguments

x For function opt_boost() the x list, as returned from function bamlss.frame,
holding all model matrices and other information that is used for fitting the
model. For the plotting function the corresponding bamlss object fitted with
the opt_boost() optimizer.

y The model response, as returned from function bamlss.frame.

family A bamlss family object, see family.bamlss.

weights Prior weights on the data, as returned from function bamlss.frame.

offset Can be used to supply model offsets for use in fitting, returned from function
bamlss.frame.

nu Numeric, between [0, 1], controls the step size, i.e., the amount that should be
added to model term parameters.

nu.adapt Logical. If set to TRUE (default) step size nu is divided by 2, if current boosting
iteration did not improve the loglikelihood.

df Integer, defines the initial degrees of freedom that should be assigned to each
smooth model term. May also be a named vector, the names must match the
model term labels, e.g., as provided in summary.bamlss.

maxit Integer, the maximum number of boosting iterations.

mstop For convenience, overwrites maxit.

maxq Integer, defines the maximum number of selected base-learners. The algorithm
stops if this numer is exceeded.

qsel.splitfactor

Logical, if set to TRUE dummy variables of categorical predictors are counted
individually.

name Character, the name of the coefficient (group) that should be plotted. Note that
the string provided in name will be removed from the labels on the 4th axis.

drop Character, the name of the coefficient (group) that should not be plotted.

labels A character string of labels that should be used on the 4 axis.

color Colors or color function that creates colors for the (group) paths.

verbose Print information during runtime of the algorithm.

digits Set the digits for printing when verbose = TRUE.
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flush use flush.console for displaying the current output in the console.

eps The tolerance used as stopping mechanism, see argument nback.

nback Integer. If nback is not NULL, then the algorithm stops if the the change in the
log-likelihood of the last nback iterations is smaller or equal to eps. If maxit =
NULL the maximum number of iterations is set to 10000.

plot Should the boosting summary be printed and plotted?

initialize Logical, should intercepts be initialized?

stop.criterion Character, selects the information criterion that should be used to determine
the optimum number of boosting iterations. Either "AIC" or "BIC" is possible.
Note that this feature requires to compute hat-matrices for each distributional
parameter, therefore, the routine may be slow and computer storage intensive.

select.type Should model terms be selected by the log-likelihood contribution, select.type
= 1, or by the corresponding stop.criterion, select.type = 2.

force.stop Logical, should the algorithm stop if the information criterion increases?

do.optim Logical. Should smoothing parameters be optimized in each boosting iteration?

hatmatrix Logical, if set to TRUE the hat-matrices for each distributional parameter will
be computed. The hat-matrices are used to determine the effective (equivalent)
degrees of freedom in each boosting iteration, i.e., it is possible to compute
information criteria like the AIC or BIC for selecting the optimum number of
boosting iterations.

reverse.edf Logical. Instead of computing degrees of freedom with hat-matrices, the ac-
tual smoothing parameters are reverse engineered to compute the corresponding
actual smoother matrix. Note that this option is still experimental.

approx.edf Logical. Another experimental and fast approximation of the degrees of free-
dom.

always Logical or character. Should the intercepts forced to be updated in each boost-
ing iteration? If always = TRUE each intercept of each distributional parameter
is updated, if always = "best" only the intercept corresponding to the distribu-
tional of the best fitting model term is updated.

object A bamlss object that was fitted using opt_boost().

summary Should the summary be printed?

which Which of the three provided plots should be created?

intercept Should the coefficient paths of intercepts be dropped in the plot?

spar Should graphical parmeters be set with par?

formula See bamlss.frame.

train, test Data frames used for training and testing the model..

... For function opt_boost(), arguments passed to bamlss.engine.setup. for
function boost_summary() arguments passed to function print.boost_summary().
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Value

For function boost_summary() a list containing information on selection frequencies etc. For
function opt_boost() and opt_boostm() a list containing the following objects:

fitted.values A named list of the fitted values based on the last boosting iteration of the mod-
eled parameters of the selected distribution.

parameters A matrix, each row corresponds to the parameter values of one boosting itera-
tion.

boost_summary The boosting summary which can be printed and plotted.

WARNINGS

The function does not take care of variable scaling for the linear parts! This must be done by the
user, e.g., one option is to use argument scale.d in function bamlss.frame, which uses scale.

Function opt_boost() does not select the optimum stopping iteration! The modified likelihood
based algorithm implemented in function opt_boostm() is still experimental!

See Also

bamlss.frame, bamlss

Examples

## Not run: ## Simulate data.
set.seed(123)
d <- GAMart()

## Estimate model.
f <- num ~ x1 + x2 + x3 + lon + lat +

s(x1) + s(x2) + s(x3) + s(lon) + s(lat) + te(lon,lat)

b <- bamlss(f, data = d, optimizer = opt_boost,
sampler = FALSE, scale.d = TRUE, nu = 0.01,
maxit = 1000, plot = FALSE)

## Plot estimated effects.
## plot(b)

## Print and plot the boosting summary.
boost_summary(b, plot = FALSE)
## boost_plot(b, which = 1)
## boost_plot(b, which = 2)
## boost_plot(b, which = 3, name = "mu.s.te(lon,lat).")

## Extract estimated parameters for certain
## boosting iterations.
parameters(b, mstop = 1)
parameters(b, mstop = 100)

## Also works with predict().
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head(do.call("cbind", predict(b, mstop = 1)))
head(do.call("cbind", predict(b, mstop = 100)))

## Another example using the modified likelihood
## boosting algorithm.
f <- list(

num ~ x1 + x2 + x3 + lon + lat +
s(x1) + s(x2) + s(x3) + s(lon) + s(lat) + te(lon,lat),

sigma ~ x1 + x2 + x3 + lon + lat +
s(x1) + s(x2) + s(x3) + s(lon) + s(lat) + te(lon,lat)

)

b <- bamlss(f, data = d, optimizer = opt_boostm,
sampler = FALSE, scale.d = TRUE, nu = 0.05,
maxit = 400, stop.criterion = "AIC", force.stop = FALSE)

## Plot estimated effects.
## plot(b)

## Plot AIC and log-lik contributions.
## boost_plot(b, "AIC")
## boost_plot(b, "loglik.contrib")

## Out-of-sample selection of model terms.
set.seed(123)
d <- GAMart(n = 5000)

## Split data into training and testing
i <- sample(1:2, size = nrow(d), replace = TRUE)
dtest <- subset(d, i == 1)
dtrain <- subset(d, i == 2)

## Model formula
f <- list(

num ~ s(x1) + s(x2) + s(x3),
sigma ~ s(x1) + s(x2) + s(x3)

)

## Create model frame for out-of-sample selection.
sm <- boost_frame(f, train = dtrain, test = dtest, family = "gaussian")

## Out-of-sample selection function.
sfun <- function(parameters) {

sm$parameters <- parameters
p <- predict(sm, type = "parameter")
-1 * sum(sm$family$d(dtest$num, p, log = TRUE))

}

## Start boosting with out-of-sample negative
## log-likelihood selection of model terms.
b <- bamlss(f, data = dtrain, sampler = FALSE, optimizer = opt_boost,

selectfun = sfun, always = "best")
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## Plot curve of negative out-of-sample log-likelihood.
## boost_plot(b, which = "user")

## End(Not run)

opt_Cox Cox Model Posterior Mode Estimation

Description

This function computes posterior mode estimates of the parameters of a flexible Cox model with
structured additive predictors using a Newton-Raphson algorithm. Integrals are solved numerically.
Moreover, optimum smoothing variances are computed using a stepwise optimization, see also the
details section of function bfit.

Usage

opt_Cox(x, y, start, weights, offset,
criterion = c("AICc", "BIC", "AIC"),
nu = 0.1, update.nu = TRUE,
eps = .Machine$double.eps^0.25, maxit = 400,
verbose = TRUE, digits = 4, ...)

cox_mode(x, y, start, weights, offset,
criterion = c("AICc", "BIC", "AIC"),
nu = 0.1, update.nu = TRUE,
eps = .Machine$double.eps^0.25, maxit = 400,
verbose = TRUE, digits = 4, ...)

Arguments

x The x list, as returned from function bamlss.frame and transformed by function
surv_transform, holding all model matrices and other information that is used
for fitting the model.

y The model response, as returned from function bamlss.frame.

start A named numeric vector containing possible starting values, the names are
based on function parameters.

weights Prior weights on the data, as returned from function bamlss.frame.

offset Can be used to supply model offsets for use in fitting, returned from function
bamlss.frame.

criterion Set the information criterion that should be used, e.g., for smoothing variance
selection. Options are the corrected AIC "AICc", the "BIC" and "AIC".

nu Calibrates the step length of parameter updates of one Newton-Raphson update.

update.nu Should the updating step length be optimized in each iteration of the backfitting
algorithm.
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eps The relative convergence tolerance of the backfitting algorithm.
maxit The maximum number of iterations for the backfitting algorithm
verbose Print information during runtime of the algorithm.
digits Set the digits for printing when verbose = TRUE.
... Currently not used.

Value

A list containing the following objects:

fitted.values A named list of the fitted values of the modeled parameters of the selected dis-
tribution.

parameters The estimated set regression coefficients and smoothing variances.
edf The equivalent degrees of freedom used to fit the model.
logLik The value of the log-likelihood.
logPost The value of the log-posterior.
hessian The Hessian matrix evaluated at the posterior mode.
converged Logical, indicating convergence of the backfitting algorithm.
time The runtime of the algorithm.

References

Umlauf N, Klein N, Zeileis A (2016). Bayesian Additive Models for Location Scale and Shape
(and Beyond). (to appear)

See Also

sam_Cox, cox_bamlss, surv_transform, simSurv, bamlss

Examples

## Please see the examples of function sam_Cox()!

opt_isgd Implicit Stochastic Gradient Descent Optimizer

Description

This optimizer performs an implicit stochastic gradient descent algorithm. It is mainly used within
a bamlss call.

Usage

opt_isgd(x, y, family, weights = NULL, offset = NULL,
gammaFun = function(i) 1/(1 + i), shuffle = TRUE,
CFun = function(beta) diag(length(beta)),
start = NULL, i.state = 0)
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Arguments

x For function boost() the x list, as returned from function bamlss.frame, hold-
ing all model matrices and other information that is used for fitting the model.

y The model response, as returned from function bamlss.frame.

family A bamlss family object, see family.bamlss.

weights Prior weights on the data, as returned from function bamlss.frame.

offset Can be used to supply model offsets for use in fitting, returned from function
bamlss.frame.

gammaFun Function specifying the step length.

shuffle Should the data be shuffled?

CFun Hessian approximating function.

start Vector of starting values.

i.state Added to gammaFUN().

Details

tpf

Value

For function opt_isgd() a list containing the following objects:

fitted.values A named list of the fitted values based on the last iteration of the modeled pa-
rameters of the selected distribution.

parameters A matrix, each row corresponds to the parameter values of one iteration.

sgd.summary The summary of the stochastic gradient descent algorithm which can be printed
and plotted.

Warning

CAUTION: Arguments weights and offset are not implemented yet!

Note

Motivated by the lecture ’Regression modelling with large data sets’ given by Ioannis Kosmidis in
Innsbruck, January 2017.

Author(s)

Thorsten Simon

References

Toulis, P and Airoldi, EM (2015): Scalable estimation strategies based on stochastic approxima-
tions: Classical results and new insights. Statistics and Computing, 25, no. 4, 781–795. doi:
10.1007/s11222-015-9560-y
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See Also

bamlss.frame, bamlss

Examples

## Not run:
set.seed(111)
d <- GAMart(n = 10000)
f <- num ~ s(x1) + s(x2) + s(x3) + te(lon, lat)
b <- bamlss(f, data = d, optimizer = opt_isgd, sampler = FALSE)
plot(b, ask = F)

## loop over observations a 2nd time
b <- bamlss(f, data = d, optimizer = opt_isgd, sampler = FALSE, start = parameters(b),

i.state = b$model.stats$optimizer$sgd.summary$i.state)
plot(b, ask = F)

## try differeent gammaFuns, e.g.,
# gammaFun <- function(i) .3/sqrt((1+i)) + 0.001

## testing some families
f2 <- bin ~ s(x1) + s(x2) + s(x3) + te(lon, lat)
b2 <- bamlss(f2, data = d, optimizer = opt_isgd, sampler = FALSE, family = "binomial")

f3 <- cens ~ s(x1) + s(x2) + s(x3) + te(lon, lat)
b3 <- bamlss(f3, data = d, optimizer = opt_isgd, sampler = FALSE, family = "cnorm")

## End(Not run)

parameters Extract or Initialize Parameters for BAMLSS

Description

The function either sets up a list of all parameters of a bamlss.frame, which can be used for setting
up models, or extracts the estimated parameters of a bamlss object.

Usage

parameters(x, model = NULL, start = NULL,
fill = c(0, 1e-04), list = FALSE,
simple.list = FALSE, extract = FALSE,
...)

Arguments

x A bamlss.frame or bamlss object.

model The model name for which parameters should be initialized or extracted.
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start A named numeric vector which should be used when creating the parameter list.
See also function link{set.starting.values}

fill Numeric, when setting up a parameter list, the values the should be used for re-
gression coefficients (first element of fill) and for smoothing variances (second
element of fill).

list Should the function return a list of all parameters?

simple.list Should the names of parameter vectors be dropped?

extract Should parameters of a bamlss.frame be extracted or initialized?

... Currently not used.

Details

Parameters for BAMLSS are used for optimizer functions in function bamlss. The function is
useful for initializing all parameters given a bamlss.frame (which is done internally in function
bamlss), but also for extracting all estimated parameters of some optimizer.

The naming convention of the parameter list is used by a couple of functions in this package.
For each parameter of the modeled distribution, e.g., gaussian_bamlss has parameters "mu" and
"sigma", a list element is created. These elements the contain the list of all model term parameters.
Parametric model terms are indicated with "p" and smooth model terms with "s". If the design
matrix of a model term in the x list of a bamlss.frame does not contain any columns names, then
the parameters are named with a leading "b", otherwise the column names of the design matrix are
used. Smoothing variances parameter vectors are named with a leading "tau2".

The naming convention is useful when setting up new model fitting engines for bamlss and is used,
e.g., by bfit and GMCMC, which are based on parameter state list objects as provided by function
bamlss.engine.setup.

Value

A named list of all parameters of a bamlss.frame or bamlss object.

See Also

bamlss.frame, bamlss, opt_bfit, sam_GMCMC, get.par, set.par

Examples

## Create a "bamlss.frame"
set.seed(123)
d <- GAMart()
bf <- bamlss.frame(num ~ s(x1) + te(lon,lat), data = d)

## Create list of all parameters from "bamlss.frame".
p <- parameters(bf, list = TRUE)
str(p)

## Not run: ## Estimate model.
f <- list(num ~ s(x1) + te(lon,lat), sigma ~ s(x1))
b <- bamlss(f, data = d, sampler = FALSE)
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## Extract estimated parameters.
parameters(b)
parameters(b, list = TRUE)

## End(Not run)

pathplot Plot Coefficients Paths

Description

This is a simple wrapper function to plot coefficients paths obtained from the boosting optimizer
function boost and the LASSO optimizer lasso.

Usage

pathplot(object, ...)

Arguments

object An object of class "bamlss".
... Arguments passed to boost_plot or lasso_plot.

See Also

boost_plot, lasso_plot

plot.bamlss Plotting BAMLSS

Description

Plotting methods for objects of class "bamlss" and "bamlss.results", which can be used for
producing effect plots of model terms, trace plots of samples or residual plots. Note that effect
plots of model terms with more than two covariates are not supported, for this purpose use function
predict.bamlss.

Usage

## S3 method for class 'bamlss'
plot(x, model = NULL, term = NULL,
which = "effects", parameters = FALSE,
ask = dev.interactive(), spar = TRUE, ...)

## S3 method for class 'bamlss.results'
plot(x, model = NULL, term = NULL,
ask = dev.interactive(), scale = 1, spar = TRUE, ...)
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Arguments

x An object of class "bamlss" or "bamlss.results".

model Character or integer. For which model should the plots be created?

term Character or integer. For which model term should a plot be created?

which Character or integer, selects the type of plot: "effects" produces effect plots of
smooth model terms, "samples" shows trace plots of samples, "hist-resid"
shows a histogram of residuals (see also residuals.bamlss for the differ-
ent available types), "qq-resid" shows a quantile-quantile plot of residuals,
"scatter-resid" shows a scatter plot of residuals with fitted values for the
distribution mean (if available in the family object), "max-acf" shows an acf
plot of the maximum autocorrelation of all parameter samples.

parameters For trace plots of parameters, should corresponding parameter values as returned
from an optimizer function (e.g., opt_bfit) be added as horizontal lines?

ask For multiple plots, the user is asked to show the next plot.

scale If set to 1, effect plots all have the same scale on the y-axis. If set to 0 each
effect plot has its own scale for the y-axis.

spar Should graphical parameters be set?

... Arguments to be passed to plot2d, plot3d, sliceplot, plotblock, plotmap
and residuals.bamlss.

See Also

bamlss, results.bamlss.default, residuals.bamlss.

Examples

## Not run: ## Generate some data.
d <- GAMart()

## Model formula.
f <- list(

num ~ s(x1) + s(x2) + s(x3) + te(lon,lat),
sigma ~ s(x2) + te(lon,lat)

)

## Estimate model.
b <- bamlss(f, data = d)

## Effect plots
plot(b, ask = FALSE)
plot(b, model = "mu")
plot(b, model = "sigma", term = "te(lon,lat)")

## Trace plots.
plot(b, which = "samples")

## Residual plots.
plot(b, which = 3:4)
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## End(Not run)

plot2d Plot 2D Effects

Description

Function to plot simple 2D graphics for univariate effects/functions.

Usage

plot2d(x, residuals = FALSE, rug = FALSE, jitter = TRUE,
col.residuals = NULL, col.lines = NULL, col.polygons = NULL,
col.rug = NULL, c.select = NULL, fill.select = NULL,
data = NULL, sep = "", month = NULL, year = NULL,
step = 12, shift = NULL, trans = NULL,
scheme = 2, s2.col = NULL, grid = 50, ...)

Arguments

x A matrix or data frame, containing the covariate for which the effect should be
plotted in the first column and at least a second column containing the effect.
Another possibility is to specify the plot via a formula, e.g. y ~ x, see the
examples. x may also be a character file path to the data to be used for plotting.

residuals If set to TRUE, residuals may also be plotted if available. Residuals must be
supplied as an attribute named "residuals", which is a matrix or data frame
where the first column is the covariate and the second column the residuals.

rug Add a rug to the plot.

jitter If set to TRUE a jittered rug plot is added.

col.residuals The color of the partial residuals.

col.lines The color of the lines.

col.polygons Specify the background color of polygons, if x has at least 3 columns, i.e. col-
umn 2 and 3 can form one polygon.

col.rug Specify the color of the rug representation.

c.select Integer vector of maximum length of columns of x, selects the columns of the
resulting data matrix that should be used for plotting. E.g. if x has 5 columns,
then c.select = c(1, 2, 5) will select column 1, 2 and 5 for plotting. Note that
first element of c.select should always be the column that holds the variable
for the x-axis.

fill.select Integer vector, select pairwise the columns of the resulting data matrix that
should form one polygon with a certain background color specified in argu-
ment col. E.g. x has three columns, or is specified with formula f1 + f2 ~ x,
then setting fill.select = c(0, 1, 1) will draw a polygon with f1 and f2 as
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boundaries. If x has five columns or the formula is e.g. f1 + f2 + f3 + f4 ~ x,
then setting fill.select = c(0, 1, 1, 2, 2), the pairs f1, f2 and f3, f4 are
selected to form two polygons.

data If x is a formula, a data.frame or list. By default the variables are taken from
environment(x): typically the environment from which plot2d is called. Note
that data may also be a character file path to the data.

sep The field separator character when x or data is a character, see function read.table.
month, year, step

Provide specific annotation for plotting estimation results for temporal variables.
month and year define the minimum time point whereas step specifies the type
of temporal data with step = 4, step = 2 and step = 1 corresponding to quar-
terly, half yearly and yearly data.

shift Numeric constant to be added to the smooth before plotting.

trans Function to be applied to the smooth before plotting, e.g., to transform the plot
to the response scale.

scheme Sets the plotting scheme for polygons, possible values are 1 and 2.

s2.col The color for the second plotting scheme.

grid Integer, specifies the number of polygons for the second plotting scheme.

... Other graphical parameters, please see the details.

Details

For 2D plots the following graphical parameters may be specified additionally:

• cex: Specify the size of partial residuals,

• lty: The line type for each column that is plotted, e.g. lty = c(1, 2),

• lwd: The line width for each column that is plotted, e.g. lwd = c(1, 2),

• poly.lty: The line type to be used for the polygons,

• poly.lwd: The line width to be used for the polygons,

• density angle, border: See polygon,

• ...: Other graphical parameters, see function plot.

See Also

plot3d, plotmap, plotblock, sliceplot.

Examples

## Generate some data.
set.seed(111)
n <- 500
## Regressor.
d <- data.frame(x = runif(n, -3, 3))

## Response.
d$y <- with(d, 10 + sin(x) + rnorm(n, sd = 0.6))
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## Not run: ## Estimate model.
b <- bamlss(y ~ s(x), data = d)
summary(b)

## Plot estimated effect.
plot(b)
plot(b, rug = FALSE)

## Extract fitted values.
f <- fitted(b, model = "mu", term = "s(x)")
f <- cbind(d["x"], f)

## Now use plot2d.
plot2d(f)
plot2d(f, fill.select = c(0, 1, 0, 1))
plot2d(f, fill.select = c(0, 1, 0, 1), lty = c(2, 1, 2))
plot2d(f, fill.select = c(0, 1, 0, 1), lty = c(2, 1, 2),

scheme = 2)

## Variations.
plot2d(sin(x) ~ x, data = d)
d$f <- with(d, sin(d$x))
plot2d(f ~ x, data = d)
d$f1 <- with(d, f + 0.1)
d$f2 <- with(d, f - 0.1)
plot2d(f1 + f2 ~ x, data = d)
plot2d(f1 + f2 ~ x, data = d, fill.select = c(0, 1, 1), lty = 0)
plot2d(f1 + f2 ~ x, data = d, fill.select = c(0, 1, 1), lty = 0,

density = 20, poly.lty = 1, poly.lwd = 2)
plot2d(f1 + f + f2 ~ x, data = d, fill.select = c(0, 1, 0, 1),

lty = c(0, 1, 0), density = 20, poly.lty = 1, poly.lwd = 2)

## End(Not run)

plot3d Plot 3D Effects

Description

Function to plot 3D graphics or image and/or contour plots for bivariate effects/functions.

Usage

plot3d(x, residuals = FALSE, col.surface = NULL,
ncol = 99L, swap = FALSE, col.residuals = NULL, col.contour = NULL,
c.select = NULL, grid = 30L, image = FALSE, contour = FALSE,
legend = TRUE, cex.legend = 1, breaks = NULL, range = NULL,
digits = 2L, d.persp = 1L, r.persp = sqrt(3), outscale = 0,
data = NULL, sep = "", shift = NULL, trans = NULL,
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type = "mba", linear = FALSE, extrap = FALSE,
k = 40, ...)

Arguments

x A matrix or data frame, containing the covariates for which the effect should
be plotted in the first and second column and at least a third column containing
the effect. Another possibility is to specify the plot via a formula, e.g. for
simple plotting of bivariate surfaces z ~ x + y, see the examples. x may also be
a character file path to the data to be used for plotting.

residuals If set to TRUE, residuals may also be plotted if available. Residuals must be
supplied as an attribute named "residuals", which is a matrix or data frame
where the first two columns are covariates and the third column the residuals.

col.surface The color of the surface, may also be a function, e.g. col.surface = heat.colors.

ncol the number of different colors that should be generated, if col.surface is a
function.

swap If set to TRUE colors will be represented in reverse order.

col.residuals The color of the partial residuals, or if contour = TRUE the color of the contour
lines.

col.contour The color of the contour lines.

c.select Integer vector of maximum length of columns of x, selects the columns of
the resulting data matrix that should be used for plotting. E.g. if x has 5
columns, then c.select = c(1, 2, 5) will select column 1, 2 and 5 for plot-
ting. If c.select = 95 or c.select = 80, function plot3d will search for the
corresponding columns to plot a 95% or 80% confidence surfaces respectively.
Note that if e.g. c.select = c(1, 2), plot3d will use columns 1 + 2 and 2 + 2
for plotting.

grid The grid size of the surface(s).

image If set to TRUE, an image.plot is drawn.

contour If set to TRUE, a contour plot is drawn.

legend If image = TRUE an additional legend may be added to the plot.

cex.legend The expansion factor for the legend text, see text.

breaks A set of breakpoints for the colors: must give one more breakpoint than ncol.

range Specifies a certain range values should be plotted for.

digits Specifies the legend decimal places.

d.persp See argument d in function persp.

r.persp See argument r in function persp.

outscale Scales the outer ranges of x and z limits used for interpolation.

data If x is a formula, a data.frame or list. By default the variables are taken
from environment(x): typically the environment from which plot3d is called.
Note that data may also be a character file path to the data.

sep The field separator character when x or data is a character, see function read.table.
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shift Numeric constant to be added to the smooth before plotting.

trans Function to be applied to the smooth before plotting, e.g., to transform the plot
to the response scale.

type Character, which type of interpolation method should be used. The default is
type = "akima", see function interp. The two other options are type = "mba",
which calls function mba.surf of package MBA, or type = "mgcv", which uses
a spatial smoother withing package mgcv for interpolation. The last option is
definitely the slowest, since a full regression model needs to be estimated.

linear Logical, should linear interpolation be used withing function interp?

extrap Logical, should interpolations be computed outside the observation area (i.e.,
extrapolated)?

k Integer, the number of basis functions to be used to compute the interpolated
surface when type = "mgcv".

... Parameters passed to colorlegend if an image plot with legend is drawn, also
other graphical parameters, please see the details.

Details

For 3D plots the following graphical parameters may be specified additionally:

• cex: Specify the size of partial residuals,

• col: It is possible to specify the color for the surfaces if se > 0, then e.g. col = c("green",
"black", "red"),

• pch: The plotting character of the partial residuals,

• ...: Other graphical parameters passed functions persp, image.plot and contour.

Note

Function plot3d can use the akima package to construct smooth interpolated surfaces, therefore,
package akima needs to be installed. The akima package has an ACM license that restricts appli-
cations to non-commercial usage, see

https://www.acm.org/publications/policies/software-copyright-notice

Function plot3d prints a note referring to the ACM license. This note can be suppressed by setting

options("use.akima" = TRUE)

See Also

colorlegend, plot2d, plotmap, plotblock, sliceplot.

Examples

## Generate some data.
set.seed(111)
n <- 500

## Regressors.

https://www.acm.org/publications/policies/software-copyright-notice
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d <- data.frame(z = runif(n, -3, 3), w = runif(n, 0, 6))

## Response.
d$y <- with(d, 1.5 + cos(z) * sin(w) + rnorm(n, sd = 0.6))

## Not run: ## Estimate model.
b <- bamlss(y ~ s(z,w), data = d)
summary(b)

## Plot estimated effect.
plot(b, model = "mu", term = "s(z,w)")

## Extract fitted values.
f <- fitted(b, model = "mu", term = "s(z,w)", intercept = FALSE)
f <- cbind(d[, c("z", "w")], f)

## Now use plot3d().
plot3d(f)
plot3d(f, swap = TRUE)
plot3d(f, grid = 100, border = NA)

## Only works if columns are named with
## '2.5
plot3d(f, c.select = 95, border = c("red", NA, "green"),

col.surface = c(1, NA, 1), resid = TRUE, cex.resid = 0.2)

## Now some image and contour.
# plot3d(f, image = TRUE, legend = FALSE)
# plot3d(f, image = TRUE, legend = TRUE)
# plot3d(f, image = TRUE, contour = TRUE)
# plot3d(f, image = TRUE, contour = TRUE, swap = TRUE)
# plot3d(f, image = TRUE, contour = TRUE, col.contour = "white")
# plot3d(f, contour = TRUE)
# plot3d(f, image = TRUE, contour = TRUE, c.select = 3)
# plot3d(f, image = TRUE, contour = TRUE, c.select = "Mean")
# plot3d(f, image = TRUE, contour = TRUE, c.select = "97.5

## End(Not run)

## Variations.
d$f1 <- with(d, sin(z) * cos(w))
with(d, plot3d(cbind(z, w, f1)))

## Same with formula.
plot3d(sin(z) * cos(w) ~ z + w, zlab = "f(z,w)", data = d)
plot3d(sin(z) * cos(w) ~ z + w, zlab = "f(z,w)", data = d,

ticktype = "detailed")

## Play with palettes.
plot3d(sin(z) * cos(w) ~ z + w, col.surface = heat.colors, data = d)
plot3d(sin(z) * cos(w) ~ z + w, col.surface = topo.colors, data = d)
plot3d(sin(z) * cos(w) ~ z + w, col.surface = cm.colors, data = d)
plot3d(sin(z) * cos(w) ~ z + w, col.surface = rainbow, data = d)
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plot3d(sin(z) * cos(w) ~ z + w, col.surface = terrain.colors, data = d)

plot3d(sin(z) * cos(w) ~ z + w, col.surface = rainbow_hcl, data = d)
plot3d(sin(z) * cos(w) ~ z + w, col.surface = diverge_hcl, data = d)
plot3d(sin(z) * cos(w) ~ z + w, col.surface = sequential_hcl, data = d)

plot3d(sin(z) * cos(w) ~ z + w,
col.surface = rainbow_hcl(n = 99, c = 300, l = 80, start = 0, end = 100),
data = d)

# plot3d(sin(z) * cos(w) ~ z + w,
# col.surface = rainbow_hcl(n = 99, c = 300, l = 80, start = 0, end = 100),
# image = TRUE, grid = 200, data = d)

plotblock Factor Variable and Random Effects Plots

Description

Function to plot effects for model terms including factor, or group variables for random effects.

Usage

plotblock(x, residuals = FALSE, range = c(0.3, 0.3),
col.residuals = "black", col.lines = "black", c.select = NULL,
fill.select = NULL , col.polygons = NULL, data = NULL,
shift = NULL, trans = NULL, labels = NULL, ...)

Arguments

x Either a list of length of the unique factors, where each list element contains
the estimated effects for one factor as a matrix, or one data matrix with first
column as the group or factor variable. Also formulas are accepted, e.g it is pos-
sible to specify the plot with f ~ x or f1 + f2 ~ x. By convention, the covariate
for which effects should be plotted, is always in the first column in the resulting
data matrix, that is used for plotting, i.e. in the second formula example, the data
matrix is cbind(x, f1, f2), also see argument c.select and fill.select.

residuals If set to TRUE, residuals will be plotted if available. Residuals may be set as
an attribute of x named "residuals", where the residuals must be a matrix
with first column specifying the covariate, and second column the residuals that
should be plotted.

range Numeric vector, specifying the left and right bound of the block.

col.residuals The color of the partial residuals.

col.lines Vector of maximum length of columns of x minus 1, specifying the color of the
lines.
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c.select Integer vector of maximum length of columns of x, selects the columns of the
resulting data matrix that should be used for plotting. E.g. if x has 5 columns,
then c.select = c(1, 2, 5) will select column 1, 2 and 5 for plotting. Note
that first element of c.select should always be 1, since this is the column of
the covariate the effect is plotted for.

fill.select Integer vector, select pairwise the columns of the resulting data matrix that
should form one polygon with a certain background color specified in argu-
ment col. E.g. x has three columns, or is specified with formula f1 + f2 ~ x,
then setting fill.select = c(0, 1, 1) will draw a polygon with f1 and f2 as
boundaries. If x has five columns or the formula is e.g. f1 + f2 + f3 + f4 ~ x,
then setting fill.select = c(0, 1, 1, 2, 2), the pairs f1, f2 and f3, f4 are
selected to form two polygons.

col.polygons Specify the background color for the upper and lower confidence bands, e.g.
col = c("green", "red").

data If x is a formula, a data.frame or list. By default the variables are taken from
environment(x): typically the environment from which plotblock is called.

shift Numeric constant to be added to the smooth before plotting.

trans Function to be applied to the smooth before plotting, e.g., to transform the plot
to the response scale.

labels Character, labels for the factor levels.

... Graphical parameters, please see the details.

Details

Function plotblock draws for every factor or group the effect as a "block" in one graphic, i.e.,
similar to boxplots, estimated fitted effects, e.g., containing quantiles of MCMC samples, are drawn
as one block, where the upper lines represent upper quantiles, the middle line the mean or median,
and lower lines lower quantiles, also see the examples. The following graphical parameters may be
supplied additionally:

• cex: Specify the size of partial residuals,

• lty: The line type for each column that is plotted, e.g. lty = c(1, 2),

• lwd: The line width for each column that is plotted, e.g. lwd = c(1, 2),

• poly.lty: The line type to be used for the polygons,

• poly.lwd: The line width to be used for the polygons,

• density angle, border: See polygon,

• ...: Other graphical parameters, see function plot.

See Also

plot2d, plot3d, plotmap, sliceplot.
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Examples

## Generate some data.
set.seed(111)
n <- 500

## Regressors.
d <- data.frame(fac = factor(rep(1:10, n/10)))

## Response.
d$y <- with(d, 1.5 + rnorm(10, sd = 0.6)[fac] +

rnorm(n, sd = 0.6))

## Not run: ## Estimate model.
b <- bamlss(y ~ s(fac,bs="re"), data = d)
summary(b)

## Plot random effects.
plot(b)

## Extract fitted values.
f <- fitted(b, model = "mu", term = "fac")
f <- cbind(d["fac"], f)

## Now use plotblock.
plotblock(f)

## Variations.
plotblock(f, fill.select = c(0, 1, 0, 1), col.poly = "red")
plotblock(f, fill.select = c(0, 1, 0, 1), col.poly = "lightgray",

lty = c(2, 1, 2), lwd = c(2, 1, 2))

## End(Not run)

## More examples.
plotblock(y ~ fac, data = d, range = c(0.45, 0.45))

d <- data.frame(fac = factor(rep(1:10, n/10)))
d$y <- with(d, c(2.67, 5, 6, 3, 4, 2, 6, 7, 9, 7.5)[fac])
plotblock(y ~ fac, data = d)
plotblock(cbind(y - 0.1, y + 0.1) ~ fac, data = d)

plotmap Plot Maps

Description

The function takes a list polygons and draws the corresponding map. Different colors for each
polygon can be used.
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Usage

plotmap(map, x = NA, id = NULL, select = NULL,
legend = TRUE, names = FALSE, values = FALSE, ...)

Arguments

map The map to be plotted, usually an object that inherits from SpatialPolygons,
but may also be a list of polygons, i.e., each list entry is a matrix with x- and
y-coordinates.

x A vector, data.frame or matrix. In the latter case x should have two columns,
one column that is the region identifier and one that contains the values to be
plotted. In case x is a data.frame, the function searches for "character" or
"factor" columns for the region identifier. If x is a matrix, the second column
of x is supposed to be the region identifier. If x = NA and map is an object of
class "SpatialPolygonsDataFrame" only the polygons will be plotted without
using the data.

id If argument x is a vector, argument id should contain the region identifier vector.

select Select the column of the data in x which should be used for plotting, may be an
integer or character with the corresponding column name.

legend Should a color legend be added to the plot, see also function colorlegend.

names If set to TRUE the name for each polygon will also be plotted at the centroids of
the corresponding polygons.

values If set to TRUE the corresponding values for each polygon will also be plotted at
the centroids of the polygons.

... Arguments to be passed to colorlegend and others, e.g. change the border of
the polygons and density (mdensity for missing regions in id), see polygon.

See Also

plot2d, plot3d, sliceplot, plotblock.

Examples

## Example from mgcv ?mrf.
## Load Columbus Ohio crime data (see ?columbus for details and credits).
data("columb", package = "mgcv")
data("columb.polys", package = "mgcv")

## Plot the map.
plotmap(columb.polys)

## Plot aggregated data.
a <- with(columb, aggregate(crime,

by = list("district" = district), FUN = mean))

plotmap(columb.polys, x = a$x, id = a$district)
plotmap(columb.polys, x = a$x, id = a$district,

pos = "topleft")
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plotmap(columb.polys, x = a$x, id = a$district,
pos = "topleft", side.legend = 2)

plotmap(columb.polys, x = a$x, id = a$district,
pos = "topleft", side.legend = 2, side.ticks = 2)

plotmap(columb.polys, x = a$x, id = a$district,
pos = "topleft", side.legend = 2, side.ticks = 2,
col = heat_hcl, swap = TRUE)

plotmap(columb.polys, x = a$x, id = a$district,
pos = "topleft", side.legend = 2, side.ticks = 2,
col = heat_hcl, swap = TRUE, range = c(10, 50))

plotmap(columb.polys, x = a$x, id = a$district,
pos = "topleft", side.legend = 2, side.ticks = 2,
col = heat_hcl(5), swap = TRUE, range = c(10, 50),
lrange = c(0, 60))

predict.bamlss BAMLSS Prediction

Description

Takes a fitted bamlss object and computes predictions. Predictions can be based on estimated pa-
rameters of optimizer functions or on samples returned from sampler functions. It is possible to
compute predictions on multiple cores using the parallel and to chunk predictions to save com-
putation time and memory storage. Predictions can be computed for full distributional parameters
or specific model terms. If a link{bamlss} model was fitted on multiple cores, i.e., the samples
are provided as link{mcmc.list} where each list entry represents samples from one core, function
predict.bamlss() computes combined predictions based on samples of all cores.

Usage

## S3 method for class 'bamlss'
predict(object, newdata, model = NULL, term = NULL,
match.names = TRUE, intercept = TRUE, type = c("link", "parameter"),
FUN = function(x) { mean(x, na.rm = TRUE) }, trans = NULL,
what = c("samples", "parameters"), nsamps = NULL,
verbose = FALSE, drop = TRUE,
cores = NULL, chunks = 1, ...)

Arguments

object An object of class "bamlss"

newdata A data frame or list containing the values of the model covariates at which pre-
dictions are required. Note that depending on argument term, only covariates
that are needed by the corresponding model terms need to be supplied.

model Character or integer, specifies the model for which predictions should be com-
puted.
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term Character or integer, specifies the model terms for which predictions are re-
quired. Note that, e.g., term = c("s(x1)", "x2") will compute the combined
prediction s(x1) + x2.

match.names Should partial string matching be used to select the terms for prediction. Note
that, e.g., term = "x1" will select all terms including "x1" if match.names =
TRUE.

intercept Should the intercept be included?

type If type = "link" the predictor of the corresponding model is returned. If type
= "parameter" predictions on the distributional parameter scale are returned.

FUN A function that should be applied on the samples of predictors or parameters,
depending on argument type.

trans A transformer function or named list of transformer functions that computes
transformed predictions. If trans is a list, the list names must match the names
of the parameters of the bamlss.family.

what Predictions can be computed from samples or estimated parameters of optimizer
functions. If no samples are available the default is to use estimated parameters.

nsamps If the fitted bamlss object contains samples of parameters, computing predic-
tions may take quite some time. Therefore, to get a first feeling it can be useful
to compute predictions only based on nsamps samples, i.e., nsamps specifies the
number of samples which are extracted on equidistant intervals.

verbose If predictions are chunked, information on the prediction process can be printed.

drop If predictions for only one model are returned, the list structure is dropped.

cores Specifies the number of cores that should be used for prediction. Note that this
functionality is based on the parallel package.

chunks Should computations be split into chunks? Prediction is then processed sequen-
tially.

... Arguments passed to prediction functions that are part of a bamlss.family ob-
ject, i.e., the objects has a $predict() function that should be used instead.

Value

Depending on arguments model, FUN and the structure of the bamlss model, a list of predictions or
simple vectors or matrices of predictions.

See Also

link{bamlss}, fitted.bamlss.

Examples

## Not run: ## Generate some data.
d <- GAMart()

## Model formula.
f <- list(

num ~ s(x1) + s(x2) + s(x3) + te(lon,lat),
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sigma ~ s(x1) + s(x2) + s(x3) + te(lon,lat)
)

## Estimate model.
b <- bamlss(f, data = d)

## Predictions.
p <- predict(b)
str(b)

## Prediction for "mu" model and term "s(x2)".
p <- predict(b, model = "mu", term = "s(x2)")

## Plot effect
plot2d(p ~ x2, data = d)

## Same for "sigma" model.
p <- predict(b, model = "sigma", term = "s(x2)")
plot2d(p ~ x2, data = d)

## Prediction for "mu" model and term "s(x1)" + "s(x2)"
## without intercept.
p <- predict(b, model = "mu", term = c("s(x1)", "s(x2)"),

intercept = FALSE)

## Prediction based on quantiles.
p <- predict(b, model = "mu", term = "s(x2)", FUN = c95)
plot2d(p ~ x2, data = d)

## Extract samples of predictor for "s(x2)".
p <- predict(b, model = "mu", term = "s(x2)",

intercept = FALSE, FUN = function(x) { x })
print(dim(p))
plot2d(p ~ x2, data = d, col.lines = rgb(0.1, 0.1, 0.1, alpha = 0.1))

## Or using specific combinations of terms.
p <- predict(b, model = "mu", term = c("s(x2)", "te(lon,lat)"),

intercept = FALSE, FUN = function(x) { x })
head(p)

## Prediction using new data.
## Only need x3 data when predicting
## for s(x3).
nd <- data.frame("x3" = seq(0, 1, length = 100))
nd <- cbind(nd, predict(b, newdata = nd, term = "s(x3)"))
print(head(nd))
plot2d(mu ~ x3, data = nd)
plot2d(sigma ~ x3, data = nd)

## End(Not run)
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randomize Transform Smooth Constructs to Random Effects

Description

The transformer function takes a bamlss.frame object and transforms all smooth.constructs
into a random effects representation. Note that this is only possible for smooth terms with a single
smoothing variance. The function is based on function smooth2random.

Usage

trans_random(x)
randomize(x)

Arguments

x Object returned from function bamlss.frame.

Details

The decomposition is achieved by a spectral decomposition of the penalty and design matrix by
finding a basis of the null space of the penalty matrix. This feature is used, e.g., for the JAGS
sampler function. For more details see also jagam.

Value

A transformed bamlss.frame. To each smooth.construct model term an element named "Xf",
the fixed effects design matrix, and an element "rand$Xr", the random effects design matrix, is
added. In addition, for re-transforming parameters elements "trans.U" and "trans.D" are sup-
plied. See also function smooth2random.

References

Fahrmeir L, Kneib T, Lang S, Marx B (2013). Regression - Models, Methods and Applications.
Springer-Verlag, Berlin. ISBN 978-3-642-34332-2.

Wood S.N. (2006). Generalized Additive Models: An Introduction with R. Chapman and Hall/CRC.

See Also

bamlss.frame, bamlss, smooth2random.

Examples

## Simulate data.
d <- GAMart()

## Create a "bamlss.frame".
bf <- bamlss.frame(num ~ s(x1) + s(x2) + s(x3) + s(lon,lat), data = d)
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## Structure of the "s(x1)" smooth.construct.
str(bf$x$mu$smooth.construct[["s(x1)"]])

## Transform.
bf <- randomize(bf)

## New structure adding fixed
## and random effect matrices.
str(bf$x$mu$smooth.construct[["s(x1)"]])

rb Random Bits for BAMLSS

Description

This smooth constructor implements random bits model terms. Note that this is experimental.

Usage

## Linear smooth constructor.
rb(..., k = 50)

## For mgcv.
## S3 method for class 'randombits.smooth.spec'
smooth.construct(object, data, knots, ...)

Arguments

... For function rb() a formula of the type ~x1+x2+x3 that specifies the covariates
that should be modeled.

k Integer, number of radnom bit columns in the design matrix.

object, data, knots
See smooth.construct.

Value

Function rb(), similar to function s a simple smooth specification object.

See Also

bamlss, predict.bamlss, bfit, boost
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Examples

## Not run: ## Simulate data.
set.seed(123)
d <- GAMart()

## Estimate model.
f <- num ~ rb(x1) + rb(x2) + rb(x3) + rb(~lon+lat)

b <- bamlss(f, data = d)

plot(b)

## End(Not run)

residuals.bamlss Compute BAMLSS Residuals

Description

Function to compute quantile and response residuals.

Usage

## S3 method for class 'bamlss'
residuals(object, type = c("quantile", "response"),
nsamps = NULL, ...)

## S3 method for class 'bamlss.residuals'
plot(x, which = c("hist-resid", "qq-resid", "wp"),
spar = TRUE, ...)

Arguments

object An object of class "bamlss".
type The type of residuals wanted, possible types are "quantile" residuals and

"response" residuals.
nsamps If the fitted bamlss object contains samples of parameters, computing residuals

may take quite some time. Therefore, to get a first feeling it can be useful
to compute residuals only based on nsamps samples, i.e., nsamps specifies the
number of samples which are extracted on equidistant intervals.

x Object returned from function residuals.bamlss().
which Should a histogram with kernel density estimates be plotted, a qq-plot or a worm

plot?
spar Should graphical parameters be set by the plotting function?
... For function residuals.bamlss() arguments passed to possible $residuals()

functions that may be part of a bamlss.family. For function plot.bamlss.residuals()
arguments passed to function hist.default and qqnorm.default.
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Details

Response residuals are the raw residuals, i.e., the response data minus the fitted distributional mean.
If the bamlss.family object contains a function $mu(par, ...), then raw residuals are com-
puted with y - mu(par) where par is the named list of fitted values of distributional parameters.
If $mu(par, ...) is missing, then the fitted values of the first distributional parameter are used.

Randomized quantile residuals are based on the cumulative distribution function of the bamlss.family
object, i.e., the $p(y, par, ...) function.

Value

A vector of residuals.

References

Dunn P. K., and Smyth G. K. (1996). Randomized Quantile Residuals. Journal of Computational
and Graphical Statistics 5, 236–244.

van Buuren S., and Fredriks M. (2001) Worm Plot: Simple Diagnostic Device for Modelling Growth
Reference Curves. Statistics in Medicine, 20, 1259–1277

See Also

bamlss, predict.bamlss, fitted.bamlss.

Examples

## Not run: ## Generate data.
d <- GAMart()

## Estimate models.
b1 <- bamlss(num ~ s(x1), data = d)
b2 <- bamlss(num ~ s(x1) + s(x2) + s(x3), data = d)

## Extract quantile residuals.
e1 <- residuals(b1, type = "quantile")
e2 <- residuals(b2, type = "quantile")

## Plots.
plot(e1)
plot(e2)

## End(Not run)
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response_name Extract the reponse name of a bamlss.frame object.

Description

This is a small helper function to quickly extract the response name(s) of an object of class "bamlss.frame"
or "bamlss".

Usage

response_name(object, ...)

Arguments

object An object of class "bamlss.frame" or "bamlss".

... Not used.

See Also

bamlss, bamlss.frame

Examples

## Simulate some data.
d <- GAMart()

## Create a bamlss.frame.
bf <- bamlss.frame(num ~ s(x1) + s(x2) + s(x3), data = d)

## Extract the response name.
response_name(bf)

results.bamlss.default

Compute BAMLSS Results for Plotting and Summaries

Description

The results function combines estimated parameters and/or samples with the bamlss.frame and
computes the data that can be used, e.g., for creating effect plots or summary statistics. The function
is usually used internally within bamlss. The object returned is of class "bamlss.results", which has
a plotting method, see plot.bamlss.results.

Usage

results.bamlss.default(x, what = c("samples", "parameters"),
grid = -1, nsamps = NULL, burnin = NULL, thin = NULL, ...)
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Arguments

x A bamlss.frame which has estimated parameters or samples. See also bfit
and GMCMC.

what Should the results data be prepared using estimated parameters or samples?

grid Integer, sets the number of grid points for univariate functions to be used for
creating results data, e.g., for plotting. This is more efficient when using data
sets with a large number of unique covariate values. If negative suitable defaults
are chosen.

nsamps Integer, if results are computed using parameter samples, this argument con-
trols the number of samples that should be used, e.g., if nsamps = 100 only 100
samples with equidistant intervals are selected. Basically similar to argument
thin.

burnin Integer, sets the number of samples that should be dropped from the beginning
of the MCMC chain when creating results.

thin Integer, should the MCMC chain be thinned additionally?

... Currently not used.

Value

An object of class "bamlss.results".

See Also

plot.bamlss.results, bamlss.

Examples

## Not run: ## Simulate data.
d <- GAMart()

## Estimate model with no results.
b <- bamlss(num ~ s(x1) + s(x2) + s(x3),

data = d, results = FALSE)

## Compute model results
a <- results.bamlss.default(b)

## Plot results for smooth terms.
plot(a)

## End(Not run)
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rmf Remove Special Characters

Description

A simple helper function that removes special characters from a character string.

Usage

rmf(x)

Arguments

x A character string.

Value

A character string with special characters removed.

Examples

rmf("ba*&m^l$$:s.s")

s2 Special Smooths in BAMLSS Formulae

Description

This is a simple wrapper function to define special smooth terms in BAMLSS formulae. The func-
tion calls the smooth term constructor function s. The return value of s is only slightly modified,
such that function bamlss.frame identifies this term as a special term and uses the appropriate
(internal) infrastructures.

This structure is useful when the model term structure is, e.g., not a linear combination of a design
matrix and coefficients. See the example section of function bfit on how to use this setup.

Usage

s2(...)

Arguments

... Arguments passed to function s.

Value

Slightly modified return value of function s.
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See Also

bamlss, bamlss.frame, bamlss.formula, opt_bfit

Examples

print(names(s(x)))
print(names(s2(x)))

samples Extract Samples

Description

Generic function to extract samples from objects.

Usage

## Generic.
samples(object, ...)

## Method for "bamlss" objects.
## S3 method for class 'bamlss'
samples(object, model = NULL, term = NULL,
combine = TRUE, drop = TRUE, burnin = NULL,
thin = NULL, coef.only = FALSE, ...)

Arguments

object An object for which samples should be extracted.

model Character or integer, specifies the model for which samples should be extracted.

term Character or integer, specifies the term for which samples should be extracted.

combine Samples stored as a mcmc.list, e.g., when a model is estimated on multiple
cores, can be combined into one large sample matrix.

drop If there is only one model for which samples should be extracted, should the list
structure be dropped?

burnin Integer, specifies the number of samples that should be withdrawn as a burn-in
phase.

thin Integer, specifies the step length of samples that should be extracted, e.g., thin
= 10 mean that only every 10th sample is returned.

coef.only Logical, should only samples of model coefficients be returned?

... Other arguments.

See Also

bamlss.
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Examples

## Not run: ## Generate data.
d <- GAMart()

## Estimate model.
b <- bamlss(num ~ s(x1) + s(x2) + s(x3), data = d)

## Extract samples for "s(x2)".
sa <- samples(b, term = "s(x2)")
head(sa)

## Trace plot.
plot(sa)

## End(Not run)

samplestats Sampling Statistics

Description

The function computes the average the log-likelihood, log-posterior, the deviance information cri-
terion and estimated degrees of freedom from samples of, e.g., a bamlss object.

Usage

samplestats(samples, x = NULL, y = NULL,
family = NULL, logLik = FALSE, ...)

Arguments

samples An object of class "mcmc.list" or "bamlss" which contains MCMC samples.

x The x list as returned by function bamlss.frame.

y The model response, as returned by function bamlss.frame

family A bamlss.family object.

logLik Logical, should the log-likelihood be computed, may take some time!

... Currently not used.

Details

If the log-likelihood is not available in the samples, the function tries to compute the information.
Depending on the complexity of the model, this may take some time. Computations are based on
the $d() or $loglik() function of the bamlss.family object.

If a bamlss.family object contains a function $p2d() or $p2loglik(), which computes the log-
likelihood from parameters, these functions are used for computation.
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Value

A list with the following entries (if available):

logLik The average log-likelihood.

logPost The average log-posterior.

DIC The deviance information criterion.

pd The estimated degrees of freedom.

See Also

bamlss

Examples

## Not run: ## Generate some data.
d <- GAMart()

## Estimate model without sampling statistics
b <- bamlss(num ~ s(x1) + s(x2) + s(x3) + te(lon,lat),

data = d, samplestats = FALSE)

## Note: needs the $d() or $loglik() function in the family!
names(family(b))

## Compute sampling statistics.
samplestats(b)

## End(Not run)

sam_BayesX Markov Chain Monte Carlo for BAMLSS using BayesX

Description

This sampler function for BAMLSS is an interface to the BayesX (https://www.uni-goettingen.de/de/bayesx/550513.html)
command-line binary from R. The sampler is based on the command line version and functions pro-
vided in the BayesXsrc package, which can be installed using function get_BayesXsrc().

Usage

## Sampler functions:
sam_BayesX(x, y, family, start = NULL, weights = NULL, offset = NULL,
data = NULL, control = BayesX.control(...), ...)

BayesX(x, y, family, start = NULL, weights = NULL, offset = NULL,
data = NULL, control = BayesX.control(...), ...)
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## Sampler control:
BayesX.control(n.iter = 1200, thin = 1, burnin = 200,
seed = NULL, predict = "light", model.name = "bamlss",
data.name = "d", prg.name = NULL, dir = NULL,
verbose = FALSE, show.prg = TRUE, modeonly = FALSE, ...)

## Special BayesX smooth term constructor.
sx(x, z = NULL, bs = "ps", by = NA, ...)

## Special BayesX tensor product smooth term constructor.
tx(..., bs = "ps", k = -1,
ctr = c("center", "main", "both", "both1", "both2",
"none", "meanf", "meanfd", "meansimple", "nullspace"),

xt = NULL, special = TRUE)
tx2(...)
tx3(..., bs = "ps", k = c(10, 5),
ctr = c("main", "center"),
xt = NULL, special = TRUE)

tx4(..., ctr = c("center", "main", "both", "both1", "both2"))

## Smooth constructors and predict matrix.
## S3 method for class 'tensorX.smooth.spec'
smooth.construct(object, data, knots, ...)
## S3 method for class 'tensorX.smooth'
Predict.matrix(object, data)
## S3 method for class 'tensorX3.smooth.spec'
smooth.construct(object, data, knots, ...)
## S3 method for class 'tensorX3.smooth'
Predict.matrix(object, data)

## Family object for quantile regression with BayesX.
quant_bamlss(prob = 0.5)

## Download the newest version of BayesXsrc.
get_BayesXsrc(dir = NULL, install = TRUE)

Arguments

x For function BayesX() the x list, as returned from function bamlss.frame,
holding all model matrices and other information that is used for fitting the
model. For function sx() arguments x and z specify the variables the smooth
should be a function of.

y The model response, as returned from function bamlss.frame.

z Second variable in a sx() term.

family A bamlss family object, see family.bamlss.

start A named numeric vector containing possible starting values, the names are
based on function parameters.
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weights Prior weights on the data, as returned from function bamlss.frame.

offset Can be used to supply model offsets for use in fitting, returned from function
bamlss.frame.

data The model frame that should be used for modeling. Note that argument data
needs not to be specified when the BayesX() sampler function is used with
bamlss. For the smooth constructor for tx() terms, see function smooth.construct.

control List of control arguments to be send to BayesX. See below.

n.iter Sets the number of MCMC iterations.

thin Defines the thinning parameter for MCMC simulation. E.g., thin = 10 means,
that only every 10th sampled parameter will be stored.

burnin Sets the burn-in phase of the sampler, i.e., the number of starting samples that
should be removed.

seed Sets the seed.

predict Not supported at the moment, do not modify!

model.name The name that should be used for the model when calling BayesX.

data.name The name that should be used for the data set when calling BayesX.

prg.name The name that should be used for the .prg file that is send to BayesX.

dir Specifies the directory where BayesX should store all output files. For function
get_BayesXsrc(), the directory where BayesXsrc should be stored.

verbose Print information during runtime of the algorithm.

show.prg Show the BayesX .prg file.

modeonly Should only the posterior mode be compute, note that this is done using fixed
smoothing parameters/variances.

bs A character string, specifying the basis/type which is used for this model term.

by A by variable for varying coefficient model terms.

k The dimension(s) of the bases used to represent the tx() smooth term.

... Not used in BayesX.control. For function sx() any extra arguments that
should be passed to BayesX for this model term can be specified here. For func-
tion tx(), all variables the smooth should be a function of are specified here. For
function sam_BayesX() all arguments that should be passed to BayesX.control.

ctr Specifies the type of constraints that should be applied. "main", both main
effects should be removed; "both", both main effects and varying effects should
be removed; "none", no constraint should be applied.

xt A list of extra arguments to be passed to BayesX.

special Should the tx() model term be treated as a special smooth. This must be set to
TRUE if using the sam_BayesX sampler and should be set to FALSE, e.g., when
using the sam_GMCMC sampler.

object, knots See, function smooth.construct.

prob Numeric, specifies the quantile to be modeled, see the examples.

install Should package BayesXsrc be installed?
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Details

Function sam_BayesX() writes a BayesX .prg file and processes the data. Then, the function
call the BayesX binary via function run.bayesx() of the BayesXsrc package. After the BayesX
sampler has finished, the function reads back in all the parameter samples that can then be used for
further processing within bamlss, i.a.

The smooth term constructor functions s and te can be used with the sam_BayesX() sampler. When
using te note that only one smoothing variance is estimated by BayesX.

For anisotropic penalties use function tx() and tx3(), the former currently supports smooth func-
tions of two variables, while tx3() is supposed to model space-time interactions. Note that in
tx3() the first variable represents time and the 2nd and 3rd variable the coordinates in space.

Value

Function sam_BayesX() returns samples of parameters. The samples are provided as a mcmc matrix.

Function BayesX.control() returns a list with control arguments for BayesX.

Function sx() a list of class "xx.smooth.spec" and "no.mgcv", where "xx" is a basis/type
identifying code given by the bs argument.

Function tx() and tx2() a list of class tensorX.smooth.spec.

Note

Note that this interface is still experimental and needs the newest version of the BayesX source code,
which is not yet part of the BayesXsrc package on CRAN. The newest version can be installed with
function get_BayesXsrc. Note that the function assumes that sh, subversion (svn) and R can be
run from the command line!

Note that for setting up a new family object to be used with sam_BayesX() additional information
needs to be supplied. The extra information must be placed within the family object in an named
list element named "bayesx". For each parameter of the distribution a character string with the
corresponding BayesX family name and the equationtype must be supplied. See, e.g., the R
code of gaussian_bamlss how the setup works.

For function sx() the following basis types are currently supported:

• "ps": P-spline with second order difference penalty.

• "mrf": Markov random fields: Defines a Markov random field prior for a spatial covariate,
where geographical information is provided by a map object in boundary or graph file format
(see function read.bnd, read.gra and shp2bnd), as an additional argument named map.

• "re": Gaussian i.i.d. Random effects of a unit or cluster identification covariate.

Function tx() currently supports smooth terms with two variables.

See Also

bamlss, bamlss.frame
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Examples

## Get newest version of BayesXsrc.
## Note: needs sh, svn and R build tools!
## get_BayesXsrc()
## Not run: if(require("BayesXsrc")) {

## Simulate some data
set.seed(123)
d <- GAMart()

## Estimate model with BayesX. Note
## that BayesX computes starting values, so
## these are not required by some optimizer function
## in bamlss()
b1 <- bamlss(num ~ s(x1) + s(x2) + s(x3) + s(lon,lat),
data = d, optimizer = FALSE, sampler = sam_BayesX)

plot(b1)

## Same model with anisotropic penalty.
b2 <- bamlss(num ~ s(x1) + s(x2) + s(x3) + tx(lon,lat),

data = d, optimizer = FALSE, sampler = sam_BayesX)

plot(b2)

## Quantile regression.
b3_0.1 <- bamlss(num ~ s(x1) + s(x2) + s(x3) + tx(lon,lat),

data = d, optimizer = FALSE, sampler = sam_BayesX,
family = gF("quant", prob = 0.1))

b3_0.9 <- bamlss(num ~ s(x1) + s(x2) + s(x3) + tx(lon,lat),
data = d, optimizer = FALSE, sampler = sam_BayesX,
family = gF("quant", prob = 0.9))

## Predict quantiles.
p_0.1 <- predict(b3_0.1, term = "s(x2)")
p_0.9 <- predict(b3_0.9, term = "s(x2)")

## Plot.
plot2d(p_0.1 + p_0.9 ~ x2, data = d)

}

## End(Not run)

sam_Cox Cox Model Markov Chain Monte Carlo

Description

This sampler function implements a derivative based MCMC algorithm for flexible Cox models
with structured additive predictors.
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Usage

sam_Cox(x, y, family, start, weights, offset,
n.iter = 1200, burnin = 200, thin = 1,
verbose = TRUE, digits = 4, step = 20, ...)

cox_mcmc(x, y, family, start, weights, offset,
n.iter = 1200, burnin = 200, thin = 1,
verbose = TRUE, digits = 4, step = 20, ...)

Arguments

x The x list, as returned from function bamlss.frame and transformed by function
surv_transform, holding all model matrices and other information that is used
for fitting the model.

y The model response, as returned from function bamlss.frame.

family A bamlss family object, see family.bamlss. In this case this is the cox_bamlss
family object.

start A named numeric vector containing possible starting values, the names are
based on function parameters.

weights Prior weights on the data, as returned from function bamlss.frame.

offset Can be used to supply model offsets for use in fitting, returned from function
bamlss.frame.

n.iter Sets the number of MCMC iterations.

burnin Sets the burn-in phase of the sampler, i.e., the number of starting samples that
should be removed.

thin Defines the thinning parameter for MCMC simulation. E.g., thin = 10 means,
that only every 10th sampled parameter will be stored.

verbose Print information during runtime of the algorithm.

digits Set the digits for printing when verbose = TRUE.

step How many times should algorithm runtime information be printed, divides n.iter.

... Currently not used.

Details

The sampler uses derivative based proposal functions to create samples of parameters. For time-
dependent functions the proposals are based on one Newton-Raphson iteration centered at the last
state, while for the time-constant functions proposals can be based on iteratively reweighted least
squares (IWLS), see also function GMCMC. The integrals that are part of the time-dependent function
updates are solved numerically. In addition, smoothing variances are sampled using slice sampling.

Value

The function returns samples of parameters. The samples are provided as a mcmc matrix.



sam_GMCMC 119

References

Umlauf N, Klein N, Zeileis A (2016). Bayesian Additive Models for Location Scale and Shape
(and Beyond). (to appear)

See Also

opt_Cox, cox_bamlss, surv_transform, simSurv, bamlss

Examples

## Not run: library("survival")
set.seed(123)

## Simulate survival data.
d <- simSurv(n = 500)

## Formula of the survival model, note
## that the baseline is given in the first formula by s(time).
f <- list(

Surv(time, event) ~ s(time) + s(time, by = x3),
gamma ~ s(x1) + s(x2)

)

## Cox model with continuous time.
## Note the the family object cox_bamlss() sets
## the default optimizer and sampler function!
## First, posterior mode estimates are computed
## using function opt_Cox(), afterwards the
## sampler sam_Cox() is started.
b <- bamlss(f, family = "cox", data = d)

## Plot estimated effects.
plot(b)

## End(Not run)

sam_GMCMC General Markov Chain Monte Carlo for BAMLSS

Description

These functions provide a quite general infrastructure for sampling BAMLSS. The default proposal
function is based on iteratively weighted least squares (IWLS), however, each model term may have
a different updating function, see the details.
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Usage

## Sampler functions:
sam_GMCMC(x, y, family, start = NULL, weights = NULL, offset = NULL,
n.iter = 1200, burnin = 200, thin = 1, verbose = TRUE,
step = 20, propose = "iwlsC_gp", chains = NULL, ...)

GMCMC(x, y, family, start = NULL, weights = NULL, offset = NULL,
n.iter = 1200, burnin = 200, thin = 1, verbose = TRUE,
step = 20, propose = "iwlsC_gp", chains = NULL, ...)

## Propose functions:
GMCMC_iwls(family, theta, id, eta, y, data,
weights = NULL, offset = NULL, ...)

GMCMC_iwlsC(family, theta, id, eta, y, data,
weights = NULL, offset = NULL, zworking, resids, rho, ...)

GMCMC_iwlsC_gp(family, theta, id, eta, y, data,
weights = NULL, offset = NULL, zworking, resids, rho, ...)

GMCMC_slice(family, theta, id, eta, y, data, ...)

Arguments

x For function bfit() the x list, as returned from function bamlss.frame, holding
all model matrices and other information that is used for fitting the model. For
the updating functions an object as returned from function smooth.construct
or smoothCon.

y The model response, as returned from function bamlss.frame.
family A bamlss family object, see family.bamlss.
start A named numeric vector containing possible starting values, the names are

based on function parameters.
weights Prior weights on the data, as returned from function bamlss.frame.
offset Can be used to supply model offsets for use in fitting, returned from function

bamlss.frame.
n.iter Sets the number of MCMC iterations.
burnin Sets the burn-in phase of the sampler, i.e., the number of starting samples that

should be removed.
thin Defines the thinning parameter for MCMC simulation. E.g., thin = 10 means,

that only every 10th sampled parameter will be stored.
verbose Print information during runtime of the algorithm.
step How many times should algorithm runtime information be printed, divides n.iter.
propose Sets the propose function for model terms, e.g. for a term s(x) in the model

formula. Per default this is set to "iwlsC", a character pointing to the set of
propose functions, see above. Other options are "iwls" and "slice", however,
this is more experimental and should not be set by the user. Another option is
to pass a full propose function which should be used for each model term, the
structure of propose functions is described in the details below. Model terms
may also have different propose functions, see the example section.
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chains How many chains should be started? Chains a sampled sequentially!

theta The current state of parameters, provided as a named list. The first level repre-
sents the parameters of the distribution, the second level the parameters of the
model terms. E.g., using the gaussian_bamlss family object theta[["mu"]][["s(x)"]]
extracts the current state of a model term "s(x)" of the "mu" parameter. Extrac-
tion is done with the id argument.

id The parameter identifier, a character vector of length 2. The first character spec-
ifies the current distributional parameter, the second the current model term.

eta The current value of the predictors, provided as a named list, one list entry for
each parameter. The names correspond to the parameter names in the family
object, see family.bamlss. E.g., when using the gaussian_bamlss family
object, the current values for the mean can be extracted by eta\$mu and for the
standard deviation by eta\$sigma.

data An object as returned from function smooth.construct or smoothCon. The
object is preprocessed by function bamlss.engine.setup.

zworking Preinitialized numeric vector of length(y), only for internal usage.

resids Preinitialized numeric vector of length(y), only for internal usage.

rho An environment, only for internal usage.

... Arguments passed to function bamlss.engine.setup and to the propose func-
tions.

Details

The sampler function sam_GMCMC() cycles through all distributional parameters and corresponding
model terms in each iteration of the MCMC chain. Samples of the parameters of a model term (e.g.,
s(x)) are generated by proposal functions, e.g. GMCMC_iwls().

The default proposal function that should be used for all model terms is set with argument propose.
For smooth terms, e.g. terms created with function s, if a valid propose function is supplied within
the extra xt list, this propose function will be used. This way each model term may have its own
propose function for creating samples of the parameters. See the example section.

The default proposal function GMCMC_iwlsC_gp allows for general priors for the smoothing vari-
ances and general penalty functions. Samples of smoothing variances are computed using slice
sampling. Function GMCMC_iwlsC samples smoothing variances of univariate terms assuming an
inverse gamma prior. Terms of higher dimensions use again slice sampling for creating samples of
smoothing variances.

Function GMCMC_iwls is similar to function GMCMC_iwlsC but uses plain R code.

Function GMCMC_slice applies slice sampling also for the regression coefficients and is therefore
relatively slow.

Value

The function returns samples of parameters, depending on the return value of the propose functions
other quantities can be returned. The samples are provided as a mcmc matrix. If chains > 1, the
samples are provided as a mcmc.list.
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References

Umlauf N, Klein N, Zeileis A (2016). Bayesian Additive Models for Location Scale and Shape
(and Beyond). (to appear)

See Also

bamlss, bamlss.frame, bamlss.engine.setup, set.starting.values, s2

Examples

## Not run: ## Simulated data example illustrating
## how to call the sampler function.
## This is done internally within
## the setup of function bamlss().
d <- GAMart()
f <- num ~ s(x1, bs = "ps")
bf <- bamlss.frame(f, data = d, family = "gaussian")

## First, find starting values with optimizer.
opt <- with(bf, bfit(x, y, family))

## Sample.
samps <- with(bf, sam_GMCMC(x, y, family, start = opt$parameters))
plot(samps)

## End(Not run)

sam_JAGS Markov Chain Monte Carlo for BAMLSS using JAGS

Description

This sampler function for BAMLSS is an interface to the JAGS library using package rjags. The
function basically interprets the bamlss.frame into BUGS code, similar to the jagam function of
package mgcv. I.e., the function uses the random effects representation of smooth terms, see the
transformer function randomize to generate the BUGS code.

Note that estimating BAMLSS with JAGS is not very efficient. Also note that this function is more
experimental and support is only provided for a small number of bamlss.family objects.

Function BUGSeta() therefore computes the code and data for one parameter of the modeled distri-
bution. Function BUGSmodel() then collects all parameter model code and data, which can be send
to JAGS.

Usage

## Sampler functions:
sam_JAGS(x, y, family, start = NULL,
tdir = NULL, n.chains = 1, n.adapt = 100,
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n.iter = 4000, thin = 2, burnin = 1000,
seed = NULL, verbose = TRUE, set.inits = TRUE,
save.all = FALSE, modules = NULL, ...)

JAGS(x, y, family, start = NULL,
tdir = NULL, n.chains = 1, n.adapt = 100,
n.iter = 4000, thin = 2, burnin = 1000,
seed = NULL, verbose = TRUE, set.inits = TRUE,
save.all = FALSE, modules = NULL, ...)

## Function to interpret an additive predictor into BUGS code:
BUGSeta(x, id = NULL, ...)

## Function to interpret the full BAMLSS:
BUGSmodel(x, family, is.stan = FALSE, reference = NULL, ...)

Arguments

x For function sam_JAGS() and BUGSmodel() the x list, as returned from function
bamlss.frame, holding all model matrices and other information that is used
for fitting the model. For function BUGSeta() argument x is one element of the
x object, i.e., one parameter.

y The model response, as returned from function bamlss.frame.

family A bamlss family object, see family.bamlss.

start A named numeric vector containing possible starting values, the names are
based on function parameters.

tdir The path to the temporary directory that should be used.

n.chains Specifies the number of sequential MCMC chains that should be run with JAGS.

n.adapt Specifies the number of iterations that should be used as an initial adaptive
phase.

n.iter Sets the number of MCMC iterations.

thin Defines the thinning parameter for MCMC simulation. E.g., thin = 10 means,
that only every 10th sampled parameter will be stored.

burnin Sets the burn-in phase of the sampler, i.e., the number of starting samples that
should be removed.

seed Sets the seed.

verbose Print information during runtime of the algorithm.

set.inits Should initial values of BAMLSS parameters be provided to JAGS, if avail-
able. Set in argument start.

save.all Should all JAGS files be saved in tdir.

modules Specify additional modules that should be loaded, see function load.module.

id Character, the current parameter name for which the BUGS code should be pro-
duced.
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is.stan Should the BUGS code be translated to STAN code. Note that this is only ex-
perimental.

reference A character specifying a reference category, e.g., when fitting a multinomial
model.

... Currently not used.

Value

Function sam_JAGS() returns samples of parameters. The samples are provided as a mcmc matrix.
If n.chains > 1, the samples are provided as a mcmc.list.

Function BUGSeta() returns the BUGS model code and preprocessed data for one additive predictor.
Function BUGSmodel() then combines all single BUGS code chunks and the data and creates the
final BUGS model code that can be send to JAGS.

Note

Note that for setting up a new family object to be used with sam_JAGS() additional information
needs to be supplied. The extra information must be placed within the family object in an element
named "bugs". The following entries should be supplied within the ..$bugs list:

• "dist". The name of the distribution in BUGS/JAGS model language.

• "eta". The function that computes the BUGS code for one structured additive predictor.
Function BUGSeta() is used per default.

• "model". The function that merges all single predictor BUGS model code and data. The
default function is BUGSmodel().

• "reparam". A named vector of character strings that specify a re-parametrization.

See also the example code of family.bamlss.

See Also

bamlss, bamlss.frame, bamlss.engine.setup, set.starting.values, bfit, GMCMC

Examples

## Not run: ## Simulated data example illustrating
## how to call the sampler function.
## This is done internally within
## the setup of function bamlss().
d <- GAMart()
f <- num ~ s(x1, bs = "ps")
bf <- bamlss.frame(f, data = d, family = "gaussian")

## First, find starting values with optimizer.
opt <- with(bf, opt_bfit(x, y, family))

## Sample with JAGS.
if(require("rjags")) {

samps <- with(bf, sam_JAGS(x, y, family, start = opt$parameters))
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plot(samps)

b <- bamlss(f, data = d, family = "gaussian", sampler = sam_JAGS)
plot(b)

}

## End(Not run)

sam_MVNORM Create Samples for BAMLSS by Multivariate Normal Approximation

Description

This sampler function for BAMLSS uses estimated parameters and the Hessian information to
create samples from a multivariate normal distribution. Note that smoothing variance uncertainty is
not accounted for, therefore, the resulting credible intervals are most likely too narrow.

Usage

sam_MVNORM(x, y = NULL, family = NULL, start = NULL,
n.samples = 500, hessian = NULL, ...)

MVNORM(x, y = NULL, family = NULL, start = NULL,
n.samples = 500, hessian = NULL, ...)

Arguments

x The x list, as returned from function bamlss.frame, holding all model matrices
and other information that is used for fitting the model. Or an object returned
from function bamlss.

y The model response, as returned from function bamlss.frame.

family A bamlss family object, see family.bamlss.

start A named numeric vector containing possible starting values, the names are
based on function parameters.

n.samples Sets the number of samples that should be generated.

hessian The Hessian matrix that should be used. Note that the row and column names
must be the same as the names of the parameters. If hessian = NULL the func-
tion uses optim to compute the Hessian if it is not provided within x.

... Arguments passed to function optim.

Value

Function MVNORM() returns samples of parameters. The samples are provided as a mcmc matrix.

See Also

bamlss, bamlss.frame, bamlss.engine.setup, set.starting.values, opt_bfit, sam_GMCMC
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Examples

## Simulated data example illustrating
## how to call the sampler function.
## This is done internally within
## the setup of function bamlss().
d <- GAMart()
f <- num ~ s(x1, bs = "ps")
bf <- bamlss.frame(f, data = d, family = "gaussian")

## First, find starting values with optimizer.
o <- with(bf, opt_bfit(x, y, family))

## Sample.
samps <- with(bf, sam_MVNORM(x, y, family, start = o$parameters))
plot(samps)

scale2 Scaling Vectors and Matrices

Description

The function scales numeric objects to specific ranges.

Usage

scale2(x, lower = -1.5, upper = 1.5)

Arguments

x Numeric, vector or matrix.

lower The upper range.

upper The lower range.

Value

A scaled numeric vector or matrix, scaled to the range provided in lower and upper.

Examples

set.seed(123)
x <- runif(5)
scale2(x, -1, 1)
scale2(x, 0, 10)
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simdata Reference data.

Description

Simulated data to test the implementation of the bamlss families.

Usage

data("simdata")

Format

An object of class list of length 3.

See Also

mvnchol_bamlss

Examples

## Not run: ## Reproducing code.
set.seed(111)
n <- 2000

## build orthogonal rotation matrix
thetax <- pi/4
thetay <- pi/4
thetaz <- pi/4
Rx <- matrix( c(1,0,0, 0,cos(thetax),sin(thetax), 0,-sin(thetax),cos(thetax) ), 3, 3 )
Ry <- matrix( c(cos(thetay),0,-sin(thetay), 0,1,0, sin(thetay),0,cos(thetay) ), 3, 3 )
Rz <- matrix( c(cos(thetaz),sin(thetaz),0, -sin(thetaz),cos(thetaz),0, 0,0,1 ), 3, 3 )
R <- Rx %*% Ry %*% Rz

## non-linear functions
f1 <- function(x) (sin(pi * x))^2
f2 <- function(x) (cos(pi * x))^2

## random derivitates
x <- runif(n)

## eigenvalues
val1 <- f1(x)
val2 <- f2(x)
val3 <- rep(0, n)

## initialize vectors for parameter lists
p12 <- NULL
p13 <- NULL
p23 <- NULL
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sig <- matrix(0, n, 3)

lamdiag <- matrix(0, n, 3)
lambda <- matrix(0, n, 3)

y <- matrix(0, n, 3)
log_dens_ref <- rep(0, n)

tau <- .1 ## offset on diagonal
l <- 0 ## count occasions with invertible cv
dens1 <- NULL
for ( ii in seq(n) ) {

mu <- rep(0, 3)

val <- diag( c(val1[ii], val2[ii], val3[ii]) ) + diag(tau, 3)
## compute covariance matrix from rotation matrix and eigenvalues
cv <- R %*% val %*% t(R)

## compute parameters for parameter list
sig[ii,] <- sqrt(diag(cv))
p12[ii] <- cv[1,2]
p13[ii] <- cv[1,3]
p23[ii] <- cv[2,3]

## compute paramters for Cholesky family
chol_cv <- solve(chol(cv)) # lambdas come from L^-1 not L
lamdiag[ii,] <- diag(chol_cv)
lambda[ii,] <- chol_cv[upper.tri(chol_cv)]

## Check if cv is invertible
if ( !is.matrix(try(chol(cv))) ) l <- l + 1

y[ii,] <- mvtnorm::rmvnorm(1, mu, cv)

log_dens_ref[ii] <- mvtnorm::dmvnorm(y[ii,], mu, cv, log = TRUE)
}
print(l)

## Data
d <- as.data.frame(y)
names(d) <- paste0("y", 1:3)
d$x <- x

## make parameter list for mvn chol family
par <- list()
par[["mu1"]] <- rep(0,n)
par[["mu2"]] <- rep(0,n)
par[["mu3"]] <- rep(0,n)
par[["lamdiag1"]] <- lamdiag[,1]
par[["lamdiag2"]] <- lamdiag[,2]
par[["lamdiag3"]] <- lamdiag[,3]
par[["lambda12"]] <- lambda[,1]
par[["lambda13"]] <- lambda[,2]
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par[["lambda23"]] <- lambda[,3]

simdata <- list(
d = d,
par = par,
y = y

)

## save(simdata, file = "simdata.rda")
## End of simulation

## End(Not run)

simJM Simulate longitudinal and survival data for joint models

Description

Simulates longitudinal data with normal error and (Cox-type) survival times using the inversion
method. The function simJM() is a wrapper specifying all predictors and the resulting data sets.
The wrapper calls rJM() to sample the survival times, a modified version of rSurvtime() from the
R package CoxFlexBoost.

Usage

simJM(nsub = 300, times = seq(0, 120, 1), probmiss = 0.75,
long_setting = "functional",
alpha_setting = if(nonlinear) "linear" else "nonlinear",
dalpha_setting = "zero", sigma = 0.3, long_df = 6, tmax = NULL,
seed = NULL, full = FALSE, file = NULL, nonlinear = FALSE,
fac = FALSE)

rJM(hazard, censoring, x, r,
subdivisions = 1000, tmin = 0, tmax,
file = NULL, ...)

Arguments

nsub number of individuals for which longitudinal data and survival times should be
simulated.

times vector of time points at which longitudinal measurements are "sampled".
probmiss proportion of longitudinal measurements to be set to missing. Used to induce

sparsity in the longitudinal measurements.
long_setting Specification of the longitudinal trajectories of the sampled subjects. Preset

specifications are "linear", "nonlinear" and "functional". See Details.
alpha_setting specification of the association between survival and longitudinal. Preset spec-

ifications are "simple", "linear", "nonlinear" and "nonlinear2". See De-
tails.
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dalpha_setting specification of the association between survival and the derivative of the longi-
tudinal. Work in progress.

sigma standard deviation of the normal error around the true longitudinal measure-
ments.

long_df number of basis functions from which functional random intercepts are sampled.

tmax For function simJM(), longest possible survival time, observations are censored
after that timepoint. Defaults to max(times) and should not be specified longer
than max(times) for longitudinal setting "functional". For function rJM(), lat-
est time point to sample a survival time.

seed numeric scalar setting the random seed.

full logical indicating if only the longitudinal data set should be returned (FALSE) or
additionally also the data for the survival part evaluated on a regular time grid
and the longitudinal data set without longitudinal missings (TRUE).

file name of the data file the generated data set should be stored into (e.g., "sim-
data.RData") or NULL if the dataset should directly be returned in R.

nonlinear If set to TRUE, a nonlinear interaction between alpha and mu is simulated.

fac If set to TRUE, a smooth interaction that varies by a factor is simulated.

hazard complete hazard function to specify the joint model. Time must be the first
argument.

censoring function to compute (random) censoring.

x matrix of sampled covariate values.

r matrix of sampled random coefficients.

subdivisions the maximum number of subintervals for the integration.

tmin earliest time point to sample a survival time.

... further arguments to be passed to hazard or censoring.

Details

The function simulates longitudinal data basing on the given specification at given times. The full
hazard is built from all joint model predictors ηµ, ησ , ηλ, ηγ , ηα as presented in Koehler, Umlauf,
and Greven (2016), see also jm_bamlss. Survival times are sampled using the inversion method
(cf. Bender, Augustin, & Blettner, 2005). Additional censoring and missingness is introduced.
The longitudinal information is censored according to the survival information. The user can also
specify own predictors and use only rJM to simulate survival times accordingly.

Pre-specified functions for ηµ in long_setting are for linear

ηµi(t) = 1.25 + r1i + 0.6 sin(x2i) + (−0.01)t+ 0.02r2it

, for nonlinear

ηµi(t) = 0.5 + r1i + 0.6 sin(x2i) + 0.1(t+ 1) exp(−0.075t)

and for functional

ηµi(t) = 0.5 + r1i + 0.6 sin(x2i) + 0.1(t+ 1) exp(−0.075t) +
∑
k

βkiB(t)
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, where B(.) denotes a B-spline basis function and βki are the sampled penalized coefficients from
gen_b per person.

Prespecified functions for ηα in alpha_setting are for constant

ηα(t) = 1

, for linear
ηα(t) = 1− 0.015t

, for nonlinear
ηα(t) = cos((time− 20)/20)

, and for nonlinear
ηα(t) = cos((time− 33)/33)

.

Additionally the fixed functions for ηλ = 0.1(t+2) exp(−0.075t) and ηλ = 0.1(t+2) exp(−0.075t)
are employed.

Value

For full = TRUE a list of the three data.frames is returned:

data Simulated dataset in long format including all longitudinal and survival covari-
ates.

data_grid Dataset of the time-varying survival predictors which are not subject specific,
evaluated at a grid of fixed time points.

data_full Simulated data set prior to generating longitudinal missings. Useful to assess
the longitudinal fit.

For full = FALSE only the first dataset is returned.

Covariates within these datasets include a subject identifier id, the sampled survival times survtime,
the event indicator event, the time points of longitudinally "observed" measurements obstime, the
longitudinal response y, the cumulative hazard at the survival time cumhaz, as well as covariates x1,
x2, random effects r1, r2, b1, ..., and the true predictors alpha, lambda, gamma, mu, sigma.

References

Hofner, B (2016). CoxFlexBoost: Boosting Flexible Cox Models (with Time-Varying Effects). R
package version 0.7-0.

Bender, R., Augustin, T., and Blettner, M. (2005). Generating Survival Times to Simulate Cox
Proportional Hazards Models. Statistics in Medicine, 24, 1713-1723.

Koehler N, Umlauf N, Beyerlein, A., Winkler, C., Ziegler, A., and Greven S (2016). Flexible
Bayesian Additive Joint Models with an Application to Type 1 Diabetes Research. (submitted)

See Also

jm_bamlss, opt_JM, sam_JM, bamlss.
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Examples

## Not run: ## Simulate survival data
## with functional random intercepts and a nonlinear effect
## of time, time-varying association alpha.
d <- simJM(nsub = 300)
head(d)

## Simulate survival data
## with random intercepts/slopes and a linear effect of time,
## constant association alpha.
d <- simJM(nsub = 200, long_setting = "linear",

alpha_setting = "constant")
head(d)

## End(Not run)

simSurv Simulate Survival Times

Description

Function simSurv() and rSurvtime2() simulate arbitrary (Cox-type) survival times using the in-
version method. Function simSurv() is a simple wrapper that calls rSurvtime2(). The functions
are based on the R package CoxFlexBoost implementation rSurvtime() and only slightly modify
the code.

Usage

## Simulate a pre-specified survival times data set.
simSurv(n = 300)

## Simulate arbitrary survival times.
rSurvTime2(lambda, x, cens_fct, upper = 1000, ...,
file = NULL, subdivisions = 1000)

Arguments

n The number of individuals for which survival times should be simulated.

lambda function. Baseline hazard λ(t, x) where time must be first argument.

x matrix. (Sampled) values for covariates (without time).

cens_fct function. Function to compute (random) censoring.

upper upper boundary of the interval the random survival times fall into.

... further arguments to be passed to lambda or cens_fct.

file character. name of the data file the generated data set should be stored into (e.g.,
"survtimes.RData") or NULL if the dataset should directly be returned in R.

subdivisions The maximum number of subintervals for the integration.
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Details

This is basically a slight modification according the computation of the integral, see the manual
page of function rSurvtime() of package CoxFlexBoost for details.

Value

A data.frame consisting of the observed survival time (time), the non-censoring indicator (event)
and further covariates x is returned. If file is specified, the data.frame is additionally stored on the
disc.

References

Benjamin Hofner (2016). CoxFlexBoost: Boosting Flexible Cox Models (with Time-Varying Ef-
fects). R package version 0.7-0.

Ralph Bender and Thomas Augustin and Maria Blettner (2005), Generating Survival Times to Sim-
ulate Cox Proportional Hazards Models. Statistics in Medicine, 24, 1713-1723.

See Also

cox_bamlss, opt_Cox, sam_Cox, bamlss

Examples

## The following shows the code of the
## wrapper function simSurv().
set.seed(111)
n <- 100
X <- matrix(NA, nrow = n, ncol = 3)
X[, 1] <- runif(n, -1, 1)
X[, 2] <- runif(n, -3, 3)
X[, 3] <- runif(n, -1, 1)

## Specify censoring function.
cens_fct <- function(time, mean_cens) {

## Censoring times are independent exponentially distributed.
censor_time <- rexp(n = length(time), rate = 1 / mean_cens)
event <- (time <= censor_time)
t_obs <- apply(cbind(time, censor_time), 1, min)
## Return matrix of observed survival times and event indicator.
return(cbind(t_obs, event))

}

## log(time) is the baseline hazard.
lambda <- function(time, x) {

exp(log(time) + 0.7 * x[1] + sin(x[2]) + sin(time * 2) * x[3])
}

## Simulate data with lambda() and cens_fct().
d <- rSurvTime2(lambda, X, cens_fct, mean_cens = 5)



134 sliceplot

sliceplot Plot Slices of Bivariate Functions

Description

This function plots slices from user defined values of bivariate surfaces.

Usage

sliceplot(x, y = NULL, z = NULL, view = 1, c.select = NULL,
values = NULL, probs = c(0.1, 0.5, 0.9), grid = 100,
legend = TRUE, pos = "topright", digits = 2, data = NULL,
rawdata = FALSE, type = "mba", linear = FALSE,
extrap = FALSE, k = 40, rug = TRUE, rug.col = NULL,
jitter = TRUE, ...)

Arguments

x A matrix or data frame, containing the covariates for which the effect should be
plotted in the first and second column and at least a third column containing the
effect. Another possibility is to specify the plot via a formula, e.g., for simple
plotting of bivariate surfaces z ~ x + y, see the examples.

y If x is a vector the argument y and z must also be supplied as vectors.

z If x is a vector the argument y and z must also be supplied as vectors, z defines
the surface given by z = f(x, y).

view Which variable should be used for the x-axis of the plot, the other variable will
be used to compute the slices. May also be a character with the name of the
corresponding variable.

c.select Integer, selects the column that is used in the resulting matrix to be used as the
z argument.

values The values of the x or y variable that should be used for computing the slices,
if set to NULL, slices will be constructed according to the quantiles, see also
argument probs.

probs Numeric vector of probabilities with values in [0,1] to be used within function
quantile to compute the values for plotting the slices.

grid The grid size of the surface where the slices are generated from.

legend If set to TRUE, a legend with the values that where used for slicing will be added.

pos The position of the legend, see also function legend.

digits The decimal place the legend values should be rounded.

data If x is a formula, a data.frame or list. By default the variables are taken
from environment(x): typically the environment from which plot3d is called.

rawdata If set to TRUE, the data will not be interpolated, only raw data will be used. This
is useful when displaying data on a regular grid.
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type Character, which type of interpolation method should be used. The default is
type = "akima", see function interp. The two other options are type = "mba",
which calls function mba.surf of package MBA, or type = "mgcv", which uses
a spatial smoother withing package mgcv for interpolation. The last option is
definitely the slowest, since a full regression model needs to be estimated.

linear Logical, should linear interpolation be used withing function interp?

extrap Logical, should interpolations be computed outside the observation area (i.e.,
extrapolated)?

k Integer, the number of basis functions to be used to compute the interpolated
surface when type = "mgcv".

rug Add a rug to the plot.

jitter If set to TRUE a jittered rug plot is added.

rug.col Specify the color of the rug representation.

... Parameters passed to matplot and legend.

Details

Similar to function plot3d, this function first applies bivariate interpolation on a regular grid,
afterwards the slices are computed from the resulting surface.

Note

Function sliceplot can use the akima package to construct smooth interpolated surfaces, there-
fore, package akima needs to be installed. The akima package has an ACM license that restricts
applications to non-commercial usage, see

https://www.acm.org/publications/policies/software-copyright-notice

Function sliceplot prints a note referring to the ACM license. This note can be suppressed by
setting

options("use.akima" = TRUE)

See Also

plot2d, plot3d, plotmap, plotblock.

Examples

## Generate some data.
set.seed(111)
n <- 500

## Regressors.
d <- data.frame(z = runif(n, -3, 3), w = runif(n, 0, 6))

## Response.
d$y <- with(d, 1.5 + cos(z) * sin(w) + rnorm(n, sd = 0.6))

## Not run: ## Estimate model.

https://www.acm.org/publications/policies/software-copyright-notice
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b <- bamlss(y ~ te(z, w), data = d)
summary(b)

## Plot estimated effect.
plot(b, term = "te(z,w)", sliceplot = TRUE)
plot(b, term = "te(z,w)", sliceplot = TRUE, view = 2)
plot(b, term = "te(z,w)", sliceplot = TRUE, view = "w")
plot(b, term = "te(z,w)", sliceplot = TRUE, probs = seq(0, 1, length = 10))

## End(Not run)

## Variations.
d$f1 <- with(d, sin(z) * cos(w))
sliceplot(cbind(z = d$z, w = d$w, f1 = d$f1))

## Same with formula.
sliceplot(sin(z) * cos(w) ~ z + w, ylab = "f(z)", data = d)

## Compare with plot3d().
plot3d(sin(z) * 1.5 * w ~ z + w, zlab = "f(z,w)", data = d)
sliceplot(sin(z) * 1.5 * w ~ z + w, ylab = "f(z)", data = d)
sliceplot(sin(z) * 1.5 * w ~ z + w, view = 2, ylab = "f(z)", data = d)

smooth.construct Constructor Functions for Smooth Terms in BAMLSS

Description

The generic function is only a copy of smooth.construct adding a ... argument. For objects
of class "bamlss.frame" and "bamlss" the method extracts all smooth model terms, see function
bamlss.frame for details on the setup of BAMLSS.

Usage

## Function as in package mgcv
## but with additional dots argument.
smooth.construct(object, data, knots, ...)

## For 'bamlss.frame's.
## S3 method for class 'bamlss.frame'
smooth.construct(object, data = NULL, knots = NULL,
model = NULL, drop = TRUE, ...)

## S3 method for class 'bamlss.formula'
smooth.construct(object, data = NULL, knots = NULL,
model = NULL, drop = TRUE, ...)

## S3 method for class 'bamlss.terms'
smooth.construct(object, data = NULL, knots = NULL,
model = NULL, drop = TRUE, ...)
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Arguments

object Either a smooth specification object, or object of class "bamlss", "bamlss.frame",
"bamlss.formula" or "bamlss.terms". For smooth specification objects, see
function smooth.construct.

data A data frame or list, see also see function smooth.construct.

knots See function smooth.construct.

model Character, specifies for which model parameter the smooth constructs should be
created.

drop If there is only one model parameter the returned named list is simplified.

... Arguments passed to the smooth term constructor functions.

Value

For smooth specification objects see function see smooth.construct. For objects of class "bamlss.frame"
or "bamlss" the list of smooth constructs, see function bamlss.frame for more details.

See Also

bamlss.frame, bamlss.formula, bamlss, smooth.construct.

Examples

## Generate some data.
d <- GAMart()

## Create a "bamlss.frame".
bf <- bamlss.frame(num ~ s(x1) + s(x2), data = d)

## Extract the smooth construct.
sc <- smooth.construct(bf)
str(sc)

## Also possible with formulas.
f <- bamlss.formula(list(

num ~ s(x1) + te(lon,lat),
sigma ~ s(x2)

), family = "gaussian")

sc <- smooth.construct(f, data = d)
str(sc)
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smooth.construct.kr.smooth.spec

Kriging Smooth Constructor

Description

This smooth constructor implements a kriging based model term.

Usage

## S3 method for class 'kr.smooth.spec'
smooth.construct(object, data, knots, ...)
## S3 method for class 'kriging.smooth'
Predict.matrix(object, data)

Arguments

object, data, knots
See smooth.construct.

... Currently not used.

Details

This smooth constructor implements univariate and bivariate Kriging terms. The basis functions are
based on the Matern covariance function. For finding knots, a space filling algorithm is used, see
cover.design.

Value

A smooth specification object, see also smooth.construct.

References

Fahrmeir, L., Kneib, T. , Lang, S., Marx, B. (2013): Regression. Models, Methods and Applications,
Springer Verlag. https://www.uni-goettingen.de/de/551357.html

See Also

bamlss, smooth.construct

Examples

## Not run: ## Simulate data.
set.seed(123)
d <- GAMart()

## Estimate model.
f <- num ~ s(x1,bs="kr") + s(x2,bs="kr") + s(x3,bs="kr") + s(lon,lat,bs="kr",k=30)
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## Set the seed, estimate model.
set.seed(111)
b <- bamlss(f, data = d)

## Plot estimated effects.
plot(b)

## End(Not run)

smooth.construct.ms.smooth.spec

Smooth constructor for monotonic P-splines

Description

The function sets up a smooth term for shape constraint estimation of P-spline model terms. Note
that this currently only works using boosting and backfitting.

Usage

## S3 method for class 'ms.smooth.spec'
smooth.construct(object, data, knots, ...)

Arguments

object Either a smooth specification object, or object of class "bamlss", "bamlss.frame",
"bamlss.formula" or "bamlss.terms". For smooth specification objects, see
function smooth.construct.

data A data frame or list, see also see function smooth.construct.

knots See function smooth.construct.

... Arguments passed to the smooth term constructor functions.

Value

See function see smooth.construct.

See Also

bamlss.frame, bamlss.formula, bamlss, smooth.construct.
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Examples

## Not run: ## Generate some data.
set.seed(123)

n <- 300
x <- runif(n, -2, 3)
y <- sin(x) + rnorm(n, sd = 0.1)

d <- data.frame("y" = y, "x" = x)

## Increasing: constr = 1.
## Decreasing: constr = 2.
b <- bamlss(y ~ s2(x,bs="ms",xt=list(constr=1)),

data = d, optimizer = opt_bfit, sampler = sam_MVNORM)

## Predict and plot.
p <- predict(b, model = "mu", FUN = c95)
plot(y ~ x)
plot2d(p ~ x, add = TRUE, col.lines = 4, lwd = 2)

## End(Not run)

smooth.construct.sr.smooth.spec

Random Effects P-Spline

Description

This smooth constructor implements the random effects representation of a P-spline.

Usage

## S3 method for class 'sr.smooth.spec'
smooth.construct(object, data, knots, ...)

Arguments

object, data, knots
See smooth.construct.

... Currently not used.

Value

See smooth.construct

See Also

bamlss, predict.bamlss, opt_bfit, opt_boost
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Examples

## Not run: ## Simulate data.
set.seed(123)
d <- GAMart()

## Estimate model.
f <- num ~ x1 + x2 + x3 + s2(x1,bs="sr") + s2(x2,bs="sr") + s2(x3,bs="sr")

b <- bamlss(f, data = d, optimizer = boost, sampler = FALSE)

plot(b)

## End(Not run)

smooth_check MCMC Based Simple Significance Check for Smooth Terms

Description

For each smooth term estimated with MCMC, the function computes 95 intervals and simply com-
putes the fraction of the cases where the interval does not contain zero.

Usage

smooth_check(object, newdata = NULL, model = NULL, term = NULL, ...)

Arguments

object A fitted model object which contains MCMC samples.

newdata Optionally, use new data for computing the check.

model Character, for which model should the check be computed?

term Character, for which term should the check be computed?

... Arguments passed to predict.bamlss.

Examples

## Not run: ## Simulate some data.
d <- GAMart()

## Model formula.
f <- list(

num ~ s(x1) + s(x2) + s(x3),
sigma ~ s(x1) + s(x2) + s(x3)

)

## Estimate model with MCMC.
b <- bamlss(f, data = d)
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## Run the check, note that all variables
## for sigma should have no effect.
smooth_check(b)

## End(Not run)

stabsel Stability selection.

Description

Performs stability selection based on gradient boosting.

Usage

stabsel(formula, data, family = "gaussian",
q, maxit, B = 100, thr = .9, fraction = 0.5, seed = NULL, ...)

## Plot selection frequencies.
## S3 method for class 'stabsel'
plot(x, show = NULL,
pal = function(n) gray.colors(n, start = 0.9, end = 0.3), ...)

Arguments

formula A formula or extended formula.

data A data.frame.

family A bamlss.family object.

q An integer specifying how many terms to select in each boosting run.

maxit An integer specifying the maximum number of boosting iterations. See opt_boost.
Either choose q or maxit as hyper-parameter for regularization.

B An integer. The boosting is run B times.

thr Cut-off threshold of relative frequencies (between 0 and 1) for selection.

fraction Numeric between 0 and 1. The fraction of data to be used in each boosting run.

seed A seed to be set before the stability selection.

x A object of class stabsel.

show Number of terms to be shown.

pal Color palette for different model terms.

... Not used yet in stabsel.



stabsel 143

Details

stabsel performs stability selection based on gradient boosting (opt_boost): The boosting algo-
rithm is run B times on a randomly drawn fraction of the data. Each boosting run is stopped
either when q terms have been selected, or when maxit iterations have been performed, i.e. either
q or maxit can be used to tune the regularization of the boosting. After the boosting the relative
selection frequencies are evaluated. Terms with a relative selection frequency larger then thr are
suggested for a final regression model.

If neither q nor maxit has been specified, q will be set to the square root of the number of columns
in data.

Gradient boosting does not depend on random numbers. Thus, the individual boosting runs differ
only in the subset of data which is used.

Value

A object of class stabsel.

Author(s)

Thorsten Simon

Examples

## Not run: ## Simulate some data.
set.seed(111)
d <- GAMart()
n <- nrow(d)

## Add some noise variables.
for(i in 4:9)

d[[paste0("x",i)]] <- rnorm(n)

f <- paste0("~ ", paste("s(x", 1:9, ")", collapse = "+", sep = ""))
f <- paste(f, "+ te(lon,lat)")
f <- as.formula(f)
f <- list(update(f, num ~ .), f)

## Run stability selection.
sel <- stabsel(f, data = d, q = 6, B = 10)
plot(sel)

## Estimate selected model.
nf <- formula(sel)
b <- bamlss(nf, data = d)
plot(b)

## End(Not run)
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summary.bamlss Summary for BAMLSS

Description

The function takes an object of class "bamlss" and produces summaries of optimizer and sampler
function outputs.

Usage

## S3 method for class 'bamlss'
summary(object, model = NULL,
FUN = NULL, parameters = TRUE, ...)

## S3 method for class 'summary.bamlss'
print(x, digits = max(3, getOption("digits") - 3), ...)

Arguments

object An object of class "bamlss".

x An oject of class "summary.bamlss".

model Character or integer, specifies the model for which a summary should be com-
puted.

FUN Function that should be applied on samples, see also function coef.bamlss.

parameters If an optimizer function is applied within the bamlss call, should the values of
the estimated parameters be part of the summary?

digits Controls number of digits printed in output.

... Other arguments.

Details

If the fitted model contains samples, summaries according to the supplied function can be computed,
e.g., different quantiles of samples. See also function coef.bamlss that extracts the coefficient
summaries.

If an optimizer function was used within the bamlss call, estimated parameters will be included per
default into the summary.

Note that summaries not based on samples can be user defined, e.g., as returned from function
samplestats or the return values of optimizer function, e.g., see function opt_bfit.

Value

summary.bamlss produces the following summary:

call The initial bamlss call.

family The family that is used for modeling.
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formula The model formula.

model.matrix Summary of parameteric terms.
smooth.construct

Summary of smooth terms.

model.stats Other model statistics, e.g., as returned from optimizer functions and/or pro-
duces by function samplestats.

See Also

bamlss

Examples

## Not run: ## Generate some data.
d <- GAMart()

## Model formula.
f <- list(

num ~ s(x1) + s(x2),
sigma ~ s(x3) + te(lon,lat)

)

## Estimate model.
b <- bamlss(f, data = d)

## Print the summary.
print(summary(b))

## End(Not run)

Surv2 Create a Survival Object for Joint Models

Description

This function is only a slight extension of Surv for joint models.

Usage

Surv2(..., obs = NULL)

Arguments

... Arguments passed to function Surv.

obs The observed longitudinal response.

Value

An object of class "Surv2" and "matrix".
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See Also

opt_JM, sam_JM, bamlss

Examples

## Surv2(time, event, obs = y)
## See the examples of opt_JM() and sam_JM()!

surv_transform Survival Model Transformer Function

Description

This function takes a bamlss.frame and computes design matrices of model terms based on a
time grid for time-dependent structured additive predictors in a survival context. Note that this
transformer function is usually used internally by function bamlss and is the default transformer
function using the cox_bamlss family object.

The time grid design matrices can be used to construct the full structured additive predictor for each
time point. This way it is possible to solve the integrals that are part of, e.g., a Newton-Raphson
updating scheme, numerically.

See the example section on how to extract the time grid design matrices.

Usage

surv_transform(x, y, data, family,
subdivisions = 100, timedependent = "lambda",
timevar = NULL, idvar = NULL, is.cox = FALSE,
alpha = 0.1, ...)

Arguments

x The x list, as returned from function bamlss.frame and transformed by function
surv_transform, holding all model matrices and other information that is used
for fitting the model.

y The model response, as returned from function bamlss.frame.

data The data.frame that should be used for setting up all matrices.

family A bamlss family object, see family.bamlss. In this case this is the cox_bamlss
family object.

subdivisions How many time points should be created for each individual.

timedependent A character vector specifying the names of parameters in x that are time-dependent.
Time grid design matrices are only computed for these parameters.

timevar A character specifying the name of the survival time variable in the data set.

idvar Depending on the type of data set, this is the name of the variable specifying
identifier of individuals.
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is.cox Should the bamlss.frame be set up for a Cox type survival model.

alpha A value for the intercept of a parameter names alpha. Typically the association
parameter of a longitudinal and survival process in a joint model.

... Arguments passed to function bamlss.engine.setup.

Value

A bamlss.frame including the time grid design matrices.

See Also

cox_bamlss, opt_Cox, sam_Cox, simSurv, bamlss

Examples

library("survival")
set.seed(111)

## Simulate survival data.
d <- simSurv(n = 20)

## Formula of the survival model, note
## that the baseline is given in the first formula by s(time).
f <- list(

Surv(time, event) ~ s(time) + s(time, by = x3),
gamma ~ s(x1) + s(x2)

)

## Create the bamlss.frame.
bf <- bamlss.frame(f, family = "cox", data = d)

## Lambda is the time-dependent parameter.
print(bf)

## Apply the transformer.
bf <- with(bf, surv_transform(x, y, data = model.frame,

family = family, is.cox = TRUE, subdivisions = 25))

## Extract the time grid design matrix for term s(time).
X <- bf$x$lambda$smooth.construct[["s(time)"]]$fit.fun_timegrid(NULL)
dim(X)

## Compute fitted values for each time point.
grid <- attr(bf$y[[1]], "grid")
gdim <- c(length(grid), length(grid[[1]]))
b <- runif(ncol(X))
fit <- X %*% b
fit <- matrix(fit, nrow = gdim[1], ncol = gdim[2], byrow = TRUE)

plot(as.vector(fit) ~ unlist(grid), type = "n",
xlab = "Survival time", ylab = "Effect")

for(j in seq_along(grid)) {
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lines(fit[j, ] ~ grid[[j]], lwd = 2, col = rgb(0.1, 0.1, 0.1, alpha = 0.3))
points(grid[[j]][gdim[2]], fit[j, gdim[2]], col = "red")

}

TempIbk Temperature data.

Description

Temperature Data for Innsbruck Airport

Usage

data("TempIbk")

Format

An object of class data.frame with 1798 rows and 17 columns.

Details

Numerical weather predictions (NWP) and observations of 2 meter temperature at Innsbruck Air-
port. The observations from the SYNOP station 11120 cover 5 years from 2015-01-01 to 2019-
31-12. The NWP data are derived from GEFS reforecasts (Hamill et al. 2013). The data contain
following variables:

• init: Time of initialization of the NWP model.

• obs_*: Observations for lead time *.

• mean_ens_*: NWP ensemble mean for lead time *.

• logsd_ens_*: NWP logarithm of ensemble standard deviation for lead time *.

• yday: Yearday.

References

Hamill TM, Bates GT, Whitaker JS, Murray DR, Fiorino M, Galarneau Jr TJ, Zhu Y, Lapenta
W (2013). NOAA’s Second-Generation Global Medium-Range Ensemble Reforecast Data Set.
Bulletin of the American Meteorological Society, 94(10), 1553-1565.

See Also

mvnchol_bamlss
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Examples

## Not run: ## Innsbruck temperature data.
data("TempIbk", package = "bamlss")

## Five lead times.
lead <- seq(192, 216, by = 6)

## Set up formulas.
f <- c(

## mu equations
sprintf('obs_%s ~ s(yday, bs = "cc") + s(yday, bs = "cc", by = mean_ens_%s)', lead, lead),

## lambda diag equations
sprintf('lamdiag%s ~ s(yday, bs = "cc") + s(yday, bs = "cc", by = logsd_ens_%s)', 1:5, lead),

## lambda off-diag equations
sprintf('lambda%s ~ s(yday, bs = "cc")', apply(combn(1:5, 2), 2, paste, collapse = ""))

)
f <- lapply(f, as.formula)

## Multivariate normal family with basic Cholesky parameterization.
fam <- mvnchol_bamlss(k = 5, type = "basic")

## Fit model.
set.seed(123)
b <- bamlss(f, family = fam, data = TempIbk, optimizer = opt_boost, maxit = 1000)

## Show estimated effects.
par(mfrow = c(2, 2))
plot(b, model = "mu1", scale = 0, spar = FALSE)
plot(b, model = "lamdiag2", term = "s(yday)", spar = FALSE)
plot(b, model = "lambda12")

## Predict sample case.
nd <- subset(TempIbk, format(init, "%Y-%m-%d") %in% c("2015-01-03", "2015-10-10"))
fit <- predict(b, newdata = nd, type = "parameter")

## Plot correlation matrix for GEFS initialization 2015-10-10.
plot_cor <- function(i) {

image(lead, lead, fam$correlation(fit)[[i]][5:1, ], zlim = c(0, 1),
col = hcl.colors(10, "Blues 3", rev = TRUE), axes = FALSE,
xlab = "lead time in hours", ylab = "lead time in hours",
main = sprintf("Correlation matrix fitted for %s", nd[i, "init"]))

axis(1, lead)
axis(2, lead, rev(lead))
box()

}
par(mfrow = c(1, 2))
plot_cor(1)
plot_cor(2)

## Plot means and standard deviations.
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plot_ms <- function(i) {
stdev <- fam$stdev(fit)[[i]]
means <- fam$means(fit)[[i]]
lower <- means - stdev
upper <- means + stdev

plot(lead, means, type = 'b', cex = 2, lwd = 1, lty = 2, axes = FALSE,
ylim = c(-6, 16), # c(min(lower), max(upper)),
ylab = expression("Temperature in " * degree * "C"),
xlab = "lead time in hours",
main = sprintf("Means +/- one st. dev. for %s", nd[i, "init"]))

segments(lead, y0 = lower, y1 = upper)
axis(1, lead)
axis(2)
box()
}
par(mfrow = c(1, 2))
plot_ms(1)
plot_ms(2)

## End(Not run)

terms.bamlss BAMLSS Model Terms

Description

Extract terms.objects for BAMLSS.

Usage

## S3 method for class 'bamlss'
terms(x, specials = NULL, data = NULL,
model = NULL, pterms = TRUE, sterms = TRUE,
drop = TRUE, ...)

## S3 method for class 'bamlss.frame'
terms(x, specials = NULL, data = NULL,
model = NULL, pterms = TRUE, sterms = TRUE,
drop = TRUE, ...)

## S3 method for class 'bamlss.formula'
terms(x, specials = NULL, data = NULL,
model = NULL, pterms = TRUE, sterms = TRUE,
drop = TRUE, ...)
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Arguments

x An link{bamlss}, bamlss.frame or bamlss.formula object.

specials See terms.object.

data Data passed to terms.formula.

model Character or integer, specifies the model for which terms should be returned.

pterms Should parametric terms be part of the object?

sterms Should smooth terms be part of the object?

drop If terms for only one model are returned, the list structure is dropped.

... Arguments passed to bamlss.formula.

Value

Object of class "bamlss.terms", a list of terms.objects, depending on the structure of the
bamlss.formula object.

See Also

bamlss, bamlss.frame, bamlss.formula.

Examples

## Model formula.
f <- list(

num ~ x1 + x2 + id,
sigma ~ x3 + fac + lon + lat

)

## Create the terms object.
terms(bamlss.formula(f))

trans_AR1 AR1 Transformer Function

Description

The transformer function takes a bamlss.frame object and transforms the response and the design
matrices to account for lag 1 autocorrelation. The method is also known as Prais-Winsten estima-
tion.

Usage

trans_AR1(rho = 0.1)
AR1(rho = 0.1)

Arguments

rho Specifies the correlation parameter at lag 1.
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Value

A transformer function which can be used in the bamlss call.

References

Johnston, John (1972). Econometric Methods (2nd ed.). New York: McGraw-Hill. pp. 259–265.

See Also

bamlss.frame, bamlss, smooth2random.

Examples

## Not run: ## Simulate AR1 data.
set.seed(111)

n <- 240
d <- data.frame("t" = 1:n)

## Nonlinear function.
f <- function(x) {

2 + sin(x / n * 2 * pi - pi)
}

## Correlated errors.
rho <- 0.8
e <- rnorm(n, sd = 0.1)
u <- c(e[1], rep(NA, n - 1))
for(i in 2:n){

u[i] <- rho * u[i - 1] + e[i]
}

## Response.
d$y <- f(d$t) + u

## Plot time-series data.
plot(d, type = "l")

## Estimate models without and with AR1 transformation.
b0 <- bamlss(y ~ s(t,k=20), data = d, criterion = "BIC")
b1 <- bamlss(y ~ s(t,k=20), data = d, criterion = "BIC",

transform = AR1(rho = 0.8))

## Estimate full AR1 model.
b2 <- bamlss(y ~ s(t,k=20), data = d, criterion = "BIC",

family = "AR1")
rho <- predict(b2, model = "rho", type = "parameter")
print(range(rho))

## Estimated standard deviations.
sd0 <- predict(b0, model = "sigma", type = "parameter")
sd1 <- predict(b1, model = "sigma", type = "parameter")
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sd2 <- predict(b2, model = "sigma", type = "parameter")
print(round(c(sd0[1], sd1[1], sd2[1]), 2))

## Plot fitted trends.
p0 <- predict(b0, model = "mu")
p1 <- predict(b1, model = "mu")
p2 <- predict(b2, model = "mu")

plot(d, type = "l")
lines(f(d$t) ~ d$t, col = 2, lwd = 2)
lines(p0 ~ d$t, col = 4, lwd = 2)
lines(p1 ~ d$t, col = 3, lwd = 3)
lines(p2 ~ d$t, col = 5, lwd = 3)
legend("topleft",

c("no trans", "with trans", "AR1 model", "truth"),
lwd = 2, col = c(4, 3, 5, 2), bty = "n")

## End(Not run)

Volcano Artificial Data Set based on Auckland’s Maunga Whau Volcano

Description

This function creates a data set based on the volcano data by adding normal errors to the topo-
graphic information.

Usage

Volcano(sd = 0.3)

Arguments

sd The standard deviation of the normal errors.

Value

A data frame with coordinates and noisy elevation.

See Also

volcano

Examples

d <- Volcano()
head(d)

## Not run: b <- bamlss(y ~ te(lon,lat,k=10), data = d)
plot(b, theta = -130)
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## End(Not run)

WAIC Watanabe-Akaike Information Criterion (WAIC)

Description

Function returning the Watanabe-Akaike Information Criterion (WAIC) of a fitted model object.

Usage

WAIC(object, ..., newdata = NULL)

Arguments

object A fitted model object which contains MCMC samples.

... Optionally more fitted model objects.

newdata Optionally, use new data for computing the WAIC.

Value

A data frame containing the WAIC and estimated number of parameters.

References

Watanabe S. (2010). Asymptotic Equivalence of Bayes Cross Validation and Widely Applicable
Information Criterion in Singular Learning Theory. The Journal of Machine Learning Research,
11, 3571–3594. https://jmlr.org/papers/v11/watanabe10a.html

Examples

## Not run: d <- GAMart()
b1 <- bamlss(num ~ s(x1), data = d)
b2 <- bamlss(num ~ s(x1) + s(x2), data = d)
WAIC(b1, b2)

## End(Not run)

https://jmlr.org/papers/v11/watanabe10a.html
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