Package 'dtlcor'

May 19, 2025

Title Multiplicity Control on Drop-the-Losers Designs

Version 0.1.0

Description A tool to calculate the correlation boundary for the correlation between the response rate and the log-rank test statistic for the binary surrogate endpoint and the time-toevent primary endpoint, as well as conduct simulation studies to obtain design operating characteristics of the drop-the-losers design.

License GPL (>= 3)

Depends shiny, shinythemes, ggplot2

Imports survival, stringr, DT, gsDesign, coin, dplyr, stats, tidyr, mvtnorm, cubature

Encoding UTF-8

RoxygenNote 7.3.2

NeedsCompilation no

Author Weibin Zhong [aut, cre], Jing-ou Liu [aut], chenguang Wang [aut]

Maintainer Weibin Zhong <wzhong3@gmu.edu>

Repository CRAN

Date/Publication 2025-05-19 14:10:02 UTC

Contents

dtl_app_get_alpha_t	2
dtl_app_get_alpha_t_sim	3
dtl_app_sim	4
dtl_app_sim_single	6
dtl_cor_the_PH_upper_bound	7
dtl_get_alpha_s	8
dtl_get_alpha_s_sim	9
dtl_shiny	0
dtl_sim_stat	0
dtl_tier_sim	1

dtl_tier_the sel_g_func_default														
														14

dtl_app_get_alpha_t Minimum significance level for the final stage under drop-the-losers (DTL) design

Description

Get minimum significance level alpha_t (minimum of alpha_s) for the final analysis considering the ranges of response rate q and hazard ratio of responders and non-responders gamma given a pre-specified FWER alpha

Usage

dtl_app_get_alpha_t(n, N, q_seq, gamma_seq, alpha, fix_rho = NULL, delta)

Arguments

n	Number of patients per treatment arm at the DTL look.
Ν	Total number of patients in both selected and control arms at final analysis.
q_seq	A vector of response rates under the null (can be 95% CI).
gamma_seq	A vector of hazards ratios of responders and non-responders (can be 95% CI).
alpha	A pre-specified FWER.
fix_rho	Use fixed correlation coefficient or use theoretical upper bound to get alpha_t. If = NULL, then it uses upper bound; else if = real number between 0 and 1, then it use such number as fixed correlation coefficient.
delta	Least difference to decide superiority of high dose.

Value

A list of two data frames for minimum significance level alpha_t and significance level alpht_s given all combinations of q_seq and gamma_seq.

Examples

```
# Inputs
n = 80
N = 152
q_seq = seq(0.19, 0.32, 0.01)
gamma_seq = seq(0.14, 0.34, 0.01)
alpha = 0.025
delta = 0.05
```

Use fixed correlation coefficient

Index

dtl_app_get_alpha_t(n, N, q_seq, gamma_seq, alpha, fix_rho = 1, delta)
Use theoretical upper bound
dtl_app_get_alpha_t(n, N, q_seq, gamma_seq, alpha, fix_rho = NULL, delta)

 ${\tt dtl_app_get_alpha_t_sim}$

Numerical minimum significance level for the final stage under dropthe-losers (DTL) design

Description

Get numerical minimum significance level alpha_t (minimum of alpha_s) for the final analysis considering the ranges of response rate q and hazard ratio of responders and non-responders gamma given a pre-specified FWER alpha

Usage

```
dtl_app_get_alpha_t_sim(
    nsim = 1e+05,
    n,
    N,
    q_seq,
    gamma_seq,
    alpha,
    fix_rho = NULL,
    sel_g_func = sel_g_func_default,
    ...
)
```

Arguments

nsim	Number of replicates.
n	Number of patients per treatment arm at the DTL look
Ν	Total number of patients in both selected and control arms at final analysis.
q_seq	A vector of response rates under the null (can be 95% CI).
gamma_seq	A vector of hazards ratios of responders and non-responders (can be 95% CI).
alpha	A pre-specified FWER.
fix_rho	Use fixed correlation coefficient or use theoretical upper bound to get alpha_t. If = NULL, then it uses upper bound; else if = real number between 0 and 1, then it use such number as fixed correlation coefficient.
sel_g_func	Arm-select function. The default function is $sel_g_func_default(W_2, W_1, delta)$. Users can define their own arm-select function. The format of the function must be function_name(W_2, W_1,). The return values must be 1 (arm 1 is selected) or 2 (arm 2 is selected) or 0 (stop for futility).
•••	Other arguments from sel_g_func.

Value

A list of two data frames for numerical minimum significance level alpha_t and significance level alpht_s given all combinations of q_seq and gamma_seq.

Examples

```
# Inputs
set.seed(1000)
nsim
          = 100000
          = 80
n
Ν
          = 152
         = seq(0.19, 0.32, 0.01)
q_seq
gamma_seq = seq(0.14, 0.34, 0.01)
         = 0.025
alpha
delta
          = 0.05
# Use fixed correlation coefficient
dtl_app_get_alpha_t_sim(nsim, n, N, q_seq, gamma_seq, alpha,
                        fix_rho = 1, delta = delta)
# Use theoretical upper bound
dtl_app_get_alpha_t_sim(nsim, n, N, q_seq, gamma_seq, alpha,
                        fix_rho = NULL, delta = delta)
```

dtl_app_sim

Simulation study for drop-the-losers (DTL) trial.

Description

Simulation study for a trial based on the DTL design

Usage

```
dtl_app_sim(
    nsim,
    alpha_t,
    D,
    N,
    n,
    mPFS,
    q,
    gamma,
    drop_rate,
    enroll,
    interim_t,
    sel_g_func = sel_g_func_default,
```

) ...

Arguments

nsim	Number of replicates.
alpha_t	significance level for the final stage (recommend to use minimum significance level alpha_t to control family-wise type I error rate).
D	Total number of events.
Ν	Total number of patients in both selected and control arms at final analysis.
n	Number of patients per treatment arm at the DTL look.
mPFS	A 3-entry vector of median progression-free survival times (in days) for control, low dose and high dose arms.
q	A 3-entry vector of response rates under the null.
gamma	Hazards ratio of responders and non-responders.
drop_rate	Annual drop-out rate.
enroll	Annual enrollment rate.
interim_t	A vector of information fractions of final stage.
sel_g_func	Arm-select function. The default function is $sel_g_func_default(W_2, W_1, delta)$. Users can define their own arm-select function. The format of the function must be function_name(W_2, W_1,). The return values must be 1 (arm 1 is selected) or 2 (arm 2 is selected) or 0 (stop for futility).
	Other arguments from sel_g_func.

Value

A one row data frame of simulation results, including the parameter settings, the O'Brien-Fleming boundaries for interim and final analyses: c.1, c.2, the overall censoring rate: cen_rate, the mean study duration: dur, the probability of selecting high dose / low dose / no dose: prob_sel_2, prob_sel_1, prob_sel_0, the probability of rejecting H_1 or H_2: rej_12, the probability of rejecting H_1 only: rej_1, the probability of rejecting H_2 only: rej_2.

# Inputs	
set.seed(10	00)
nsim	= 1000
alpha_t	= 0.018
D	= 162
Ν	= 152
n	= 80
mPFS	= c(180, 276, 300)
q	= c(0.2, 0.4, 0.5)
mPFS_null	= rep(180, 3)
q_null	= rep(0.2, 3)
gamma	= 0.15

```
drop_rate = 0.05
enroll = 20 * 12
interim_t = c(0.5, 1)
delta = 0.05
# Type I Error
dtl_app_sim(nsim, alpha_t, D, N, n, mPFS_null, q_null, gamma, drop_rate,
enroll, interim_t, delta = delta)
# Power
dtl_app_sim(nsim, alpha_t, D, N, n, mPFS, q, gamma, drop_rate, enroll,
interim_t, delta = delta)
```

dtl_app_sim_single Simulate a single drop-the-losers (DTL) trial.

Description

Simulate a single trial based on the DTL design

Usage

```
dtl_app_sim_single(
   D,
   N,
   n,
   mPFS,
   q,
   gamma,
   drop_rate,
   enroll,
   interim_t,
   sel_g_func = sel_g_func_default,
   ...
)
```

Arguments

D	Total number of events.
N	Total number of patients in both selected and control arms at final analysis.
n	Number of patients per treatment arm at the DTL look.
mPFS	A 3-entry vector of median progression-free survival times for control, low dose and high dose arms (assume exponential time-to-event outcome for all arms and the conditional distribution for responders and non-responders can be uniquely identified given q and gamma).

6

q	A 3-entry vector of response rates under the null.
gamma	Hazards ratio of responders and non-responders.
drop_rate	Annual drop-out rate.
enroll	Annual Enrollment rate.
interim_t	A vector of information fractions of final stage.
sel_g_func	Arm-select function. The default function is sel_g_func_default(W_2, W_1, delta). Users can define their own arm-select function. The format of the function must be function_name(W_2, W_1,). The return values must be 1 (arm 1 is selected) or 2 (arm 2 is selected) or 0 (stop for futility).
	Other arguments from sel_g_func.

Value

A list including (1) a data frame of response rates of low dose and high dose W_1 , W_2 and the log-rank test statistics Z_jk at kth interim analysis if the jth arm is selected at DTL look; (2) data frames of simulated data at DTL look; (3) data frames of simulated data at interim or final analyses.

Examples

```
# Inputs
set.seed(1000)
D
            = 162
Ν
            = 152
            = 80
n
           = c(180, 276, 300)
mPFS
            = c(0.2, 0.4, 0.5)
q
           = 0.15
gamma
drop_rate = 0.05
            = 20 * 12
enroll
interim_t = c(0.5, 1)
delta
            = 0.05
# Run function
dtl_app_sim_single(D, N, n, mPFS, q, gamma, drop_rate, enroll, interim_t, delta = delta)
```

dtl_cor_the_PH_upper_bound

Theoretical upper bound of correlation coefficient between time-toevent primary endpoint and binary surrogate endpoint

Description

Get theoretical upper bound of correlation coefficient

Usage

dtl_cor_the_PH_upper_bound(tau_k, pi_ar = 0.5, q, gamma)

Arguments

tau_k	Equals n/n_k, where n is the number of patients per treatment arm at the DTL
	look and n_k is the number of patients in both selected and control arms at the
	kth interim analysis.
pi_ar	Allocation rate of treatment and control (0.5 by default)
q	Response rate under the null
gamma	Hazards ratio of responders and non-responders

Value

Theoretical upper bound of correlation coefficient

Examples

```
dtl_cor_the_PH_upper_bound(tau_k = 0.4, pi_ar = 0.5, q = 0.3, gamma = 0.2)
```

dtl_get_alpha_s	Significance level given a fixed correlation coefficient for the final
	stage under drop-the-losers (DTL) design

Description

Get significant level alpha_s based on a pre-specified FWER alpha given a fixed correlation coefficient for the final stage (reverse calculation of dtl_tier_the())

Usage

dtl_get_alpha_s(n, t, rho, q, alpha, delta)

Arguments

n	Sample size per arm at DTL look
t	A vector of information fraction of final stage
rho	Fixed correlation coefficient
q	Response rate under the null
alpha	A pre-specified FWER
delta	Least difference to decide superiority of high dose

Value

Significance level alpha_s for the final stage

```
# Without interim analysis
dtl_get_alpha_s(n = 80, t = 1, rho = 0.4, q = 0.3, alpha = 0.025, delta = 0.05)
```

dtl_get_alpha_s_sim Numerical significance level given a fixed correlation coefficient for the final stage under drop-the-losers (DTL) design

Description

Get the numerical significant level alpha_s based on a pre-specified FWER alpha given a fixed correlation coefficient for the final stage by simulation (reverse calculation of dtl_tier_sim())

Usage

```
dtl_get_alpha_s_sim(
   nsim = 1e+05,
   n,
   t,
   rho,
   q,
   alpha,
   sel_g_func = sel_g_func_default,
   ...
)
```

Arguments

nsim	Number of replicates
n	Sample size per arm at DTL look
t	A vector of information fraction of final stage
rho	Fixed correlation coefficient
q	Response rate under the null
alpha	A pre-specified FWER
sel_g_func	Arm-select function. The default function is sel_g_func_default(W_2, W_1, delta). Users can define their own arm-select function. The format of the function must be function_name(W_2, W_1,). The return values must be 1 (arm 1 is selected) or 2 (arm 2 is selected) or 0 (stop for futility).
	Other arguments from sel_g_func.

Value

Significance level alpha_s for the final stage

dtl_shiny

Description

Interactive shiny app of drop-the-losers (DTL) design

Usage

```
dtl_shiny(appname = "shiny")
```

Arguments

appname Default is "shiny". Do not change it since there is only one shiny app in the package

Value

The shiny app of DTL design which includes three panels:(1) family-wise type I error rate (FWER) given fixed rho; (2) correlation coefficient boundary for rho (rho_s); (3) adjusted significance level in real application (alpha_t). The first two panels show the graphs of change of the FWER and the rho_s as the change of some related parameters. The corresponding tables of the graphs are also shown. In the last panel, the table of the significance levels alpha_s based on all possible values of response rate q and hazard ratio of responders and non-responders gamma and the resulting minimum or called adjusted significance level are shown.

Examples

```
# run dtl_shiny()
```

dtl_sim_stat	Generate normal	approximated	test	statistics	for	drop-the-losers
	(DTL) design					

Description

Generate normal approximated test statistics for drop-the-losers (DTL) design

Usage

dtl_sim_stat(nsim, n, q, t, rho)

dtl_tier_sim

Arguments

nsim	Number of replicates
n	Sample size per arm at DTL look
q	Response rate under the null
t	A vector of information fraction of final stage
rho	Fixed correlation coefficient

Value

Data frame of the simulated test statistics

Examples

```
dtl_sim_stat(nsim = 1000, n = 80, q = 0.3, t = c(0.3, 1), rho = c(0.5, 0.3))
```

dtl_tier_sim	Simulated family-wise type I error rate (FWER) given a fixed correla-
	tion coefficient under drop-the-losers (DTL) design

Description

Get the simulated FWER alpha given fixed correlation coefficient

Usage

```
dtl_tier_sim(nsim, n, t, rho, q, alpha_s, sel_g_func = sel_g_func_default, ...)
```

Arguments

nsim	Number of replicates
n	Sample size per arm at DTL look
t	A vector of information fraction of final stage
rho	Fixed correlation coefficient
q	Response rate under the null
alpha_s	Significance level for the final stage
sel_g_func	Arm-select function. The default function is sel_g_func_default(W_2, W_1, delta). Users can define their own arm-select function. The format of the function must be function_name(W_2, W_1,). The return values must be 1 (arm 1 is selected) or 2 (arm 2 is selected) or 0 (stop for futility).
	Other arguments from sel_g_func.

Value

Simulated FWER alpha

Examples

dtl_tier_the	Theoretical family-wise type I error rate (FWER) given a fixed corre-
	lation coefficient under drop-the-losers (DTL) design

Description

Get the theoretical FWER alpha given fixed correlation coefficient

Usage

dtl_tier_the(n, t, rho, q, alpha_s, delta)

Arguments

n	Sample size per arm at DTL look
t	A vector of information fraction of final stage
rho	Fixed correlation coefficient
q	Response rate under the null
alpha_s	Significance level for the final stage
delta	Least difference to decide superiority of high dose

Value

Theoretical FWER alpha

```
# Without interim analysis
dtl_tier_the(n = 80, t = 1, rho = 0.4, q = 0.3, alpha_s = 0.025, delta = 0.05)
# With interim analysis
dtl_tier_the(n = 80, t = c(0.5, 1), rho = c(0.4, 0.2), q = 0.3, alpha_s = 0.025, delta = 0.05)
```

Description

Default arm-select function for selecting arm to the next stage.

Usage

sel_g_func_default(W_2, W_1, delta)

Arguments

W_2	Response rate for arm 2 (high dose)
W_1	Response rate for arm 1 (low dose)
delta	Least difference to decide superiority of arm 2 (high dose)

Value

The function is $g(W_2, W_1; \Delta) = 2I(W_2 - W_1 - \Delta > 0) + I(W_2 - W_1 - \Delta \le 0)$. It returns the following values: 1: arm 1 (low dose) is selected; 2: arm 2 (high dose) is selected.

Examples

sel_g_func_default(W_2 = 0.5, W_1 = 0.3, delta = 0.05)

Index

dtl_app_get_alpha_t, 2 dtl_app_get_alpha_t_sim, 3 dtl_app_sim, 4 dtl_app_sim_single, 6 dtl_cor_the_PH_upper_bound, 7 dtl_get_alpha_s, 8 dtl_get_alpha_s_sim, 9 dtl_shiny, 10 dtl_sim_stat, 10 dtl_tier_sim, 11 dtl_tier_the, 12

sel_g_func_default, 13