Package ‘gaussplotR’

October 13, 2022

Type Package
Title Fit, Predict and Plot 2D Gaussians
Version 0.2.5

Description Functions to fit two-dimensional Gaussian functions, predict values from
fits, and produce plots of predicted data via either 'ggplot2' or base R
plotting.

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 7.1.1.9000

Imports ggplot2 (>=3.3.0), metR (>= 0.7.0), rgl, viridisLite
Suggests lattice, knitr, rmarkdown, testthat

Depends R (>=3.3.0)

URL https://github.com/vbaliga/gaussplotR

BugReports https://github.com/vbaliga/gaussplotR/issues
VignetteBuilder knitr
NeedsCompilation no

Author Vikram B. Baliga [aut, cre, cph]
(<https://orcid.org/0000-0002-9367-8974>)

Maintainer Vikram B. Baliga <vbaliga87@gmail.com>
Repository CRAN
Date/Publication 2021-05-02 20:10:02 UTC

R topics documented:

autofit_gaussian_2D L L.
characterize_gaussian_fits
compare_gaussian_fitso
fit_gaussian_2D L

https://github.com/vbaliga/gaussplotR
https://github.com/vbaliga/gaussplotR/issues
https://orcid.org/0000-0002-9367-8974

2 autofit_gaussian_2D

gaussplot_sample_data e 11
get_volume_gaussian_2D Lo oL 12
ggplot_gaussian_2D oL e 13
predict_gaussian_2D 15
rgl_gaussian_2D . . . L. L e 17
Index 20

autofit_gaussian_2D Automatically determine the best-fitting 2D-Gaussian for a data set

Description

Automatically determine the best-fitting 2D-Gaussian for a data set

Usage

autofit_gaussian_2D(
data,
comparison_method = "rmse”,
maxiter = 1000,
simplify = TRUE

Arguments

data A data.frame that contains the raw data (generally rectilinearly gridded data,
but this is not a strict requirement). Columns must be named "X_values”,
"Y_values" and "response”.

comparison_method
One of "rmse", "rss", or "AIC"; what metric should be used to determine the
"best-fitting" Gaussian?

maxiter Default 1000. A positive integer specifying the maximum number of iterations
allowed. See stats: :nls.control() for more details.
simplify TRUE or FALSE. If TRUE, return only the coefficients, model, model_error_stats,

and fit_method for the best-fitting model. If FALSE, a model comparison table is
also included in the returned list as $model_comparison. This table is obtained
via compare_gaussian_fits().

Details

This function runs fit_gaussian_2D() three times: once for each of the "main" types of models: 1)
elliptical, unconstrained; 2) elliptical, log; 3) circular. In all three cases, amplitudes and orientations
are unconstrained. The function compare_gaussian_fits() is then used to determine which of
these three models is the best-fitting, using the comparison_method argument to make the decision.

characterize_gaussian_fits 3

Value

If simplify = TRUE, a list with the components:

* "coefs" A data.frame of fitted model parameters.
* "model" The model object, fitted by stats::nls().

* "model_error_stats" A data.frame detailing the rss, rmse, deviance, and AIC of the fitted
model.

 "fit_method" A character vector that indicates which method and orientation strategy was used
by this function.

If simplify = FALSE, amodel comparison table is also included in the returned list as $model_comparison.
This table is obtained via compare_gaussian_fits().

Author(s)

Vikram B. Baliga

Examples

if (interactive()) {
3

characterize_gaussian_fits
Characterize the orientation of fitted 2D-Gaussians

Description

The orientation and partial correlations of Gaussian data are analyzed according to Levitt et al.
1994 and Priebe et al. 2003. Features include computation of partial correlations between response
variables and independent and diagonally-tuned predictions, along with Z-difference scoring.

Usage

characterize_gaussian_fits(
fit_objects_list = NULL,
data = NULL,
constrain_amplitude = FALSE,

4 characterize_gaussian_fits

Arguments

fit_objects_list
A list of outputs from fit_gaussian_2D(). See Details for more. This is the
preferred input object for this function.

data A data.frame that contains the raw data (generally rectilinearly gridded data,
but this is not a strict requirement). Columns must be named "X_values”,
"Y_values” and "response”. See fit_gaussian_2D() for details.
constrain_amplitude
Default FALSE; should the amplitude of the Gaussian be set to the maximum
value of the "response” variable (TRUE), or should the amplitude fitted by
stats::nls() (FALSE)? See fit_gaussian_2D() for details.

Additional arguments that can be passed to fit_gaussian_2D() if data are sup-
plied.

Details

This function accepts either a list of objects output from fit_gaussian_2D() (preferred) or a
data.frame that contains the raw data.

The supplied fit_objects_list must be a list that contains objects returned by fit_gaussian_2D().
This list must contain exactly three models. All three models must have been run using method =
"elliptical_log". The models must be: 1) one in which orientation is unconstrained, 2) one in
which orientation is constrained to Q = 0 (i.e. a diagonally-oriented Gaussian), and 3) one in which
orientation is constrained to Q = -1 (i.e. a horizontally-oriented Gaussian). See this function’s
Examples for guidance.

Should raw data be provided instead of the fit_objects_list, the characterize_gaussian_fits()

runs fit_gaussian_2D() internally. This is generally not recommended, as difficulties in fitting
models via stats: :nls() are more easily troubleshot by the optional arguments in fit_gaussian_2D().
Nevertheless, supplying raw data instead of a list of fitted models is feasible, though your mileage

may vary.

Value
A list with the following:
* "model_comparison" A model comparison output (i.e. what is produced by compare_gaussian_fits()),
which indicates the relative preference of each of the three models.

e "Q_table" A data.frame that provides information on the value of Q from the best-fitting
model, along with the 5-95% confidence intervals of this estimate.

* "r_i" A numeric, the correlation of the data with the independent (Q = -1) prediction.
* "r_s" A numeric, the correlation of the data with the diagonally- oriented (Q = 0) prediction.

* "r_is" A numeric, the correlation between the independent (Q = -1) prediction and the the
diagonally-oriented (Q = 0) prediction.

* "R_indp" A numeric, partial correlation of the response variable with the independent (Q =
-1) prediction.

* "R_diag" A numeric, partial correlation of the response variable with the diagonally-oriented
(Q = 0) prediction.

characterize_gaussian_fits 5

e "ZF_indp" A numeric, the Fisher Z-transform of the R_indp coefficient. See Winship et al.
2006 for details.

e "ZF_diag" A numeric, the Fisher Z-transform of the R_diag coefficient. See Winship et al.
2006 for details.

o "Z_diff" A numeric, the Z-difference between ZF_indp and ZF_diag. See Winship et al. 2006
for details.

Author(s)
Vikram B. Baliga

References

Levitt JB, Kiper DC, Movshon JA. Receptive fields and functional architecture of macaque V2. J
Neurophysiol. 1994 71:2517-2542.

Priebe NJ, Cassanello CR, Lisberger SG. The neural representation of speed in macaque area
MT/V5. J Neurosci. 2003 Jul 2;23(13):5650-61. doi: 10.1523/JNEUROSCI.23-13-05650.2003.

Winship IR, Crowder N, Wylie DRW. Quantitative reassessment of speed tuning in the accessory
optic system and pretectum of pigeons. J Neurophysiol. 2006 95(1):546-551. doi: 10.1152/jn.00921.2005

Examples

if (interactive()) {
library(gaussplotR)

Load the sample data set
data(gaussplot_sample_data)

The raw data we'd like to use are in columns 1:3
samp_dat <-
gaussplot_sample_datal,1:3]

Fit the three required models
gauss_fit_uncn <-
fit_gaussian_2D(
samp_dat,
method = "elliptical_log",
constrain_amplitude = FALSE,
constrain_orientation = "unconstrained”

)

gauss_fit_diag <-
fit_gaussian_2D(
samp_dat,
method = "elliptical_log",
constrain_amplitude = FALSE,
constrain_orientation = @

)

gauss_fit_indp <-

6 compare_gaussian_fits

fit_gaussian_2D(
samp_dat,
method = "elliptical_log”,
constrain_amplitude = FALSE,
constrain_orientation = -1

)

Combine the outputs into a list
models_list <-
list(
gauss_fit_uncn,
gauss_fit_diag,
gauss_fit_indp
)

Now characterize

out <-
characterize_gaussian_fits(models_list)

out

Alternatively, the raw data itself can be supplied.
This is less preferred, as fitting of models may fail
internally.
out2 <-

characterize_gaussian_fits(data = samp_dat)

This produces the same output, assuming models are fit without error
identical (out, out2)

compare_gaussian_fits Compare fitted 2D-Gaussians and determine the best-fitting model

Description

Compare fitted 2D-Gaussians and determine the best-fitting model

Usage

compare_gaussian_fits(fit_objects_list, comparison_method = "rmse")

Arguments
fit_objects_list
A list of outputs from fit_gaussian_2D(). See Details for more

comparison_method
One of "rmse", "rss", or "AIC"; what metric should be used to determine the
"best-fitting" Gaussian?

compare_gaussian_fits 7

Details

For the argument fit_objects_list, alist of fitted model objects (output from fit_gaussian_2D())
can simply be combined via 1ist (). Naming the list is optional; should you supply names, the out-
put of compare_gaussian_fits() will refer to specific models by these names.

Value

A list with the components:

 "preferred_model" A character indicating the name of the preferred model (or if a named list
was not provided, a model number is given in the order of the original supplied list).

 "comparison_table" A data.frame detailing the rss, rmse, deviance, and AIC of the fitted mod-
els. The data.frame is sorted by the comparison_method that was selected.

Author(s)
Vikram B. Baliga

Examples

if (interactive()) {
library(gaussplotR)

Load the sample data set
data(gaussplot_sample_data)

The raw data we'd like to use are in columns 1:3
samp_dat <-
gaussplot_sample_datal[,1:3]

Fit a variety of different models
gauss_fit_ue <-
fit_gaussian_2D(samp_dat)
gauss_fit_uel <-
fit_gaussian_2D(samp_dat, method = "elliptical_log")
gauss_fit_cir <-
fit_gaussian_2D(samp_dat, method = "circular”)

Combine the outputs into a list
models_list <-
list(
unconstrained_elliptical = gauss_fit_ue,
unconstrained_elliptical_log = gauss_fit_uel,
circular = gauss_fit_cir

)

Compare via rmse
models_compared <-
compare_gaussian_fits(
fit_objects_list = models_list,
comparison_method = "rmse” ## the default

8 fit_gaussian_2D

fit_gaussian_2D Determine the best-fit parameters for a specific 2D-Gaussian model

Description

Determine the best-fit parameters for a specific 2D-Gaussian model

Usage

fit_gaussian_2D(
data,
method = "elliptical”,
constrain_amplitude = FALSE,
constrain_orientation = "unconstrained”,
user_init = NULL,
maxiter = 1000,
verbose = FALSE,
print_initial_params = FALSE,

)
Arguments
data A data.frame that contains the raw data (generally rectilinearly gridded data,
but this is not a strict requirement). Columns must be named "X_values”,
"Y_values" and "response”.
method Choice of "elliptical”, "elliptical_log",or "circular". Determine which

specific implementation of 2D-Gaussian to use. See Details for more.
constrain_amplitude
Default FALSE; should the amplitude of the Gaussian be set to the maximum
value of the "response” variable (TRUE), or should the amplitude fitted by
stats::nls() (FALSE)?
constrain_orientation
If using "elliptical” or method = "elliptical_log", should the orientation
of the Gaussian be unconstrained (i.e. the best-fit orientation is returned) or
should it be pre-set by the user? See Details for more. Defaults to "unconstrained”.

user_init Default NULL; if desired, the user can supply initial values for the parameters
of the chosen model. See Details for more.

maxiter Default 1000. A positive integer specifying the maximum number of iterations
allowed. See stats: :nls.control() for more details.

verbose TRUE or FALSE; should the trace of the iteration be printed? See the trace
argument of stats: :nls() for more detail.

fit_gaussian_2D 9

print_initial_params
TRUE or FALSE; should the set of initial parameters supplied to stats: :nls()
be printed to the console? Set to FALSE by default to avoid confusion with the
fitted parameters attained after using stats: :nls().

Additional arguments passed to stats: :nls.control()

Details

stats::nls() is used to fit parameters for a 2D-Gaussian to the supplied data. Each method uses
(slightly) different sets of parameters. Note that for a small (but non-trivial) proportion of data sets,
nonlinear least squares may fail due to singularities or other issues. Most often, this occurs because
of the starting parameters that are fed in. By default, this function attempts to set default parameters
by making an educated guess about the major aspects of the supplied data. Should this strategy fail,
the user can make use of the user_init argument to supply an alternate set of starting values.

The simplest method is method = "circular”. Here, the 2D-Gaussian is constrained to have a
roughly circular shape (i.e. spread in X- and Y- are roughly equal). If this method is used, the fitted
parameters are: Amp (amplitude), X_peak (x-axis peak location), Y_peak (y-axis peak location),
X_sig (spread along x-axis), and Y_sig (spread along y-axis).

A more generic method (and the default) is method = "elliptical”. This allows the fitted 2D-
Gaussian to take a more ellipsoid shape (but note that method = "circular” can be considered a
special case of this). If this method is used, the fitted parameters are: A_o (a constant term), Amp
(amplitude), theta (rotation, in radians, from the x-axis in the clockwise direction), X_peak (x-axis
peak location), Y_peak (y-axis peak location), a (width of Gaussian along x-axis), and b (width of
Gaussian along y-axis).

A third method is method = "elliptical_log"”. This is a further special case in which log2-
transformed data may be used. See Priebe et al. 2003 for more details. Parameters from this model
include: Amp (amplitude), Q (orientation parameter), X_peak (x-axis peak location), Y_peak (y-
axis peak location), X_sig (spread along x-axis), and Y_sig (spread along y-axis).

If using either method = "elliptical” ormethod = "elliptical_log",the "constrain_orientation”
argument can be used to specify how the orientation is set. In most cases, the user should use the
default "unconstrained" setting for this argument. Doing so will provide the best-fit 2D-Gaussian
(assuming that the solution yielded by stats: :nls() converges on the global optimum).

Setting constrain_orientation to a numeric (e.g. constrain_orientation =pi/2) will force
the orientation of the Gaussian to the specified value. Note that this is handled differently by method
="elliptical” vs method = "elliptical_log". In method = "elliptical”, the theta parame-
ter dictates the rotation, in radians, from the x-axis in the clockwise direction. In contrast, the
method = "elliptical_log" procedure uses a Q parameter to determine the orientation of the
2D-Gaussian. Setting constrain_orientation = @ will result in a diagonally-oriented Gaussian,
whereas setting constrain_orientation = -1 will result in horizontal orientation. See Priebe et
al. 2003 for more details.

The user_init argument can also be used to supply a vector of initial values for the A, Q, X_peak,
Y_peak, X_var, and Y_var parameters. If the user chooses to make use of user_init, then a vector
containing all parameters must be supplied in a particular order.

Additional arguments to the control argument in stats: :nls() can be supplied via

10 fit_gaussian_2D

Value

A list with the components:

» "coefs" A data.frame of fitted model parameters.
* "model" The model object, fitted by stats::nls().

* "model_error_stats" A data.frame detailing the rss, rmse, deviance, and AIC of the fitted
model.

* "fit_method" A character vector that indicates which method and orientation strategy was used
by this function.

Author(s)
Vikram B. Baliga

References

Priebe NJ, Cassanello CR, Lisberger SG. The neural representation of speed in macaque area
MT/V5. J Neurosci. 2003 Jul 2;23(13):5650-61. doi: 10.1523/JNEUROSCI.23-13-05650.2003.

Examples

if (interactive()) {
Load the sample data set
data(gaussplot_sample_data)

The raw data we'd like to use are in columns 1:3
samp_dat <-
gaussplot_sample_datal[,1:3]

Example 1: Unconstrained elliptical #i###
This fits an unconstrained elliptical by default
gauss_fit <-

fit_gaussian_2D(samp_dat)

Generate a grid of x- and y- values on which to predict

grid <-
expand.grid(X_values = seq(from = -5, to = @, by
Y_values = seq(from = -1, to = 4, by

0.1),
2.1))

Predict the values using predict_gaussian_2D
gauss_data <-
predict_gaussian_2D(
fit_object = gauss_fit,
X_values = grid$X_values,
Y_values = grid$Y_values,

)

Plot via ggplot2 and metR
library(ggplot2); library(metR)

gaussplot_sample_data 11

ggplot_gaussian_2D(gauss_data)

Produce a 3D plot via rgl
rgl_gaussian_2D(gauss_data)

#i### Example 2: Constrained elliptical_log #i##i#
This fits a constrained elliptical, as in Priebe et al. 2003
gauss_fit <-

fit_gaussian_2D(

samp_dat,
method = "elliptical_log”,
constrain_orientation = -1

)

Generate a grid of x- and y- values on which to predict

grid <-
expand.grid(X_values = seq(from = -5, to = @, by
Y_values = seq(from = -1, to = 4, by

0.1),
2.1))

Predict the values using predict_gaussian_2D
gauss_data <-
predict_gaussian_2D(
fit_object = gauss_fit,
X_values = grid$X_values,
Y_values = grid$Y_values,

)

Plot via ggplot2 and metR
ggplot_gaussian_2D(gauss_data)

Produce a 3D plot via rgl
rgl_gaussian_2D(gauss_data)

gaussplot_sample_data Sample data set

Description

A data. frame of raw data and fitted 2D-Gaussian parameters; intended for use with predict_gaussian_2D()

Usage

gaussplot_sample_data

Format

A data frame with 36 rows and 11 variables:

12 get_volume_gaussian_2D

X_values vector of numeric values for the x-axis

Y_values vector of numeric values for the y-axis

response vector of numeric values for the response variable
norm_g_resp normalized values from the 2D-Gaussian fit
g resp values from the 2D-Gaussian fit

A amplitude of 2D-Gaussian (repeated)

X_peak location of peak x-axis value (repeated)

X_var variance in x (repeated)

Q orientation parameter of the gaussian (repeated)

Y_peak location of peak y-axis value (repeated)

Y_var variance in y (repeated)

get_volume_gaussian_2D
Compute volume under 2D-Gaussian

Description

Compute volume under 2D-Gaussian

Usage

get_volume_gaussian_2D(X_sig, Y_sig)

Arguments
X_sig numeric value(s) of the x-axis spread (sigma)
Y_sig numeric value(s) of the y-axis spread (sigma)
Details

Volume under the 2D-Gaussian is computed as: 2 * pi * sqrt(abs(X_sig)) * sqrt(abs(Y_sig))
Numeric vectors can be supplied to X_sig and Y_sig. If vectors of length greater than 1 are given,
the function computes volume for each sequential pair of X_sig, Y_sig values. The lengths of these
supplied vectors must be identical.

Value

Numeric value(s) indicating the computed volume(s)

Author(s)
Vikram B. Baliga

ggplot_gaussian_2D

Examples

library(gaussplotR)

get_volume_gaussian_2D(5, 3) #24.33467

13

ggplot_gaussian_2D Plot a 2D-Gaussian via ggplot

Description

Plot a 2D-Gaussian via ggplot

Usage

ggplot_gaussian_2D(

gauss_data,

normalize = TRUE,
contour_thickness = 0.04,

contour_color = "black"”,
bins = 15,

viridis_dir =1,
viridis_opt = "B",

x_lab = "X values",

y_lab = "Y values”,
axis.text = element_text(size = 6

axis.title =
axis.ticks =
plot.margin =

Arguments

gauss_data

normalize

),
element_text(size = 7),
element_line(size = 0

1

= 0.3),
unit(c(0.1, 0.1, 0.1, 0.1), "cm"),

Data.frame with X_values, Y_values, and predicted_values, e.g. exported from

predict_gaussian_2D()

Default TRUE, should predicted_values be normalized on a 0 to 1 scale?

contour_thickness

contour_color
bins
viridis_dir
viridis_opt
x_lab

y_lab

Thickness of contour lines

Color of the contour lines

Number of bins for the contour plot
See "direction" in scale_fill_viridis_c()
See "option" in scale_fill_viridis_c()
Arguments passed to xlab()
Arguments passed to ylab()

14 ggplot_gaussian_2D

axis.text Arguments passed to axis.text
axis.title Arguments passed to axis.title
axis.ticks Arguments passed to axis.ticks
plot.margin Arguments passed to plot.margin

Other arguments supplied to ggplot2: : theme()

Value

A ggplot object that uses metR::geom_contour_fill() to display the 2D-Gaussian

Author(s)
Vikram B. Baliga

Examples

if (interactive()) {
Load the sample data set
data(gaussplot_sample_data)

The raw data we'd like to use are in columns 1:3
samp_dat <-
gaussplot_sample_data[,1:3]

Example 1: Unconstrained elliptical #i###
This fits an unconstrained elliptical by default
gauss_fit <-

fit_gaussian_2D(samp_dat)

Generate a grid of x- and y- values on which to predict

grid <-
expand.grid(X_values = seq(from = -5, to = @, by = 0.1),
Y_values = seq(from = -1, to = 4, by = 0.1))

Predict the values using predict_gaussian_2D
gauss_data <-
predict_gaussian_2D(
fit_object = gauss_fit,
X_values = grid$X_values,
Y_values = grid$Y_values,

)

Plot via ggplot2 and metR
library(ggplot2); library(metR)
ggplot_gaussian_2D(gauss_data)

Produce a 3D plot via rgl
rgl_gaussian_2D(gauss_data)

predict_gaussian_2D

15

#i### Example 2: Constrained elliptical_log #i##i#
This fits a constrained elliptical, as in Priebe et al. 2003

gauss_fit <-

fit_gaussian_2D(

samp_dat,

method = "elliptical_log”,
constrain_orientation = -1

)

Generate a grid of x- and y- values on which to predict

grid <-

expand.grid(X_values = seq(from = -5, to = @, by = 0.1),

Y_values = seq(from = -1, to = 4, by = 0.1))

Predict the values using predict_gaussian_2D

gauss_data <-

predict_gaussian_2D(
fit_object = gauss_fit,

X_values
Y_values

)

grid$X_values,
grid$Y_values,

Plot via ggplot2 and metR
ggplot_gaussian_2D(gauss_data)

Produce a 3D plot via rgl
rgl_gaussian_2D(gauss_data)

predict_gaussian_2D Predict values from a fitted 2D-Gaussian

Description

Predict values from a fitted 2D-Gaussian

Usage
predict_gaussian_2D(fit_object, X_values, Y_values, ...)
Arguments
fit_object Either the output of gaussplotR::fit_gaussian_2D() or a list that contains
coefficients and fit methods (see Details).
X_values vector of numeric values for the x-axis
Y_values vector of numeric values for the y-axis

Additional arguments

16 predict_gaussian_2D

Details

This function assumes Gaussian parameters have been fitted beforehand. No fitting of parameters is
done within this function; these can be supplied via the object created by gaussplotR: : fit_gaussian_2D().

If fit_object is not an object created by gaussplotR: : fit_gaussian_2D(), predict_gaussian_2D()
attempts to parse fit_object as a list of two items. The coefficients of the fit must be supplied

as a one-row, named data.frame within fit_object$coef's, and details of the methods for fitting

the Gaussian must be contained as a character vector in fit_object$fit_method. This character
vector in fit_object$fit_method must be a named vector that provides information about the
method, amplitude constraint choice, and orientation constraint choice, using the names method,
amplitude, and orientation. method must be one of: "elliptical”, "elliptical_log", or
"circular”. amplitude and orientation must each be either "unconstrained” or "constrained”.
For example, c(method = "elliptical”, amplitude = "unconstrained”, orientation = "unconstrained”).
One exception to this is when method = "circular”, in which case orientation must be NA, e.g.:
c(method = "circular”,amplitude = "unconstrained”, orientation =NA).

Value

A data.frame with the supplied X_values and Y_values along with the predicted values of the
2D-Gaussian (predicted_values)

Author(s)
Vikram B. Baliga

Examples

if (interactive()) {
Load the sample data set
data(gaussplot_sample_data)

The raw data we'd like to use are in columns 1:3
samp_dat <-
gaussplot_sample_data[,1:3]

#i### Example 1: Unconstrained elliptical ##i##
This fits an unconstrained elliptical by default
gauss_fit <-

fit_gaussian_2D(samp_dat)

Generate a grid of x- and y- values on which to predict

grid <-
expand.grid(X_values = seq(from = -5, to = @, by
Y_values = seq(from = -1, to = 4, by

0.1),
0.1))

Predict the values using predict_gaussian_2D
gauss_data <-
predict_gaussian_2D(
fit_object = gauss_fit,
X_values = grid$X_values,

rgl_gaussian_2D 17

Y_values = grid$Y_values,

)

Plot via ggplot2 and metR
library(ggplot2); library(metR)
ggplot_gaussian_2D(gauss_data)

Produce a 3D plot via rgl
rgl_gaussian_2D(gauss_data)

#i### Example 2: Constrained elliptical_log #i###
This fits a constrained elliptical, as in Priebe et al. 2003
gauss_fit <-

fit_gaussian_2D(

samp_dat,
method = "elliptical_log",
constrain_orientation = -1

)

Generate a grid of x- and y- values on which to predict

grid <-
expand.grid(X_values = seq(from = -5, to = 9, by = 0.1),
Y_values = seq(from = -1, to = 4, by = 0.1))

Predict the values using predict_gaussian_2D
gauss_data <-
predict_gaussian_2D(
fit_object = gauss_fit,
X_values = grid$X_values,
Y_values = grid$Y_values,

)

Plot via ggplot2 and metR
ggplot_gaussian_2D(gauss_data)

Produce a 3D plot via rgl
rgl_gaussian_2D(gauss_data)

rgl_gaussian_2D Produce a 3D plot of the 2D-Gaussian via rgl

Description

Produce a 3D plot of the 2D-Gaussian via rgl

Usage

rgl_gaussian_2D(

18 rgl_gaussian_2D

gauss_data,
normalize = TRUE,
viridis_dir = 1,
viridis_opt = "B",
x_lab = "X values"”,
y_lab = "Y values”,
box = FALSE,

aspect = TRUE,

)
Arguments
gauss_data Data.frame with X_values, Y_values, and predicted_values, e.g. exported from
predict_gaussian_2D()
normalize Default TRUE, should predicted_values be normalized on a O to 1 scale?
viridis_dir See "direction" in scale_fill_viridis_c()
viridis_opt See "option" in scale_fill_viridis_c()
x_lab Arguments passed to xlab()
y_lab Arguments passed to ylab()
box Whether to draw a box; see rgl: :plot3d()
aspect Whether to adjust the aspect ratio; see rgl: :plot3d()
Other arguments supplied to rgl: :plot3d()
Value

An rgl object (i.e. of the class 'rglHighlevel’). See rgl: :plot3d() for details.

Author(s)
Vikram B. Baliga

Examples

if (interactive()) {
Load the sample data set
data(gaussplot_sample_data)

The raw data we'd like to use are in columns 1:3
samp_dat <-
gaussplot_sample_datal[,1:3]

Example 1: Unconstrained elliptical ##i##
This fits an unconstrained elliptical by default
gauss_fit <-

fit_gaussian_2D(samp_dat)

rgl_gaussian_2D 19

Generate a grid of x- and y- values on which to predict

grid <-
expand.grid(X_values = seq(from = -5, to = @, by = 0.1),
Y_values = seq(from = -1, to = 4, by = 0.1))

Predict the values using predict_gaussian_2D
gauss_data <-
predict_gaussian_2D(
fit_object = gauss_fit,
X_values = grid$X_values,
Y_values = grid$Y_values,

)

Plot via ggplot2 and metR
library(ggplot2); library(metR)
ggplot_gaussian_2D(gauss_data)

Produce a 3D plot via rgl
rgl_gaussian_2D(gauss_data)

#i### Example 2: Constrained elliptical_log #i##i#
This fits a constrained elliptical, as in Priebe et al. 2003
gauss_fit <-

fit_gaussian_2D(

samp_dat,
method = "elliptical_log”,
constrain_orientation = -1
)
Generate a grid of x- and y- values on which to predict
grid <-
expand.grid(X_values = seq(from = -5, to = @0, by = 0.1),
Y_values = seq(from = -1, to = 4, by = 0.1))

Predict the values using predict_gaussian_2D
gauss_data <-
predict_gaussian_2D(
fit_object = gauss_fit,
X_values = grid$X_values,
Y_values = grid$Y_values,

)

Plot via ggplot2 and metR
ggplot_gaussian_2D(gauss_data)

Produce a 3D plot via rgl
rgl_gaussian_2D(gauss_data)

Index

+ datasets
gaussplot_sample_data, 11

autofit_gaussian_2D, 2

characterize_gaussian_fits, 3
compare_gaussian_fits, 6

fit_gaussian_2D, 8

gaussplot_sample_data, 11
get_volume_gaussian_2D, 12
ggplot_gaussian_2D, 13

predict_gaussian_2D, 15

rgl_gaussian_2D, 17

20

	autofit_gaussian_2D
	characterize_gaussian_fits
	compare_gaussian_fits
	fit_gaussian_2D
	gaussplot_sample_data
	get_volume_gaussian_2D
	ggplot_gaussian_2D
	predict_gaussian_2D
	rgl_gaussian_2D
	Index

