codacore: Learning Sparse Log-Ratios for Compositional Data
In the context of high-throughput genetic data,
    CoDaCoRe identifies a set of sparse biomarkers that are
    predictive of a response variable of interest (Gordon-Rodriguez 
    et al., 2021) <doi:10.1093/bioinformatics/btab645>. More 
    generally, CoDaCoRe can be applied to any regression problem 
    where the independent variable is Compositional (CoDa), to 
    derive a set of scale-invariant log-ratios (ILR or SLR) that 
    are maximally associated to a dependent variable.
| Version: | 
0.0.4 | 
| Depends: | 
R (≥ 3.6.0) | 
| Imports: | 
tensorflow (≥ 2.1), keras (≥ 2.3), pROC (≥ 1.17), R6 (≥
2.5), gtools (≥ 3.8) | 
| Suggests: | 
zCompositions, testthat (≥ 2.1.0), knitr, rmarkdown | 
| Published: | 
2022-08-29 | 
| DOI: | 
10.32614/CRAN.package.codacore | 
| Author: | 
Elliott Gordon-Rodriguez [aut, cre],
  Thomas Quinn [aut] | 
| Maintainer: | 
Elliott Gordon-Rodriguez  <eg2912 at columbia.edu> | 
| License: | 
MIT + file LICENSE | 
| NeedsCompilation: | 
no | 
| SystemRequirements: | 
TensorFlow (https://www.tensorflow.org/) | 
| Citation: | 
codacore citation info  | 
| Materials: | 
README, NEWS  | 
| In views: | 
CompositionalData | 
| CRAN checks: | 
codacore results | 
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=codacore
to link to this page.