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Abstract

The R package bsvars provides a wide range of tools for empirical macroeconomic and
financial analyses using Bayesian Structural Vector Autoregressions. It uses frontier
econometric techniques and C++ code to ensure fast and efficient estimation of these
multivariate dynamic structural models, possibly with many variables, complex
identification strategies, and non-linear characteristics. The models can be identified
using adjustable exclusion restrictions and heteroskedastic or non-normal shocks. They
feature a flexible three-level equation-specific local-global hierarchical prior distribution
for the estimated level of shrinkage for autoregressive and structural parameters.
Additionally, the package facilitates predictive and structural analyses such as impulse
responses, forecast error variance and historical decompositions, forecasting, statistical
verification of identification and hypotheses on autoregressive parameters, and analyses
of structural shocks, volatilities, and fitted values. These features differentiate bsvars
from existing R packages that either focus on a specific structural model, do not
consider heteroskedastic shocks, or lack the implementation using compiled code.

Keywords: Bayesian inference, Structural VARs, Gibbs sampler, exclusion restrictions,
heteroskedasticity, non-normal shocks, forecasting, structural analysis, R.

1. Introduction
Since the publication of the seminal paper by Sims (1980) Structural Vector Autoregressions
(SVARs) have become benchmark models for empirical macroeconomic analyses.
Subsequently, they have found numerous applications in other fields and are now
indispensable in everyday work at central banks, treasury departments and other economic
governance institutions, as well as in finance, insurance, banking, and economic consulting.
The great popularity of these multivariate dynamic structural models was gained because
they incorporate the reduced and structural forms into a unified framework. On the one
hand, they capture the essential properties of macroeconomic and financial time series such
as persistence, dynamic effects, system modelling, and potentially time-varying conditional
variances. On the other hand, they control for the structure of an economy, system, or
market through the contemporaneous effects and, thus, they identify contemporaneously and
temporarily uncorrelated shocks that can be interpreted structurally. All these features make
it possible to estimate the dynamic causal effects of the shocks on the measurements of
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interest reliably. These effects are interpreted as the propagation of the well-isolated and
unanticipated cause – a structural shock – in the considered system of variables throughout
the predictable future.
This flexibility comes at a cost of dealing with local identification of the model, sharply
growing dimension of the parameter space with the increasing number of variables, and the
estimation of latent variables. Bayesian inference provides original solutions to each of these
challenges often deciding on the feasibility of the analyses with a demanded model including
many variables, conditional heteroskedasticity, and sophisticated identification of the
structural shocks. In this context, Markov Chain Monte Carlo methods grant certainty of
reliable estimation thanks to simple convergence diagnostics but they might incur
substantial computational cost.
The paper at hand and the corresponding package bsvars by Woźniak (2024) for R (R Core
Team 2021) provide tools for empirical macroeconomic and financial analyses using Bayesian
SVARs. It addresses the considered challenges by choosing a convenient model formulation,
applying frontier econometric and numerical techniques, and relying on compiled code written
using C++ to ensure fast and efficient estimation. Additionally, it offers a great flexibility in
choosing the model specification and identification pattern, modifying the prior assumptions,
and accessing interpretable tabulated or plotted outputs. Therefore, the package makes it
possible to benefit from the best of the two facilities: the convenience of data analysis using
R and the computational speed using pre-compiled code written in C++.
More specifically, the package uses the SVAR models featuring a standard reduced form
VAR equation following Bańbura, Giannone, and Reichlin (2010) (see also Woźniak 2016)
and a structural equation linking the reduced form error term to the structural shocks via
the structural matrix as in Lütkepohl, Shang, Uzeda, and Woźniak (2024) and Chan, Koop,
and Yu (2024). The normal prior distribution for the autoregressive parameters implements
the interpretability of the Minnesota prior by Doan, Litterman, and Sims (1984) by centring
it around the mean that reflects unit-root nonstationarity or stationarity of the variables
with an adjustable level of shrinkage depending on the equation and exhibiting exponential
decay with the increasing autoregressive lag order. The prior distribution for the structural
matrix is generalised-normal by Waggoner and Zha (2003a) which preserves the shape of the
likelihood function (see Woźniak and Droumaguet 2015). Both of these priors are combined
with the flexible three-level equation-specific local-global hierarchical prior distribution for
the estimated level of shrinkage as in Lütkepohl et al. (2024) improving the model fit. The
estimation of the level of shrinkage was shown to substantially improve forecasting
performance of VAR models by Giannone, Lenza, and Primiceri (2015). Additionally, these
specification choices lead to an efficient equation-by-equation Gibbs sampler for the
posterior distribution of the autoregressive and structural parameters proposed by Chan
et al. (2024) and Waggoner and Zha (2003a) respectively.
All the structural models in the bsvars package can be identified using highly adaptable
exclusion restrictions proposed by Waggoner and Zha (2003a) and use the structural matrix
sign normalisation by Waggoner and Zha (2003b). However, one might also choose to include
additional sources of identification through heteroskedasticity following the ideas by Rigobon
(2003) or by non-normal shocks as proposed by Lanne and Lütkepohl (2010). Therefore,
the package offers a range of models for structural shocks conditional variance including a
homoskedastic model with time-invariant variances. The list of heteroskedastic specifications
is opened by Stochastic Volatility (SV) model in two versions: non-centred as in Lütkepohl
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Figure 1: The hexagonal package logo features an impulse response that can
be fully reproduced using the bsvars package following a script available at:
github.com/bsvars/hex/blob/main/bsvars/bsvars.R

et al. (2024) and centred used by Chan et al. (2024), and is followed by the Markov-switching
heteroskedasticity (MSH) model proposed by Brunnermeier, Palia, Sastry, and Sims (2021).
The implementations of the MSH models follows that by Woźniak and Droumaguet (2015)
in two versions: with stationary Markov process and its sparse version that facilitates the
estimation of the number of states and non-parametric interpretations. Similarly, models
with non-normal shocks are implemented in three versions including Student-t distributed
shocks proposed by Lanne, Meitz, and Saikkonen (2017), and those following the normal
mixture (MIX) model: with a finite number of components as in Frühwirth-Schnatter (2006)
and in its sparse representation serving as an approximation of a non-parametric infinite
mixture inspired by Malsiner-Walli, Frühwirth-Schnatter, and Grün (2016).
The R package bsvars implements a wide range of tools for structural and predictive
analyses. The former encompasses the methods comprehensively revised by (Kilian and
Lütkepohl 2017, Chapter 4: SVAR Tools) and include the impulse response functions,
forecast error variance decompositions, historical decompositions, as well as the basic
analysis of fitted values, structural shocks, conditional standard deviations and regime
probabilities for MSH and MIX models. The predictive analysis includes Bayesian
forecasting implemented through an algorithm sampling from the predictive density of the
unknown future values of the dependent variables, and conditional forecasting of a number
of variables given other variables’ projections. Methods summary() and plot() support the
user in the interpretations and visualisation of such analyses.
A distinguishing feature of the package are the Bayesian model diagnostic tools for the
verification of identification and hypotheses on autoregressive parameters using posterior
odds ratios. The posterior odds for hypotheses expressed as sharp restrictions on
parameters are computed using Savage-Dickey Density Ratios (SDDRs) by Verdinelli and
Wasserman (1995). The SDDRs representing Bayes factors are reliable, precisely estimated,
and straightforward to compute once the posterior sample is available. As shown by
Lütkepohl and Woźniak (2020) and Lütkepohl et al. (2024), SDDRs are a pragmatic tool for
the Bayesian assessment of a null hypothesis of homoskedasticity in heteroskedastic models
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allowing to verify partial or global identification through heteroskedasticity. A similar
argument applies for the verification of identification in non-normal models. Additionally,
the package’s general implementation of SDDRs for the autoregressive parameters facilitates
verification of restrictions on any conditional mean parameters of the model, such as e.g.,
hypotheses of exogeneity or Granger non-causality.
Finally, the package bsvars is highly integrated in terms of workflows, objects, and code
compatibility with an R package bsvarSIGNs by Wang and Woźniak (2024) focusing on SVAR
models identified using sign (Rubio-Ramirez, Waggoner, and Zha 2010), sign and zero (Arias,
Rubio-Ramírez, and Waggoner 2018), and narrative restrictions (Antolín-Díaz and Rubio-
Ramírez 2018). The bsvarSIGNs package usage compatibility and its complementarity in
terms of the implemented SVAR identification methods constitutes an additional appeal of
the bsvars package.
Multivariate dynamic modelling, both Bayesian and frequentist, has found some traction in R
in the recent years, which resulted in many new packages available on the CRAN repository.
Two packages, MTS by Tsay, Wood, and Lachmann (2022) and vars by Pfaff (2008), cover a
wide range of benchmark models for multivariate time series analysis in economics in finance.
Other packages provide functionality for reduced-form models estimation and forecasting
implementing regularisation, such as the BigVAR package by Nicholson, Matteson, Bien, and
Wilms (2023), bigtime by Wilms, Matteson, Bien, Basu, Nicholson, and Wegner (2023), and
VARshrink by Lee and Kim (2019), or Bayesian shrinkage, such as the bvartools package
by Mohr (2022), bayesianVARs by Gruber (2024), or BGVAR by Boeck, Feldkircher, and
Huber (2020). All of these specification are proven to be highly beneficial for forecasting in
particular contexts.
Notable implementations of structural models include packages focusing on specific models
important from the point of view of historical developments in the field, namely, the
package BVAR by Kuschnig and Vashold (2021) providing tools for the estimation and
analysis proposed by Giannone et al. (2015), package bvarsv by Krueger (2015) focusing on
the heteroskedastic VAR proposed by Primiceri (2005), and package FAVAR by Chen and
Chen (2022) implementing the factor-augmented model by Bernanke, Boivin, and Eliasz
(2005). Other two packages that have been archived and are no longer available on CRAN
are the package MSBVAR by Brandt (2006) focusing on the Markov switching model by
Sims and Zha (2006) and package VARsignR by Danne (2015) provided a treatment of
Bayesian SVARs identified via sign restrictions by Uhlig (2005), Rubio-Ramirez et al.
(2010), and Fry and Pagan (2011). Some other packages focus on the implementation of
research code for families of models focused around a theme, such as the aforementioned
package bsvarSIGNs for sign-restricted SVARs, package gmvarkit by Virolainen (2024a)
implementing frequentist SVARs with non-Gaussian identification by Kalliovirta, Meitz, and
Saikkonen (2016) and Virolainen (2024d), or package sstvars by Virolainen (2024c) focusing
on smooth-transition non-linearity in the structural models by Virolainen (2024b), Anderson
and Vahid (1998), and Lütkepohl and Netšunajev (2017). Importantly, there exists a whole
universe of MATLAB libraries for structural macroeconomics analyses. However, the code is
available mostly from authors’ websites and without structured documentation. This family
of libraries is not surveyed here but we single out the BEAR toolkit by Dieppe and van
Roye (2024) and Dynare by Dynare Team (2024) providing comprehensive set of methods
and extensive documentation.
However, the most relevant package to compare bsvars to is the svars package by Lange,
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Dalheimer, Herwartz, and Maxand (2021) focusing on frequentist inference for SVAR
models identified via exclusion restrictions, heteroskedasticity, and non-normal shocks and
implementing a range of models that are feasible to estimate using the maximum likelihood
method. The similarity to the functionality of package bsvars include the selection of
models, such as the MSH and with non-normal residuals, as well as the selection of tools for
structural analyses including impulse responses, historical and forecast error variance
decompositions. However, the package svars implements maximum likelihood and bootstrap
procedures for the analysis of the model parameters and offers some specification testing
procedures.
In this context, the bsvars package implements a range of novel solutions and models for
Bayesian analysis. One differentiating example is the implementation of the SVAR models
with SV that is not covered by the package svars. This model is particularly important in
the context of recent developments clearly indicating that SV is the single extension of
VARs leading to marginally largest improvements in the model fit and forecasting
performance as shown e.g. by Clark and Ravazzolo (2015), Chan and Eisenstat (2018),
Carriero, Clark, and Marcellino (2019), Chan (2020), and Bertsche and Braun (2022).
Another such example are sparse MSH and MIX models based on hierarchical prior
structures deciding on their frequentist implementation infeasibility. Additionally, the
package bsvars provides unique Bayesian statistical procedures for the verification of partial
identification through heteroskedasticity and non-normality using method
verify_identification(). The verification of identification for such flexible models as
those considered in the package is not feasible in the frequentist framework. Finally, the
package benefits from the advantage of Bayesian approach that facilitates the estimation for
models with potentially many variables, autoregressive lags inflating the dimension of
parameters space, Markov-switching regimes or normal mixture components, all of which
are the factors constraining the feasibility of maximum likelihood approaches.

2. Bayesian Analysis of Structural VARs
This section scrutinises the modelling framework used in the package focusing on the
specification of the models, prior distributions, hypotheses verification tools, and estimation.
The reader is referred to (Kilian and Lütkepohl 2017, Chapter 4: SVAR Tools) for the
exposition of the standard tools for the analysis of SVAR models, such as the impulse
responses, forecast error variance and historical decompositions, as their implementation in
the package closely follows this resource.

2.1. Structural VARs
All of the models in the package bsvars share the reduced and structural form equations,
as well as the hierarchical prior distributions for these parameters following Lütkepohl et al.
(2024). The reduced form equation is the VAR equation with p lags specified for an N -vector
yt collecting observations on N variables at time t:

yt = A1yt−1 + · · · + Apyt−p + Addt + εt, (1)

where Ai are N × N matrices of autoregressive slope parameters, dt is a D-vector of
deterministic terms, always including a constant term, and possibly dummy and exogenous
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variables, Ad is an N × D matrix of the corresponding parameters, and εt collects the N
reduced form error terms. Collect all the autoregressive matrices and the slope terms in an
N × (Np + D) matrix A =

[
A1 . . . Ap Ad

]
and the explanatory variables in a

(Np + D)-vector xt =
[
y′

t−1 . . . y′
t−p d′

t

]′
. Then equation (1) can be written in the

matrix form as

yt = Axt + εt. (2)

Each of the rows of the matrix A, denoted by [A]n· follows a multivariate conditional normal
prior distribution, given the equation-specific shrinkage hyper-parameter γA.n, with the mean
vector mn.A and the covariance γA.nΩA, denoted by:

[A]′n· | γA.n ∼ NNp+D (mn.A, γA.nΩA) , (3)

where mn.A is specified in-line with the Minnesota prior by Doan et al. (1984) as a vector
of zeros if all of the variables are stationary, or containing value 1 in its nth element if the
nth variable is unit-root nonstationary. By default, ΩA is a diagonal matrix with vector[
p−2′ ⊗ ı′

N 100ı′
D

]′
on the main diagonal, where p is a vector containing a sequence of

integers from 1 to p and ıN is an N -vector of ones. Both, mn.A and ΩA can be modified
by the user. This specification includes the shrinkage level exponentially decaying with the
increasing lag order, relatively large prior variances for the deterministic term parameters,
and the flexibility of the hierarchical prior that leads to the estimation of the level of shrinkage
as proposed by Giannone et al. (2015). The latter feature is facilitated by assuming a 3-level
local-global hierarchical prior on the equation-specific reduced form parameters shrinkage
given by

γA.n|sA.n ∼ IG2 (sA.n, νA) , (4)
sA.n|sA ∼ G (sA, aA) , (5)

sA ∼ IG2
(
ssA

, νsA

)
, (6)

where G and IG2 are gamma and inverted gamma 2 distributions (see Bauwens, Richard, and
Lubrano 1999, Appendix A), hyper-parameters γA.n, sA.n, and sA are estimated, and νA, aA,
ssA

, and νsA
are all set by default to value 10 to assure appropriate level of shrinkage towards

the prior mean. The values of the hyper-parameters that are underlined in our notation can
be modified by the user.
The structural form equation determines the linear relationship between the reduced-form
innovations εt and the structural shocks ut using the N × N structural matrix B0:

B0εt = ut. (7)

The structural matrix specifies the contemporaneous relationship between the variables in
the system and determines the identification of the structural shocks from vector ut. Its
appropriate construction may grant specific interpretation to one or many of the shocks.
The package bsvars facilitates the identification of the structural matrix and the shocks via
exclusion restrictions (see Kilian and Lütkepohl 2017, Chapter 8) and/or through
heteroskedasticity or non-normal shocks (Kilian and Lütkepohl 2017, Chapter 14). The zero
restrictions are imposed on the structural matrix row-by-row following the framework
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proposed by Waggoner and Zha (2003a) via the following decomposition of the nth row of
the structural matrix, denoted by [B0]n·:

[B0]n· = bnVn, (8)

where bn is a 1 × rn vector collecting the elements to be estimated and the rn × N matrix Vn

including zeros and ones placing the estimated elements in the demanded elements of [B0]n·.
The structural matrix B0 follows a conditional generalised-normal prior distribution by
Waggoner and Zha (2003a) recently revised by Arias et al. (2018) that is proportional to:

B0 | γB.1, . . . , γB.N ∼ | det(B0)|νB−N exp
{

−1
2

N∑

n=1
γ−1

B.nbnΩ−1
B.nb′

n

}
, (9)

where ΩB.n is an rn × rn scale matrix set to the identity matrix by default, νB ≥ N is a
shape parameter, and γB.n is an equation-specific structural parameter shrinkage. The shape
parameter νB set to N by default makes this prior a conditional, zero-mean rn-variate normal
prior distribution for bn with the diagonal covariance and the diagonal element γB.n. The
shape parameter can be modified by the user though.
This prior specification is complemented by a 3-level local-global hierarchical prior on the
equation-specific structural parameters shrinkage given by

γB.n|sB.n ∼ IG2 (sB.n, νb) , (10)
sB.n|sB ∼ G (sB, aB) , (11)

sB ∼ IG2
(
ssB

, νsB

)
, (12)

where hyper-parameters γB.n, sB.n, and sB are estimated and νb, aB, ssB
, and νsB

are fixed
to values 10, 10, 1, and 100 respectively to assure a flexible dispersed distribution a priori
but they can be modified by the user.
Finally, all of the models share the zero-mean conditional normality of the structural shocks
given the past observations with the diagonal covariance matrix containing the N -vector of
structural shock variances, σ2

t , on the main diagonal:

ut | xt, σ2
t ∼ NN

(
0N , diag

(
σ2

t

))
. (13)

The diagonal covariance matrix, together with the joint normality, implies contemporaneous
independence of the structural shocks which is the essential feature allowing for the estimation
of dynamic effects to a well-isolated cause that is not influenced by other factors in the SVAR
models.
The model parts described in the current section are common to all the models considered
in the package bsvars. Note that identification of the structural matrix here must be assured
by the exclusion restrictions only in the homoskedastic model. Heteroskedastic and non-
normal specifications might not require the exclusion restrictions to identify the structural
matrix. Still, such restrictions might occur beneficial from the point of view of the model fit
sharpening shock identification. Such alternative model specifications are distinguished by
the characterisation of the conditional variances collected in vector σ2

t .

2.2. Models for Conditional Variances
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The bsvars package offers a selection of alternative specifications for structural shocks
conditional variance process.

Homoskedastic model
The first such specification is a homoskedastic model for which the conditional variance of
every shock is equal to

σ2
n.t = 1 (14)

for all t. This setup results in a simple SVAR model that is quick to estimate. Note that in
this model, the conditional covariance of the data vector, yt is equal to (B′

0B0)−1. The point
at which this model is standardized as in equation (14) is the benchmark value for the all
other heteroskedastic models whose conditional variances hover around value 1.

Stochastic Volatility
The heteroskedastic model with Stochastic Volatility is implemented in two versions: non-
centred by Lütkepohl et al. (2024) and centred Chan et al. (2024). In these models, the
conditional variances for each of the shocks are given by

non-centred: σ2
n.t = exp {ωnhn.t} (15)

centred: σ2
n.t = exp

{
h̃n.t

}
, (16)

where the parameter ωn denotes the plus-minus square root of the conditional variance for the
log-conditional variance process and will be referred to as the volatility of the log-volatility,
whereas hn.t and h̃n.t are the log-volatility processes following autoregressive equations

non-centred: hn.t = ρnhn.t−1 + vn.t, vn.t ∼ N (0, 1) (17)

centred: h̃n.t = ρnh̃n.t−1 + ṽn.t, ṽn.t ∼ N
(
0, σ2

v

)
(18)

with the initial values hn.0 = h̃n.0 = 0, where ρn is the autoregressive parameter, vn.t and
ṽn.t are the SV normal innovations, and σ2

v is the conditional variance of h̃n.t in the centred
parameterisation.
The priors for these models include a uniform distribution for the autoregressive parameter

ρn ∼ U(−1, 1), (19)

which assures the stationarity of the log-volatility process and sets its unconditional expected
value to E[hn.t] = E[h̃n.t] = 0. The prior distribution for the volatility of the log-volatility
parameter in the non-centred and the conditional variance of the log-volatility in the centred
parameterisation follow a multi-level hierarchical structures given by:

non-centred: ωn | σ2
ω.n ∼ N

(
0, σ2

ω.n

)
, σ2

ω.n | sσ ∼ G(sσ, aσ), sσ ∼ IG2(s, ν) (20)

centred: σ2
v | sv ∼ IG2(sv, av), sv | sσ ∼ G(sσ, aσ), sσ ∼ IG2(s, ν) (21)

where parameters σ2
ω.n and sv follow gamma distribution with expected value equal to sσaσ.

In this hierarchical structure the hyper-parameters ωn, σ2
ω.n, σ2

v , sv, and sσ are estimated,
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Figure 2: Marginal prior density of a structural shock conditional variance in the two SV
models. Source: Lütkepohl et al. (2024).

while av, aσ, ν, and s are set to values 1, 1, 1, and 0.1, respectively, by default and can be
modified by the user.
Both of the SV models share a number of features, such as the flexibility of hierarchical
priors with estimated hyper-parameters granting better fit to data and improved forecasting
performance, and they facilitate the identification of the structural matrix B0 and shocks
through heteroskedasticity following the original ideas by Bertsche and Braun (2022) and
Lewis (2021). However, they differ with respect to the features analysed by Lütkepohl et al.
(2024) that are presented in Figure 2 plotting the marginal prior distribution of the
conditional variances, σ2

n.t, in the two SV models. These densities are implied by the SV
model specifications presented in this section. The centred parameterisation concentrate the
prior probability mass around point 1 only mildly and goes to infinity when the conditional
variance goes to zero. The non-centred parameterisation, on the other hand, concentrates
the prior probability mass around point 1 more strongly, goes to zero when the conditional
variance goes to zero, and features fat right tail. Finally, in the non-centred
parameterisation homoskedasticity can be verified by checking the restriction ωn = 0 (see
Lütkepohl et al. 2024).

Markov-switching heteroskdasticity
In another heteroskedastic model, the MSH one, the time-variation of the conditional
variances is determined by a discrete-valued Markov process st with M regimes:

σ2
n.t = σ2

n.st
. (22)

All of the variances switch their values at once according to the latent Markov process takes
the values st = m ∈ {1, . . . , M}. The properties of the Markov process itself are determined
by the transition matrix P whose [P]i.j element denotes the transition probability from regime
i to regime j over the next period. The process’ initial probabilities are estimated and denoted
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by the M -vector π0. In this model used by Brunnermeier et al. (2021), the variances in the
nth equation sum to M , each of them has the prior expected value equal to 1, and their
regimes are given equal prior probabilities of occurrence equal to M−1. Therefore, the prior
for the conditional variances is the M -variate Dirichlet distribution:

M−1
(
σ2

n.1, . . . , σ2
n.M

)
∼ DirichletM (eσ, . . . , eσ), (23)

where the hyper-parameter eσ = 1 is fixed. Each of the rows of the transition matrix as well
as the initial state probabilities follow the Dirichlet distribution as well:

[P]m· ∼ DirichletM (e, . . . , e) (24)
π0 ∼ DirichletM (e0, . . . , e0). (25)

The package bsvars offers two alternative models based on MSH. The first is characterised by
a stationary Markov process with no absorbing state, and with a positive minimum number
of regime occurrences following Droumaguet, Warne, and Woźniak (2017). In this model, the
hyper-parameter e = e0 is fixed to 1 by default and can be modified by the user. The other
model represents a novel proposal of a sparse representation that fixes the number of regimes
to an over-fitting value M = 20 (or specified by the user). In this model, many of the regimes
will have zero occurrences throughout the sample, which allows the number of regimes with
non-zero occurrences to be estimated following the ideas by Malsiner-Walli et al. (2016). Its
prior specification is complemented by a hierarchical prior for the hyper-parameter e:

e ∼ IG2 (se, νe) . (26)

Due to its construction, the sparse MSH model excludes regime-specific interpretation of
parameters. Instead, the estimated sequence of conditional variances, σ2

n.t, enjoys standard
interpretations. Furthermore, both MSH models provide identification through
heteroskedasticity following the ideas by Lanne, Lütkepohl, and Maciejowska (2010) and
Lütkepohl and Woźniak (2020). The latter paper provides framework for verifying the
identification, which in the bsvars package is implemented by verifying the homoskedasticity
hypothesis represented by a restriction setting the conditional variances to 1, σ2

n.m = 1 for
all m.

2.3. Models with Non-Normal Shocks
Identification of the structural shocks through non-normality is implemented in the package
using the mixture of normal component model (MIX) following the proposal by Lanne and
Lütkepohl (2010) and the Student-t distributed shocks as suggested by Lanne et al. (2017).

Mixture of normal components
In this model, the structural shocks follow a conditional N -variate normal distribution given
the state variable st = m ∈ {1, . . . , M};

ut | xt, st = m, σ2
m ∼ NN

(
0N , diag

(
σ2

m

))
, (27)

and where the states are predicted to occur in the next period with probability π0. The prior
specification for these models closely follows that for the MSH models, with the Dirichlet
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prior for the regime probabilities, π0, as in (25), and that for the conditionals variances, σ2
m,

as in (23).
As long as the predictive state probabilities are constant in these models the classification of
the observations into the regimes is performed using filtered and smoothed probabilities, or
the posterior realisations of the state allocations st (see Song and Woźniak 2021, for a recent
review of the methods).
The MIX model comes in two versions as well. The first is the finite mixture model (see e.g.
Frühwirth-Schnatter 2006) in which the number of states, M , is fixed and the unconditional
state probabilities, π0, are strictly positive. The latter condition requires non-zero regime
occurrences over the sample, a condition that is imposed in the package implementation. An
alternative specification is referred to as the sparse mixture model and is based on the proposal
by Malsiner-Walli et al. (2016). In this model, the number of the finite mixture components
is set to be larger than the real number of the components. Consequently, the number
of components with non-zero probability of occurrence is estimated, which is facilitated by
allowing the remaining components to have zero occurrences. This sparse structure of normal
components implemented thanks to the prior specified for the hyper-parameter e of Dirichlet
distribution as in equation (26).
The MIX models facilitate the identification through non-normality as proposed by Lanne and
Lütkepohl (2010). The hypothesis of normality for a shock, contradicting its identification,
is verified by checking whether restriction σ2

n.m = 1 holds for all m.

Student-t shocks

The Bayesian implementation of the Student-t model follows closely that by Geweke (1993)
and is implemented using an inverse gamma scale of normal distribution. Therefore, the
conditional normality of the structural shocks from equation (13) is complemented by the
marginal prior distributions for variances

σ2
n.t | ν ∼ IG2(ν − 2, ν). (28)

Such a construction of the structural shock density results in a marginal density for the nth
shock being a zero-mean, unit-variance Student-t distribution with ν > 2 degrees of freedom
(see Bauwens et al. 1999)

un.t | xt, ν ∼ t (0, 1, ν) . (29)

In this model, the only role of σ2
n.t is to be integrated out for the sake of specifying the

demanded marginal density for the structural shocks.
The prior distribution for the degrees of freedom parameter is set to

p(ν) = 1
(ν − 1)2 . (30)

This prior density is proper and setting it implies the estimation of the degrees of freedom
parameters. Its particular form is further motivated by the fact that it facilitates identification
through non-normality verification for a shock by checking the restriction ν → ∞ (see also
Jensen and Maheu 2013).
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2.4. Hypothesis Verification Using SDDRs
The bsvars package includes unique procedures for the verification of identification and
hypotheses on autoregressive parameters. They are based on posterior odds ratio computed
using the SDDR by Verdinelli and Wasserman (1995). Consider a general specification of a
hypothesis represented by sharp restrictions on the parameters of the model, denoted by
H0, and its complement denoted by H1. The SDDR is specified by

Pr[H0 | data]
Pr[H1 | data] = SDDR = p(H0 | data)

p(H0) , (31)

where the LHS equality represents its interpretation as the posterior odds ratio, whereas
the RHS equality provides the equivalent form that makes its computation straightforward.
Consequently, SDDRs report the ratio of the posterior probability of the restriction to the
posterior probability of the unrestricted model. Therefore, a value of the SDDR greater than
one provides evidence in favour of the restriction H0, whereas its value less than one provides
evidence against this hypothesis, or in favour of H1.
The SDDR computation requires the estimation of the unrestricted model under H1 and the
computation of the ratio of the marginal posterior ordinate to the marginal prior ordinate
both evaluated at the restriction H0. The specification of the models included in the bsvars
package facilitate fast estimation of both ordinates using the estimator proposed by Gelfand
and Smith (1990).

Identification verification
In order to verify the identification of structural shocks through time-varying volatility (or
non-normality) one needs to verify the hypothesis of homoskedasticity (normality) of
individual shocks, which allows them to make probabilistic statements regarding partial or
global identification (see Lütkepohl and Woźniak 2020; Lütkepohl et al. 2024; Lanne et al.
2017). The model is globally identified iff no more than one structural shock is
homoskedastic (normal). An individual shock is identified iff it is heteroskedastic
(non-normal) or if it is the only homoskedastic (normal) shock in the system.
According to Lütkepohl et al. (2024) the hypothesis of homoskedasticity of the nth shock in
the non-centred SV model is represented by the restriction

H0 : ωn = 0 (32)

whereas in the MSH models it given by

H0 : σ2
n.1 = . . . σ2

n.M = 1. (33)

The verification of normality of the nth shock in the MIX models is performed using the
restriction in equation (33), whereas in the Student-t model it is given by

H0 : ν → ∞, (34)

as in the limit, the Student-t distribution becomes normal. The model specification makes
Bayesian verification of this uncommon restriction straightforward.
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Verifying autoregressive specification
Finally, the package makes it possible to verify restrictions on the autoregressive parameters
in the form of

H0 : Svec(A) = r, (35)

where vec(A) is a vectorised matrix A, S is an r × N(Np + D) selection matrix picking r
elements of A to be restricted to the values in the r-vector r. Note that the specification
of the hierarchical prior leading to the estimated level of autoregressive shrinkage makes the
verification of such restrictions less depending on arbitrary choices.

2.5. Posterior Samplers and Computational Details
In this section, we explain bsvars package’s implementation of fast and efficient estimation
algorithms obtained thanks to the application of appropriate model specification and
frontier econometric techniques best described in Lütkepohl et al. (2024) and Woźniak and
Droumaguet (2015).
The objective for choosing the model equations and the prior distributions was to make
the estimation using Gibbs sampler technique (see e.g. Casella and George 1992) and well-
specified easy-to-sample-from full conditional posterior distributions. Therefore, the package
relies on the reduced form equation (2) for the VAR model. This choice is fairly uncommon
in the SVAR literature but it simplifies the estimation of the autoregressive parameters A
directly in the form as they are used for the computations of impulse responses or forecast
error variance decomposition. This choice combined with the prior in (3) and specification
of the structural form equation (7) facilitates the application of the row-by-row sampler by
Chan et al. (2024). As shown by Carriero, Chan, Clark, and Marcellino (2022), relative to
the joint estimation of the matrix A in one step, a usual practice in reduced form VARs, the
row-by-row estimation in SVARs can reduce computational complexity of Bayesian estimation
from O(N6) to O(N4).
The estimation of the structural form equation (7) is implemented following the quickly
converging, efficient, and providing excellent mixing sampling algorithm by Waggoner and
Zha (2003a). It offers a flexible framework for setting exclusion restrictions and was also
adapted to the SVARs identified through heteroskedasticity and non-normality by Woźniak
and Droumaguet (2015). The unique formulation of this equation is particularly convenient
for complex heteroskedastic models facilitating the row-by-row estimation of matrix A and
Gibbs sampler for the heteroskedastic process.
The estimation of the Stochastic Volatility models is particularly requiring due to the N
independent T -valued latent volatility processes estimation that it involves. The
implementation of crucial techniques is particularly important here. The sampling
algorithms use the 10-component auxiliary mixture technique by Omori, Chib, Shephard,
and Nakajima (2007) that facilitates the estimation of the log-volatility using the simulation
smoother by McCausland, Miller, and Pelletier (2011) for conditionally Gaussian linear
state-space models greatly speeding up the computations (see Woźniak 2021, for the
computational times comparison for various estimation algorithms). Application of
appropriate numerical techniques reduces the complexity from O(T 3) to O(T ).
Additionally, our specification facilitates the algorithms to estimate heteroskedastic process
if the signal from the data is strong, but it also allows them to heavily shrink the posterior
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towards homoskedasticity, as in equation (14), otherwise. The package implements the
adaptation of the ancillarity-sufficiency interweaving strategy that is shown by Kastner and
Frühwirth-Schnatter (2014) to improve the efficiency of the sampler when heteroskedasticity
is uncertain. Our implementation of the sampling algorithm closely follows the algorithms
from package stochvol with adaptations necessary for the SVAR modelling.
The estimation of the Markov switching and mixture models benefits mainly from the
implementation of the forward-filtering backward-sampling estimation algorithm for the
Markov process st by Chib (1996) in C++. However, an additional step of choosing the
parameterisation of the conditional variances as in equation (23), requiring sampling from a
new distribution defined by Woźniak and Droumaguet (2015), assures excellent mixing and
sampling efficiency improvements relative to alternative ways of standardising these
parameters.
All of the estimation routines for the Markov chain Monte Carlo estimation of the models
and those for low level processing of the rich estimation output are implemented based using
compiled code in C++. This task is facilitated by the Rcpp package by Eddelbuettel,
François, Allaire, Ushey, Kou, Russel, Chambers, and Bates (2011) and Eddelbuettel (2013).
The bsvars package relies heavily on linear algebra and pseudo-random number generators.
The former is implemented using the package RcppArmadillo by Eddelbuettel and
Sanderson (2014) that is a collection of headers linking to the C++ library armadillo by
Sanderson and Curtin (2016), as well as on several utility functions for operations on
tri-diagonal matrices from package stochvol by Hosszejni and Kastner (2021). The latter
refers to the algorithms from the standard normal distribution using package
RcppArmadillo, truncated normal distribution RcppTN by Olmsted (2017) implementing
the efficient sampler by Robert (1995), and generalised inverse Gaussian distribution using
package GIGrvg by Leydold and Hörmann (2017) implementing the sampler by Hörmann
and Leydold (2014). All of these developments make the algorithms computationally fast.
Still, Bayesian estimation of multivariate dynamic structural models is a requiring task that
might take a little while. To give users a better idea of the remaining time the package
displays a progress bar implemented using the package RcppProgress by Forner (2020).
Finally, the rich structure of the model specification including the prior distributions,
identification pattern, and starting values, as well as the rich outputs from the estimation
algorithms are organised using dedicated classes within the R6 package by Chang (2021)
functionality.

3. Workflows for SVAR analysis
The bsvars package allows the users to design their workflows in several ways. The three
main stages include model specification, estimation, and post-estimation analysis.

3.1. The Basic Workflow (also with a Pipe)
The basics of the workflow are presented for the case of a simple homoskedastic SVAR model.
Begin by uploading the package and a sample data matrix for the analysis of the US fiscal
policy, and setting the seed for the sake of reproducibility:

R> library(bsvars)
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R> data(us_fiscal_lsuw)
R> set.seed(1)

Specify the SVAR model with a lower triangular structural matrix and one autoregressive lag
both being the default settings by executing:

R> spec = specify_bsvar$new(us_fiscal_lsuw)

The identification is set to the default option of lower-triangular structural matrix.

The object spec includes a number of objects that define the model, such as the data matrices,
fixed hyper-parameters of the prior distribution, identification pattern, and starting values.
The estimation of the model using the Monte Carlo Markov Chain (MCMC) methods is
performed in two steps. First, the object spec with model specification is provided to the
estimate() function to perform 1000 iterations of the Gibbs sampler. This burn-in stage
is run for the algorithm to achieve convergence to the stationary posterior distribution. In
the second step, the object burn is provided to the estimate() function to perform 10000
iterations of the Gibbs sampler and save them in the object post:

R> burn = estimate(spec, 1000)
R> post = estimate(burn, 10000)

In the latter case, the function estimate() extracts the last draw of the parameters from
the previous run, uses it as starting values for the final run of the estimation algorithm, and
continues the Markov chain providing sample from the target posterior distribution. This way
of designing the estimate() function allows the user to run the estimation in several steps,
which is particularly useful for the models requiring longer runs of the sampling algorithm to
achieve convergence. The user can discard the draws from the previous step and continue the
estimation in as many subsequent estimate() function runs as required.
The posterior output is normalised with respect to the signs of the structural matrix following
the procedure by Waggoner and Zha (2003b) in an automated way by running function
normalise_posterior() within the execution of the function estimate().
Subsequently, use the estimation output to forecast, say, four periods ahead:

R> fore = forecast(post, 4); summary(fore)

compute and plot impulse responses:

R> irfs = compute_impulse_responses(post, 4); plot(irfs)

verify whether the third variable Granger causes the first:

R> H0 = matrix(NA, 3, 4); H0[1,3] = 0
R> sddr = verify_autoregression(post, H0)
R> summary(sddr)
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or perform any other post-estimation analysis.
The same workflow can be coded using the |> pipe. We propose that the user binds the
model specification with the estimation:

R> set.seed(1)
R> us_fiscal_lsuw |>
+ specify_bsvar$new() |>
+ estimate(S = 1000) |>
+ estimate(S = 10000) -> post

to obtain exactly the same draws from the posterior distribution as in the previous workflow
collected in object post. The post-estimation analysis can then be executed by:

R> post |> forecast(horizon = 4) |> summary()
R> post |> compute_impulse_responses(horizon = 4) |> plot()
R> post |> verify_autoregression(hypothesis = H0) |> summary()

User preferences, convenience, and specific project requirements should decide on the
implementation of the procedure in a script.

3.2. Customizing The Workflow
The package offers a range of models, post-estimation methods, and a set of functions for each
of the stages of analysis. The full extent of workflow customization is presented in Figure 3.
The top of the Figure presents functions to specify the model. Here users can choose a
homoskedastic model, one with normal mixture (MIX), Markov-switching heteroskedasticity
(MSH), Stochastic Volatility (SV), or t-distributed errors. Then the model can be estimated
using the estimate() function repeatedly as long as necessary to obtain S draws from the
posterior distribution in the final run. It is recommended then that the user verifies the draws
of the N × N structural matrix contained in an N × N × S array post$posterior$B for uni-
modality. The lack of thereof may indicate that the automated manner of normalising the
posterior draws using function normalise_posterior() was not successful and more work
needs to be done here. The default calibration of this algorithm is found to be sufficient for
models with exclusion restrictions though.
Given the posterior output, the user can proceed to forecasting, hypotheses verification, or
analysis of interpretable quantities. No particular ordering of the operations is
recommended and users should implement their competence in the subject matter and
consider their project’s requirements here. Forecasting is performed using the forecast()
function and includes the possibility of generating conditional predictions given future
projections of some of the variables provided in argument conditional_forecast. The user
can verify hypotheses about the model parameters using the verify_autoregression()
and verify_identification() functions implementing the computation of SDDRs.
Finally, the user can compute interpretable quantities such as structural shocks’ conditional
standard deviations, fitted values, historical decompositions, impulse responses, MIX and
MSH models’ regime probabilities, structural shocks, and forecast error variance
decompositions using an appropriate method listed in the last block in Figure 3. The
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Specify a model
specify_bsvar
specify_bsvar_mix
specify_bsvar_msh
specify_bsvar_sv
specify_bsvar_t

Estimate a model
estimate

Continue the MCMC
estimate

Normalise posterior
normalise_posterior

Forecast
forecast

Verify hypotheses
verify_autoregression
verify_identification

Compute interpretable quantities
compute_conditional_sd
compute_fitted_values
compute_historical_decompositions
compute_impulse_responses
compute_regime_probabilities
compute_structural_shocks
compute_variance_decompositions

Figure 3: Workflow for SVAR analysis

package documentation provides all the necessary details on the arguments and outputs of
the functions, which enables further customization of the workflow.

3.3. Generics, Methods, and Functions
The workflows described in this section are possible thanks to a deliberate design of the
package’s generics, methods, and functions listed in Table 1. The functions specifying the
model are created using the R6 classes to facilitate the management of this complicated
object. All the specification details can be adjusted by the user by modifying the elements
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Table 1: Summary of package’s generics, methods, and functions

generic or function first argument class output class

plot

summary

Specify a model
specify_bsvar matrix BSVAR, R6
specify_bsvar_mix matrix BSVARMIX, R6
specify_bsvar_msh matrix BSVARMSH, R6
specify_bsvar_sv matrix BSVARSV, R6
specify_bsvar_t matrix BSVART, R6

Estimate a model

estimate (model classes) (posterior classes) ✓
(posterior classes) (posterior classes) ✓

Normalise posterior output (if necessary)
normalise_posterior (posterior classes) (posterior classes)

Forecast
forecast (posterior classes) Forecasts ✓ ✓

Compute interpretable quantities
compute_conditional_sd (posterior classes) PosteriorSigma ✓ ✓
compute_fitted_values (posterior classes) PosteriorFitted ✓ ✓
compute_historical_decompositions (posterior classes) PosteriorHD ✓ ✓
compute_impulse_responses (posterior classes) PosteriorIR ✓ ✓
compute_regime_probabilities (posterior classes) PosteriorRegimePr ✓ ✓
compute_structural_shocks (posterior classes) PosteriorShocks ✓ ✓
compute_variance_decompositions (posterior classes) PosteriorFEVD ✓ ✓

Verify hypotheses
verify_autoregression (posterior classes) SDDRautoregression ✓
verify_identification (posterior classes) (sddr classes) ✓

Classes explanation
(model classes) include BSVAR, BSVARMIX, BSVARMSH, BSVARSV, BSVART
(posterior classes) include PosteriorBSVAR, PosteriorBSVARMIX, PosteriorBSVARMSH,
PosteriorBSVARSV, PosteriorBSVART
(sddr classes) include SDDRidSV, SDDRidMIX, SDDRidMSH, SDDRidT

Note: The last two columns indicate availability a dedicated plot or summary method.
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of the specification object, such as the spec object, that is of a class indicating the specified
model, e.g. BSVAR, BSVARSV, . . . . These objects inherit properties of the list class as well.
All other functions listed in Table 1 define generics that find their particular methods
depending on the class of their first argument. Such a construction assures that appropriate
estimation algorithm is applied to the model specified by the user. This applies, to all the
subsequent stages of the workflow, such as forecasting, hypotheses verification, and
computation of interpretable quantities that are performed using the exact algorithms
required by the particular specification.
This can be illustrated for the workflow described in the current section. Executing the
specification function specify_bsvar$new() creates an object of class BSVAR. Therefore, in
the second step the estimate() generic implements method for homoskedastic SVAR model
coded in estimate.BSVAR() creating object of class PosteriorBSVAR, which is followed by
execution of the method estimate.PosteriorBSVAR() that continues the model estimation
using MCMC methods. Consequently, the forecasting is performed using method
forecast.PosteriorBSVAR(), impulse responses are computed for this model using method
compute_impulse_responses.PosteriorBSVAR(), and the SDDR is estimated using the
algorithm dedicated to this particular model using method
verify_autoregression.PosteriorBSVAR(). A dedicated set of summary() and plot()
methods greatly simplifies the user experience and their workflows.
Finally, generics are designed to be used in other packages with the first implementation in
the R package bsvarSIGNs by Wang and Woźniak (2024) providing methods for SVAR models
identified with sign, zero, and narrative restrictions.

4. Conclusion
The bsvars package offers fast and efficient algorithms for Bayesian estimation of Structural
VARs with a range of specifications for the volatility or distributions of the structural shocks.
Thanks to the application of the frontier econometric and numerical techniques the package
makes the estimation of multivariate dynamic structural models feasible even for a larger
number of variables, complex identification strategies, and non-linear specifications. Its strong
reliance on algorithms written in C++ makes it possible to benefit from the best of the two
worlds: the convenience of data analysis using R and the computational speed using pre-
compiled code written in C++. Finally, the package provides essential generics for applied
analyses that facilitate developing coherent workflows for the dependent packages, such as
the bsvarSIGNs, package greatly extending the set of models available to the users.
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