Package ‘gdalraster’

June 3, 2024

Title Bindings to the 'Geospatial Data Abstraction Library' Raster API
Version 1.11.0

Description Interface to the Raster API of the 'Geospatial Data Abstraction
Library' (GDAL', <https://gdal.org>). Bindings are implemented in an
exposed C++ class encapsulating a 'GDALDataset' and its raster band
objects, along with several stand-alone functions. These support manual
creation of uninitialized datasets, creation from existing raster as
template, read/set dataset parameters, low level I/O, color tables, raster
attribute tables, virtual raster (VRT), and 'gdalwarp' wrapper for
reprojection and mosaicing. Includes 'GDAL' algorithms (‘dem_proc()',
'polygonize()', 'rasterize()', etc.), and functions for coordinate
transformation and spatial reference systems. Calling signatures resemble
the native C, C++ and Python APIs provided by the 'GDAL' project. Includes
raster 'calc()' to evaluate a given R expression on a layer or stack of
layers, with pixel x/y available as variables in the expression; and raster
'combine()' to identify and count unique pixel combinations across multiple
input layers, with optional output of the pixel-level combination IDs.
Provides raster display using base 'graphics'. Bindings to a subset of the
'OGR' API are also included for managing vector data sources. Bindings to a
subset of the Virtual Systems Interface ('"VSI') are also included to support
operations on 'GDAL' virtual file systems. These are general utility
functions that abstract file system operations on URLS, cloud storage
services, 'Zip'/'GZip'/"7z'/'RAR'" archives, and in-memory files.

'gdalraster’ may be useful in applications that need scalable, low-level
I/O, or prefer a direct ' GDAL" API.

License MIT + file LICENSE
Copyright See file inst/COPYRIGHTS for details.

URL https://usdaforestservice.github.io/gdalraster/,
https://github.com/USDAForestService/gdalraster

BugReports https://github.com/USDAForestService/gdalraster/issues

Depends R (>=4.2.0)

Imports bit64, graphics, grDevices, methods, Repp (>= 1.0.7), stats,
tools, utils, xml2


https://gdal.org
https://usdaforestservice.github.io/gdalraster/
https://github.com/USDAForestService/gdalraster
https://github.com/USDAForestService/gdalraster/issues

2 R topics documented:

LinkingTo Rcpp, Repplnt64

Suggests gt, knitr, rmarkdown, scales, testthat (>= 3.0.0)

NeedsCompilation yes

SystemRequirements GDAL (>= 3.1.0, built against GEOS), PROJ, libxml2
Encoding UTF-8

RoxygenNote 7.3.1

VignetteBuilder knitr

Config/testthat/edition 3

Author Chris Toney [aut, cre] (R interface/additional functionality),

Michael D. Sumner [ctb],

Frank Warmerdam [ctb, cph] (GDAL API documentation; src/progress_r.cpp
from gdal/port/cpl_progress.cpp),

Even Rouault [ctb, cph] (GDAL API documentation),

Marius Appel [ctb, cph] (configure.ac based on
https://github.com/appelmar/gdalcubes),

Daniel James [ctb, cph] (Boost combine hashes method in
src/cmb_table.h),

Peter Dimov [ctb, cph] (Boost combine hashes method in src/cmb_table.h)

Maintainer Chris Toney <chris. toney@usda.gov>
Repository CRAN
Date/Publication 2024-06-03 04:30:07 UTC

R topics documented:

gdalraster-package . . . . . . .. L 4
addFilesInZip . . . . . . . . . L 6
bandCopyWholeRaster . . . . . . . . . . . . .. . 9
bbox_from_wKt . . . . . . e 10
bbox _INtersect . . . . . . . . . e e e 11
bbOX_tO_WKE . . . . e e e e 12
bbox_transform . . . . . . . L e 13
buildRAT . . . . . . e 14
buildVRT . . . . . . 17
calc . .. e 19
CmbTable-class . . . . . . . . . . e 23
combine . . . . . ... 25
copyDatasetFiles . . . . . . . . . .. 27
CIEAE . . . . v v v e e e e e e e e e e 28
createColorRamp . . . . . . . . .. 29
CreateCopy . .« v v v e e e e e e e e e e e 31
DEFAULT_DEM_PROC . . . . . . . . s e e e 32
DEFAULT_NODATA . . . . . . e s s e e e 33
deleteDataset . . . . . . . . . ... e 33

dem_proc . . . ... e e e e 34



R topics documented: 3

displayRAT . . . . . . e e 35
dump_open_datasets . . . . . ... .. e 36
EPSZ_tO_WKL . . . . L e e 37
fillNodata . . . . . . . . . . . . e e e 38
footprint . . . . . . . . e 39
GDALRaster-class . . . . . . . . . . e e e 40
gdal_formats . . . . ... 53
gdal_Version . . . . ... .. e e e e e e e 54
GEOS_VETSION .« . v v v it it e e e e e e e e e e e e e e e e e e 54
getCreationOptions . . . . . . . . . . . e 55
get_cache_used . . . . . . . .. 56
get_config_option . . . . . . ... e e 56
GEL UM _CPUS .« « « v v v v e e e e e e e e e e e e e e e e e e e 57
get_pixel_line . . . . . . .. L 57
get_usable_physical_ram . . . . . ... ... L 59
2 59
g binary_op . . . . ... e 60
g binary_pred . . . . . . L. e e e e e 61
g buffer . . . . e 62
gocentroid . . . ... L. 63
godistance . . . ... L e 64
CAS_BMPLY . . o o i e e e e e e e e e e e 64
giis_valid . . . .. e e 65
glength . . . . . L 66
CNAME . o v v v v e e e e e e e e e e e e e e e e e e e e e e 66
g transform . . . ... L. e e 67
has_geos . . . . . . 68
has_spatialite . . . . . . . .. .. 69
http_enabled . . . . . . . . . e 70
inv_geotransform . . . . . ... e 70
INV_PrOJECt . . . v v vt e e e e e e 71
OZI208T + v v e e e e e e e e e e e e e e e e e e 73
ogrinfo. . . . Lo 75
ogr define . . . . . ... 77
OZI_MANAZE .« « « . v v v e e e e e e e e e e e e e e e e e 80
PIOL_TaSter . . . . . . . . e e e e e e e e 87
polygonize . . . . . . .. 90
pop_error_handler. . . . . ... ..o 93
proj_networking . . . . . . . L. e e e 94
proj_search_paths . . . . . . . ... L 94
PIOJ_VEISION . . . . o o v v ittt it e e e e e e e e e e e 95
push_error_handler . . . . . . . . . . . ... 96
rasterFromRaster . . . . . . . .. L 97
TASEETIZE . . . . . . . . e e 98
rasterTOVRT . . . . . . . . e 101
read_dS . . . .. s 106
renameDataset. . . . . . ... L L e e 108

RunningStats-class . . . . . . . . . . 110



Index

gdalraster-package

set_config_option . . . . . . ... e e e e e 112
sieveFilter . . . . . . . . e e 113
SIS_IS_@eographic . . . . . . . . .. 115
srs_is_projected . . ... L. L 115
SIS_IS_SAME . . . v v v v e e e e e e e e e e e e e e 116
SIS_tO_WKE . . . . e e e e e e e e 117
transform_Xy . . . . . L. e e e e 118
translate . . . . ... L e e e e e 119
VSIFile-class . . . . . . . . . . e e e e 120
vsi_clear_path_options . . . . . . . . ... 125
VSL_CONSEANES . . . . . o o o e e e e e e e e e e e e s 126
vsicopy_file . . . ... 126
vsi_curl_clear_cache . . . . . . . . . . . .. ... e 128
vsi_get_disk_free_space . . . .. ... .. 128
vsi_get_file_metadata . . . . . . ... 129
vsi_get_fs_options . . . . ... e 130
vsi_get_fs_prefixes . . . . . . ... 131
vsi_mKkdir . ... e e 132
vsi_read_dir . . . . ... L e e e e e e e e 133
VSI_TENAME . . . . v v v v e e e e e e e e e e e 134
vsi_rmdir . ..o e e e 135
vsi_set_path_option . . . . . . . ... e 136
VS Stat . . . L e 137
VSi_supports_rnd_Write . . . . . .. ..o e e e 138
VSI_SUPPOIES_SEq_WIILE . . . . . o v v v o it e et e e e e e e e e e 139
VSI_SYNC .« v vt o v e e e e e e e e e e e e e e e e e e e 140
vsi_unlink . . .o e e 142
vsi_unlink_batch . . . . . . . e 143
WAID © o v v v e e e e e e e e e e e e e e e e e e e e e 144
148

gdalraster-package Bindings to the GDAL Raster API

Description

gdalraster is an interface to the Geospatial Data Abstraction Library (GDAL) for low level raster
I/O. Calling signatures resemble those of the native C, C++ and Python APIs provided by the GDAL
project. See https://gdal.org/api/ for details of the GDAL Raster API.

Details

Core functionality is contained in class GDALRaster and several related stand-alone functions:

* GDALRaster-class is an exposed C++ class that allows opening a raster dataset and calling

methods on the GDALDataset, GDALDriver and GDALRasterBand objects in the underlying
API (e.g., get/set parameters, read/write pixel data).


https://gdal.org/api/

gdalraster-package 5

e raster creation: create(), createCopy(), rasterFromRaster(), translate(), getCreationOptions()
e virtual raster: buildVRT(), rasterToVRT()
* reproject/resample/crop/mosaic: warp()

e algorithms: dem_proc(), fillNodata(), footprint(), polygonize(), rasterize(), sieveFilter(),
GDALRaster$getChecksum()

* raster attribute tables: buildRAT(), displayRAT(), GDALRaster$getDefaultRAT(), GDALRaster$setDefaul tRAT()
 geotransform conversion: inv_geotransform(), get_pixel_line()
¢ coordinate transformation: transform_xy(), inv_project()

* spatial reference convenience functions: epsg_to_wkt (), srs_to_wkt(),
srs_is_geographic(), srs_is_projected(), srs_is_same()

* geometry convenience functions: bbox_from_wkt(), bbox_to_wkt(), bbox_intersect(),
bbox_union(), bbox_transform(), g_area(), g_buffer(), g_centroid(), g_contains(),
g_crosses(), g_difference(), g_disjoint(), g_distance(), g_equals(), g_intersection(),
g_intersects(), g_is_empty(), g_is_valid(), g_length(), g_name(), g_overlaps(),
g_sym_difference(), g_touches(), g_transform(), g_union(), g_within(), geos_version()

* data management: addFilesInZip(), copyDatasetFiles(), deleteDataset(),
renameDataset (), bandCopyWholeRaster ()

¢ OGR vector utilities: ogr2ogr(), ogrinfo(), ogr_manage, ogr_define

* virtual file systems: VSIFile, vsi_clear_path_options(), vsi_copy_file(),vsi_curl_clear_cache(),
vsi_get_disk_free_space(),vsi_get_file_metadata(),vsi_get_fs_options(),vsi_get_fs_prefixes(),
vsi_mkdir(), vsi_read_dir(), vsi_rename(), vsi_rmdir(), vsi_set_path_option(),
vsi_stat(), vsi_supports_rnd_write(), vsi_supports_seq_write(),vsi_sync(),vsi_unlink(),
vsi_unlink_batch()

* GDAL configuration: gdal_version(), gdal_formats(), get_cache_used(), get_config_option(),
set_config_option(), get_num_cpus(), get_usable_physical_ram(), has_spatialite(),
http_enabled(), push_error_handler(), pop_error_handler(), dump_open_datasets()

* PROJ configuration: proj_version(), proj_search_paths(), proj_networking()
Additional functionality includes:
* RunningStats-class calculates mean and variance in one pass. The min, max, sum, and
count are also tracked (efficient summary statistics on data streams).
* CmbTable-class implements a hash table for counting unique combinations of integer values.

* combine() overlays multiple rasters so that a unique ID is assigned to each unique combina-
tion of input values. Pixel counts for each unique combination are obtained, and combination
IDs are optionally written to an output raster.

* calc() evaluates an R expression for each pixel in a raster layer or stack of layers. Individual
pixel coordinates are available as variables in the R expression, as either x/y in the raster
projected coordinate system or inverse projected longitude/latitude.

* plot_raster() displays raster data using base R graphics. Supports single-band grayscale,
RGB, color tables and color map functions (e.g., color ramp).



6 addFilesInZip

Note
Documentation for GDALRaster-class and several wrapper functions borrows from the GDAL API

documentation, (c) 1998-2024, Frank Warmerdam, Even Rouault, and others, MIT license.

Sample datasets included with the package are used in examples throughout the documentation.
The sample data include LANDFIRE raster layers describing terrain, vegetation and wildland fuels
(LF 2020 version), Landsat C2 Analysis Ready Data from USGS Earth Explorer, and Monitoring
Trends in Burn Severity (MTBS) fire perimeters from 1984-2022. Metadata for the sample datasets
are in inst/extdata/metadata.zip.

system.file() is used in the examples to access the sample datasets. This enables the code to
run regardless of where R is installed. Users will normally give file names as a regular full path or
relative to the current working directory.

Author(s)

GDAL is by: Frank Warmerdam, Even Rouault and others
(see https://github.com/0SGeo/gdal/graphs/contributors)

R interface/additional functionality: Chris Toney

Maintainer: Chris Toney <chris.toney at usda.gov>

See Also
GDAL Raster Data Model:
https://gdal.org/user/raster_data_model.html

Raster format descriptions:
https://gdal.org/drivers/raster/index.html

Geotransform tutorial:
https://gdal.org/tutorials/geotransforms_tut.html

GDAL Virtual File Systems:
https://gdal.org/user/virtual_file_systems.html

addFilesInZip Create/append to a potentially Seek-Optimized ZIP file (SOZip)

Description

addFilesInZip() will create new or open existing ZIP file, and add one or more compressed
files potentially using the seek optimization extension. This function is basically a wrapper for
CPLAddFileInZip() in the GDAL Common Portability Library, but optionally creates a new ZIP
file first (with CPLCreateZip()). It provides a subset of functionality in the GDAL sozip command-
line utility (https://gdal.org/programs/sozip.html). Requires GDAL >=3.7.


https://gdal.org/license.html
https://landfire.gov/
https://earthexplorer.usgs.gov/
https://www.mtbs.gov/
https://github.com/OSGeo/gdal/graphs/contributors
https://gdal.org/user/raster_data_model.html
https://gdal.org/drivers/raster/index.html
https://gdal.org/tutorials/geotransforms_tut.html
https://gdal.org/user/virtual_file_systems.html
https://gdal.org/programs/sozip.html

addFilesInZip 7

Usage
addFilesInZip(
zip_file,
add_files,
overwrite = FALSE,
full_paths = TRUE,
sozip_enabled = NULL,
sozip_chunk_size = NULL,
sozip_min_file_size = NULL,
num_threads = NULL,
content_type = NULL,
quiet = FALSE
)
Arguments
zip_file Filename of the ZIP file. Will be created if it does not exist or if overwrite =
TRUE. Otherwise will append to an existing file.
add_files Character vector of one or more input filenames to add.
overwrite Logical scalar. Overwrite the target zip file if it already exists.
full_paths Logical scalar. By default, the full path will be stored (relative to the current

directory). FALSE to store just the name of a saved file (drop the path).

sozip_enabled String. Whether to generate a SOZip index for the file. One of "AUTO" (the
default), "YES" or "NO" (see Details).

sozip_chunk_size
The chunk size for a seek-optimized file. Defaults to 32768 bytes. The value is
specified in bytes, or K and M suffix can be used respectively to specify a value
in kilo-bytes or mega-bytes. Will be coerced to string.

sozip_min_file_size
The minimum file size to decide if a file should be seek-optimized, in sozip_enabled="AUTO"
mode. Defaults to 1 MB byte. The value is specified in bytes, or K, M or G
suffix can be used respectively to specify a value in kilo-bytes, mega-bytes or
giga-bytes. Will be coerced to string.

num_threads Number of threads used for SOZip generation. Defaults to "ALL_CPUS" or spec-
ify an integer value (coerced to string).

content_type String Content-Type value for the file. This is stored as a key-value pair in the
extra field extension KV’ (0x564b) dedicated to storing key-value pair meta-
data.

quiet Logical scalar. TRUE for quiet mode, no progress messages emitted. Defaults to
FALSE.
Details

A Seek-Optimized ZIP file (SOZip) contains one or more compressed files organized and annotated
such that a SOZip-aware reader can perform very fast random access within the .zip file (see https:


https://github.com/sozip/sozip-spec

8 addFilesInZip

//github.com/sozip/sozip-spec). Large compressed files can be accessed directly from SOZip
without prior decompression. The .zip file is otherwise fully backward compatible.

If sozip_enabled="AUTO" (the default), a file is seek-optimized only if its size is above the values
of sozip_min_file_size (default 1 MB) and sozip_chunk_size (default 32768). In "YES" mode,
all input files will be seek-optimized. In "NO" mode, no input files will be seek-optimized. The
default can be changed with the CPL_SOZIP_ENABLED configuration option.

Value

Logical indicating success (invisible TRUE). An error is raised if the operation fails.

Note

The GDAL_NUM_THREADS configuration option can be set to ALL_CPUS or an integer value to specify
the number of threads to use for SOZip-compressed files (see set_config_option()).

SOZip can be validated with:
vsi_get_file_metadata(zip_file, domain="ZIP")

where zip_file uses the /vsizip/ prefix.

See Also

vsi_get_file_metadata()

Examples

lcp_file <- system.file("extdata/storm_lake.lcp”, package="gdalraster")
zip_file <- paste@(tempdir(), "/", "storml_lcp.zip")

# Requires GDAL >= 3.7
if (as.integer(gdal_version()[2]) >= 3070000) {
addFilesInZip(zip_file, lcp_file, full_paths=FALSE, sozip_enabled="YES",
num_threads=1)

print("Files in zip archive:")
print(unzip(zip_file, list=TRUE))

# Open with GDAL using Virtual File System handler '/vsizip/'

# see: https://gdal.org/user/virtual_file_systems.html#vsizip-zip-archives
lcp_in_zip <- file.path("/vsizip", zip_file, "storm_lake.lcp")
print(”"S0Zip metadata:")

print(vsi_get_file_metadata(lcp_in_zip, domain="ZIP"))

ds <- new(GDALRaster, lcp_in_zip)
ds$info()
ds$close()

vsi_unlink(zip_file)


https://github.com/sozip/sozip-spec
https://github.com/sozip/sozip-spec

bandCopyWholeRaster 9

bandCopyWholeRaster Copy a whole raster band efficiently

Description

bandCopyWholeRaster () copies the complete raster contents of one band to another similarly con-
figured band. The source and destination bands must have the same xsize and ysize. The bands
do not have to have the same data type. It implements efficient copying, in particular "chunking"
the copy in substantial blocks. This is a wrapper for GDALRasterBandCopyWholeRaster() in the
GDAL API.

Usage

bandCopyWholeRaster(
src_filename,
src_band,
dst_filename,
dst_band,
options = NULL,
quiet = FALSE

Arguments

src_filename Filename of the source raster.

src_band Band number in the source raster to be copied.
dst_filename Filename of the destination raster.

dst_band Band number in the destination raster to copy into.

options Optional list of transfer hints in a vector of "NAME=VALUE" pairs. The currently
supported options are:

* "COMPRESSED=YES" to force alignment on target dataset block sizes to achieve
best compression.

e "SKIP_HOLES=YES" to skip chunks that contain only empty blocks. Empty
blocks are blocks that are generally not physically present in the file, and
when read through GDAL, contain only pixels whose value is the nodata
value when it is set, or whose value is 0 when the nodata value is not set.
The query is done in an efficient way without reading the actual pixel values
(if implemented by the raster format driver, otherwise will not be skipped).

quiet Logical scalar. If TRUE, a progress bar will not be displayed. Defaults to FALSE.

Value

Logical indicating success (invisible TRUE). An error is raised if the operation fails.



10 bbox_from_wkt

See Also

GDALRaster-class, create(), createCopy(), rasterFromRaster()

Examples

## copy Landsat data from a single-band file to a new multi-band image
b5_file <- system.file("extdata/sr_b5_20200829.tif", package="gdalraster")
dst_file <- paste@(tempdir(), "/", "sr_multi.tif")
rasterFromRaster(b5_file, dst_file, nbands=7, init=0)

opt <- c("COMPRESSED=YES", "SKIP_HOLES=YES")

bandCopyWholeRaster(b5_file, 1, dst_file, 5, options=opt)

ds <- new(GDALRaster, dst_file)

ds$getStatistics(band=5, approx_ok=FALSE, force=TRUE)

ds$close()

deleteDataset(dst_file)

bbox_from_wkt Get the bounding box of a geometry specified in OGC WKT format

Description
bbox_from_wkt () returns the bounding box of a WKT 2D geometry (e.g., LINE, POLYGON,
MULTIPOLYGON).

Usage

bbox_from_wkt(wkt, extend_x = @, extend_y = 0)

Arguments
wkt Character. OGC WKT string for a simple feature 2D geometry.
extend_x Numeric scalar. Distance to extend the output bounding box in both direc-
tions along the x-axis (results in xmin = bbox[1] - extend_x, xmax = bbox[3]
+ extend_x).
extend_y Numeric scalar. Distance to extend the output bounding box in both direc-
tions along the y-axis (results in ymin = bbox[2] - extend_y, ymax = bbox[4]
+ extend_y).
Value

Numeric vector of length four containing the xmin, ymin, xmax, ymax of the geometry specified by
wkt (possibly extended by values in extend_x, extend_y).

See Also

bbox_to_wkt()



bbox_intersect 11

Examples

bnd <- "POLYGON ((324467.3 5104814.2, 323909.4 5104365.4, 323794.2
5103455.8, 324970.7 5102885.8, 326420.0 5103595.3, 326389.6 5104747.5,
325298.1 5104929.4, 325298.1 5104929.4, 324467.3 5104814.2))"
bbox_from_wkt(bnd, 100, 100)

bbox_intersect Bounding box intersection / union

Description

bbox_intersect () returns the bounding box intersection, and bbox_union () returns the bounding
box union, for input of either raster file names or list of bounding boxes. All of the inputs must be
in the same projected coordinate system.

Usage

bbox_intersect(x, as_wkt = FALSE)

bbox_union(x, as_wkt = FALSE)

Arguments
X Either a character vector of raster file names, or a list with each element a bound-
ing box numeric vector (Xmin, ymin, Xmax, ymax).
as_wkt Logical. TRUE to return the bounding box as a polygon in OGC WKT format, or
FALSE to return as a numeric vector.
Value

The intersection (bbox_intersect()) or union (bbox_union()) of inputs. If as_wkt = FALSE, a
numeric vector of length four containing xmin, ymin, xmax, ymax. If as_wkt = TRUE, a character
string containing OGC WKT for the bbox as POLYGON.

See Also

bbox_from_wkt (), bbox_to_wkt()

Examples

bbox_list <-1list()
elev_file <- system.file("extdata/storml_elev.tif"”, package="gdalraster")
ds <- new(GDALRaster, elev_file)

bbox_list[[1]1] <- ds$bbox()
ds$close()

b5_file <- system.file("extdata/sr_b5_20200829.tif", package="gdalraster")



12 bbox_to_ wkt

ds <- new(GDALRaster, b5_file)
bbox_list[[2]] <- ds$bbox()
ds$close()

bnd <- "POLYGON ((324467.3 5104814.2, 323909.4 5104365.4, 323794.2
5103455.8, 324970.7 5102885.8, 326420.0 5103595.3, 326389.6 5104747.5,
325298.1 5104929.4, 325298.1 5104929.4, 324467.3 5104814.2))"
bbox_list[[3]] <- bbox_from_wkt(bnd)

print(bbox_list)
bbox_intersect(bbox_list)
bbox_union(bbox_list)

bbox_to_wkt Convert a bounding box to POLYGON in OGC WKT format

Description
bbox_to_wkt () returns a WKT POLYGON string for the given bounding box. Requires GDAL
built with the GEOS library.

Usage
bbox_to_wkt(bbox, extend_x = @, extend_y = 0)

Arguments
bbox Numeric vector of length four containing xmin, ymin, Xmax, ymax.
extend_x Numeric scalar. Distance in units of bbox to extend the rectangle in both direc-
tions along the x-axis (results in xmin = bbox[1] - extend_x, xmax = bbox[3]
+ extend_x).
extend_y Numeric scalar. Distance in units of bbox to extend the rectangle in both direc-
tions along the y-axis (results in ymin = bbox[2] - extend_y, ymax = bbox[4]
+ extend_y).
Value

Character string for an OGC WKT polygon. NA is returned if GDAL was built without the GEOS
library.

See Also
bbox_from_wkt (), g_buffer()

Examples

elev_file <- system.file("extdata/storml_elev.tif"”, package="gdalraster")
ds <- new(GDALRaster, elev_file, read_only=TRUE)

bbox_to_wkt (ds$bbox())

ds$close()



bbox_transform 13

bbox_transform Transform a bounding box to a different projection

Description
bbox_transform() is a convenience function for:
bbox_to_wkt(bbox) |>

g_transform(srs_from, srs_to) [>
bbox_from_wkt ()

Usage

bbox_transform(bbox, srs_from, srs_to)

Arguments
bbox Numeric vector of length four containing a bounding box (xmin, ymin, Xmax,
ymax) to transform.
srs_from Character string in OGC WKT format specifying the spatial reference system
for bbox.
srs_to Character string in OGC WKT format specifying the target spatial reference
system.
Value

Numeric vector of length four containing a transformed bounding box (xmin, ymin, xmax, ymax).

See Also

g_transform(), bbox_from_wkt (), bbox_to_wkt()

Examples

elev_file <- system.file("extdata/storml_elev.tif"”, package="gdalraster")
ds <- new(GDALRaster, elev_file)

ds$bbox ()

bbox_transform(ds$bbox(), ds$getProjection(), epsg_to_wkt(4326))
ds$close()



14 buildRAT

buildRAT Build a GDAL Raster Attribute Table with VALUE, COUNT

Description

buildRAT () reads all pixels of an input raster to obtain the set of unique values and their counts. The
result is returned as a data frame suitable for use with the class method GDALRaster$setDefaul tRAT().
The returned data frame might be further modified before setting as a Raster Attribute Table in a
dataset, for example, by adding columns containing class names, color values, or other information
(see Details). An optional input data frame containing such attributes may be given, in which case
buildRAT() will attempt to join the additional columns and automatically assign the appropriate
metadata on the output data frame (i.e., assign R attributes on the data frame and its columns that
define usage in a GDAL Raster Attribute Table).

Usage

buildRAT(
raster,
band = 1L,
col_names = c("VALUE", "COUNT"),
table_type = "athematic”,
na_value = NULL,
join_df = NULL,
quiet = FALSE

)
Arguments

raster Either a GDALRaster object, or a character string containing the file name of a
raster dataset to open.

band Integer scalar, band number to read (default 1L).

col_names Character vector of length two containing names to use for column 1 (pixel val-
ues) and column 2 (pixel counts) in the output data frame (defaults are c("VALUE",
"COUNT™)).

table_type Character string describing the type of the attribute table. One of either "thematic”,
or "athematic” for continuous data (the default).

na_value Numeric scalar. If the set of unique pixel values has an NA, it will be recoded
to na_value in the returned data frame. If NULL (the default), NA will not be
recoded.

join_df Optional data frame for joining additional attributes. Must have a column of

unique values with the same name as col_names[1] ("VALUE" by default).

quiet Logical scalar. If TRUE**, a progress bar will not be displayed. Defaults to FALSE®.



buildRAT 15

Details

A GDAL Raster Attribute Table (or RAT) provides attribute information about pixel values. Raster
attribute tables can be used to represent histograms, color tables, and classification information.
Each row in the table applies to either a single pixel value or a range of values, and might have
attributes such as the histogram count for that value (or range), the color that pixels of that value (or
range) should be displayed, names of classes, or various other information.

Each column in a raster attribute table has a name, a type (integer, double, or string), and a
GDALRATFieldUsage. The usage distinguishes columns with particular understood purposes (such
as color, histogram count, class name), and columns that have other purposes not understood by the
library (long labels, ancillary attributes, etc).

In the general case, each row has a field indicating the minimum pixel value falling into that cate-
gory, and a field indicating the maximum pixel value. In the GDAL API, these are indicated with
usage values of GFU_Min and GFU_Max. In the common case where each row is a discrete pixel value,
a single column with usage GFU_MinMax would be used instead. In R, the table is represented as a
data frame with column attribute "GFU" containing the field usage as a string, e.g., "Max", "Min" or
"MinMax" (case-sensitive). The full set of possible field usage descriptors is:

GFU attr GDAL enum Description
"Generic” GFU_Generic General purpose field
"PixelCount” GFU_PixelCount Histogram pixel count
"Name" GFU_Name Class name
"Min" GFU_Min Class range minimum
"Max" GFU_Max Class range maximum
"MinMax" GFU_MinMax Class value (min=max)
"Red"” GFU_Red Red class color (0-255)
"Green" GFU_Green Green class color (0-255)
"Blue" GFU_Blue Blue class color (0-255)
"Alpha” GFU_Alpha Alpha transparency (0-255)
"RedMin” GFU_RedMin Color range red minimum
"GreenMin" GFU_GreenMin Color range green minimum
"BlueMin” GFU_BlueMin Color range blue minimum
"AlphaMin” GFU_AlphaMin Color range alpha minimum
"RedMax" GFU_RedMax Color range red maximum
"GreenMax" GFU_GreenMax Color range green maximum
"BlueMax” GFU_BlueMax Color range blue maximum
"AlphaMax” GFU_AlphaMax Color range alpha maximum

buildRAT() assigns GFU "MinMax" on the column of pixel values (named "VALUE" by default) and
GFU "PixelCount” on the column of counts (named "COUNT" by default). If join_df is given,
the additional columns that result from joining will have GFU assigned automatically based on the
column names (ignoring case). First, the additional column names are checked for containing the
string "name” (e.g., "classname”, "TypeName", "EVT_NAME", etc). The first matching column (if
any) will be assigned a GFU of "Name" (=GFU_Name, the field usage descriptor for class names).
Next, columns named "R"” or "Red” will be assigned GFU "Red", columns named "G" or "Green"
will be assigned GFU "Green”, columns named "B" or "Blue"” will be assigned GFU "Blue”, and
columns named "A" or "Alpha” will be assigned GFU "Alpha”. Finally, any remaining columns
that have not been assigned a GFU will be assigned "Generic”.



16 buildRAT

In a variation of RAT, all the categories are of equal size and regularly spaced, and the categorization
can be determined by knowing the value at which the categories start and the size of a category.
This is called "Linear Binning" and the information is kept specially on the raster attribute table
as a whole. In R, a RAT that uses linear binning would have the following attributes set on the
data frame: attribute "RowdMin" = the numeric lower bound (pixel value) of the first category, and
attribute "BinSize"” = the numeric width of each category (in pixel value units). buildRAT() does
not create tables with linear binning, but one could be created manually based on the specifications
above, and applied to a raster with the class method GDALRaster$setDefaul tRAT().

A raster attribute table is thematic or athematic (continuous). In R, this is defined by an attribute on
the data frame named "GDALRATTableType" with value of either "thematic” or "athematic”.

Value

A data frame with at least two columns containing the set of unique pixel values and their counts.
These columns have attribute "GFU” set to "MinMax” for the values, and "PixelCount” for the
counts. If join_df is given, the returned data frame will have additional columns that result from
merge(). The "GFU" attribute of the additional columns will be assigned automatically based on
the column names (case-insensitive matching, see Details). The returned data frame has attribute
"GDALRATTableType" set to table_type.

Note

The full raster will be scanned.

If na_value is not specified, then an NA pixel value (if present) will not be recoded in the output
data frame. This may have implications if joining to other data (NA will not match), or when using
the returned data frame to set a default RAT on a dataset (NA will be interpreted as the value that
R uses internally to represent it for the type, e.g., 2147483648 for NA_integer_). In some cases,
removing the row in the output data frame with value NA, rather than recoding, may be desirable
(i.e., by removing manually or by side effect of joining via merge(), for example). Users should
consider what is appropriate for a particular case.

See Also

GDALRaster$getDefaultRAT (), GDALRaster$setDefaul tRAT(), displayRAT()

vignette("raster-attribute-tables"”)

Examples

evt_file <- system.file("extdata/storml_evt.tif", package="gdalraster")
# make a copy to modify

f <- paste@(tempdir(), "/", "storml_evt_tmp.tif")

file.copy(evt_file, f)

ds <- new(GDALRaster, f, read_only=FALSE)
ds$getDefaultRAT(band=1) # NULL

# get the full attribute table for LANDFIRE EVT from the CSV file
evt_csv <- system.file("extdata/LF20_EVT_220.csv", package="gdalraster")
evt_df <- read.csv(evt_csv)



buildVRT 17

nrow(evt_df)
head(evt_df)
evt_df <- evt_df[,1:7]

tbl <- buildRAT(ds,
table_type = "thematic”,
na_value = -9999,
join_df = evt_df)

nrow(tbl)
head(tbl)

# attributes on the data frame and its columns define usage in a GDAL RAT
attributes(tbl)

attributes(tbl1$VALUE)

attributes(tb1$COUNT)

attributes(tbl$EVT_NAME)

attributes(tbl$EVT_LF)

attributes(tbl$EVT_PHYS)

attributes(tbl$R)

attributes(tbl$G)

attributes(tb1$B)

ds$setDefaultRAT (band=1, tbl)
ds$flushCache()

tbl2 <- ds$getDefaultRAT(band=1)
nrow(tbl2)
head(tb12)

ds$close()
deleteDataset (f)

# Display

evt_gt <- displayRAT(tbl2, title = "Storm Lake EVT Raster Attribute Table")
class(evt_gt) # an object of class "gt_tbl"” from package gt

# To show the table:

# evt_gt

# or simply call ‘displayRAT()‘ as above but without assignment

# ‘vignette("raster-attribute-tables”)" has example output

buildVRT Build a GDAL virtual raster from a list of datasets

Description

buildVRT() is a wrapper of the gdalbuildvrt command-line utility for building a VRT (Virtual
Dataset) that is a mosaic of the list of input GDAL datasets (see https://gdal.org/programs/
gdalbuildvrt.html).


https://gdal.org/programs/gdalbuildvrt.html
https://gdal.org/programs/gdalbuildvrt.html

18 buildVRT
Usage

buildVRT(vrt_filename, input_rasters, cl_arg = NULL, quiet = FALSE)
Arguments

vrt_filename Character string. Filename of the output VRT.

input_rasters Character vector of input raster filenames.

cl_arg Optional character vector of command-line arguments to gdalbuildvrt.

quiet Logical scalar. If TRUE, a progress bar will not be displayed. Defaults to FALSE.

Details

Several command-line options are described in the GDAL documentation at the URL above. By
default, the input files are considered as tiles of a larger mosaic and the VRT file has as many bands
as one of the input files. Alternatively, the -separate argument can be used to put each input raster
into a separate band in the VRT dataset.

Some amount of checks are done to assure that all files that will be put in the resulting VRT have
similar characteristics: number of bands, projection, color interpretation.... If not, files that do not
match the common characteristics will be skipped. (This is true in the default mode for virtual
mosaicing, and not when using the -separate option).

In a virtual mosaic, if there is spatial overlap between input rasters then the order of files appearing
in the list of sources matter: files that are listed at the end are the ones from which the data will
be fetched. Note that nodata will be taken into account to potentially fetch data from less priority
datasets.

Value

Logical indicating success (invisible TRUE). An error is raised if the operation fails.

See Also

rasterToVRT()

Examples

# build a virtual 3-band RGB raster from individual Landsat band files
b4_file <- system.file("extdata/sr_b4_20200829.tif", package="gdalraster"”)
b5_file <- system.file("extdata/sr_b5_20200829.tif", package="gdalraster")
b6_file <- system.file("extdata/sr_b6_20200829.tif", package="gdalraster")
band_files <- c(b6_file, b5_file, b4_file)

vrt_file <- paste@(tempdir(), "/", "storml_b6_b5_b4.vrt")
buildVRT(vrt_file, band_files, cl_arg = "-separate”)

ds <- new(GDALRaster, vrt_file)

ds$getRasterCount()

plot_raster(ds, nbands=3, main="Landsat 6-5-4 (vegetative analysis)")
ds$close()

vsi_unlink(vrt_file)



calc 19
calc Raster calculation
Description
calc() evaluates an R expression for each pixel in a raster layer or stack of layers. Each layer is
defined by a raster filename, band number, and a variable name to use in the R expression. If not
specified, band defaults to 1 for each input raster. Variable names default to LETTERS if not specified
(A (layer 1), B (layer 2), ...). All of the input layers must have the same extent and cell size. The
projection will be read from the first raster in the list of inputs. Individual pixel coordinates are also
available as variables in the R expression, as either x/y in the raster projected coordinate system or
inverse projected longitude/latitude. Multiband output is supported as of gdalraster 1.11.0.
Usage
calc(
expr,
rasterfiles,
bands = NULL,
var.names NULL,
dstfile = tempfile("rastcalc”, fileext = ".tif"),
fmt = NULL,
dtName = "Int16",
out_band = NULL,
options = NULL,
nodata_value = NULL,
setRasterNodataValue = FALSE,
usePixellLonLat = NULL,
write_mode = "safe”,
quiet = FALSE
)
Arguments
expr An R expression as a character string (e.g., "A +B").
rasterfiles Character vector of source raster filenames.
bands Integer vector of band numbers to use for each raster layer.
var.names Character vector of variable names to use for each raster layer.
dstfile Character filename of output raster.
fmt Output raster format name (e.g., "GTiff" or "HFA"). Will attempt to guess from
the output filename if not specified.
dtName Character name of output data type (e.g., Byte, Int16, Ulnt16, Int32, Ulnt32,
Float32).
out_band Integer band number(s) in dstfile for writing output. Defaults to 1. Multiband

output is supported as of gdalraster 1.11.0, in which case out_band would be a
vector of band numbers.



20 calc

options Optional list of format-specific creation options in a vector of "NAME=VALUE"
pairs (e.g., options = c("COMPRESS=LZW") to set LZW compression during cre-
ation of a GTiff file).

nodata_value  Numeric value to assign if expr returns NA.

setRasterNodataValue

Logical. TRUE will attempt to set the raster format nodata value to nodata_value,
or FALSE not to set a raster nodata value.

usePixellonLat This argument is deprecated and will be removed in a future version. Variable
names pixellLon and pixellLat can be used in expr, and the pixel x/y coordi-
nates will be inverse projected to longitude/latitude (adds computation time).

write_mode Character. Name of the file write mode for output. One of:

* safe - execution stops if dstfile already exists (no output written)
* overwrite - if dstfile exists if will be overwritten with a new file

* update - if dstfile exists, will attempt to open in update mode and write
output to out_band

quiet Logical scalar. If TRUE, a progress bar will not be displayed. Defaults to FALSE.

Details

The variables in expr are vectors of length raster xsize (row vectors of the input raster layer(s)). The
expression should return a vector also of length raster xsize (an output row). Four special variable
names are available in expr: pixelX and pixelY provide pixel center coordinates in projection
units. pixellLon and pixellat can also be used, in which case the pixel x/y coordinates will be
inverse projected to longitude/latitude (in the same geographic coordinate system used by the input
projection, which is read from the first input raster). Note that inverse projection adds computation
time.

To refer to specific bands in a multi-band input file, repeat the filename in rasterfiles and spec-
ify corresponding band numbers in bands, along with optional variable names in var.names, for
example,

rasterfiles = c("multiband.tif"”, "multiband.tif")
bands = c(4, 5)
var.names = c("B4", "B5")

Output will be written to dstfile. To update a file that already exists, set write_mode = "update”
and set out_band to an existing band number(s) in dstfile (new bands cannot be created in
dstfile).

To write multiband output, expr must return a vector of values interleaved by band. This is equiva-
lent to, and can also be returned as, a matrix m with nrow(m) equal to length() of an input vector,
and ncol(m) equal to the number of output bands. In matrix form, each column contains a vector
of output values for a band. 1length(m) must be equal to the length() of an input vector multiplied
by length(out_band). The dimensions described above are assumed and not read from the return
value of expr.

Value

Returns the output filename invisibly.



calc 21

See Also

GDALRaster-class, combine(), rasterToVRT()

Examples

## Using pixel longitude/latitude

Hopkins bioclimatic index (HI) as described in:

Bechtold, 2004, West. J. Appl. For. 19(4):245-251.

Integrates elevation, latitude and longitude into an index of the
phenological occurrence of springtime. Here it is relativized to
mean values for an eight-state region in the western US.

Positive HI means spring is delayed by that number of days relative
to the reference position, while negative values indicate spring is
advanced. The original equation had elevation units as feet, so
converting m to ft in ‘expr®.

T T

elev_file <- system.file("extdata/storml_elev.tif"”, package="gdalraster")

# expression to calculate HI

expr <- "round( ((ELEV_M * 3.281 - 5449) / 100) +
((pixelLat - 42.16) * 4) +
((-116.39 - pixellLon) * 1.25) )"

# calc() writes to a tempfile by default
hi_file <- calc(expr = expr,
rasterfiles = elev_file,
var.names = "ELEV_M",
dtName = "Int16",
nodata_value = -32767,
setRasterNodataValue = TRUE)

ds <- new(GDALRaster, hi_file)

# min, max, mean, sd

ds$getStatistics(band=1, approx_ok=FALSE, force=TRUE)
ds$close()

deleteDataset(hi_file)

## Calculate normalized difference vegetation index (NDVI)

# Landast band 4 (red) and band 5 (near infrared):
b4_file <- system.file("extdata/sr_b4_20200829.tif", package="gdalraster")
b5_file <- system.file("extdata/sr_b5_20200829.tif", package="gdalraster")

expr <- "((B5 * 0.0000275 - 0.2) - (B4 * 0.0000275 - 0.2)) /
((B5 * 0.0000275 - 0.2) + (B4 * 0.0000275 - 0.2))"
ndvi_file <- calc(expr = expr,
rasterfiles = c(b4_file, b5_file),
var.names = c("B4", "B5"),
dtName = "Float32",
nodata_value = -32767,



22

calc

setRasterNodataValue = TRUE)

ds <- new(GDALRaster, ndvi_file)
ds$getStatistics(band=1, approx_ok=FALSE, force=TRUE)
ds$close()

deleteDataset(ndvi_file)

## Reclassify a variable by rule set

Combine two raster layers and look for specific combinations. Then
recode to a new value by rule set.

#
#
#
# Based on example in:

#  Stratton, R.D. 2009. Guidebook on LANDFIRE fuels data acquisition,
# critique, modification, maintenance, and model calibration.

# Gen. Tech. Rep. RMRS-GTR-220. U.S. Department of Agriculture,

#  Forest Service, Rocky Mountain Research Station. 54 p.

# Context: Refine national-scale fuels data to improve fire simulation
# results in localized applications.

# Issue: Areas with steep slopes (40+ degrees) were mapped as

# GR1 (101; short, sparse dry climate grass) and

# GR2 (102; low load, dry climate grass) but were not carrying fire.
# Resolution: After viewing these areas in Google Earth,

# NB9 (99; bare ground) was selected as the replacement fuel model.

# look for combinations of slope >= 40 and FBFM 101 or 102

lcp_file <- system.file("extdata/storm_lake.lcp”, package="gdalraster")
rasterfiles <- c(lcp_file, lcp_file)

var.names <- c("SLP", "FBFM")

bands <- c(2, 4)

tbl <- combine(rasterfiles, var.names, bands)

nrow(tbl)
tbl_subset <- subset(tbl, SLP >= 40 & FBFM %in% c(101,102))
print(tbl_subset) # twelve combinations meet the criteria

sum(tbl_subset$count) # 85 total pixels

# recode these pixels to 99 (bare ground)

# the LCP driver does not support in-place write so make a copy as GTiff
tif_file <- paste@(tempdir(), "/", "storml_lndscp.tif")
createCopy("GTiff", tif_file, lcp_file)

expr <- "ifelse( SLP >= 40 & FBFM %in% c(101,102), 99, FBFM)"
calc(expr = expr,

rasterfiles = c(lcp_file, lcp_file),

bands = c(2, 4),

var.names = c("SLP", "FBFM"),

dstfile = tif_file,

out_band = 4,

write_mode = "update")

# verify the ouput
rasterfiles <- c(tif_file, tif_file)



CmbTable-class 23

tbl <- combine(rasterfiles, var.names, bands)

tbl_subset <- subset(tbl, SLP >= 40 & FBFM %in% c(101,102))
print(tbl_subset)

sum(tbl_subset$count)

# if LCP file format is needed:
# createCopy("LCP", "storml_edited.lcp”, tif_file)

deleteDataset(tif_file)

CmbTable-class Class for counting unique combinations of integers

Description

CmbTable implements a hash table having a vector of integers as the key, and the count of occur-
rences of each unique integer combination as the value. A unique ID is assigned to each unique
combination of input values.

Arguments
keyLen The number of integer values comprising each combination.
varNames Character vector of names for the variables in the combination.
Value

An object of class CmbTable. Contains a hash table having a vector of keyLen integers as the key
and the count of occurrences of each unique integer combination as the value, along with methods
that operate on the table as described in Details. CmbTable is a C++ class exposed directly to R (via
RCPP_EXPOSED_CLASS). Methods of the class are accessed in R using the $ operator.

Usage

## Constructors

cmb <- new(CmbTable, keyLen)

# or, with variable names

cmb <- new(CmbTable, keylLen, varNames)

## Methods (see Details)
cmb$update(int_cmb, incr)
cmb$updateFromMatrix(int_cmbs, incr)
cmb$updateFromMatrixByRow(int_cmbs, incr)
cmb$asDataFrame()

cmb$asMatrix()



24 CmbTable-class

Details

new(CmbTable, keyLen) Constructor. Variable names will be assigned as V1, V2, .... Returns an
object of class CmbTable.

new(CmbTable, keyLen, varNames) Alternate constructor to specify variable names. Returns an
object of class CmbTable.

$update(int_cmb, incr) Updates the hash table for the integer combination in the numeric vector
int_cmb (coerced to integer by truncation). If this combination exists in the table, its count will be
incremented by incr. If the combination is not found in the table, it will be inserted with count
set to incr. Returns the unique ID assigned to this combination. Combination IDs are sequential
integers starting at 1.

$updateFromMatrix(int_cmbs, incr) This method is the same as $update() but for a numeric
matrix of integer combinations int_cmbs (coerced to integer by truncation). The matrix is arranged
with each column vector forming an integer combination. For example, the rows of the matrix could
be one row each from a set of keyLen rasters all read at the same extent and pixel resolution (i.e.,
row-by-row raster overlay). The method calls $update() on each combination (each column of
int_cmbs), incrementing count by incr for existing combinations, or inserting new combinations
with count set to incr. Returns a numeric vector of length ncol(int_cmbs) containing the IDs
assigned to the combinations.

$updateFromMatrixByRow(int_cmbs, incr) This method is the same as $updateFromMatrix()
above except the integer combinations are in rows of the matrix int_cmbs (columns are the vari-
ables). The method calls $update() on each combination (each row of int_cmbs), incrementing
count by incr for existing combinations, or inserting new combinations with count set to incr. Re-
turns a numeric vector of length nrow(int_cmbs) containing the IDs assigned to the combinations.

$asDataFrame() Returns the CmbTable as a data frame with column cmbid containing the unique
combination IDs, column count containing the counts of occurrences, and keyLen columns (with
names from varNames) containing the integer values comprising each unique combination.

$asMatrix() Returns the CmbTable as a matrix with column 1 (cmbid) containing the unique
combination IDs, column 2 (count) containing the counts of occurrences, and columns 3: keyLen+2
(with names from varNames) containing the integer values comprising each unique combination.

Examples
m <- matrix(c(1,2,3,1,2,3,4,5,6,1,3,2,4,5,6,1,1,1), 3, 6, byrow=FALSE)
rownames(m) <- c("layer1”, "layer2", "layer3")
print(m)

cmb <- new(CmbTable, 3, rownames(m))
cmb$updateFromMatrix(m, 1)
cmb$asDataFrame()
cmb$update(c(4,5,6), 1)
cmb$update(c(1,3,5), 1)
cmb$asDataFrame()

# same as above but matrix arranged with integer combinations in the rows
m <- matrix(c(1,2,3,1,2,3,4,5,6,1,3,2,4,5,6,1,1,1), 6, 3, byrow=TRUE)
colnames(m) <- c("Vv1", "v2", "V3")

print(m)

cmb <- new(CmbTable, 3)

cmb$updateFromMatrixByRow(m, 1)



combine

cmb$asDataFrame()

25

cmb$update(c(4,5,6), 1)
cmb$update(c(1,3,5), 1)

cmb$asDataFrame()

combine

Raster overlay for unique combinations

Description

combine () overlays multiple rasters so that a unique ID is assigned to each unique combination of
input values. The input raster layers typically have integer data types (floating point will be coerced
to integer by truncation), and must have the same projection, extent and cell size. Pixel counts
for each unique combination are obtained, and combination IDs are optionally written to an output

raster.

Usage

combine(
rasterfiles,

var.names = NULL,

bands = NULL,

dstfile = NULL,

fmt = NULL,

dtName = "UInt32",
options = NULL,

quiet = FALSE

Arguments

rasterfiles

var.names

bands

dstfile

fmt
dtName

Character vector of raster filenames to combine.

Character vector of length(rasterfiles) containing variable names for each
raster layer. Defaults will be assigned if var.names are omitted.

Numeric vector of length(rasterfiles) containing the band number to use
for each raster in rasterfiles. Band 1 will be used for each input raster if
bands are not specified.

Character. Optional output raster filename for writing the per-pixel combination
IDs. The output raster will be created (and overwritten if it already exists).

Character. Output raster format name (e.g., "GTiff" or "HFA").

Character. Output raster data type name. Combination IDs are sequential inte-
gers starting at 1. The data type for the output raster should be large enough to
accommodate the potential number of unique combinations of the input values
(e.g., "Ulnt16" or the default "Ulnt32").



26 combine
options Optional list of format-specific creation options in a vector of "NAME=VALUE"
pairs (e.g., options = c("COMPRESS=LZW") to set LZW compression during cre-
ation of a GTiff file).
quiet Logical scalar. If TRUE, progress bar and messages will be suppressed. Defaults
to FALSE.
Details

To specify input raster layers that are bands of a multi-band raster file, repeat the filename in
rasterfiles and provide the corresponding band numbers in bands. For example:

rasterfiles <- c("multi-band.tif”, "multi-band.tif”, "other.tif")
bands <- c(4, 5, 1)
var.names <- c("multi_b4", "multi_b5", "other")

rasterToVRT() provides options for virtual clipping, resampling and pixel alignment, which may
be helpful here if the input rasters are not already aligned on a common extent and cell size.

If an output raster of combination IDs is written, the user should verify that the number of combi-
nations obtained did not exceed the range of the output data type. Combination IDs are sequential
integers starting at 1. Typical output data types are the unsigned types: Byte (0 to 255), UInt16 (0
to 65,535) and Ulnt32 (the default, 0 to 4,294,967,295).

Value

A data frame with column cmbid containing the combination IDs, column count containing the
pixel counts for each combination, and length(rasterfiles) columns named var.names con-
taining the integer values comprising each unique combination.

See Also

CmbTable-class, GDALRaster-class, calc(), rasterToVRT()

buildRAT() to compute a table of the unique pixel values and their counts for a single raster layer

Examples

evt_file <- system.file("extdata/storml_evt.tif", package="gdalraster")
evc_file <- system.file("extdata/storml_evc.tif", package="gdalraster"”)
evh_file <- system.file("extdata/storml_evh.tif", package="gdalraster”)
rasterfiles <- c(evt_file, evc_file, evh_file)

var.names <- c("veg_type", "veg_cov", "veg_ht")
tbl <- combine(rasterfiles, var.names)
nrow(tbl)

tbl <- tbl[order(-tbl$count),]
head(tbl, n = 20)

# combine two bands from a multi-band file and write the combination IDs
# to an output raster

lcp_file <- system.file("extdata/storm_lake.lcp”, package="gdalraster")
rasterfiles <- c(lcp_file, lcp_file)

bands <- c(4, 5)



copyDatasetFiles 27

var.names <- c("fbfm", "tree_cov")

cmb_file <- paste@(tempdir(), "/", "fbfm_cov_cmbid.tif")

opt <- c("COMPRESS=LZW")

tbl <- combine(rasterfiles, var.names, bands, cmb_file, options = opt)
head(tbl)

ds <- new(GDALRaster, cmb_file)

ds$info()

ds$close()

deleteDataset(cmb_file)

copyDatasetFiles Copy the files of a dataset

Description

copyDatasetFiles() copies all the files associated with a dataset. Wrapper for GDALCopyDatasetFiles()
in the GDAL API.

Usage

copyDatasetFiles(new_filename, old_filename, format = "")

Arguments
new_filename New name for the dataset (copied to).
old_filename Old name for the dataset (copied from).

format Raster format short name (e.g., "GTiff"). If set to empty string "" (the default),
will attempt to guess the raster format from old_filename.

Value

Logical TRUE if no error or FALSE on failure.

Note

nn

If format is set to an empty string "" (the default) then the function will try to identify the driver
from old_filename. This is done internally in GDAL by invoking the Identify method of each
registered GDALDriver in turn. The first driver that successful identifies the file name will be re-
turned. An error is raised if a format cannot be determined from the passed file name.

See Also

GDALRaster-class, create(), createCopy(), deleteDataset (), renameDataset(), vsi_copy_file()



28

Examples

create

lcp_file <- system.file("extdata/storm_lake.lcp"”, package="gdalraster")
ds <- new(GDALRaster, lcp_file)

ds$getFilelList()

ds$close()

lep_tmp <- paste@(tempdir(), "/", "storm_lake_copy.lcp”)
copyDatasetFiles(lcp_tmp, lcp_file)

ds_copy <- new(GDALRaster, lcp_tmp)
ds_copy$getFileList()

ds_copy$close()

deleteDataset(lcp_tmp)

create

Create a new uninitialized raster

Description

create() makes an empty raster in the specified format.

Usage

create(format, dst_filename, xsize, ysize, nbands, dataType, options = NULL)

Arguments

format
dst_filename
xsize

ysize

nbands

dataType

options

Value

Raster format short name (e.g., "GTiff").
Filename to create.

Integer width of raster in pixels.

Integer height of raster in pixels.

Integer number of bands.

Character data type name. (e.g., common data types include Byte, Int16, Ulnt16,
Int32, Float32).

Optional list of format-specific creation options in a vector of "NAME=VALUE"
pairs (e.g., options = c("COMPRESS=LZW") to set LZW compression during cre-
ation of a GTiff file). The APPEND_SUBDATASET=YES option can be speci-
fied to avoid prior destruction of existing dataset.

Logical indicating success (invisible TRUE). An error is raised if the operation fails.

See Also

GDALRaster-class, createCopy(), rasterFromRaster(), getCreationOptions()



createColorRamp 29

Examples

new_file <- paste@(tempdir(), "/", "newdata.tif")

create(format="GTiff", dst_filename=new_file, xsize=143, ysize=107,
nbands=1, dataType="Int16")

ds <- new(GDALRaster, new_file, read_only=FALSE)

## EPSG:26912 - NAD83 / UTM zone 12N

ds$setProjection(epsg_to_wkt(26912))

gt <- c(323476.1, 30, 0, 5105082.0, @, -30)

ds$setGeoTransform(gt)

ds$setNoDataValue(band = 1, -9999)

ds$fillRaster(band = 1, -9999, 0)

#Ht ...

## close the dataset when done

ds$close()

deleteDataset(new_file)

createColorRamp Create a color ramp

Description

createColorRamp() is a wrapper for GDALCreateColorRamp() in the GDAL API. It automatically
creates a color ramp from one color entry to another. Output is an integer matrix in color table
format for use with GDALRaster$setColorTable().

Usage

createColorRamp(
start_index,
start_color,

end_index,
end_color,
palette_interp = "RGB"
)
Arguments
start_index Integer start index (raster value).
start_color Integer vector of length three or four. A color entry value to start the ramp (e.g.,
RGB values).
end_index Integer end index (raster value).
end_color Integer vector of length three or four. A color entry value to end the ramp (e.g.,

RGB values).

palette_interp One of "Gray", "RGB" (the default), "CMYK" or "HLS" describing interpreta-
tion of start_color and end_color values (see GDAL Color Table).


https://gdal.org/user/raster_data_model.html#color-table

30 createColorRamp

Value

Integer matrix with five columns containing the color ramp from start_index to end_index, with
raster index values in column 1 and color entries in columns 2:5).

Note

createColorRamp() could be called several times, using rbind() to combine multiple ramps into
the same color table. Possible duplicate rows in the resulting table are not a problem when used in
GDALRaster$setColorTable() (i.e., when end_color of one ramp is the same as start_color
of the next ramp).

See Also

GDALRaster$getColorTable(), GDALRaster$getPaletteInterp()

Examples

# create a color ramp for tree canopy cover percent

# band 5 of an LCP file contains canopy cover

lcp_file <- system.file("extdata/storm_lake.lcp”, package="gdalraster")
ds <- new(GDALRaster, lcp_file)

ds$getDescription(band=5)

ds$getMetadata(band=5, domain="")

ds$close()

# create a GTiff file with Byte data type for the canopy cover band
# recode nodata -9999 to 255
tcc_file <- calc(expr = "ifelse(CANCOV == -9999, 255, CANCOV)",
rasterfiles = lcp_file,
bands = 5,
var.names = "CANCOV",
fmt = "GTiff",
dtName = "Byte",
nodata_value = 255,
setRasterNodataValue = TRUE)

ds_tcc <- new(GDALRaster, tcc_file, read_only=FALSE)

# create a color ramp from @ to 100 and set as the color table
colors <- createColorRamp(start_index = 0,
start_color = c(211, 211, 211),
end_index = 100,
end_color = c(0, 100, 0))

print(colors)
ds_tcc$setColorTable(band=1, col_tbl=colors, palette_interp="RGB")
ds_tcc$setRasterColorInterp(band=1, col_interp="Palette")

# close and re-open the dataset in read_only mode
ds_tcc$open(read_only=TRUE)



createCopy 31

plot_raster(ds_tcc, interpolate=FALSE, legend=TRUE,
main="Storm Lake Tree Canopy Cover (%)")
ds_tcc$close()

deleteDataset(tcc_file)

createCopy Create a copy of a raster

Description

createCopy () copies araster dataset, optionally changing the format. The extent, cell size, number
of bands, data type, projection, and geotransform are all copied from the source raster.

Usage

createCopy(
format,
dst_filename,
src_filename,
strict = FALSE,
options = NULL,
quiet = FALSE

Arguments

format Format short name for the output raster (e.g., "GTiff" or "HFA").
dst_filename Filename to create.
src_filename Filename of source raster.

strict Logical. TRUE if the copy must be strictly equivalent, or more normally FALSE
indicating that the copy may adapt as needed for the output format.

options Optional list of format-specific creation options in a vector of "NAME=VALUE"
pairs (e.g., options = c("COMPRESS=LZW") to set LZW compression during cre-
ation of a GTiff file). The APPEND_SUBDATASET=YES option can be speci-
fied to avoid prior destruction of existing dataset.

quiet Logical scalar. If TRUE, a progress bar will be not be displayed. Defaults to
FALSE.

Value

Logical indicating success (invisible TRUE). An error is raised if the operation fails.

See Also

GDALRaster-class, create(), rasterFromRaster(), getCreationOptions(), translate()



32 DEFAULT _DEM_PROC

Examples

lcp_file <- system.file("extdata/storm_lake.lcp”, package="gdalraster")
tif_file <- paste@(tempdir(), "/", "storml_lndscp.tif")
opt <- c("COMPRESS=LZW")
createCopy(format="GTiff", dst_filename=tif_file, src_filename=1lcp_file,
options=opt)
file.size(lcp_file)
file.size(tif_file)
ds <- new(GDALRaster, tif_file, read_only=FALSE)
ds$getMetadata(band=0, domain="IMAGE_STRUCTURE")
for (band in 1:ds$getRasterCount())
ds$setNoDataValue(band, -9999)
ds$getStatistics(band=1, approx_ok=FALSE, force=TRUE)
ds$close()

deleteDataset(tif_file)

DEFAULT_DEM_PROC List of default DEM processing options

Description

These values are used in dem_proc() as the default processing options:

list(

hillshade = c("-z", "1", "-s", "1", "-az", "315",
"-alt", "45", "-alg", "Horn",
"-combined”, "-compute_edges"),

slope = c("-s", "1", "-alg"”, "Horn", "-compute_edges"),

aspect = c("-alg", "Horn", "-compute_edges"),

color_relief = character(),

TRI = c("-alg", "Riley", "-compute_edges"),

TPI = c("-compute_edges"),

roughness = c("-compute_edges")

)

Usage
DEFAULT_DEM_PROC

Format

An object of class 1ist of length 7.

See Also

dem_proc()

https://gdal.org/programs/gdaldem.html for a description of all available command-line op-
tions for each processing mode


https://gdal.org/programs/gdaldem.html

DEFAULT _NODATA 33

DEFAULT_NODATA List of default nodata values by raster data type

Description

These values are currently used in gdalraster when a nodata value is needed but has not been
specified:

list("Byte” = 255, "Int8” = -128,
"UInt16” = 65535, "Int16” = -32767,
"UInt32" = 4294967293, "Int32" = -2147483647,
"Float32” = -99999.0, "Float64” = -99999.0)

Usage
DEFAULT_NODATA

Format

An object of class 1ist of length 8.

deleteDataset Delete named dataset

Description

deleteDataset () will attempt to delete the named dataset in a format specific fashion. Full fea-
tured drivers will delete all associated files, database objects, or whatever is appropriate. The de-
fault behavior when no format specific behavior is provided is to attempt to delete all the files
that would be returned by GDALRaster$getFileList() on the dataset. The named dataset should
not be open in any existing GDALRaster objects when deleteDataset() is called. Wrapper for
GDALDeleteDataset() in the GDAL APIL.

Usage
deleteDataset(filename, format = "")
Arguments
filename Filename to delete (should not be open in a GDALRaster object).
format Raster format short name (e.g., "GTift"). If set to empty string "" (the default),
will attempt to guess the raster format from filename.
Value

Logical TRUE if no error or FALSE on failure.



34 dem_proc

Note

nn

If format is set to an empty string "" (the default) then the function will try to identify the driver
from filename. This is done internally in GDAL by invoking the Identify method of each regis-
tered GDALDriver in turn. The first driver that successful identifies the file name will be returned.
An error is raised if a format cannot be determined from the passed file name.

See Also

GDALRaster-class, create(), createCopy(), copyDatasetFiles(), renameDataset ()

Examples

b5_file <- system.file("extdata/sr_b5_20200829.tif", package="gdalraster"”)
b5_tmp <- paste@(tempdir(), "/", "b5_tmp.tif")
file.copy(b5_file, b5_tmp)

ds <- new(GDALRaster, b5_tmp)

ds$buildOverviews ("BILINEAR", levels = c(2, 4, 8), bands = c(1))
files <- ds$getFilelList()

print(files)

ds$close()

file.exists(files)

deleteDataset(b5_tmp)

file.exists(files)

dem_proc GDAL DEM processing

Description

dem_proc() generates DEM derivatives from an input elevation raster. This function is a wrap-
per for the gdaldem command-line utility. See https://gdal.org/programs/gdaldem.html for
details.

Usage

dem_proc(
mode,
srcfile,
dstfile,
mode_options = DEFAULT_DEM_PROC[[model],
color_file = NULL,
quiet = FALSE


https://gdal.org/programs/gdaldem.html

displayRAT 35

Arguments
mode Character. Name of the DEM processing mode. One of hillshade, slope, aspect,
color-relief, TRI, TPI or roughness.
srcfile Filename of the source elevation raster.
dstfile Filename of the output raster.

mode_options An optional character vector of command-line options (see DEFAULT_DEM_PROC
for default values).

color_file Filename of a text file containing lines formatted as: "elevation_value red green
blue". Only used when mode = "color-relief”.
quiet Logical scalar. If TRUE, a progress bar will not be displayed. Defaults to FALSE.
Value

Logical indicating success (invisible TRUE). An error is raised if the operation fails.

Note

Band 1 of the source elevation raster is read by default, but this can be changed by including a -b
command-line argument in mode_options. See the documentation for gdaldem for a description of
all available options for each processing mode.

Examples

elev_file <- system.file("extdata/storml_elev.tif"”, package="gdalraster")
slp_file <- paste@(tempdir(), "/", "storml_slp.tif")
dem_proc("slope”, elev_file, slp_file)

deleteDataset(slp_file)

displayRAT Display a GDAL Raster Attribute Table

Description

displayRAT() generates a presentation table. Colors are shown if the Raster Attribute Table con-
tains RGB columns. This function requires package gt.

Usage
displayRAT(tbl, title = "Raster Attribute Table")

Arguments

tbl A data frame formatted as a GDAL RAT (e.g., as returned by buildRAT() or
GDALRaster$getDefaultRAT()).

title Character string to be used in the table title.


https://gdal.org/programs/gdaldem.html

36 dump_open_datasets

Value

An object of class "gt_tbl" (i.e., a table created with gt: :gt()).

See Also
buildRAT (), GDALRaster$getDefaul tRAT()

vignette("raster-attribute-tables"”)

Examples

# see examples for ‘buildRAT()*

dump_open_datasets Report open datasets

Description

dump_open_datasets() dumps a list of all open datasets (shared or not) to the console. This
function is primarily intended to assist in debugging "dataset leaks" and reference counting issues.
The information reported includes the dataset name, referenced count, shared status, driver name,
size, and band count. This a wrapper for GDALDumpOpenDatasets() with output to the console.

Usage

dump_open_datasets()

Value

Number of open datasets.

Examples

elev_file <- system.file("extdata/storml_elev.tif"”, package="gdalraster")

ds <- new(GDALRaster, elev_file)

dump_open_datasets()

ds2 <- new(GDALRaster, elev_file)

dump_open_datasets()

# open without using shared mode

ds3 <- new(GDALRaster, elev_file, read_only = TRUE,
open_options = NULL, shared = FALSE)

dump_open_datasets()

ds$close()

dump_open_datasets()

ds2$close()

dump_open_datasets()

ds3$close()

dump_open_datasets()



epsg_to_wkt 37

epsg_to_wkt Convert spatial reference from EPSG code to OGC Well Known Text

Description

epsg_to_wkt() exports the spatial reference for an EPSG code to WKT format.

Usage

epsg_to_wkt(epsg, pretty = FALSE)

Arguments
epsg Integer EPSG code.
pretty Logical. TRUE to return a nicely formatted WKT string for display to a person.
FALSE for a regular WKT string (the default).
Details

As of GDAL 3.0, the default format for WKT export is OGC WKT 1. The WKT version can be
overridden by using the OSR_WKT_FORMAT configuration option (see set_config_option()).

Valid values are one of: SFSQL, WKT1_SIMPLE, WKT1, WKT1_GDAL, WKT1_ESRI, WKT2_2015,

WKT2_2018, WKT2, DEFAULT. If SFSQL, a WKT1 string without AXIS, TOWGS84, AUTHOR-
ITY or EXTENSION node is returned. If WKT1_SIMPLE, a WKT1 string without AXIS, AU-
THORITY or EXTENSION node is returned. WKT1 is an alias of WKT1_GDAL. WKT2 will
default to the latest revision implemented (currently WKT2_2018). WKT2_2019 can be used as an
alias of WKT2_2018 since GDAL 3.2

Value

Character string containing OGC WKT.

See Also

srs_to_wkt()

Examples

epsg_to_wkt(5070)
writeLines(epsg_to_wkt(5070, pretty=TRUE))
set_config_option("OSR_WKT_FORMAT", "WKT2")
writeLines(epsg_to_wkt(5070@, pretty=TRUE))
set_config_option(”"OSR_WKT_FORMAT", "")



38 fillNodata

fillNodata Fill selected pixels by interpolation from surrounding areas

Description

fillNodata() is a wrapper for GDALFillNodata() in the GDAL Algorithms API. This algorithm
will interpolate values for all designated nodata pixels (pixels having an intrinsic nodata value,
or marked by zero-valued pixels in the optional raster specified in mask_file). For each nodata
pixel, a four direction conic search is done to find values to interpolate from (using inverse distance
weighting). Once all values are interpolated, zero or more smoothing iterations (3x3 average filters
on interpolated pixels) are applied to smooth out artifacts.

Usage

fillNodata(
filename,
band,
mask_file = "",
max_dist = 100,
smooth_iterations = oL,
quiet = FALSE

)
Arguments
filename Filename of input raster in which to fill nodata pixels.
band Integer band number to modify in place.
mask_file Optional filename of raster to use as a validity mask (band 1 is used, zero marks
nodata pixels, non-zero marks valid pixels).
max_dist Maximum distance (in pixels) that the algorithm will search out for values to

interpolate (100 pixels by default).

smooth_iterations
The number of 3x3 average filter smoothing iterations to run after the interpola-
tion to dampen artifacts (0 by default).

quiet Logical scalar. If TRUE, a progress bar will not be displayed. Defaults to FALSE.

Value

Logical indicating success (invisible TRUE). An error is raised if the operation fails.

Note

The input raster will be modified in place. It should not be open in a GDALRaster object while
processing with fillNodata().



footprint 39

Examples

## fill nodata edge pixels in the elevation raster
elev_file <- system.file("extdata/storml_elev.tif"”, package="gdalraster")

## get count of nodata
tbl <- buildRAT(elev_file)
head(tbl)
tbl[is.na(tbl1$VALUE), ]

## make a copy that will be modified

mod_file <- paste@(tempdir(), "/", "storml_elev_fill.tif")
file.copy(elev_file, mod_file)

fillNodata(mod_file, band=1)

mod_tbl = buildRAT(mod_file)

head(mod_tbl)

mod_tbl[is.na(mod_tbl1$VALUE), ]

deleteDataset(mod_file)

footprint Compute footprint of a raster

Description

footprint() is a wrapper of the gdal_footprint command-line utility (see https://gdal.org/
programs/gdal_footprint.html). The function can be used to compute the footprint of a raster
file, taking into account nodata values (or more generally the mask band attached to the raster
bands), and generating polygons/multipolygons corresponding to areas where pixels are valid, and
write to an output vector file. Refer to the GDAL documentation at the URL above for a list of
command-line arguments that can be passed in c1_arg. Requires GDAL >= 3.8.

Usage

footprint(src_filename, dst_filename, cl_arg = NULL)

Arguments

src_filename Character string. Filename of the source raster.

dst_filename  Character string. Filename of the destination vector. If the file and the out-
put layer exist, the new footprint is appended to them, unless the —overwrite
command-line argument is used.

cl_arg Optional character vector of command-line arguments for gdal_footprint.


https://gdal.org/programs/gdal_footprint.html
https://gdal.org/programs/gdal_footprint.html

40 GDALRaster-class

Details

Post-vectorization geometric operations are applied in the following order:

* optional splitting (-split_polys)

* optional densification (-densify)

* optional reprojection (-t_srs)

* optional filtering by minimum ring area (-min_ring_area)
* optional application of convex hull (-convex_hull)

* optional simplification (-simplify)

¢ limitation of number of points (-max_points)

Value

Logical indicating success (invisible TRUE). An error is raised if the operation fails.

See Also

polygonize()

Examples

evt_file <- system.file("extdata/storml_evt.tif"”, package="gdalraster")
out_file <- paste@(tempdir(), "/", "storml.geojson")

# Requires GDAL >= 3.8

if (as.integer(gdal_version()[2]) >= 3080000) {
# command-line arguments for gdal_footprint
args <- c("-t_srs", "EPSG:4326")
footprint(evt_file, out_file, args)

deleteDataset(out_file)

GDALRaster-class Class encapsulating a raster dataset and associated band objects

Description

GDALRaster provides an interface for accessing a raster dataset via GDAL and calling methods on
the underlying GDALDataset, GDALDriver and GDALRasterBand objects. See https://gdal.org/
api/index.html for details of the GDAL Raster API.


https://gdal.org/api/index.html
https://gdal.org/api/index.html

GDALRaster-class

Arguments

filename

read_only
open_options

shared

Value

An object of class

41

Character string containing the file name of a raster dataset to open, as full path
or relative to the current working directory. In some cases, filename may not re-
fer to a local file system, but instead contain format-specific information on how
to access a dataset such as database connection string, URL, /vsiPREFIX/, etc.
(see GDAL raster format descriptions: https://gdal.org/drivers/raster/
index.html).

Logical. TRUE to open the dataset read-only (the default), or FALSE to open with
write access.

Optional character vector of NAME=VALUE pairs specifying dataset open options.

Logical. FALSE to open the dataset without using shared mode. Default is TRUE
(see Note).

GDALRaster which contains a pointer to the opened dataset, and methods that

operate on the dataset as described in Details. GDALRaster is a C++ class exposed directly to R
(via RCPP_EXPOSED_CLASS). Fields and methods of the class are accessed using the $ operator. The
read/write fields can be used for per-object settings.

Usage

## Constructors

# read-only by default:
ds <- new(GDALRaster, filename)
# for update access:

ds <- new(GDALRaster, filename, read_only

FALSE)

# to use dataset open options:
ds <- new(GDALRaster, filename, read_only = TRUE|FALSE, open_options)
# to open without shared mode:

new(GDALRaster,

filename, read_only, open_options, shared = FALSE)

## Read/write fields (see Details)

ds$infoOptions
ds$quiet

ds$readByteAsRaw

## Methods (see

Details)

ds$getFilename()
ds$open(read_only)

ds$isOpen()

ds$getFileList()

ds$info()
ds$infoAsJSON()

ds$getDriverShortName()


https://gdal.org/drivers/raster/index.html
https://gdal.org/drivers/raster/index.html

42

GDALRaster-class

ds$getDriverLongName ()

ds$getRasterXSize()
ds$getRasterYSize()
ds$getGeoTransform()
ds$setGeoTransform(transform)
ds$getProjection()
ds$getProjectionRef ()
ds$setProjection(projection)
ds$bbox ()

ds$res()

ds$dim()
ds$get_pixel_line(xy)

ds$getRasterCount()

ds$getDescription(band)
ds$setDescription(band, desc)
ds$getBlockSize(band)
ds$getActualBlockSize(band, xblockoff, yblockoff)
ds$getOverviewCount (band)
ds$buildOverviews(resampling, levels, bands)
ds$getDataTypeName (band)
ds$getNoDataValue(band)
ds$setNoDataValue(band, nodata_value)
ds$deleteNoDataValue(band)
ds$getUnitType(band)

ds$setUnitType(band, unit_type)
ds$getScale(band)

ds$setScale(band, scale)

ds$getOffset(band)

ds$setOffset(band, offset)
ds$getRasterColorInterp(band)
ds$setRasterColorInterp(band, col_interp)

ds$getMinMax(band, approx_ok)

ds$getStatistics(band, approx_ok, force)

ds$clearStatistics()

ds$getHistogram(band, min, max, num_buckets, incl_out_of_range, approx_ok)
ds$getDefaultHistogram(band, force)

ds$getMetadata(band, domain)

ds$getMetadataltem(band, mdi_name, domain)
ds$setMetadataltem(band, mdi_name, mdi_value, domain)
ds$getMetadataDomainList (band)

ds$read(band, xoff, yoff, xsize, ysize, out_xsize, out_ysize)
ds$write(band, xoff, yoff, xsize, ysize, rasterData)
ds$fillRaster(value, ivalue)



GDALRaster-class 43

ds$getColorTable(band)
ds$getPaletteInterp(band)
ds$setColorTable(band, col_tbl, palette_interp)

ds$getDefaultRAT (band)
ds$setDefaul tRAT(band, df)

ds$flushCache()
ds$getChecksum(band, xoff, yoff, xsize, ysize)

ds$close()

Details

new(GDALRaster, filename, read_only) Constructor. Returns an object of class GDALRaster.
read_only defaults to TRUE if not specified.

new(GDALRaster, filename, read_only, open_options) Alternate constructor for passing dataset
open_options, a character vector of NAME=VALUE pairs. read_only is required for this form of the
constructor, TRUE for read-only, or FALSE to open with write access. Returns an object of class
GDALRaster.

new(GDALRaster, filename, read_only, open_options, shared) Alternate constructor for spec-
ifying the shared mode for dataset opening. shared defaults to TRUE but can be set to FALSE
with this constructor (see Note). All parameters are required with this form of the constructor, but
open_options can be NULL. Returns an object of class GDALRaster.

$infoOptions Read/write field. A character vector of command-line arguments to control the
output of $info() and $infoAsJSON() (see below). Defaults to character(@). Can be set to
a vector of strings specifying arguments to the gdalinfo command-line utility, e.g., c("-nomd",
"-norat”, "-noct"). Restore the default by setting to empty string ("") or character ().

$quiet Read/write field. A logical value, FALSE by default. This field can be set to TRUE which
will suppress various messages as well as progress reporting for potentially long-running processes
such as building overviews and computation of statistics and histograms.

$readByteAsRaw Read/write field. A logical value, FALSE by default. This field can be set to TRUE
which will affect the data type returned by $read() and read_ds(). When the underlying band
data type is 'Byte’ and readByteAsRaw is TRUE the output type will be raw rather than integer. See
also the as_raw argument to read_ds () to control this in a non-persistent setting. If the underlying
band data type is not Byte this setting has no effect.

$getFilename () Returns a character string containing the filename associated with this GDALRaster
object (filename originally used to open the dataset).

$open(read_only) (Re-)opens the raster dataset on the existing filename. Use this method to open
a dataset that has been closed using $close(). May be used to re-open a dataset with a different
read/write access (read_only set to TRUE or FALSE). The method will first close an open dataset, so
it is not required to call $close() explicitly in this case. No return value, called for side effects.

$isOpen() Returns logical indicating whether the associated raster dataset is open.



44

GDALRaster-class

$getFilelList () Returns a character vector of files believed to be part of this dataset. If it returns
an empty string ("") it means there is believed to be no local file system files associated with the
dataset (e.g., a virtual file system). The returned filenames will normally be relative or absolute
paths depending on the path used to originally open the dataset.

$info() Prints various information about the raster dataset to the console (no return value, called
for that side effect only). Equivalent to the output of the gdalinfo command-line utility (gdalinfo
filename, if using the default infoOptions). See the field $infoOptions above for setting the
arguments to gdalinfo.

$infoAsJSON() Returns information about the raster dataset as a JSON-formatted string. Equiva-
lent to the output of the gdalinfo command-line utility (gdalinfo -json filename, if using the
default infoOptions). See the field $infoOptions above for setting the arguments to gdalinfo.

$getDriverShortName () Returns the short name of the raster format driver.
$getDriverLongName () Returns the long name of the raster format driver.
$getRasterXSize() Returns the number of pixels along the x dimension.
$getRasterYSize() Returns the number of pixels along the y dimension.

$getGeoTransform() Returns the affine transformation coefficients for transforming between pixel/line
raster space (column/row) and projection coordinate space (geospatial x/y). The return value is a
numeric vector of length six. See https://gdal.org/tutorials/geotransforms_tut.html for
details of the affine transformation. With I-based indexing in R, the geotransform vector contains

(in map units of the raster spatial reference system):

GT[1] x-coordinate of upper-left corner of the upper-left pixel
GT[2] x-component of pixel width
GT[3] row rotation (zero for north-up raster)

column rotation (zero for north-up raster)

]
]
]
GT[4] y-coordinate of upper-left corner of the upper-left pixel
]
] y-component of pixel height (negative for north-up raster)

$setGeoTransform(transform) Sets the affine transformation coefficients on this dataset. transform
is a numeric vector of length six. Returns logical TRUE on success or FALSE if the geotransform
could not be set.

$getProjection() Returns the coordinate reference system of the raster as an OGC WKT format
string. Equivalent to ds$getProjectionRef ().

$getProjectionRef () Returns the coordinate reference system of the raster as an OGC WKT
format string. An empty string is returned when a projection definition is not available.

$setProjection(projection) Sets the projection reference for this dataset. projection is a
string in OGC WKT format. Returns logical TRUE on success or FALSE if the projection could not
be set.

$bbox () Returns a numeric vector of length four containing the bounding box (xmin, ymin, xmax,
ymax) assuming this is a north-up raster.

$res() Returns a numeric vector of length two containing the resolution (pixel width, pixel height
as positive values) assuming this is a north-up raster.

$dim() Returns an integer vector of length three containing the raster dimensions. Equivalent to:
c(ds$getRasterXSize(), ds$getRasterYSize(), ds$getRasterCount())


https://gdal.org/tutorials/geotransforms_tut.html

GDALRaster-class 45

$get_pixel_line() Converts geospatial coordinates to pixel/line (raster column/row numbers).
Xy is a numeric matrix of geospatial x,y coordinates in the same spatial reference system as the
raster (or two-column data frame that will be coerced to numeric matrix). Returns an integer matrix
of raster pixel/line. See the stand-alone function of the same name (get_pixel_line()) for more
info and examples.

$getRasterCount () Returns the number of raster bands on this dataset. For the methods described
below that operate on individual bands, the band argument is the integer band number (1-based).

$getDescription(band) Returns a string containing the description for band. An empty string
is returned if no description is set for the band. (Setting band = @ will return the dataset-level
description.)

$setDescription(band, desc) Sets a description for band. desc is the character string to set. No
return value.

$getBlockSize(band) Returns an integer vector of length two (xsize, ysize) containing the "natu-
ral" block size of band. GDAL has a concept of the natural block size of rasters so that applications
can organize data access efficiently for some file formats. The natural block size is the block size
that is most efficient for accessing the format. For many formats this is simply a whole row in which
case block xsize is the same as $getRasterXSize() and block ysize is 1. However, for tiled images
block size will typically be the tile size. Note that the X and Y block sizes don’t have to divide the
image size evenly, meaning that right and bottom edge blocks may be incomplete.

$getActualBlockSize(band, xblockoff, yblockoff) Returns an integer vector of length two
(xvalid, yvalid) containing the actual block size for a given block offset in band. Handles partial
blocks at the edges of the raster and returns the true number of pixels. xblockoff is an integer
scalar, the horizontal block offset for which to calculate the number of valid pixels, with zero
indicating the left most block, 1 the next block, etc. yblockoff is likewise the vertical block
offset, with zero indicating the top most block, 1 the next block, etc.

$getOverviewCount (band) Returns the number of overview layers (a.k.a. pyramids) available for
band.

$buildOverviews(resampling, levels, bands) Build one or more raster overview images us-
ing the specified downsampling algorithm. resampling is a character string, one of AVERAGE,
AVERAGE_MAGPHASE, RMS, BILINEAR, CUBIC, CUBICSPLINE, GAUSS, LANCZOS, MODE, NEAREST or
NONE. levels is an integer vector giving the list of overview decimation factors to build (e.g.,
c(2, 4, 8)), or 0 to delete all overviews (at least for external overviews (.ovr) and GTiff internal
overviews). bands is an integer vector giving a list of band numbers to build overviews for, or @ to
build for all bands. Note that for GTiff, overviews will be created internally if the dataset is open
in update mode, while external overviews (.ovr) will be created if the dataset is open read-only.
External overviews created in GTiff format may be compressed using the COMPRESS_OVERVIEW
configuration option. All compression methods supported by the GTiff driver are available (e.g.,
set_config_option("COMPRESS_OVERVIEW", "LZW")). Since GDAL 3.6, COMPRESS_OVERVIEW is
honoured when creating internal overviews of GTiff files. The GDAL documentation for gdaladdo
command-line utility describes additional configuration for overview building. See also set_config_option().
No return value, called for side effects.

$getDataTypeName (band) Returns the name of the pixel data type for band. The possible data
types are:

Unknown Unknown or unspecified type
Byte 8-bit unsigned integer


https://gdal.org/programs/gdaladdo.html

46

GDALRaster-class

Int8  8-bit signed integer (GDAL >= 3.7)
Ulntl6  16-bit unsigned integer
Intl6  16-bit signed integer
Ulnt32  32-bit unsigned integer
Int32  32-bit signed integer
Ulnt64  64-bit unsigned integer (GDAL >=3.5)
Int64  64-bit signed integer (GDAL >= 3.5)
Float32 32-bit floating point
Float64  64-bit floating point
CIntl6  Complex Int16
CInt32 Complex Int32
CFloat32 Complex Float32
CFloat64 Complex Float64

Some raster formats including GeoTIFF ("GTiff") and Erdas Imagine .img ("HFA") support sub-
byte data types. Rasters can be created with these data types by specifying the "NBITS=n" creation
option where n=1...7 for GTiff or n=1/2/4 for HFA. In these cases, $getDataTypeName() reports
the apparent type "Byte”. GTiff also supports n=9...15 (Ulnt16 type) and n=17...31 (UInt32 type),
and n=16 is accepted for Float32 to generate half-precision floating point values.

$getNoDataValue(band) Returns the nodata value for band if one exists. This is generally a
special value defined to mark pixels that are not valid data. NA is returned if a nodata value is not
defined for band. Not all raster formats support a designated nodata value.

$setNoDataValue(band, nodata_value) Sets the nodata value for band. nodata_value is a nu-
meric value to be defined as the nodata marker. Depending on the format, changing the nodata
value may or may not have an effect on the pixel values of a raster that has just been created (often
not). It is thus advised to call $fillRaster() explicitly if the intent is to initialize the raster to the
nodata value. In any case, changing an existing nodata value, when one already exists on an initial-
ized dataset, has no effect on the pixels whose values matched the previous nodata value. Returns
logical TRUE on success or FALSE if the nodata value could not be set.

$deleteNoDataValue(band) Removes the nodata value for band. This affects only the definition
of the nodata value for raster formats that support one (does not modify pixel values). No return
value. An error is raised if the nodata value cannot be removed.

$getUnitType(band) Returns the name of the unit type of the pixel values for band (e.g., "m" or
"ft"). An empty string "" is returned if no units are available.

$setUnitType(band, unit_type) Sets the name of the unit type of the pixel values for band.
unit_type should be one of empty string "" (the default indicating it is unknown), "m" indicating
meters, or "ft" indicating feet, though other nonstandard values are allowed. Returns logical TRUE
on success or FALSE if the unit type could not be set.

$getScale(band) Returns the pixel value scale (units value = (raw value * scale) + offset) for
band. This value (in combination with the $getOffset () value) can be used to transform raw pixel
values into the units returned by $getUnitType(). Returns NA if a scale value is not defined for this
band.

$setScale(band, scale) Sets the pixel value scale (units value = (raw value * scale) + offset)
for band. Many raster formats do not implement this method. Returns logical TRUE on success or
FALSE if the scale could not be set.



GDALRaster-class 47

$getOffset(band) Returns the pixel value offset (units value = (raw value * scale) + offset) for
band. This value (in combination with the $getScale() value) can be used to transform raw pixel
values into the units returned by $getUnitType (). Returns NA if an offset value is not defined for
this band.

$setOffset(band, offset) Sets the pixel value offset (units value = (raw value * scale) + offset)
for band. Many raster formats do not implement this method. Returns logical TRUE on success or
FALSE if the offset could not be set.

$getRasterColorInterp(band) Returns a string describing the color interpretation for band. The
color interpretation values and their meanings are:

Undefined Undefined
Gray Grayscale
Palette  Paletted (see associated color table)
Red Red band of RGBA image
Green Green band of RGBA image
Blue Blue band of RGBA image
Alpha  Alpha (O=transparent, 255=opaque)
Hue Hue band of HLS image
Saturation  Saturation band of HLS image
Lightness Lightness band of HLS image
Cyan Cyan band of CMYK image
Magenta Magenta band of CMYK image
Yellow Yellow band of CMYK image
Black Black band of CMYK image
YCbCr_Y Y Luminance
YCbCr_Cb  Cb Chroma
YCbCr_Cr Cr Chroma

$setRasterColorInterp(band, col_interp) Sets the color interpretation for band. See above
for the list of valid values for col_interp (passed as a string).

$getMinMax(band, approx_ok) Returns a numeric vector of length two containing the min/max
values for band. If approx_ok is TRUE and the raster format knows these values intrinsically then
those values will be returned. If that doesn’t work, a subsample of blocks will be read to get an
approximate min/max. If the band has a nodata value it will be excluded from the minimum and
maximum. If approx_ok is FALSE, then all pixels will be read and used to compute an exact range.

$getStatistics(band, approx_ok, force) Returns a numeric vector of length four containing
the minimum, maximum, mean and standard deviation of pixel values in band (excluding nodata
pixels). Some raster formats will cache statistics allowing fast retrieval after the first request.

approx_ok:

» TRUE: Approximate statistics are sufficient, in which case overviews or a subset of raster tiles
may be used in computing the statistics.

* FALSE: All pixels will be read and used to compute statistics (if computation is forced).
force:

* TRUE: The raster will be scanned to compute statistics. Once computed, statistics will gen-
erally be “set” back on the raster band if the format supports caching statistics. (Note:



GDALRaster-class

ComputeStatistics() in the GDAL API is called automatically here. This is a change in
the behavior of GetStatistics() in the API, to a definitive force.)

* FALSE: Results will only be returned if it can be done quickly (i.e., without scanning the
raster, typically by using pre-existing STATISTICS _xxx metadata items). NAs will be returned
if statistics cannot be obtained quickly.

$clearStatistics() Clear statistics. Only implemented for now in PAM supported datasets (Per-
sistable Auxiliary Metadata via .aux.xml file). GDAL >=3.2.

$getHistogram(band, min, max, num_buckets, incl_out_of_range, approx_ok)

Computes raster histogram for band. min is the lower bound of the histogram. max is the upper
bound of the histogram. num_buckets is the number of buckets to use (bucket size is (max - min)
/ num_buckets). incl_out_of_range is a logical scalar: if TRUE values below the histogram range
will be mapped into the first bucket and values above will be mapped into the last bucket, if FALSE
out of range values are discarded. approx_ok is a logical scalar: TRUE if an approximate histogram
is OK (generally faster), or FALSE for an exactly computed histogram. Returns the histogram as a
numeric vector of length num_buckets.

$getDefaultHistogram(band, force) Returns a default raster histogram for band. In the GDAL
API, this method is overridden by derived classes (such as GDALPamRasterBand, VRTDataset,
HFADataset...) that may be able to fetch efficiently an already stored histogram. force is a logical
scalar: TRUE to force the computation of a default histogram; or if FALSE and no default histogram
is available, a warning is emitted and the returned list has a O-length histogram vector. Returns a list
of length four containing named elements $min (lower bound), $max (upper bound), $num_buckets
(number of buckets), and $histogram (a numeric vector of length num_buckets).

$getMetadata(band, domain) Returns a character vector of all metadata name=value pairs that
exist in the specified domain, or "" (empty string) if there are no metadata items in domain (meta-
data in the context of the GDAL Raster Data Model: https://gdal.org/user/raster_data_
model.html). Set band =0 to retrieve dataset-level metadata, or to an integer band number to
retrieve band-level metadata. Set domain ="" (empty string) to retrieve metadata in the default
domain.

$getMetadataltem(band, mdi_name, domain) Returns the value of a specific metadata item named
mdi_name in the specified domain, or "" (empty string) if no matching item is found. Set band = @
to retrieve dataset-level metadata, or to an integer band number to retrieve band-level metadata. Set
domain ="" (empty string) to retrieve an item in the default domain.

$setMetadataltem(band, mdi_name, mdi_value, domain) Sets the value (mdi_value) of a spe-
cific metadata item named mdi_name in the specified domain. Set band =@ to set dataset-level
metadata, or to an integer band number to set band-level metadata. Set domain ="" (empty string)
to set an item in the default domain.

$getMetadataDomainList(band) Returns a character vector of metadata domains or "" (empty
string). Set band = @ to retrieve dataset-level domains, or to an integer band number to retrieve
band-level domains.

$read(band, xoff, yoff, xsize, ysize, out_xsize, out_ysize) Reads aregion of raster data
from band. The method takes care of pixel decimation / replication if the output size (out_xsize
* out_ysize) is different than the size of the region being accessed (xsize x ysize). xoff is the
pixel (column) offset to the top left corner of the region of the band to be accessed (zero to start
from the left side). yoff is the line (row) offset to the top left corner of the region of the band to
be accessed (zero to start from the top). Note that raster row/column offsets use 0-based indexing.


https://gdal.org/user/raster_data_model.html
https://gdal.org/user/raster_data_model.html

GDALRaster-class 49

xsize is the width in pixels of the region to be accessed. ysize is the height in pixels of the region
to be accessed. out_xsize is the width of the output array into which the desired region will be
read (typically the same value as xsize). out_ysize is the height of the output array into which the
desired region will be read (typically the same value as ysize). Returns a numeric or complex vector
containing the values that were read. It is organized in left to right, top to bottom pixel order. NA
will be returned in place of the nodata value if the raster dataset has a nodata value defined for this
band. Data are read as R integer type when possible for the raster data type (Byte, Int8, Int16,
UInt16, Int32), otherwise as type double (UInt32, Float32, Float64). No rescaling of the data
is performed (see $getScale() and $getOffset () above). An error is raised if the read operation
fails. See also the setting $readByteAsRaw above.

$write(band, xoff, yoff, xsize, ysize, rasterData) Writes a region of raster data to band.
xoff is the pixel (column) offset to the top left corner of the region of the band to be accessed
(zero to start from the left side). yoff is the line (row) offset to the top left corner of the region
of the band to be accessed (zero to start from the top). Note that raster row/column offsets use
0-based indexing. xsize is the width in pixels of the region to write. ysize is the height in pixels
of the region to write. rasterData is a numeric or complex vector containing values to write. It is
organized in left to right, top to bottom pixel order. NA in rasterData should be replaced with a
suitable nodata value prior to writing (see $getNoDataValue() and $setNoDataValue() above).
An error is raised if the operation fails (no return value).

$getColorTable(band) Returns the color table associated with band, or NULL if there is no asso-
ciated color table. The color table is returned as an integer matrix with five columns. To associate a
color with a raster pixel, the pixel value is used as a subscript into the color table. This means that the
colors are always applied starting at zero and ascending (see GDAL Color Table). Column 1 con-
tains the pixel values. Interpretation of columns 2:5 depends on the value of $getPaletteInterp()
(see below). For "RGB", columns 2:5 contain red, green, blue, alpha as 0-255 integer values.

$getPalettelnterp(band) If band has an associated color table, this method returns a character
string with the palette interpretation for columns 2:5 of the table. An empty string ("") is returned
if band does not have an associated color table. The palette interpretation values and their meanings
are:

Gray column 2 contains grayscale values (columns 3:5 unused)
RGB columns 2:5 contain red, green, blue, alpha
CMYK columns 2:5 contain cyan, magenta, yellow, black
HLS columns 2:4 contain hue, lightness, saturation (column 5 unused)

$setColorTable(band, col_tbl, palette_interp) Sets the raster color table for band (see GDAL
Color Table). col_tbl is an integer matrix or data frame with either four or five columns (see
$getColorTable() above). Column 1 contains the pixel values. Valid values are integers 0 and
larger (note that GTiff format supports color tables only for Byte and Ulnt16 bands). Negative val-
ues will be skipped with a warning emitted. Interpretation of columns 2:5 depends on the value of
$getPaletteInterp() (see above). For RGB, columns 2:4 contain red, green, blue as 0-255 inte-
ger values, and an optional column 5 contains alpha transparency values (defaults to 255 opaque).
palette_interp is a string, one of Gray, RGB, CMYK or HLS (see $getPaletteInterp() above).
Returns logical TRUE on success or FALSE if the color table could not be set.

$getDefaul tRAT (band) Returns the Raster Attribute Table for band as a data frame, or NULL if
there is no associated Raster Attribute Table. See the stand-alone function buildRAT () for details
of the Raster Attribute Table format.


https://gdal.org/user/raster_data_model.html#color-table
https://gdal.org/user/raster_data_model.html#color-table
https://gdal.org/user/raster_data_model.html#color-table

50 GDALRaster-class

$setDefaultRAT (band, df) Sets a default Raster Attribute Table for band from data frame df.
The input data frame will be checked for attribute "GDALRATTableType"” which can have values of
"thematic"” or "athematic"” (for continuous data). Columns of the data frame will be checked for
attribute "GFU" (for "GDAL field usage"). If the "GFU" attribute is missing, a value of "Generic"
will be used (corresponding to GFU_Generic in the GDAL API, for general purpose field). Columns
with other, specific field usage values should generally be present in df, such as fields containing
the set of unique (discrete) pixel values (GFU "MinMax"), pixel counts (GFU "PixelCount"), class
names (GFU "Name"), color values (GFUs "Red”, "Green", "Blue"), etc. The data frame will also
be checked for attributes "Row@Min"” and "BinSize" which can have numeric values that describe
linear binning. See the stand-alone function buildRAT () for details of the GDAL Raster Attribute
Table format and its representation as data frame.

$flushCache() Flush all write cached data to disk. Any raster data written via GDAL calls, but
buffered internally will be written to disk. Using this method does not preclude calling $close()
to properly close the dataset and ensure that important data not addressed by $flushCache() is
written in the file (see also $open() above). No return value, called for side effect.

$getChecksum(band, xoff, yoff, xsize, ysize) Returns a 16-bit integer (0-65535) checksum
from a region of raster data on band. Floating point data are converted to 32-bit integer so decimal
portions of such raster data will not affect the checksum. Real and imaginary components of com-
plex bands influence the result. xoff is the pixel (column) offset of the window to read. yoff is the
line (row) offset of the window to read. Raster row/column offsets use 0-based indexing. xsize is
the width in pixels of the window to read. ysize is the height in pixels of the window to read.

$close() Closes the GDAL dataset (no return value, called for side effects). Calling $close()
results in proper cleanup, and flushing of any pending writes. Forgetting to close a dataset opened
in update mode on some formats such as GTiff could result in being unable to open it afterwards.
The GDALRaster object is still available after calling $close(). The dataset can be re-opened on
the existing filename with $open(read_only=TRUE) or $open(read_only=FALSE).

Note

If a dataset object is opened with update access (read_only = FALSE), it is not recommended to
open a new dataset on the same underlying filename.

Datasets are opened in shared mode by default. This allows the sharing of GDALDataset handles for
a dataset with other callers that open shared on the same filename, if the dataset is opened from the
same thread. Functions in gdalraster that do processing will open input datasets in shared mode.
This provides potential efficiency for cases when an object of class GDALRaster is already open in
read-only mode on the same filename (avoids overhead associated with initial dataset opening by
using the existing handle, and potentially makes use of existing data in the GDAL block cache).
Opening in shared mode can be disabled by specifying the optional shared parameter in the class
constructor.

The $read() method will perform automatic resampling if the specified output size (out_xsize *
out_ysize) is different than the size of the region being read (xsize * ysize). In that case, the
GDAL_RASTERIO_RESAMPLING configuration option could also be set to override the default resam-
pling to one of BILINEAR, CUBIC, CUBICSPLINE, LANCZOS, AVERAGE or MODE (see set_config_option()).

See Also

Package overview in help("gdalraster-package")



GDALRaster-class

vignette("raster-api-tutorial”)

read_ds () convenience wrapper for GDALRaster$read()

Examples

lcp_file <- system.file("extdata/storm_lake.lcp”, package="gdalraster")
ds <- new(GDALRaster, lcp_file)

## print information about the dataset to the console
ds$info()

## retrieve the raster format name
ds$getDriverShortName()
ds$getDriverLongName()

## retrieve a list of files composing the dataset
ds$getFilelList()

## retrieve dataset parameters
ds$getRasterXSize()
ds$getRasterYSize()
ds$getGeoTransform()
ds$getProjection()
ds$getRasterCount()

ds$bbox ()

ds$res()

ds$dim()

## retrieve some band-level parameters

ds$getDescription(band = 1)

ds$getBlockSize(band = 1)

ds$getOverviewCount(band = 1)

ds$getDataTypeName(band = 1)

# LCP format does not support an intrinsic nodata value so this returns NA:
ds$getNoDataValue(band = 1)

## LCP driver reports several dataset- and band-level metadata

## see the format description at https://gdal.org/drivers/raster/lcp.html
## set band = @ to retrieve dataset-level metadata

## set domain = "" (empty string) for the default metadata domain
ds$getMetadata(band = @, domain = "")

## retrieve metadata for a band as a vector of name=value pairs
ds$getMetadata(band = 4, domain = "")

## retrieve the value of a specific metadata item
ds$getMetadataltem(band = 2, mdi_name = "SLOPE_UNIT_NAME"”, domain = "")

## read one row of pixel values from band 1 (elevation)
## raster row/column index are @-based

## the upper left corner is the origin

## read the tenth row:

51



52

GDALRaster-class

ncols <- ds$getRasterXSize()

rowdata <- ds$read(band = 1, xoff = @, yoff = 9,
xsize = ncols, ysize =1,
out_xsize = ncols, out_ysize = 1)

head(rowdata)

ds$close()

## create a new raster using lcp_file as a template
new_file <- paste@(tempdir(), "/", "storml_newdata.tif")
rasterfFromRaster(srcfile = lcp_file,

dstfile = new_file,

nbands = 1,
dtName = "Byte",
init = -9999)

ds_new <- new(GDALRaster, new_file, read_only = FALSE)

## write random values to all pixels
set.seed(42)
ncols <- ds_new$getRasterXSize()
nrows <- ds_new$getRasterYSize()
for (row in @:(nrows - 1)) {
rowdata <- round(runif(ncols, 0, 100))
ds_new$write(band = 1,

xoff = 0,

yoff = row,
xsize = ncols,
ysize = 1,
rowdata)

## re-open in read-only mode when done writing
## this will ensure flushing of any pending writes (implicit $close)
ds_new$open(read_only = TRUE)

## getStatistics returns min, max, mean, sd, and sets stats in the metadata
ds_new$getStatistics(band = 1, approx_ok = FALSE, force = TRUE)
ds_new$getMetadataltem(band = 1, "STATISTICS_MEAN", "")

## close the dataset for proper cleanup
ds_new$close()
deleteDataset(new_file)

## using a GDAL Virtual File System handler '/vsicurl/'

## see: https://gdal.org/user/virtual_file_systems.html

url <- "/vsicurl/https://raw.githubusercontent.com/"

url <- paste@(url, "usdaforestservice/gdalraster/main/sample-data/")
url <- paste@(url, "1f_elev_220_mt_hood_utm.tif")

set_config_option(”"GDAL_HTTP_CONNECTTIMEOUT", "20")
set_config_option("GDAL_HTTP_TIMEOUT", "20")



gdal_formats 53

if (http_enabled() && vsi_stat(url)) {
ds <- new(GDALRaster, url)
plot_raster(ds, legend = TRUE, main = "Mount Hood elevation (m)")

ds$close()
}
set_config_option("GDAL_HTTP_CONNECTTIMEOUT", "")
set_config_option(”GDAL_HTTP_TIMEOUT", "")
gdal_formats Retrieve information on GDAL format drivers for raster and vector
Description

gdal_formats() returns a table of the supported raster and vector formats, with information about
the capabilities of each format driver.

Usage
gdal_formats(format = "")
Arguments
format A character string containing a driver short name. By default, information for
all configured raster and vector format drivers will be returned.
Value

A data frame containing the format short name, long name, raster (logical), vector (logical), read/write
flag (ro is read-only, w supports CreateCopy, w+ supports Create), virtual I/O supported (logical),
and subdatasets (logical).

Note
Virtual I/O refers to operations on GDAL Virtual File Systems. See https://gdal.org/user/

virtual_file_systems.html#virtual-file-systems.

Examples

nrow(gdal_formats())
head(gdal_formats())

gdal_formats("GPKG")


https://gdal.org/user/virtual_file_systems.html#virtual-file-systems
https://gdal.org/user/virtual_file_systems.html#virtual-file-systems

54 geos_version

gdal_version Get GDAL version

Description

gdal_version() returns runtime version information.

Usage

gdal_version()

Value
Character vector of length four containing:
» "—version" - one line version message, e.g., “GDAL 3.6.3, released 2023/03/12”
"GDAL_VERSION_NUM" - formatted as a string, e.g., “3060300” for GDAL 3.6.3.0

"GDAL_RELEASE_DATE" - formatted as a string, e.g., “20230312”
"GDAL_RELEASE_NAME" - e.g., “3.6.3”

Examples

gdal_version()

geos_version Get GEOS version

Description

geos_version() returns version information for the GEOS library in use by GDAL. Requires
GDAL >=3.4.

Usage

geos_version()

Value
A list of length four containing:
* name - a string formatted as "major.minor.patch"
* major - major version as integer

* minor - minor version as integer

* patch - patch version as integer

List elements will be NA if GDAL < 3.4.



getCreationOptions 55

See Also

gdal_version(), proj_version()

Examples

geos_version()

getCreationOptions Return the list of creation options of a GDAL driver

Description

getCreationOptions() returns the list of creation options supported by a GDAL format driver
as an XML string (invisibly). Wrapper for GDALGetDriverCreationOptionList() in the GDAL
API. Information about the available creation options is also printed to the console by default.

Usage

getCreationOptions(format, filter = NULL)

Arguments
format Raster format short name (e.g., "GTiff").
filter Optional character vector of creation option names. Controls only the amount
of information printed to the console. By default, information for all creation
options is printed. Can be set to empty string "" to disable printing information
to the console.
Value

nn

Invisibly, an XML string that describes the full list of creation options or empty string "" (full output

of GDALGetDriverCreationOptionList() in the GDAL API).

See Also

GDALRaster-class, create(), createCopy()

Examples

getCreationOptions("GTiff", filter="COMPRESS")



56 get_config_option

get_cache_used Get the size of memory in use by the GDAL block cache

Description
get_cache_used() returns the amount of memory currently in use for GDAL block caching. This
a wrapper for GDALGetCacheUsed64 () with return value as MB.

Usage

get_cache_used()

Value

Integer. Amount of cache memory in use in MB.

See Also
GDAL Block Cache

Examples

get_cache_used()

get_config_option Get GDAL configuration option

Description

get_config_option() gets the value of GDAL runtime configuration option. Configuration op-
tions are essentially global variables the user can set. They are used to alter the default behavior of
certain raster format drivers, and in some cases the GDAL core. For a full description and listing of
available options see https://gdal.org/user/configoptions.html.

Usage

get_config_option(key)

Arguments

key Character name of a configuration option.

Value

Character. The value of a (key, value) option previously set with set_config_option(). An empty
string ("") is returned if key is not found.


https://usdaforestservice.github.io/gdalraster/articles/gdal-block-cache.html
https://gdal.org/user/configoptions.html

get_num_cpus 57

See Also

set_config_option()

vignette("gdal-config-quick-ref™)

Examples

## this option is set during initialization of the gdalraster package
get_config_option(”0GR_CT_FORCE_TRADITIONAL_GIS_ORDER")

get_num_cpus Get the number of processors detected by GDAL

Description
get_num_cpus () returns the number of processors detected by GDAL. Wrapper of CPLGe tNumCPUs ()
in the GDAL Common Portability Library.

Usage

get_num_cpus()

Value

Integer scalar, number of CPUs.

Examples

get_num_cpus()

get_pixel_line Raster pixel/line from geospatial x,y coordinates

Description

get_pixel_line() converts geospatial coordinates to pixel/line (raster column, row numbers).
The upper left corner pixel is the raster origin (0,0) with column, row increasing left to right, top to
bottom.

Usage

get_pixel_line(xy, gt)



58 get_pixel_line

Arguments
Xy Numeric matrix of geospatial x,y coordinates in the same spatial reference sys-
tem as gt (or two-column data frame that will be coerced to numeric matrix).
gt Either a numeric vector of length six containing the affine geotransform for the
raster, or an object of class GDALRaster from which the geotransform will be
obtained (see Note).
Value

Integer matrix of raster pixel/line.

Note

This function applies the inverse geotransform to the input points. If gt is given as the numeric
vector, no bounds checking is done (i.e., min pixel/line could be less than zero and max pixel/line
could be greater than the raster x/y size). If gt is obtained from an object of class GDALRaster,
then NA is returned for points that fall outside the raster extent and a warning emitted giving the
number points that were outside. This latter case is equivalent to calling the $get_pixel_line()
class method on the GDALRaster object (see Examples).

See Also

GDALRaster$getGeoTransform(), inv_geotransform()

Examples

pt_file <- system.file("extdata/storml_pts.csv"”, package="gdalraster")
# id, x, y in NAD83 / UTM zone 12N

pts <- read.csv(pt_file)

print(pts)

raster_file <- system.file("extdata/storm_lake.lcp”, package="gdalraster")
ds <- new(GDALRaster, raster_file)

gt <- ds$getGeoTransform()

get_pixel_line(pts[, -1], gt)

# or, using the class method
ds$get_pixel_line(pts[, -11)

# add a point outside the raster extent
pts[11, 1 <- c(11, 323318, 5105104)
get_pixel_line(pts[, -11, gt)

# with bounds checking on the raster extent
ds$get_pixel_line(pts[, -11)

ds$close()



get_usable_physical_ram 59

get_usable_physical_ram
Get usable physical RAM reported by GDAL

Description

get_usable_physical_ram() returns the total physical RAM, usable by a process, in bytes. It
will limit to 2 GB for 32 bit processes. Starting with GDAL 2.4.0, it will also take into account
resource limits (virtual memory) on Posix systems. Starting with GDAL 3.6.1, it will also take
into account RLIMIT_RSS on Linux. Wrapper of CPLGetUsablePhysicalRAM() in the GDAL
Common Portability Library.

Usage

get_usable_physical_ram()

Value

Numeric scalar, number of bytes as bit64: :integer64 type (or 0 in case of failure).

Note

This memory may already be partly used by other processes.

Examples

get_usable_physical_ram()

g_area Compute the area of a geometry

Description
g_area() computes the area for a LinearRing, Polygon or MultiPolygon. Undefined for all other
geometry types (returns zero).

Usage
g_area(wkt)

Arguments

wkt Character. OGC WKT string for a simple feature geometry.

Value

Numeric scalar. Area of the geometry or 0.



60 g binary_op

Note

LinearRing is a non-standard geometry type, used in GDAL just for geometry creation.

g_binary_op Binary operations on WKT geometries

Description

These functions implement operations on pairs of geometries in OGC WKT format.
Usage

g_intersection(this_geom, other_geom)

g_union(this_geom, other_geom)

g_difference(this_geom, other_geom)

g_sym_difference(this_geom, other_geom)

Arguments
this_geom Character. OGC WKT string for a simple feature geometry.
other_geom Character. OGC WKT string for a simple feature geometry.
Details

These functions use the GEOS library via GDAL headers.

g_intersection() returns a new geometry which is the region of intersection of the two geome-

tries operated on. g_intersects() can be used to test if two geometries intersect.

g_union() returns a new geometry which is the region of union of the two geometries operated on.

g_difference() returns a new geometry which is the region of this geometry with the region of

the other geometry removed.

g_sym_difference() returns a new geometry which is the symmetric difference of this geometry

and the other geometry (union minus intersection).

Value

Character string. The resulting geometry as OGC WKT.

Note

Geometry validity is not checked. In case you are unsure of the validity of the input geometries,

call g_is_valid() before, otherwise the result might be wrong.



g binary_pred 61

Examples

elev_file <- system.file("extdata/storml_elev.tif"”, package="gdalraster")
ds <- new(GDALRaster, elev_file)

gl <- ds$bbox() |> bbox_to_wkt()

ds$close()

g2 <- "POLYGON ((327381.9 5104541.2, 326824.0 5104092.5, 326708.8 5103182.9,
327885.2 5102612.9, 329334.5 5103322.4, 329304.2 5104474.5,328212.7
5104656.4, 328212.7 5104656.4, 327381.9 5104541.2))"

# see spatial predicate defintions at https://en.wikipedia.org/wiki/DE-9IM
g_intersects(gl, g2) # TRUE

g_overlaps(gl, g2) # TRUE

# therefore,

g_contains(gl, g2) # FALSE

g_sym_difference(gl, g2) |> g_area()
g3 <- g_intersection(gl, g2)

g4 <- g_union(gl, g2)
g_difference(g4, g3) |> g_area()

g_binary_pred Geometry binary predicates operating on WKT

Description

These functions implement tests for pairs of geometries in OGC WKT format.

Usage

g_intersects(this_geom, other_geom)
g_disjoint(this_geom, other_geom)
g_touches(this_geom, other_geom)
g_contains(this_geom, other_geom)
g_within(this_geom, other_geom)
g_crosses(this_geom, other_geom)
g_overlaps(this_geom, other_geom)

g_equals(this_geom, other_geom)



62 g_buffer

Arguments
this_geom Character. OGC WKT string for a simple feature geometry.
other_geom Character. OGC WKT string for a simple feature geometry.
Details

These functions use the GEOS library via GDAL headers.
g_intersects() tests whether two geometries intersect.

g_disjoint() tests if this geometry and the other geometry are disjoint.
g_touches() tests if this geometry and the other geometry are touching.
g_contains() tests if this geometry contains the other geometry.
g_within() tests if this geometry is within the other geometry.
g_crosses() tests if this geometry and the other geometry are crossing.

g_overlaps() tests if this geometry and the other geometry overlap, that is, their intersection has
a non-zero area (they have some but not all points in common).

g_equals() tests whether two geometries are equivalent. The GDAL documentation says: "This
operation implements the SQL/MM ST_OrderingEquals() operation. The comparison is done in
a structural way, that is to say that the geometry types must be identical, as well as the number
and ordering of sub-geometries and vertices. Or equivalently, two geometries are considered equal
by this method if their WKT/WKB representation is equal. Note: this must be distinguished from
equality in a spatial way."

Value

Logical scalar

Note

Geometry validity is not checked. In case you are unsure of the validity of the input geometries,
call g_is_valid() before, otherwise the result might be wrong.

See Also

https://en.wikipedia.org/wiki/DE-9IM

g_buffer Compute buffer of a WKT geometry

Description

g_buffer() builds a new geometry containing the buffer region around the geometry on which it
is invoked. The buffer is a polygon containing the region within the buffer distance of the original
geometry.


https://en.wikipedia.org/wiki/DE-9IM

g centroid 63

Usage
g_buffer(wkt, dist, quad_segs = 30L)

Arguments
wkt Character. OGC WKT string for a simple feature 2D geometry.
dist Numeric buffer distance in units of the wkt geometry.
quad_segs Integer number of segments used to define a 90 degree curve (quadrant of a
circle). Large values result in large numbers of vertices in the resulting buffer
geometry while small numbers reduce the accuracy of the result.
Value

Character string for an OGC WKT polygon.

See Also
bbox_from_wkt (), bbox_to_wkt()

Examples

g_buffer(wkt = "POINT (@ 0)", dist = 10)

g_centroid Compute the centroid of a geometry

Description

g_centroid() returns a vector of point X, point Y.

Usage

g_centroid(wkt)

Arguments

wkt Character. OGC WKT string for a simple feature geometry.

Details

The GDAL documentation states "This method relates to the SFCOM ISurface: :get_Centroid()
method however the current implementation based on GEOS can operate on other geometry types
such as multipoint, linestring, geometrycollection such as multipolygons. OGC SF SQL 1.1 de-
fines the operation for surfaces (polygons). SQL/MM-Part 3 defines the operation for surfaces and
multisurfaces (multipolygons)."

Value

Numeric vector of length 2 containing the centroid (X, Y).



64 g _is_empty

g_distance Compute the distance between two geometries

Description

g_distance() returns the distance between two geometries or -1 if an error occurs. Returns the
shortest distance between the two geometries. The distance is expressed into the same unit as the
coordinates of the geometries.

Usage

g_distance(this_geom, other_geom)

Arguments
this_geom Character. OGC WKT string for a simple feature geometry.
other_geom Character. OGC WKT string for a simple feature geometry.
Value

Numeric. Distance or ’-1’ if an error occurs.

Note
Geometry validity is not checked. In case you are unsure of the validity of the input geometries,

call g_is_valid() before, otherwise the result might be wrong.

Examples

g_distance("POINT (@ @)", "POINT (5 12)")

g_is_empty Test if a geometry is empty

Description

g_is_empty() tests whether a geometry has no points.

Usage
g_is_empty(wkt)

Arguments

wkt Character. OGC WKT string for a simple feature geometry.



g is_valid 65

Value

logical scalar. TRUE if the geometry has no points, otherwise FALSE.

Examples

g1 <- "POLYGON ((0 @, 10 10, 10 0, @ 0))"
g2 <- "POLYGON ((5 1, 95, 91, 5 1))"
g_difference(g2, gl1) |> g_is_empty()

g_is_valid Test if a geometry is valid

Description

g_is_valid() tests whether a geometry is valid.

Usage

g_is_valid(wkt)

Arguments

wkt Character. OGC WKT string for a simple feature geometry.

Value

logical scalar. TRUE if the geometry is valid, otherwise FALSE.

Examples

g1 <- "POLYGON ((0 o, 10 10, 10 0, @ 0))"
g_is_valid(gl)

g2 <- "POLYGON ((0 o, 10 10, 10 0, @ 1))"
g_is_valid(g2)



66 g _name

g_length Compute the length of a geometry

Description
g_length() computes the length for LineString or MultiCurve objects. Undefined for all other
geometry types (returns zero).

Usage
g_length(wkt)

Arguments

wkt Character. OGC WKT string for a simple feature geometry.

Value

Numeric scalar. Length of the geometry or @.

Examples

g_length("LINESTRING (0 @, 3 4)")

g_name Extract the geometry type name from a WKT geometry

Description

g_name () returns the name for this geometry type in well known text format.

Usage
g_name (wkt)

Arguments

wkt Character. OGC WKT string for a simple feature geometry.

Value

WKT name for this geometry type.

Examples

elev_file <- system.file("extdata/storml_elev.tif"”, package="gdalraster")
ds <- new(GDALRaster, elev_file)

bbox_to_wkt(ds$bbox()) [> g_name()

ds$close()



g transform 67

g_transform Apply a coordinate transformation to a WKT geometry

Description

g_transform() will transform the coordinates of a geometry from their current spatial reference
system to a new target spatial reference system. Normally this means reprojecting the vectors, but
it could include datum shifts, and changes of units.

Usage

g_transform(
wkt,
srs_from,
srs_to,
wrap_date_line = FALSE,
date_line_offset = 10L

)
Arguments
wkt Character. OGC WKT string for a simple feature geometry.
srs_from Character string in OGC WKT format specifying the spatial reference system
for the geometry given by wkt.
srs_to Character string in OGC WKT format specifying the target spatial reference

system.

wrap_date_line Logical scalar. TRUE to correct geometries that incorrectly go from a longitude
on a side of the antimeridian to the other side. Defaults to FALSE.
date_line_offset
Integer scalar. Longitude gap in degree. Defaults to 10.

Value

Character string for a transformed OGC WKT geometry.

Note

This function uses the OGR_GeomTransformer_Create() and OGR_GeomTransformer_Transform()
functions in the GDAL API: "This is an enhanced version of OGR_G_Transform(). When repro-
jecting geometries from a Polar Stereographic projection or a projection naturally crossing the an-
timeridian (like UTM Zone 60) to a geographic CRS, it will cut geometries along the antimeridian.
So a LineString might be returned as aMultilLineString."

The wrap_date_line = TRUE option might be specified for circumstances to correct geometries that

incorrectly go from a longitude on a side of the antimeridian to the other side, e.g., LINESTRING (-179 0,179 0)
will be transformed to MULTILINESTRING ((-179 0,-180 0), (180 ©,179 @)). For that use case,

srs_to might be the same as srs_from.



68 has_geos

See Also

bbox_transform()

Examples

elev_file <- system.file("extdata/storml_elev.tif"”, package="gdalraster")
ds <- new(GDALRaster, elev_file)

# the convenience function bbox_transform() does this:

bbox_to_wkt(ds$bbox()) [>
g_transform(ds$getProjection(), epsg_to_wkt(4326)) |[>
bbox_from_wkt ()

ds$close()

# correct geometries that incorrectly go from a longitude on a side of the
# antimeridian to the other side

geom <- "LINESTRING (-179 0,179 @)"

srs <- epsg_to_wkt(4326)

g_transform(geom, srs, srs, wrap_date_line = TRUE)

has_geos Is GEOS available?

Description

has_geos() returns a logical value indicating whether GDAL was built against the GEOS library.
GDAL built with GEOS is a system requirement as of gdalraster 1.10.0, so this function will
always return TRUE (may be removed in a future version).

Usage

has_geos()

Value

Logical. TRUE if GEOS is available, otherwise FALSE.

Examples

has_geos()



has_spatialite 69

has_spatialite Is SpatiaLite available?

Description

has_spatialite() returns a logical value indicating whether GDAL was built with support for the
SpatiaLite library. SpatiaLite extends the SQLite core to support full Spatial SQL capabilities.

Usage

has_spatialite()

Details

GDAL supports executing SQL statements against a datasource. For most file formats (e.g. Shape-
files, GeoJSON, FlatGeobuf files), the built-in OGR SQL dialect will be used by default. It is also
possible to request the alternate "SQLite” dialect, which will use the SQLite engine to evaluate
commands on GDAL datasets. This assumes that GDAL is built with support for SQLite, and
preferably with Spatialite support too to benefit from spatial functions.

Value

Logical scalar. TRUE if SpatiaLite is available to GDAL.

Note

All GDAL/OGR drivers for database systems, e.g., PostgreSQL / PostGIS, Oracle Spatial, SQLite
/ Spatialite RDBMS, GeoPackage, etc., override the GDALDataset: :ExecuteSQL() function with
a dedicated implementation and, by default, pass the SQL statements directly to the underlying
RDBMS. In these cases the SQL syntax varies in some particulars from OGR SQL. Also, anything
possible in SQL can then be accomplished for these particular databases. For those drivers, it is also
possible to explicitly request the OGRSQL or SQLite dialects, although performance will generally
be much less than the native SQL engine of those database systems.

See Also

ogrinfo(), ogr_execute_sql()

OGR SQL dialect and SQLITE SQL dialect:
https://gdal.org/user/ogr_sql_sqlite_dialect.html

Examples

has_spatialite()


https://gdal.org/user/ogr_sql_sqlite_dialect.html

70 inv_geotransform

http_enabled Check if GDAL CPLHTTP services can be useful (libcurl)

Description

http_enabled() returns TRUE if 1libcurl support is enabled. Wrapper of CPLHTTPEnabled() in
the GDAL Common Portability Library.

Usage
http_enabled()

Value

Logical scalar, TRUE if GDAL was built with 1ibcurl support.

Examples

http_enabled()

inv_geotransform Invert geotransform

Description

inv_geotransform() inverts a vector of geotransform coefficients. This converts the equation
from being:
raster pixel/line (column/row) -> geospatial x/y coordinate
to:
geospatial x/y coordinate -> raster pixel/line (column/row)
Usage

inv_geotransform(gt)

Arguments

gt Numeric vector of length six containing the geotransform to invert.

Value
Numeric vector of length six containing the inverted geotransform. The output vector will contain
NAss if the input geotransform is uninvertable.

See Also
GDALRaster$getGeoTransform(), get_pixel_line()



inv_project 71

Examples

elev_file <- system.file("extdata/storml_elev.tif"”, package="gdalraster")
ds <- new(GDALRaster, elev_file)
invgt <- ds$getGeoTransform() |> inv_geotransform()

ds$close()
ptX = 324181.7
ptY = 5103901.4

## for a point x, y in the spatial reference system of elev_file
## raster pixel (column number):
pixel <- floor(invgt[1] +

invgt[2] * ptX +

invgt[3] * ptY)

## raster line (row number):

line <- floor(invgt[4] +
invgt[5] * ptX +
invgt[6] * ptY)

## get_pixel_line() applies this conversion

inv_project Inverse project geospatial x/y coordinates to longitude/latitude

Description

inv_project() transforms geospatial x/y coordinates to longitude/latitude in the same geographic
coordinate system used by the given projected spatial reference system. The output long/lat can
optionally be set to a specific geographic coordinate system by specifying a well known name (see
Details).

Usage
inv_project(pts, srs, well_known_gcs = "")
Arguments
pts A two-column data frame or numeric matrix containing geospatial x/y coordi-
nates.
srs Character string in OGC WKT format specifying the projected spatial reference

system for pts.

well_known_gcs Optional character string containing a supported well known name of a geo-
graphic coordinate system (see Details for supported values).



72 inv_project

Details

By default, the geographic coordinate system of the projection specified by srs will be used. If
a specific geographic coordinate system is desired, then well_known_gcs can be set to one of the
values below:



ogr2ogr 73

EPSG:n where n is the code of a geographic coordinate system
WGS84  same as EPSG:4326

WGS72 same as EPSG:4322

NADS83 same as EPSG:4269

NAD27 same as EPSG:4267

CRS84 same as WGS84

CRS72 same as WGS72

CRS27 same as NAD27

The returned array will always be in longitude, latitude order (traditional GIS order) regardless of
the axis order defined for the names above.
Value

Numeric array of longitude, latitude. An error is raised if the transformation cannot be performed.

See Also

transform_xy ()

Examples

pt_file <- system.file("extdata/storml_pts.csv"”, package="gdalraster")
## id, x, y in NAD83 / UTM zone 12N

pts <- read.csv(pt_file)

print(pts)

inv_project(pts[,-1], epsg_to_wkt(26912))

inv_project(pts[,-1], epsg_to_wkt(26912), "NAD27")

ogr2ogr Convert vector data between different formats

Description

ogr2ogr () is a wrapper of the ogr2ogr command-line utility (see https://gdal.org/programs/
ogr2ogr.html). This function can be used to convert simple features data between file formats. It
can also perform various operations during the process, such as spatial or attribute selection, reduc-
ing the set of attributes, setting the output coordinate system or even reprojecting the features during
translation. Refer to the GDAL documentation at the URL above for a description of command-line
arguments that can be passed in cl1_arg.

Usage

ogr2ogr(
src_dsn,
dst_dsn,
src_layers = NULL,


https://gdal.org/programs/ogr2ogr.html
https://gdal.org/programs/ogr2ogr.html

74 ogr2ogr

cl_arg = NULL,
open_options = NULL
)
Arguments
src_dsn Character string. Data source name of the source vector dataset.
dst_dsn Character string. Data source name of the destination vector dataset.
src_layers Optional character vector of layer names in the source dataset. Defaults to all
layers.
cl_arg Optional character vector of command-line arguments for the GDAL ogr2ogr

command-line utility (see URL above).

open_options  Optional character vector of dataset open options.

Value

Logical indicating success (invisible TRUE). An error is raised if the operation fails.

Note

For progress reporting, see command-line argument -progress: Display progress on terminal.
Only works if input layers have the "fast feature count"” capability.

See Also

ogrinfo(), the ogr_manage utilities

translate() for raster data

Examples

src <- system.file("extdata/ynp_fires_1984_2022.gpkg", package="gdalraster")

# Convert GeoPackage to Shapefile
shp_file <- file.path(tempdir(), "ynp_fires.shp")
ogr2ogr(src, shp_file, src_layers = "mtbs_perims")

# Reproject to WGS84

ynp_wgs84 <- file.path(tempdir(), "ynp_fires_wgs84.gpkg")
args <- c("-t_srs"”, "EPSG:4326")

ogr2ogr(src, ynp_wgs84, cl_arg = args)

# Clip to a bounding box (xmin, ymin, xmax, ymax in the source SRS)

# This will select features whose geometry intersects the bounding box.
# The geometries themselves will not be clipped unless "-clipsrc” is

# specified.

# The source SRS can be overridden with "-spat_srs” "<srs_def>"
ynp_clip <- file.path(tempdir(), "ynp_fires_aoi_clip.gpkg")

bb <- c(469685.97, 11442.45, 544069.63, 85508.15)

args <- c("-spat”, bb)

ogr2ogr(src, ynp_clip, cl_arg = args)

"



ogrinfo 75

# Filter features by a -where clause

ynp_filtered <- file.path(tempdir(), "ynp_fires_2000_2022.gpkg")

sql <- "ig_year >= 2000 ORDER BY ig_year”

args <- c("-where”, sql)

ogr2ogr(src, ynp_filtered, src_layers = "mtbs_perims”, cl_arg = args)

deleteDataset(shp_file)
deleteDataset(ynp_wgs84)
deleteDataset(ynp_clip)
deleteDataset(ynp_filtered)

ogrinfo Retrieve information about a vector data source

Description

ogrinfo() is a wrapper of the ogrinfo command-line utility (see https://gdal.org/programs/
ogrinfo.html). This function lists information about an OGR-supported data source. It is also
possible to edit data with SQL statements. Refer to the GDAL documentation at the URL above for
a description of command-line arguments that can be passed in c1_arg. Requires GDAL >= 3.7.

Usage
ogrinfo(
dsn,
layers = NULL,
cl_arg = as.character(c(”-so", "-nomd")),

open_options = NULL,
read_only = TRUE,

cout = TRUE
)
Arguments
dsn Character string. Data source name (e.g., filename, database connection string,
etc.)
layers Optional character vector of layer names in the source dataset.
cl_arg Optional character vector of command-line arguments for the ogrinfo command-

line utility in GDAL (see URL above for reference). The default is c(”"-so”,
"-nomd") (see Note).

open_options  Optional character vector of dataset open options.

read_only Logical scalar. TRUE to open the data source read-only (the default), or FALSE to
open with write access.

cout Logical scalar. TRUE to write info to the standard C output stream (the default).
FALSE to suppress console output.


https://gdal.org/programs/ogrinfo.html
https://gdal.org/programs/ogrinfo.html

76 ogrinfo

Value

nn

Invisibly, a character string containing information about the vector dataset, or empty string (
case of error.

)in

Note

The command-line argument -so provides a summary only, i.e., does not include details about every
single feature of a layer. -nomd suppresses metadata printing. Some datasets may contain a lot of
metadata strings.

See Also

ogr2ogr(), the ogr_manage utilities

Examples

src <- system.file("extdata/ynp_fires_1984_2022.gpkg", package="gdalraster")

# Requires GDAL >= 3.7

if (as.integer(gdal_version()[2]) >= 3070000) {
# Get the names of the layers in a GeoPackage file.
ogrinfo(src)

# Summary of a layer
ogrinfo(src, "mtbs_perims")

# JSON format

args <- c("-json"”, "-nomd")

json <- ogrinfo(src, "mtbs_perims”, args, cout = FALSE)
#info <- jsonlite::fromJSON(json)

# Query an attribute to restrict the output of the features in a layer
args <- c("-ro", "-nomd"”, "-where"”, "ig_year = 2020")
ogrinfo(src, "mtbs_perims”, args)

# Copy to a temporary in-memory file that is writeable
src_mem <- paste@("/vsimem/", basename(src))
vsi_copy_file(src, src_mem)

print(src_mem)

# Add a column to a layer
args <- c("-sql"”, "ALTER TABLE mtbs_perims ADD burn_bnd_ha float")
ogrinfo(src_mem, cl_arg = args, read_only = FALSE)

# Update values of the column with SQL and specify a dialect

sql <- "UPDATE mtbs_perims SET burn_bnd_ha = (burn_bnd_ac / 2.471)"
args <- c("-dialect”, "sqlite"”, "-sql”, sql)

ogrinfo(src_mem, cl_arg = args, read_only = FALSE)

vsi_unlink(src_mem)



ogr_define 77

ogr_define OGR feature class definition for vector data

Description

This topic contains documentation and helper functions for defining an OGR feature class. ogr_def_field()
creates an attribute field definition, a list containing the field data type and potentially other optional

field properties. ogr_def_geom_field() similarly creates a geometry field definition. A list con-

taining zero or more attribute field definitions, along with one or more geometry field definitions,
comprise an OGR feature class definition (a.k.a. layer definition). ogr_def_layer() initializes

such a list with a geometry field. Attribute fields can be added to a feature class definition with calls

to ogr_def_field() as in the examples.

Usage

ogr_def_field(
fld_type,
fld_subtype = NULL,
fld_width = NULL,
fld_precision = NULL,
is_nullable = NULL,
is_unique = NULL,
is_ignored = NULL,
default_value = NULL

)
ogr_def_geom_field(
geom_type,
srs = NULL,

is_nullable = NULL,
is_ignored = NULL
)

ogr_def_layer(geom_type, geom_fld_name = "geom”, srs = NULL)

Arguments

fld_type Character string containing the name of a field data type (e.g., OFTInteger,
OFTReal, OFTString).

fld_subtype Character string containing the name of a field subtype. One of OFSTNone (the
default), OFSTBoolean, OFSTInt16, OFSTFloat32, OFSTJSON, OF STUUID.

fld_width Optional integer scalar specifying max number of characters.
fld_precision Optional integer scalar specifying number of digits after the decimal point.
is_nullable Optional NOT NULL field constraint (logical scalar). Defaults to TRUE.
is_unique Optional UNIQUE constraint on the field (logical scalar). Defaults to FALSE.



78

ogr_define
is_ignored Whether field is ignored when retrieving features (logical scalar). Defaults to
FALSE.
default_value Optional default value for the field as a character string.
geom_type Character string specifying a geometry type (see Details).
srs Character string containing a spatial reference system definition as OGC WKT

or other well-known format (e.g., the input formats usable with srs_to_wkt()).

geom_fld_name Character string specifying a geometry field name Defaults to "geometry”.

Details

All features in an OGR Layer share a common schema (feature class), modeled in GDAL as OGR
Feature Definition. The feature class definition includes the set of attribute fields and their data
types and the geometry field(s). In R, a feature class definition is represented as a list, having as
names the attribute/geometry field names, with each list element holding a field definition.

An attribute field definition is a list with named elements:

$type : OGR Field Type ("OFTReal”, "OFTString" etc.)

$subtype : optional ("OFSTBoolean”, ...)

$width : optional max number of characters

$precision : optional number of digits after the decimal point
$is_nullable: optional NOT NULL constraint (logical scalar)

$is_unique : optional UNIQUE constraint (logical scalar)

$default : optional default value as character string

$is_ignored : optionally ignored when retrieving features (logical scalar)
$is_geom : FALSE (the default) for attribute fields

An OGR field type is specified as a character string with possible values: OFTInteger, OFTIntegerList,
OFTReal, OFTReallList, OFTString, OFTStringlList, OFTBinary, OFTDate, OFTTime, OFTDateTime,
OFTInteger64, OFTInteger64List.

An optional field subtype is specified as a character string with possible values: OF STNone, OFSTBoolean,
OFSTINnt16, OFSTFloat32, OFSTJSON, OF STUUID.

By default, fields are nullable, have no unique constraint, and are not ignored (i.e., not omitted when
fetching features). Not-null and unique constraints are not supported by all format drivers.

A default field value is taken into account by format drivers (generally those with a SQL interface)
that support it at field creation time. If given in the field definition, $default must be a character
string. The accepted values are "NULL", a numeric value (e.g., "@"), a literal value enclosed be-
tween single quote characters (e.g., " 'a default value'”, with any inner single quote characters
escaped by repetition of the single quote character), "CURRENT_TIMESTAMP", "CURRENT_TIME",
"CURRENT_DATE" or a driver-specific expression (that might be ignored by other drivers). For a
datetime literal value, format should be "'YYYY/MM/DD HH:MM:SS[.sss]'" (considered as UTC
time).

"

A geometry field definition is a list with named elements:

$type : geom type ("Point"”, "Polygon", etc.)
$srs : optional spatial reference as WKT string
$is_nullable: optional NOT NULL constraint (logical scalar)



ogr_define 79

$is_ignored : optionally ignored when retrieving features (logical scalar)
$is_geom : TRUE (required) for geometry fields

Typically, there is one geometry field on a layer, but some formats support more than one geometry
column per table (e.g., PostGIS).

Geometry types are specified as a character string containing OGC WKT. Common types include:
Point, LineString, Polygon, MultiPoint, MultiLineString, MultiPolygon. See the GDAL
documentation for a list of all supported geometry types:
https://gdal.org/api/vector_c_api.html#_CPPv4180GRwkbGeometryType

Format drivers may or may not support not-null constraints on attribute and geometry fields. If they
support creating fields with not-null constraints, this is generally before creating any features to the
layer. In some cases, a not-null constraint may be available as a layer creation option. For example,
GeoPackage format has a layer creation option GEOMETRY_NULLABLE=[YES/NO].

Note

The feature id (FID) is a special property of a feature and not treated as an attribute of the feature.
Additional information is given in the GDAL documentation for the OGR SQL and SQLite SQL
dialects. Implications for SQL statements and result sets may depend on the dialect used.

Some vector formats do not support schema definition prior to creating features. For example, with
GeoJSON only the Feature object has a member with name properties. The specification does not
require all Feature objects in a collection to have the same schema of properties, nor does it require
all Feature objects in a collection to have geometry of the same type (https://geojson.org/).

See Also

ogr_ds_create(), ogr_layer_create(), ogr_field_create(), ogrinfo()

WKT representation of geometry:
https://en.wikipedia.org/wiki/Well-known_text_representation_of_geometry

Examples

dsn <- paste@(tempdir(), "/", "test.sqlite")
opt <- NULL
if (has_spatialite())

opt <- "SPATIALITE=YES"
ogr_ds_create(”SQLite"”, dsn, dsco = opt)

# define a layer

defn <- ogr_def_layer("Point”, srs = epsg_to_wkt(4326))
defn$fldi_int64 <- ogr_def_field("OFTInteger64")
defn$fld2_string <- ogr_def_field("OFTString")

if (ogr_ds_test_cap(dsn)$CreatelLayer)
ogr_layer_create(dsn, "layer1”, layer_defn = defn)

ogr_ds_layer_names(dsn)
ogr_layer_field_names(dsn, "layer1")

deleteDataset(dsn)


https://gdal.org/api/vector_c_api.html#_CPPv418OGRwkbGeometryType
https://gdal.org/user/ogr_sql_dialect.html#feature-id-fid
https://gdal.org/user/sql_sqlite_dialect.html#feature-id-fid
https://geojson.org/
https://en.wikipedia.org/wiki/Well-known_text_representation_of_geometry

80

ogr_manage

ogr_manage Utility functions for managing vector data sources

Description

This set of functions can be used to create new vector datasets, test existence of dataset/layer/field,
test dataset and layer capabilities, create new layers in an existing dataset, delete layers, create new
attribute and geometry fields on an existing layer, rename and delete fields, and edit data with SQL

statements.

Usage

ogr_ds_exists(dsn, with_update = FALSE)

ogr_ds_format(dsn)

ogr_ds_test_cap(dsn, with_update = TRUE)

ogr_ds_create(
format,
dsn,
layer = NULL,
layer_defn = NULL,
geom_type = NULL,
srs = NULL,
fld_name = NULL,
fld_type = NULL,

dsco = NULL,
lco = NULL,
overwrite = FALSE

)
ogr_ds_layer_count(dsn)
ogr_ds_layer_names(dsn)

ogr_layer_exists(dsn, layer)

ogr_layer_test_cap(dsn, layer, with_update

ogr_layer_create(
dsn,
layer,
layer_defn = NULL,
geom_type = NULL,
srs = NULL,
lco = NULL



0gr_manage 81

)

ogr_layer_field_names(dsn, layer)
ogr_layer_delete(dsn, layer)
ogr_field_index(dsn, layer, fld_name)

ogr_field_create(
dsn,
layer,
fld_name,
fld_defn = NULL,
fld_type = "OFTInteger”,
fld_subtype = "OFSTNone",
fld_width = oL,
fld_precision = 0oL,
is_nullable = TRUE,
is_ignored = FALSE,
is_unique = FALSE,
default_value = ""

)

ogr_geom_field_create(
dsn,
layer,
fld_name,
geom_f1ld_defn = NULL,
geom_type = NULL,
srs = NULL,
is_nullable = TRUE,
is_ignored = FALSE

)

ogr_field_rename(dsn, layer, fld_name, new_name)
ogr_field_delete(dsn, layer, fld_name)

ogr_execute_sql(dsn, sql, spatial_filter = NULL, dialect = NULL)

Arguments
dsn Character string. The vector data source name, e.g., a filename or database
connection string.
with_update Logical scalar. TRUE to request update access when opening the dataset, or
FALSE to open read-only
format GDAL short name of the vector format as character string. Examples of some

common output formats include: "GPKG", "FlatGeobuf”, "ESRI Shapefile”,



82

layer

layer_defn

geom_type

srs

f1ld_name
fld_type

dsco

lco

overwrite

fld_defn

fld_subtype

fld_width
fld_precision
is_nullable

is_ignored

is_unique
default_value
geom_f1ld_defn

new_name
sql
spatial_filter

ogr_manage

"SQLite”.
Character string for a layer name in a vector dataset.

A feature class definition for layer as a list of zero or more attribute field def-
initions, and at least one geometry field definition (see ogr_define). Each field
definition is a list with named elements containing values for the field $type
and other properties. If layer_defn is given, it will be used and any additional
parameters passed that relate to the feature class definition will be ignored (i.e.,
geom_type and srs, as well as f1d_name and f1d_type in ogr_ds_create()).
The first geometry field definition in layer_defn defines the geometry type and
spatial reference system for the layer (the geom field definition must contain
$type, and should also contain $srs when creating a layer from a feature class
definition).

Character string specifying a geometry type (see Details).

Character string containing a spatial reference system definition as OGC WKT
or other well-known format (e.g., the input formats usable with srs_to_wkt()).

Character string containing the name of an attribute field in layer.

Character string containing the name of a field data type (e.g., OFTInteger,
OFTReal, OFTString).

Optional character vector of format-specific creation options for dsn ("NAME=VALUE"
pairs).

Optional character vector of format-specific creation options for layer ("NAME=VALUE"
pairs).

Logical scalar. TRUE to overwrite dsn if it already exists when calling ogr_ds_create().
Default is FALSE.

A field definition as list (see ogr_def_field()). Additional arguments in ogr_field_create()
will be ignored if a f1d_defn is given.

Character string containing the name of a field subtype. One of OFSTNone (the
default), OFSTBoolean, OFSTInt16, OFSTFloat32, OFSTJSON, OFSTUUID

Optional integer scalar specifying max number of characters.
Optional integer scalar specifying number of digits after the decimal point.
Optional NOT NULL field constraint (logical scalar). Defaults to TRUE.

Whether field is ignored when retrieving features (logical scalar). Defaults to
FALSE.

Optional UNIQUE constraint on the field (logical scalar). Defaults to FALSE.
Optional default value for the field as a character string.

A geometry field definition as list (see ogr_def_geom_field()). Additional
arguments in ogr_geom_field_create() will be ignored if a geom_fld_defn
is given.

Character string containing a new name to assign.

Character string containing an SQL statement (see Note).

Either a numeric vector of length four containing a bounding box (xmin, ymin,
Xmax, ymax), or a character string containing a geometry as OGC WKT, repre-
senting a spatial filter.



0gr_manage 83

dialect Character string specifying the SQL dialect to use. The OGR SQL engine
("OGRSQL") will be used by default if a value is not given. The "SQLite" di-
alect can also be used (see Note).

Details

These functions are complementary to ogrinfo() and ogr2ogr() for vector data management.
They are also intended to support vector I/O in a future release of gdalraster. Bindings to OGR wrap
portions of the GDAL Vector API (ogr_core.h and ogr_api.h, https://gdal.org/api/vector_c_
api.html).

ogr_ds_exists() tests whether a vector dataset can be opened from the given data source name

(DSN), potentially testing for update access. Returns a logical scalar.

ogr_ds_format() returns a character string containing the short name of the format driver for a
given DSN, or NULL if the dataset cannot be opened as a vector source.

ogr_ds_test_cap() tests the capabilities of a vector data source, attempting to open it with update
access by default. Returns a list of capabilities with values TRUE or FALSE, or NULL is returned if
dsn cannot be opened with the requested access. Wrapper of GDALDatasetTestCapability() in
the GDAL API. The returned list contains the following named elements:

* Createlayer: TRUE if this datasource can create new layers

* Deletelayer: TRUE if this datasource can delete existing layers

* CreateGeomFieldAfterCreatelLayer: TRUE if the layers of this datasource support geometry
field creation just after layer creation

» CurveGeometries: TRUE if this datasource supports curve geometries
* Transactions: TRUE if this datasource supports (efficient) transactions
* EmulatedTransactions: TRUE if this datasource supports transactions through emulation

* RandomLayerRead: TRUE if this datasource has a dedicated GetNextFeature() implementa-
tion, potentially returning features from layers in a non-sequential way

* RandomLayerWrite: TRUE if this datasource supports calling CreateFeature() on layers in
a non-sequential way

ogr_ds_create() creates a new vector datasource, optionally also creating a layer, and optionally
creating one or more fields on the layer. The attribute fields and geometry field(s) to create can
be specified as a feature class definition (layer_defn as list, see ogr_define), or alternatively, by
giving the geom_type and srs, optionally along with one fl1d_name and fld_type to be created in
the layer. Returns a logical scalar, TRUE indicating success.

ogr_ds_layer_count () returns the number of layers in a vector dataset.

ogr_ds_layer_names() returns a character vector of layer names in a vector dataset, or NULL if no
layers are found.

ogr_layer_exists() tests whether a layer can be accessed by name in a given vector dataset.
Returns a logical scalar.

ogr_layer_test_cap() tests whether a layer supports named capabilities, attempting to open the
dataset with update access by default. Returns a list of capabilities with values TRUE or FALSE. NULL
is returned if dsn cannot be opened with the requested access, or layer cannot be found. The re-
turned list contains the following named elements: RandomRead, SequentialWrite, RandomWrite,


https://gdal.org/api/vector_c_api.html
https://gdal.org/api/vector_c_api.html

84 ogr_manage

UpsertFeature, FastSpatialFilter, FastFeatureCount, FastGetExtent, FastSetNextByIndex,
CreateField, CreateGeomField, DeleteField, ReorderFields, AlterFieldDefn, AlterGeomFieldDefn,
DeleteFeature, StringsAsUTF8, Transactions, CurveGeometries. See the GDAL documenta-

tion for OGR_L_TestCapability().

ogr_layer_create() creates a new layer in an existing vector data source, with a specified ge-
ometry type and spatial reference definition. This function also accepts a feature class definition
given as a list of field names and their definitions (see ogr_define). (Note: use ogr_ds_create()
to create single-layer formats such as "ESRI Shapefile", "FlatGeobuf", "GeoJSON", etc.) Returns a
logical scalar, TRUE indicating success.

ogr_layer_field_names() returns a character vector of field names on a layer, or NULL if no fields
are found.

ogr_layer_delete() deletes an existing layer in a vector dataset. Returns a logical scalar, TRUE
indicating success.

ogr_field_index() tests for existence of an attribute field by name. Returns the field index on the
layer (0-based), or -1 if the field does not exist.

ogr_field_create() creates a new attribute field of specified data type in a given DSN/layer.
Several optional field properties can be specified in addition to the type. Returns a logical scalar,
TRUE indicating success.

ogr_geom_field_create() creates a new geometry field of specified type in a given DSN/layer.
Returns a logical scalar, TRUE indicating success.

ogr_field_rename() renames an existing field on a vector layer. Not all format drivers support
this function. Some drivers may only support renaming a field while there are still no features in
the layer. AlterFieldDefn is the relevant layer capability to check. Returns a logical scalar, TRUE
indicating success.

ogr_field_delete() deletes an existing field on a vector layer. Not all format drivers support this
function. Some drivers may only support deleting a field while there are still no features in the layer.
Returns a logical scalar, TRUE indicating success.

ogr_execute_sql () executes an SQL statement against the data store. This function can be used
to modify the schema or edit data using SQL (e.g., ALTER TABLE, DROP TABLE, CREATE INDEX,
DROP INDEX, INSERT, UPDATE, DELETE). Currently, this function does not return a result set for a
SELECT statement. Returns NULL invisibly. Wrapper of GDALDatasetExecuteSQL() in the GDAL
C APL

Note

The OGR SQL document linked under See Also contains information on the SQL dialect supported
internally by GDAL/OGR. Some format drivers (e.g., PostGIS) pass the SQL directly through to
the underlying RDBMS (unless OGRSQL is explicitly passed as the dialect). The SQLite dialect can
also be requested with the SQLite string passed as the dialect argument of ogr_execute_sql().
This assumes that GDAL/OGR is built with support for SQLite, and preferably also with Spatialite
support to benefit from spatial functions. The GDAL document for SQLite dialect has detailed
information.

Other SQL dialects may also be present for some vector formats. For example, the "INDIRECT_SQLITE"
dialect might potentially be used with GeoPackage format (https://gdal.org/drivers/vector/
gpkg.html#sqgl).


https://gdal.org/api/vector_c_api.html#_CPPv420OGR_L_TestCapability9OGRLayerHPKc
https://gdal.org/drivers/vector/gpkg.html#sql
https://gdal.org/drivers/vector/gpkg.html#sql

0gr_manage 85

The function ogrinfo() can also be used to edit data with SQL statements (GDAL >= 3.7).

The name of the geometry column of a layer is empty ("") with some formats such as ESRI Shape-
file and FlatGeobuf. Implications for SQL may depend on the dialect used. See the GDAL docu-
mentation for the "OGR SQL" and "SQLite" dialects for details.

See Also

gdal_formats(), has_spatialite(), ogr_def_field(), ogr_def_layer(), ogrinfo(), ogr2ogr()

OGR SQL dialect and SQLite SQL dialect:
https://gdal.org/user/ogr_sql_sqlite_dialect.html

Examples

dsn <- file.path(tempdir(), "testl.gpkg")

ogr_ds_create("GPKG", dsn)

ogr_ds_exists(dsn, with_update = TRUE)

ogr_ds_layer_count(dsn)

ogr_ds_test_cap(dsn)

ogr_layer_exists(dsn, "layerl")

if (ogr_ds_test_cap(dsn)$CreatelLayer) {
opt <- c("GEOMETRY_NULLABLE=NQO", "DESCRIPTION=test layer")
ogr_layer_create(dsn, "layer1"”, geom_type = "Polygon”, srs = "EPSG:5070",

lco = opt)

3

ogr_ds_layer_count(dsn)

ogr_layer_exists(dsn, "layerl1")

ogr_ds_layer_names(dsn)

ogr_layer_field_names(dsn, "layer1")
ogr_field_index(dsn, "layer1”, "field1")
if (ogr_layer_test_cap(dsn, "layer1")$CreateField) {
ogr_field_create(dsn, "layer1”, "field1”,
fld_type = "OFTInteger64”,
is_nullable = FALSE)
ogr_field_create(dsn, "layer1”, "field2",
fld_type = "OFTString")
3
ogr_field_index(dsn, "layer1”, "field1")
ogr_layer_field_names(dsn, "layer1")

# delete a field

if (ogr_layer_test_cap(dsn, "layer1"”)$DeleteField) {
ogr_field_delete(dsn, "layer1”, "field2")

3

ogr_layer_field_names(dsn, "layer1")

# define a feature class (layer definition)

defn <- ogr_def_layer("Point”, srs = epsg_to_wkt(4326))

# add the attribute fields

defn$fldi_name <- ogr_def_field("OFTInteger64",
is_nullable = FALSE,
is_unique = TRUE)


https://gdal.org/user/ogr_sql_sqlite_dialect.html

86

defn$fld2_name <- ogr_def_field("OFTString",
fld_width = 25,
is_nullable = FALSE,
default_value = "'a default string'")
defn$third_field <- ogr_def_field("OFTReal”,
default_value = "0.0")

ogr_layer_create(dsn, "layer2", layer_defn = defn)
ogr_ds_layer_names(dsn)
ogr_layer_field_names(dsn, "layer2")

# add a field using SQL instead

sql <- "ALTER TABLE layer2 ADD field4 float”
ogr_execute_sql(dsn, sql)
ogr_layer_field_names(dsn, "layer2")

# rename a field
if (ogr_layer_test_cap(dsn, "layer1")$AlterFieldDefn) {
ogr_field_rename(dsn, "layer2", "field4"”, "renamed_field")

}

ogr_layer_field_names(dsn, "layer2")

# GDAL >= 3.7
if (as.integer(gdal_version()[2]) >= 3070000)
ogrinfo(dsn, "layer2")

deleteDataset(dsn)

# edit data using SQL

src <- system.file("extdata/ynp_fires_1984_2022.gpkg", package="gdalraster")
perims_shp <- paste@(tempdir(), "/", "mtbs_perims.shp")

ogr2ogr(src, perims_shp, src_layers = "mtbs_perims")
ogr_ds_format(perims_shp)

ogr_ds_layer_names(perims_shp)

ogr_layer_field_names(perims_shp, "mtbs_perims")

if (ogr_layer_test_cap(perims_shp, "mtbs_perims"”)$CreateField) {
sql <- "ALTER TABLE mtbs_perims ADD burn_bnd_ha float”
ogr_execute_sql (perims_shp, sql)
# with GDAL >= 3.7, equivalent to:
# ogrinfo(perims_shp, cl_arg = c("-sql”, sql), read_only = FALSE)
3

sql <- "UPDATE mtbs_perims SET burn_bnd_ha = (burn_bnd_ac / 2.471)"
ogr_execute_sql(perims_shp, sql, dialect = "SQLite")
ogr_layer_field_names(perims_shp, "mtbs_perims")

# if GDAL >= 3.7:

# ogrinfo(perims_shp, "mtbs_perims")

# or, for output incl. the feature data (omit the default
#  ogrinfo(perims_shp, "mtbs_perims”, cl_arg = "-nomd")

n

-so" arg):

deleteDataset(perims_shp)

ogr_manage



plot_raster

87

plot_raster

Display raster data

Description

plot_raster() displays raster data using base graphics.

Usage

plot_raster(

data,
xsize
ysize
nbands

NULL,
NULL,
:']’

max_pixels = 2.5e+07,
col_tbl = NULL,
maxColorValue = 1,
normalize = TRUE,

minmax_
minmax_pct_cut = NULL,

def = NULL,

col_map_fn = NULL,

xlim =
ylim =

NULL,
NULL,

interpolate = TRUE,
asp = 1,

axes =
main =

xlab = "

ylab =
Xaxs =
yaxs =
legend
digits
na_col

Arguments

data

xsize

TRUE,

nn
’
n
’
n
’
nsn

o X

’
n
’

FALSE,
:2,

[N

rgb(e, o, 0, 0),

Either a GDALRaster object from which data will be read, or a numeric vector
of pixel values arranged in left to right, top to bottom order, or a list of band
vectors. If input is vector or list, the information in attribute gis will be used
if present (see read_ds()), potentially ignoring values below for xsize, ysize,

nbands.

The number of pixels along the x dimension in data. If data is a GDALRaster
object, specifies the size at which the raster will be read (used for argument



plot_raster

out_xsize in GDALRaster$read()). By default, the entire raster will be read at
full resolution.

ysize The number of pixels along the y dimension in data. If data is a GDALRaster
object, specifies the size at which the raster will be read (used for argument
out_ysize in GDALRaster$read()). By default, the entire raster will be read at
full resolution.

nbands The number of bands in data. Must be either 1 (grayscale) or 3 (RGB). For
RGB, data are interleaved by band.

max_pixels The maximum number of pixels that the function will attempt to display (per
band). An error is raised if (xsize x ysize) exceeds this value. Setting to NULL
turns off this check.

col_tbl A color table as a matrix or data frame with four or five columns. Column 1
contains the numeric pixel values. Columns 2:4 contain the intensities of the
red, green and blue primaries (@:1 by default, or use integer @: 255 by setting
maxColorValue = 255). An optional column 5 may contain alpha transparency
values, @ for fully transparent to 1 (or maxColorValue) for opaque (the default
if column 5 is missing). If data is a GDALRaster object, a built-in color table
will be used automatically if one exists in the dataset.

maxColorValue A number giving the maximum of the color values range in col_tb1 (see above).
The default is 1.

normalize Logical. TRUE to rescale pixel values so that their range is [@, 1], normalized to
the full range of the pixel data by default (min(data), max(data), per band).
Ignored if col_tbl is used. Set normalize to FALSE if a color map function is
used that operates on raw pixel values (see col_map_fn below).

minmax_def Normalize to user-defined min/max values (in terms of the pixel data, per band).
For single-band grayscale, a numeric vector of length two containing min, max.
For 3-band RGB, a numeric vector of length six containing b1_min, b2_min,
b3_min, bl_max, b2_max, b3_max.

minmax_pct_cut Normalize to a truncated range of the pixel data using percentile cutoffs (re-
moves outliers). A numeric vector of length two giving the percentiles to use
(e.g., c(2, 98)). Applied per band. Ignored if minmax_def is used.

col_map_fn An optional color map function (default is grDevices: :gray for single-band
data or grDevices: : rgb for 3-band). Ignored if col_tbl isused. Set normalize
to FALSE if using a color map function that operates on raw pixel values.

x1lim Numeric vector of length two giving the x coordinate range. If datais a GDALRaster
object, the default is the raster xmin, xmax in georeferenced coordinates, other-
wise the default uses pixel/line coordinates (c (0, xsize)).

ylim Numeric vector of length two giving the y coordinate range. If datais a GDALRaster
object, the default is the raster ymin, ymax in georeferenced coordinates, other-
wise the default uses pixel/line coordinates (c(ysize, 0)).

interpolate Logical indicating whether to apply linear interpolation to the image when draw-
ing (default TRUE).
asp Numeric. The aspect ratio y/x (see ?plot.window).

axes Logical. TRUE to draw axes (the default).



plot_raster 89

main The main title (on top).

xlab Title for the x axis (see ?title).

ylab Title for the y axis (see ?title).

Xaxs The style of axis interval calculation to be used for the x axis (see ?par).

yaxs The style of axis interval calculation to be used for the y axis (see ?par).
legend Logical indicating whether to include a legend on the plot. Currently, legends are

only supported for continuous data. A color table will be used if one is specified
or the raster has a built-in color table, otherwise the value for col_map_fn will
be used.

digits The number of digits to display after the decimal point in the legend labels when
raster data are floating point.

na_col Color to use for NA as a 7- or 9-character hexadecimal code. The default is
transparent ("#00000000", the return value of rgh(0,0,0,9)).

Other parameters to be passed to plot.default().

Note

plot_raster() uses the function graphics: :rasterImage() for plotting which is not supported
on some devices (see ?rasterImage).

If data is an object of class GDALRaster, then plot_raster () will attempt to read the entire raster
into memory by default (unless the number of pixels per band would exceed max_pixels). A
reduced resolution overview can be read by setting xsize, ysize smaller than the raster size on
disk. (If data is instead specified as a vector of pixel values, a reduced resolution overview would
be read by setting out_xsize and out_ysize smaller than the raster region defined by xsize,
ysize in a call to GDALRaster$read()). The GDAL_RASTERIO_RESAMPLING configuration
option can be defined to override the default resampling (NEAREST) to one of BILINEAR, CUBIC,
CUBICSPLINE, LANCZOS, AVERAGE or MODE, for example:

set_config_option("GDAL_RASTERIO_RESAMPLING"”, "BILINEAR")

See Also

GDALRaster$read(), read_ds(), set_config_option()

Examples

## Elevation
elev_file <- system.file("extdata/storml_elev.tif"”, package="gdalraster")
ds <- new(GDALRaster, elev_file)

# grayscale
plot_raster(ds, legend=TRUE, main="Storm Lake elevation (m)")

# color ramp from user-defined palette

elev_pal <- c("#00AGOE","#63C600", " "#E6E60Q", "#E9BD3B",
"#ECB176", "#EFC2B3", "#F2F2F2")

ramp <- scales::colour_ramp(elev_pal, alpha=FALSE)



90

polygonize

plot_raster(ds, col_map_fn=ramp, legend=TRUE,
main="Storm Lake elevation (m)")

ds$close()

## Landsat band combination

b4_file <- system.file("extdata/sr_b4_20200829.tif", package="gdalraster")
b5_file <- system.file("extdata/sr_b5_20200829.tif", package="gdalraster"”)
b6_file <- system.file("extdata/sr_b6_20200829.tif", package="gdalraster"”)
band_files <- c(b6_file, b5_file, b4_file)

r <- vector("integer")

for (f in band_files) {
ds <- new(GDALRaster, f)
dm <- ds$dim()
r <- c(r, read_ds(ds))
ds$close()

3

plot_raster(r, xsize=dm[1], ysize=dm[2], nbands=3,
main="Landsat 6-5-4 (vegetative analysis)")

## LANDFIRE Existing Vegetation Cover (EVC) with color map
evc_file <- system.file("extdata/storml_evc.tif"”, package="gdalraster")

# colors from the CSV attribute table distributed by LANDFIRE

evc_csv <- system.file("extdata/LF20_EVC_220.csv", package="gdalraster")
vat <- read.csv(evc_csv)

head(vat)

vat <- vat[,c(1,6:8)]

ds <- new(GDALRaster, evc_file)
plot_raster(ds, col_tbl=vat, interpolate=FALSE,
main="Storm Lake LANDFIRE EVC")

ds$close()

polygonize Create a polygon feature layer from raster data

Description

polygonize() creates vector polygons for all connected regions of pixels in a source raster sharing
a common pixel value. Each polygon is created with an attribute indicating the pixel value of that
polygon. A raster mask may also be provided to determine which pixels are eligible for processing.
The function will create the output vector layer if it does not already exist, otherwise it will try to
append to an existing one. This function is a wrapper of GDALPolygonize in the GDAL Algorithms
APIL. It provides essentially the same functionality as the gdal_polygonize.py command-line pro-
gram (https://gdal.org/programs/gdal_polygonize.html).


https://gdal.org/programs/gdal_polygonize.html

polygonize 91

Usage

polygonize(
raster_file,
out_dsn,
out_layer,
fld_name = "DN",
out_fmt = NULL,
connectedness = 4,
src_band = 1,
mask_file = NULL,
nomask = FALSE,
overwrite = FALSE,

dsco = NULL,
lco = NULL,
quiet = FALSE
)
Arguments
raster_file Filename of the source raster.
out_dsn The destination vector filename to which the polygons will be written (or database
connection string).
out_layer Name of the layer for writing the polygon features. For single-layer file formats
such as "ESRI Shapefile”, the layer name is the same as the filename without
the path or extension (e.g., out_dsn = "path_to_file/polygon_output.shp”,
the layer name is "polygon_output”).
fld_name Name of an integer attribute field in out_layer to which the pixel values will
be written. Will be created if necessary when using an existing layer.
out_fmt GDAL short name of the output vector format. If unspecified, the function will

attempt to guess the format from the filename/connection string.

connectedness Integer scalar. Must be either 4 or 8. For the default 4-connectedness, pixels
with the same value are considered connected only if they touch along one of
the four sides, while 8-connectedness also includes pixels that touch at one of
the corners.

src_band The band on raster_file to build the polygons from (default is 1).

mask_file Use the first band of the specified raster as a validity mask (zero is invalid, non-
zero is valid). If not specified, the default validity mask for the input band (such
as nodata, or alpha masks) will be used (unless nomask is set to TRUE).

nomask Logical scalar. If TRUE, do not use the default validity mask for the input band
(such as nodata, or alpha masks). Default is FALSE.
overwrite Logical scalar. If TRUE, overwrite out_layer if it already exists. Default is
FALSE.
dsco Optional character vector of format-specific creation options for out_dsn ("NAME=VALUE"

pairs).



92 polygonize

lco Optional character vector of format-specific creation options for out_layer
("NAME=VALUE" pairs).
quiet Logical scalar. If TRUE, a progress bar will not be displayed. Defaults to FALSE.
Details

Polygon features will be created on the output layer, with polygon geometries representing the
polygons. The polygon geometries will be in the georeferenced coordinate system of the raster
(based on the geotransform of the source dataset). It is acceptable for the output layer to already
have features. If the output layer does not already exist, it will be created with coordinate system
matching the source raster.

The algorithm attempts to minimize memory use so that very large rasters can be processed. How-
ever, if the raster has many polygons or very large/complex polygons, the memory use for holding
polygon enumerations and active polygon geometries may grow to be quite large.

The algorithm will generally produce very dense polygon geometries, with edges that follow exactly
on pixel boundaries for all non-interior pixels. For non-thematic raster data (such as satellite images)
the result will essentially be one small polygon per pixel, and memory and output layer sizes will be
substantial. The algorithm is primarily intended for relatively simple thematic rasters, masks, and
classification results.

Note

The source pixel band values are read into a signed 64-bit integer buffer (Int64) by GDALPolygonize,
so floating point or complex bands will be implicitly truncated before processing.

When 8-connectedness is used, many of the resulting polygons will likely be invalid due to ring
self-intersection (in the strict OGC definition of polygon validity). They may be suitable as-is
for certain purposes such as calculating geometry attributes (area, perimeter). Package sf has
st_make_valid(), PostGIS has ST_MakeValid(), and QGIS has vector processing utility "Fix
geometries" (single polygons can become MultiPolygon in the case of self-intersections).

If writing to a SQLite database format as either GPKG (GeoPackage vector) or SQLite (Spatialite
vector), setting the SQLITE_USE_OGR_VFS and OGR_SQLITE_JOURNAL configuration options may in-
crease performance substantially. If writing to PostgreSQL (PostGIS vector), setting PG_USE_COPY=YES
is faster:

# SQLite: GPKG (.gpkg) and Spatialite (.sqglite)

# enable extra buffering/caching by the GDAL/OGR I/0 layer
set_config_option("SQLITE_USE_OGR_VFS", "YES")

# set the journal mode for the SQLite database to MEMORY
set_config_option("OGR_SQLITE_JOURNAL", "MEMORY")

# PostgreSQL / PostGIS
# use COPY for inserting data rather than INSERT
set_config_option("PG_USE_COPY", "YES")

See Also

rasterize()

vignette("gdal-config-quick-ref")



pop_error_handler

Examples

93

evt_file <- system.file("extdata/storml_evt.tif"”, package="gdalraster")
dsn <- paste@(tempdir(), "/", "storm_lake.gpkg")

layer <- "1f_evt"

fld <- "evt_value”
set_config_option(”SQLITE_USE_OGR_VFS",
set_config_option(”"OGR_SQLITE_JOURNAL",
polygonize(evt_file, dsn, layer, fld)
set_config_option(”"SQLITE_USE_OGR_VFS",
set_config_option(”"OGR_SQLITE_JOURNAL",
deleteDataset(dsn)

VIYESII)
"MEMORY")

nu)
nu)

pop_error_handler

Pop error handler off stack

Description

pop_error_handler () is a wrapper for CPLPopErrorHandler () in the GDAL Common Portabil-
ity Library. Discards the current error handler on the error handler stack, and restores the one in
use before the last push_error_handler() call. This method has no effect if there are no error
handlers on the current thread’s error handler stack.

Usage

pop_error_handler ()

Value

No return value, called for side effects.

See Also

push_error_handler ()

Examples

push_error_handler("quiet")
# ...
pop_error_handler()



94 proj_search_paths

proj_networking Check, enable or disable PROJ networking capabilities

Description
proj_networking() returns the status of PROJ networking capabilities, optionally enabling or
disabling first. Requires GDAL 3.4 or later and PROJ 7 or later.

Usage

proj_networking(enabled = NULL)

Arguments
enabled Optional logical scalar. Set to TRUE to enable networking capabilities or FALSE
to disable.
Value

Logical TRUE if PROJ networking capabilities are enabled (as indicated by the return value of
O0SRGetPROJEnableNetwork() in the GDAL Spatial Reference System C API). Logical NA is re-
turned if GDAL < 3.4.

See Also

proj_version(), proj_search_paths()
PROJ-data on GitHub, PROJ Content Delivery Network

Examples

proj_networking()

proj_search_paths Get or set search path(s) for PROJ resource files

Description
proj_search_paths() returns the search path(s) for PROJ resource files, optionally setting them
first.

Usage

proj_search_paths(paths = NULL)

Arguments

paths Optional character vector containing one or more directory paths to set.


https://github.com/OSGeo/PROJ-data
https://cdn.proj.org/

proj_version 95

Value

A character vector containing the currently used search path(s) for PROJ resource files. An empty
string ("") is returned if no search paths are returned by the function OSRGetPROJSearchPaths()
in the GDAL Spatial Reference System C APL

See Also

proj_version(), proj_networking()

Examples

proj_search_paths()

proj_version Get PROJ version

Description

proj_version() returns version information for the PROJ library in use by GDAL.

Usage

proj_version()

Value
A list of length four containing:
* name - a string formatted as "major.minor.patch"
* major - major version as integer

* minor - minor version as integer

* patch - patch version as integer

See Also

gdal_version(), geos_version(), proj_search_paths(), proj_networking()

Examples

proj_version()



96 push_error_handler

push_error_handler Push a new GDAL CPLError handler

Description

push_error_handler() is a wrapper for CPLPushErrorHandler() in the GDAL Common Porta-
bility Library. This pushes a new error handler on the thread-local error handler stack. This han-
dler will be used until removed with pop_error_handler(). A typical use is to temporarily set
CPLQuietErrorHandler () which doesn’t make any attempt to report passed error or warning mes-
sages, but will process debug messages via CPLDefaultErrorHandler.

Usage

push_error_handler(handler)

Arguments

handler Character name of the error handler to push. One of quiet, logging or default.

Value

No return value, called for side effects.

Note

Setting handler = "logging"” will use CPLLoggingErrorHandler (), error handler that logs into
the file defined by the CPL_LOG configuration option, or stderr otherwise.

This only affects error reporting from GDAL.

See Also

pop_error_handler()

Examples

push_error_handler("quiet")
# ...
pop_error_handler()



rasterFromRaster 97

rasterFromRaster Create a raster from an existing raster as template

Description

rasterFromRaster () creates a new raster with spatial reference, extent and resolution taken from
a template raster, without copying data. Optionally changes the format, number of bands, data type
and nodata value, sets driver-specific dataset creation options, and initializes to a value.

Usage

rasterFromRaster(
srcfile,
dstfile,
fmt = NULL,
nbands = NULL,
dtName = NULL,
options = NULL,

init = NULL,
dstnodata = init
)
Arguments
srcfile Source raster filename.
dstfile Output raster filename.
fmt Output raster format name (e.g., "GTiff" or "HFA"). Will attempt to guess from
the output filename if fmt is not specified.
nbands Number of output bands.
dtName Output raster data type name. Commonly used types include "Byte"”, "Int16",
"UInt16”, "Int32" and "Float32".
options Optional list of format-specific creation options in a vector of "NAME=VALUE"
pairs (e.g., options = c("COMPRESS=LZW") to set LZW compression during cre-
ation of a GTiff file).
init Numeric value to initialize all pixels in the output raster.
dstnodata Numeric nodata value for the output raster.
Value

Returns the destination filename invisibly.

See Also

GDALRaster-class, create(), createCopy(), bandCopyWholeRaster (), translate()



98 rasterize

Examples

# band 2 in a FARSITE landscape file has slope degrees

# convert slope degrees to slope percent in a new raster

lcp_file <- system.file("extdata/storm_lake.lcp”, package="gdalraster")
ds_lcp <- new(GDALRaster, lcp_file)

ds_lcp$getMetadata(band=2, domain="")

slpp_file <- paste@(tempdir(), "/", "storml_slpp.tif")
opt = c("COMPRESS=LZW")
rasterfFromRaster(srcfile = lcp_file,
dstfile = slpp_file,
nbands = 1,
dtName = "Int16",
options = opt,
init = -32767)
ds_slp <- new(GDALRaster, slpp_file, read_only=FALSE)

# slpp_file is initialized to -32767 and nodata value set
ds_slp$getNoDataValue(band=1)

# extent and cell size are the same as lcp_file
ds_lcp$bbox ()
ds_lcp$res()
ds_slp$bbox()
ds_slp$res()

# convert slope degrees in lcp_file band 2 to slope percent in slpp_file
# bring through LCP nodata -9999 to the output nodata value
ncols <- ds_slp$getRasterXSize()
nrows <- ds_slp$getRasterYSize()
for (row in @:(nrows-1)) {
rowdata <- ds_lcp$read(band=2,
xoff=0, yoff=row,
xsize=ncols, ysize=1,
out_xsize=ncols, out_ysize=1)
rowslpp <- tan(rowdata*pi/180) * 100
rowslpp[rowdata==-9999] <- -32767
dim(rowslpp) <- c(1, ncols)
ds_slp$write(band=1, xoff=0, yoff=row, xsize=ncols, ysize=1, rowslpp)

# min, max, mean, sd
ds_slp$getStatistics(band=1, approx_ok=FALSE, force=TRUE)

ds_slp$close()
ds_lcp$close()
deleteDataset(slpp_file)

rasterize Burn vector geometries into a raster




rasterize

Description

99

rasterize() burns vector geometries (points, lines, or polygons) into the band(s) of a raster
dataset. Vectors are read from any GDAL OGR-supported vector format. This function is a wrapper
for the gdal_rasterize command-line utility (https://gdal.org/programs/gdal_rasterize.

html).

Usage

rasterize(
src_dsn,
dstfile,
band = NULL,
layer = NULL,
where = NULL,
sgl = NULL,
burn_value =

NULL,

burn_attr = NULL,
invert = NULL,

te = NULL,
tr = NULL,
tap = NULL,
ts = NULL,

dtName = NULL,
dstnodata = NULL,

init = NULL,
fmt = NULL,
co = NULL,

add_options =
quiet = FALSE

Arguments

src_dsn

dstfile

band

layer

where

sql

burn_value

NULL,

Data source name for the input vector layer (filename or connection string).

Filename of the output raster. Must support update mode access. This file will
be created (or overwritten if it already exists - see Note).

Numeric vector. The band(s) to burn values into (for existing dstfile). The
default is to burn into band 1. Not used when creating a new raster.

Character vector of layer names(s) from src_dsn that will be used for input
features. At least one layer name or a sql option must be specified.

An optional SQL. WHERE style query string to select features to burn in from
the input layer(s).

An SQL statement to be evaluated against src_dsn to produce a virtual layer of
features to be burned in (alternative to layer).

A fixed numeric value to burn into a band for all features. A numeric vector can
be supplied, one burn value per band being written to.


https://gdal.org/programs/gdal_rasterize.html
https://gdal.org/programs/gdal_rasterize.html

100 rasterize

burn_attr Character string. Name of an attribute field on the features to be used for a
burn-in value. The value will be burned into all output bands.

invert Logical scalar. TRUE to invert rasterization. Burn the fixed burn value, or the
burn value associated with the first feature, into all parts of the raster not inside
the provided polygon.

te Numeric vector of length four. Sets the output raster extent. The values must be

expressed in georeferenced units. If not specified, the extent of the output raster
will be the extent of the vector layer.

tr Numeric vector of length two. Sets the target pixel resolution. The values must
be expressed in georeferenced units. Both must be positive.

tap Logical scalar. (target aligned pixels) Align the coordinates of the extent of
the output raster to the values of tr, such that the aligned extent includes the
minimum extent. Alignment means that xmin / resx, ymin / resy, xmax / resx
and ymax / resy are integer values.

ts Numeric vector of length two. Sets the output raster size in pixels (xsize, ysize).
Note that ts cannot be used with tr.

dtName Character name of output raster data type, e.g., Byte, Int16, UInt16, Int32,
UInt32, Float32, Float64. Defaults to Float64.

dstnodata Numeric scalar. Assign a nodata value to output bands.

init Numeric vector. Pre-initialize the output raster band(s) with these value(s).

However, it is not marked as the nodata value in the output file. If only one
value is given, the same value is used in all the bands.

fmt Output raster format short name (e.g., "GTiff"). Will attempt to guess from the
output filename if fmt is not specified.

co Optional list of format-specific creation options for the output raster in a vector
of "NAME=VALUE" pairs (e.g., options = c("TILED=YES", "COMPRESS=LZW")
to set LZW compression during creation of a tiled GTiff file).

add_options An optional character vector of additional command-line options to gdal_rasterize
(see the gdal_rasterize documentation at the URL above for all available op-
tions).
quiet Logical scalar. If TRUE, a progress bar will not be displayed. Defaults to FALSE.
Value

Logical indicating success (invisible TRUE). An error is raised if the operation fails.

Note

The function creates a new target raster when any of the fmt, dstnodata, init, co, te, tr, tap,
ts, or dtName arguments are used. The resolution or size must be specified using the tr or ts
argument for all new rasters. The target raster will be overwritten if it already exists and any of
these creation-related options are used.

See Also
polygonize()



rasterToVRT 101

Examples

# MTBS fire perimeters for Yellowstone National Park 1984-2022

dsn <- system.file("extdata/ynp_fires_1984_2022.gpkg", package="gdalraster")
sql <- "SELECT * FROM mtbs_perims ORDER BY mtbs_perims.ig_year"

out_file <- paste@(tempdir(), "/", "ynp_fires_1984_2022.tif")

rasterize(src_dsn = dsn,
dstfile = out_file,
sql = sql,
burn_attr = "ig_year”,
tr = ¢(90,90),
tap = TRUE,
dtName = "Int16",
dstnodata = -9999,
init = -9999,
co = c("TILED=YES","COMPRESS=LZW"))

ds <- new(GDALRaster, out_file)

pal <- scales::viridis_pal(end = 0.8, direction = -1)(6)

ramp <- scales::colour_ramp(pal)

plot_raster(ds, legend = TRUE, col_map_fn = ramp, na_col = "#d9d9d9",
main="YNP Fires 1984-2022 - Most Recent Burn Year")

ds$close()
deleteDataset(out_file)

rasterToVRT Create a GDAL virtual raster derived from one source dataset

Description

rasterToVRT() creates a virtual raster dataset (VRT format) derived from one source dataset with
options for virtual subsetting, virtually resampling the source data at a different pixel resolution, or
applying a virtual kernel filter. (See buildVRT() for virtual mosaicing.)

Usage
rasterToVRT(
srcfile,
relativeToVRT = FALSE,
vrtfile = tempfile("tmprast”, fileext = ".vrt"),

resolution = NULL,
subwindow = NULL,
src_align = TRUE,
resampling = "nearest”,
krnl = NULL,

normalized = TRUE



102

Arguments

srcfile

relativeToVRT

vrtfile

resolution

subwindow

src_align

resampling

krnl

normalized

rasterToVRT

Source raster filename.

Logical. Indicates whether the source filename should be interpreted as rela-
tive to the .vrt file (TRUE) or not relative to the .vrt file (FALSE, the default).
If TRUE, the .vrt file is assumed to be in the same directory as srcfile and
basename(srcfile) is used in the .vrt file. Use TRUE if the .vrt file will always
be stored in the same directory with srcfile.

Output VRT filename.

A numeric vector of length two (xres, yres). The pixel size must be expressed in
georeferenced units. Both must be positive values. The source pixel size is used
if resolution is not specified.

A numeric vector of length four (xmin, ymin, xmax, ymax). Selects subwindow
of the source raster with corners given in georeferenced coordinates (in the
source CRS). If not given, the upper left corner of the VRT will be the same
as source, and the VRT extent will be the same or larger than source depending
on resolution.

Logical.

* TRUE: the upper left corner of the VRT extent will be set to the upper left
corner of the source pixel that contains subwindow xmin, ymax. The VRT
will be pixel-aligned with source if the VRT resolution is the same as the
source pixel size, otherwise VRT extent will be the minimum rectangle that
contains subwindow for the given pixel size. Often, src_align=TRUE when
selecting a raster minimum bounding box for a vector polygon.

* FALSE: the VRT upper left corner will be exactly subwindow xmin, ymax,
and the VRT extent will be the minimum rectangle that contains subwindow
for the given pixel size. If subwindow is not given, the source raster extent is
used in which case src_align=FALSE has no effect. Use src_align=FALSE
to pixel-align two rasters of different sizes, i.e., when the intent is target
alignment.

The resampling method to use if xsize, ysize of the VRT is different than the size
of the underlying source rectangle (in number of pixels). The values allowed are
nearest, bilinear, cubic, cubicspline, lanczos, average and mode (as character).

A filtering kernel specified as pixel coefficients. krnl is a array with dimensions
(size, size), where size must be an odd number. krnl can also be given as a
vector with length size x size. For example, a 3x3 average filter is given by:

krnl <- c(

0.11111, 2.11111, 0.11111,
0.11111, 0.11111, 0.11111,
0.11111, 0.11111, 0.11111)

A kernel cannot be applied to sub-sampled or over-sampled data.

Logical. Indicates whether the kernel is normalized. Defaults to TRUE.



rasterToVRT 103

Details

rasterToVRT() can be used to virtually clip and pixel-align various raster layers with each other
or in relation to vector polygon boundaries. It also supports VRT kernel filtering.

A VRT dataset is saved as a plain-text file with extension .vrt. This file contains a description of
the dataset in an XML format. The description includes the source raster filename which can be
a full path (relativeToVRT = FALSE) or relative path (relativeToVRT = TRUE). For relative path,
rasterToVRT() assumes that the .vrt file will be in the same directory as the source file and uses
basename(srcfile). The elements of the XML schema describe how the source data will be read,
along with algorithms potentially applied and so forth. Documentation of the XML format for .vrt
is at: https://gdal.org/drivers/raster/vrt.html.

Since .vrt is a small plain-text file it is fast to write and requires little storage space. Read perfor-
mance is not degraded for certain simple operations (e.g., virtual clip without resampling). Reading
will be slower for virtual resampling to a different pixel resolution or virtual kernel filtering since
the operations are performed on-the-fly (but .vrt does not require the up front writing of a resampled
or kernel-filtered raster to a regular format). VRT is sometimes useful as an intermediate raster in a
series of processing steps, e.g., as a tempfile (the default).

GDAL VRT format has several capabilities and uses beyond those covered by rasterToVRT(). See
the URL above for a full discussion.

Value

Returns the VRT filename invisibly.

Note

Pixel alignment is specified in terms of the source raster pixels (i.e., srcfile of the virtual raster).
The use case in mind is virtually clipping a raster to the bounding box of a vector polygon and
keeping pixels aligned with srcfile (src_align = TRUE). src_align would be set to FALSE if
the intent is "target alignment". For example, if subwindow is the bounding box of another raster
with a different layout, then also setting resolution to the pixel resolution of the target raster
and src_align = FALSE will result in a virtual raster pixel-aligned with the target (i.e., pixels in
the virtual raster are no longer aligned with its srcfile). Resampling defaults to nearest if not
specified. Examples for both cases of src_align are given below.

rasterToVRT() assumes srcfile is a north-up raster.

See Also

GDALRaster-class, bbox_from_wkt (), buildVRT()

warp() can write VRT for virtual reprojection

Examples

## resample

evt_file <- system.file("extdata/storml_evt.tif"”, package="gdalraster”)
ds <- new(GDALRaster, evt_file)

ds$res()

ds$bbox ()


https://gdal.org/drivers/raster/vrt.html

104 rasterToVRT

ds$close()

# table of the unique pixel values and their counts
tbl <- buildRAT(evt_file)

print(tbl)

sum(tb1$COUNT)

# resample at 90-m resolution
# EVT is thematic vegetation type so use a majority value
vrt_file <- rasterToVRT(evt_file,
resolution=c(90,90),
resampling="mode")

# .vrt is a small xml file pointing to the source raster
file.size(vrt_file)

tb190m <- buildRAT(vrt_file)
print(tb190m)
sum(tb190m$COUNT)

ds <- new(GDALRaster, vrt_file)
ds$res()

ds$bbox ()

ds$close()

vsi_unlink(vrt_file)

## clip

evt_file <- system.file("extdata/storml_evt.tif"”, package="gdalraster")
ds_evt <- new(GDALRaster, evt_file)
ds_evt$bbox ()

# WKT string for a boundary within the EVT extent

bnd = "POLYGON ((324467.3 5104814.2, 323909.4 5104365.4, 323794.2
5103455.8, 324970.7 5102885.8, 326420.0 5103595.3, 326389.6 5104747.5,
325298.1 5104929.4, 325298.1 5104929.4, 324467.3 5104814.2))"

# src_align = TRUE

vrt_file <- rasterToVRT(evt_file,
subwindow = bbox_from_wkt(bnd),
src_align=TRUE)

ds_vrt <- new(GDALRaster, vrt_file)

# VRT is a virtual clip, pixel-aligned with the EVT raster
bbox_from_wkt(bnd)

ds_vrt$bbox ()

ds_vrt$res()

ds_vrt$close()
vsi_unlink(vrt_file)

# src_align = FALSE



rasterToVRT 105

vrt_file <- rasterToVRT(evt_file,
subwindow = bbox_from_wkt(bnd),
src_align=FALSE)

ds_vrt_noalign <- new(GDALRaster, vrt_file)

# VRT upper left corner (xmin, ymax) is exactly bnd xmin, ymax
ds_vrt_noalign$bbox()
ds_vrt_noalign$res()

ds_vrt_noalign$close()
vsi_unlink(vrt_file)
ds_evt$close()

## subset and pixel align two rasters

# FARSITE landscape file for the Storm Lake area
lcp_file <- system.file("extdata/storm_lake.lcp”, package="gdalraster")
ds_lcp <- new(GDALRaster, lcp_file)

# Landsat band 5 file covering the Storm Lake area
b5_file <- system.file("extdata/sr_b5_20200829.tif", package="gdalraster")
ds_b5 <- new(GDALRaster, b5_file)

ds_lcp$bbox() # 323476.1 5101872.0 327766.1 5105082.0
ds_lcp$res() # 30 30

ds_b5$bbox()  # 323400.9 5101815.8 327870.9 5105175.8
ds_b5%$res() # 30 30

# src_align = FALSE because we need target alignment in this case:
vrt_file <- rasterToVRT(b5_file,

resolution = ds_lcp$res(),

subwindow = ds_lcp$bbox(),

src_align = FALSE)
ds_b5vrt <- new(GDALRaster, vrt_file)

ds_b5vrt$bbox() # 323476.1 5101872.0 327766.1 5105082.0
ds_b5vrt$res() # 30 30

# read the the Landsat file pixel-aligned with the LCP file
# summarize band 5 reflectance where FBFM = 165

# LCP band 4 contains FBFM (a classification of fuel beds):
ds_lcp$getMetadata(band=4, domain="")

# verify Landsat nodata (0):
ds_b5vrt$getNoDataValue(band=1)

# will be read as NA and omitted from stats
rs <- new(RunningStats, na_rm=TRUE)

ncols <- ds_lcp$getRasterXSize()
nrows <- ds_lcp$getRasterYSize()
for (row in @:(nrows-1)) {



106 read_ds

row_fbfm <- ds_lcp$read(band=4, xoff=0, yoff=row,
xsize=ncols, ysize=1,
out_xsize=ncols, out_ysize=1)
row_b5 <- ds_b5vrt$read(band=1, xoff=0, yoff=row,
xsize=ncols, ysize=1,
out_xsize=ncols, out_ysize=1)
rs$update(row_b5[row_fbfm == 165])
3
rs$get_count()
rs$get_mean()
rs$get_min()
rs$get_max()
rs$get_sum()
rs$get_var()
rs$get_sd()

ds_b5vrt$close()
vsi_unlink(vrt_file)
ds_lcp$close()
ds_b5%$close()

read_ds Convenience wrapper for GDALRaster$read()

Description

read_ds () will read from a raster dataset that is already open in a GDALRaster object. By default,
it attempts to read the full raster extent from all bands at full resolution. read_ds() is sometimes
more convenient than GDALRaster$read(), e.g., to read specific multiple bands for display with
plot_raster(), or simply for the argument defaults to read an entire raster into memory (see Note).

Usage
read_ds(
ds,
bands = NULL,
xoff = @,
yoff = 0,

xsize = ds$getRasterXSize(),
ysize = ds$getRasterYSize(),
out_xsize = xsize,

out_ysize = ysize,

as_list = FALSE,

as_raw = FALSE



read_ds 107

Arguments

ds An object of class GDALRaster in open state.

bands Integer vector of band numbers to read. By default all bands will be read.

xof f Integer. The pixel (column) offset to the top left corner of the raster region to be
read (zero to start from the left side).

yoff Integer. The line (row) offset to the top left corner of the raster region to be read
(zero to start from the top).

xsize Integer. The width in pixels of the region to be read.

ysize Integer. The height in pixels of the region to be read.

out_xsize Integer. The width in pixels of the output buffer into which the desired region
will be read (e.g., to read a reduced resolution overview).

out_ysize Integer. The height in pixels of the output buffer into which the desired region
will be read (e.g., to read a reduced resolution overview).

as_list Logical. If TRUE, return output as a list of band vectors. If FALSE (the default),
output is a vector of pixel data interleaved by band.

as_raw Logical. If TRUE and the underlying data type is Byte, return output as R’s
raw vector type. This maps to the setting $readByteAsRaw on the GDALRaster
object, which is used to temporarily update that field in this function. To con-
trol this behaviour in a persistent way on a data set see $readByteAsRaw in
GDALRaster-class.

Details

NA will be returned in place of the nodata value if the raster dataset has a nodata value defined for
the band. Data are read as R integer type when possible for the raster data type (Byte, Int8, Int16,
Ulnt16, Int32), otherwise as type double (Ulnt32, Float32, Float64).

The output object has attribute gis, a list containing:

$type = "raster”

$bbox = c(xmin, ymin, xmax, ymax)
$dim = c(xsize, ysize, nbands)
$srs = <projection as WKT2 string>

The WKT version used for the projection string can be overridden by setting the OSR_WKT_FORMAT
configuration option. See srs_to_wkt() for a list of supported values.

Value

If as_list = FALSE (the default), a numeric or complex vector containing the values that were
read. It is organized in left to right, top to bottom pixel order, interleaved by band. If as_list =
TRUE, a list with number of elements equal to the number of bands read. Each element contains a
numeric or complex vector containing the pixel data read for the band.



108 renameDataset

Note

There is small overhead in calling read_ds() compared with calling GDALRaster$read() di-
rectly. This would only matter if calling the function repeatedly to read a raster in chunks. For
the case of reading a large raster in many chunks, it will be optimal performance-wise to call
GDALRaster$read() directly.

By default, this function will attempt to read the full raster into memory. It generally should not
be called on large raster datasets using the default argument values. The memory size in bytes of
the returned vector will be approximately (xsize * ysize * number of bands * 4) for data read as
integer, and (xsize * ysize * number of bands * 8) for data read as double (plus small object
overhead for the vector).

See Also

GDALRaster$read()

Examples

# read three bands from a multi-band dataset
lcp_file <- system.file("extdata/storm_lake.lcp”, package="gdalraster")
ds <- new(GDALRaster, lcp_file)

# as a vector of pixel data interleaved by band
r <- read_ds(ds, bands=c(6,5,4))

typeof (r)

length(r)

object.size(r)

# as a list of band vectors

r <- read_ds(ds, bands=c(6,5,4), as_list=TRUE)
typeof (r)

length(r)

object.size(r)

# gis attribute list
attr(r, "gis")

ds$close()

renameDataset Rename a dataset

Description

renameDataset () renames a dataset in a format-specific way (e.g., rename associated files as ap-
propriate). This could include moving the dataset to a new directory or even a new filesystem. The
dataset should not be open in any existing GDALRaster objects when renameDataset () is called.
Wrapper for GDALRenameDataset () in the GDAL APIL.



renameDataset 109

Usage

renameDataset(new_filename, old_filename, format = "")

Arguments

new_filename  New name for the dataset.
old_filename  Old name for the dataset (should not be open in a GDALRaster object).

format Raster format short name (e.g., "GTift"). If set to empty string "" (the default),
will attempt to guess the raster format from old_filename.

Value

Logical TRUE if no error or FALSE on failure.

Note

nn

If format is set to an empty string "" (the default) then the function will try to identify the driver
from old_filename. This is done internally in GDAL by invoking the Identify method of each
registered GDALDriver in turn. The first driver that successful identifies the file name will be re-
turned. An error is raised if a format cannot be determined from the passed file name.

See Also

GDALRaster-class, create(), createCopy(), deleteDataset(), copyDatasetFiles()

Examples

b5_file <- system.file("extdata/sr_b5_20200829.tif", package="gdalraster")
b5_tmp <- paste@(tempdir(), "/", "b5_tmp.tif")
file.copy(b5_file, b5_tmp)

ds <- new(GDALRaster, b5_tmp)

ds$buildOverviews("BILINEAR", levels = c(2, 4, 8), bands = c(1))
ds$getFilelList()

ds$close()

b5_tmp2 <- paste@(tempdir(), "/", "b5_tmp_renamed.tif")
renameDataset (b5_tmp2, b5_tmp)

ds <- new(GDALRaster, b5_tmp2)

ds$getFilelList()

ds$close()

deleteDataset(b5_tmp2)



110 RunningStats-class

RunningStats-class Class to calculate mean and variance in one pass

Description

RunningStats computes summary statistics on a data stream efficiently. Mean and variance are cal-
culated with Welford’s online algorithm (https://en.wikipedia.org/wiki/Algorithms_for_
calculating_variance). The min, max, sum and count are also tracked. The input data values
are not stored in memory, so this class can be used to compute statistics for very large data streams.

Arguments
na_rm Logical scalar. TRUE to remove NA from the input data or FALSE to retain NA
(defaults to TRUE).
Value

An object of class RunningStats. A RunningStats object maintains the current minimum, max-
imum, mean, variance, sum and count of values that have been read from the stream. It can be
updated repeatedly with new values (i.e., chunks of data read from the input stream), but its mem-
ory footprint is negligible. Class methods for updating with new values and retrieving current
values of statistics are described in Details. RunningStats is a C++ class exposed directly to R (via
RCPP_EXPOSED_CLASS). Methods of the class are accessed in R using the $ operator.

Usage

## Constructor
rs <- new(RunningStats, na_rm)

## Methods (see Details)
rs$update(newvalues)
rs$get_count()
rs$get_mean()
rs$get_min()
rs$get_max()
rs$get_sum()
rs$get_var()

rs$get_sd()

rs$reset()

Details

new(RunningStats, na_rm) Constructor. Returns an object of class RunningStats.

$update(newvalues) Updates the RunningStats object with a numeric vector of newvalues (i.e.,
a chunk of values from the data stream). No return value, called for side effects.

$get_count () Returns the count of values received from the data stream.


https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance

RunningStats-class 111

$get_mean() Returns the mean of values received from the data stream.

$get_min() Returns the minimum value received from the data stream.

$get_max () Returns the maximum value received from the data stream.

$get_sum() Returns the sum of values received from the data stream.

$get_var () Returns the variance of values from the data stream (denominator n - 1).
$get_sd() Returns the standard deviation of values from the data stream (denominator n - 1).

$reset () Clears the RunningStats object to its initialized state (count = 0). No return value, called
for side effects.

Note

The intended use is computing summary statistics for specific subsets or zones of a raster that
could be defined in various ways and are generally not contiguous. The algorithm as imple-
mented here incurs the cost of floating point division for each new value updated (i.e., per pixel),
but is reasonably efficient for the use case. Note that GDAL internally uses an optimized ver-
sion of Welford’s algorithm to compute raster statistics as described in detail by Rouault, 2016
(https://github.com/0SGeo/gdal/blob/master/gcore/statistics. txt). The class method
GDALRaster$getStatistics() is a GDAL API wrapper that computes statistics for a whole raster
band.

Examples

set.seed(42)

rs <- new(RunningStats, na_rm=TRUE)
chunk <- runif(1000)

rs$update (chunk)

object.size(rs)

rs$get_count()
length(chunk)

rs$get_mean()
mean (chunk)

rs$get_min()
min(chunk)

rs$get_max()
max (chunk)

rs$get_var()
var (chunk)

rs$get_sd()
sd(chunk)

## 109 values read in 10,000 chunks


https://github.com/OSGeo/gdal/blob/master/gcore/statistics.txt

112 set_config_option

## should take under 1 minute on most PC hardware
for (i in 1:1e4) {
chunk <- runif(1e5)
rs$update(chunk)
3
rs$get_count()
rs$get_mean()
rs$get_var()

object.size(rs)

set_config_option Set GDAL configuration option

Description

set_config_option() sets a GDAL runtime configuration option. Configuration options are es-
sentially global variables the user can set. They are used to alter the default behavior of certain
raster format drivers, and in some cases the GDAL core. For a full description and listing of avail-
able options see https://gdal.org/user/configoptions.html.

Usage

set_config_option(key, value)

Arguments
key Character name of a configuration option.
value Character value to set for the option. value ="" (empty string) will unset a
value previously set by set_config_option().
Value

No return value, called for side effects.

See Also

get_config_option()
vignette("gdal-config-quick-ref")

Examples

set_config_option("GDAL_CACHEMAX", "10%")
get_config_option("”GDAL_CACHEMAX")

## unset:
set_config_option(”"GDAL_CACHEMAX", "")


https://gdal.org/user/configoptions.html

sieveFilter

113

sieveFilter

Remove small raster polygons

Description

sieveFilter() is

a wrapper for GDALSieveFilter() in the GDAL Algorithms API. It removes

raster polygons smaller than a provided threshold size (in pixels) and replaces them with the pixel
value of the largest neighbour polygon.

Usage

sieveFilter(
src_filename,
src_band,
dst_filename,
dst_band,

size_threshold,

connectedness
mask_filename

’
— nn
- ’

mask_band = oL,
options = NULL,

quiet = FALSE

Arguments

src_filename
src_band

dst_filename

dst_band

size_threshold

connectedness

mask_filename

mask_band

options

quiet

Filename of the source raster to be processed.
Band number in the source raster to be processed.

Filename of the output raster. It may be the same as src_filename to update
the source file in place.

Band number in dst_filename to write output. It may be the same as src_band
to update the source raster in place.

Integer. Raster polygons with sizes (in pixels) smaller than this value will be
merged into their largest neighbour.

Integer. Either 4 indicating that diagonal pixels are not considered directly adja-
cent for polygon membership purposes, or 8 indicating they are.

Optional filename of raster to use as a mask.

Band number in mask_filename to use as a mask. All pixels in the mask band
with a value other than zero will be considered suitable for inclusion in poly-
gons.

Algorithm options as a character vector of name=value pairs. None currently
supported.

Logical scalar. If TRUE, a progress bar will not be displayed. Defaults to FALSE.



114 sieveFilter

Details

Polygons are determined as regions of the raster where the pixels all have the same value, and that
are contiguous (connected). Pixels determined to be "nodata" per the mask band will not be treated
as part of a polygon regardless of their pixel values. Nodata areas will never be changed nor affect
polygon sizes. Polygons smaller than the threshold with no neighbours that are as large as the
threshold will not be altered. Polygons surrounded by nodata areas will therefore not be altered.

The algorithm makes three passes over the input file to enumerate the polygons and collect limited
information about them. Memory use is proportional to the number of polygons (roughly 24 bytes
per polygon), but is not directly related to the size of the raster. So very large raster files can be
processed effectively if there aren’t too many polygons. But extremely noisy rasters with many one
pixel polygons will end up being expensive (in memory) to process.

The input dataset is read as integer data which means that floating point values are rounded to
integers.

Value

Logical indicating success (invisible TRUE). An error is raised if the operation fails.

Examples

## remove single-pixel polygons from the vegetation type layer (EVT)
evt_file <- system.file("extdata/storml_evt.tif"”, package="gdalraster")

# create a blank raster to hold the output
evt_mmu_file <- paste@(tempdir(), "/", "storml_evt_mmu2.tif")
rasterfFromRaster(srcfile = evt_file,

dstfile = evt_mmu_file,

init = 32767)

# create a mask to exclude water pixels from the algorithm
# recode water (7292) to @
expr <- "ifelse(EVT == 7292, @, EVT)"
mask_file <- calc(expr = expr,
rasterfiles = evt_file,
var.names = "EVT")

# create a version of EVT with two-pixel minimum mapping unit
sieveFilter(src_filename = evt_file,

src_band = 1,

dst_filename = evt_mmu_file,

dst_band = 1,

size_threshold = 2,

connectedness = 8,

mask_filename = mask_file,

mask_band = 1)

deleteDataset(mask_file)
deleteDataset(evt_mmu_file)



srs_is_geographic 115

srs_is_geographic Check if WKT definition is a geographic coordinate system

Description

srs_is_geographic() will attempt to import the given WKT string as a spatial reference system,
and returns TRUE if the root is a GEOGCS node. This is a wrapper for OSRIsGeographic() in the
GDAL Spatial Reference System C API.

Usage

srs_is_geographic(srs)

Arguments

srs Character OGC WKT string for a spatial reference system

Value

Logical. TRUE if srs is geographic, otherwise FALSE

See Also

srs_is_projected(), srs_is_same()

Examples

srs_is_geographic(epsg_to_wkt(5070))
srs_is_geographic(srs_to_wkt("WGS84"))

srs_is_projected Check if WKT definition is a projected coordinate system

Description

srs_is_projected() will attempt to import the given WKT string as a spatial reference system

(SRS), and returns TRUE if the SRS contains a PROJCS node indicating a it is a projected coordinate

system. This is a wrapper for OSRIsProjected() in the GDAL Spatial Reference System C APL
Usage

srs_is_projected(srs)

Arguments

srs Character OGC WKT string for a spatial reference system



116 srs_is_same

Value

Logical. TRUE if srs is projected, otherwise FALSE

See Also

srs_is_geographic(), srs_is_same()

Examples

srs_is_projected(epsg_to_wkt(5070))
srs_is_projected(srs_to_wkt("WGS84"))

srs_is_same Do these two spatial references describe the same system?

Description

srs_is_same() returns TRUE if these two spatial references describe the same system. This is a
wrapper for OSRIsSame () in the GDAL Spatial Reference System C APIL

Usage

srs_is_same(
srsi,
srs2,
criterion = "",
ignore_axis_mapping = FALSE,
ignore_coord_epoch = FALSE

)
Arguments
srsi Character string. OGC WKT for a spatial reference system.
srs2 Character string. OGC WKT for a spatial reference system.
criterion Character string. One of STRICT, EQUIVALENT, EQUIVALENT_EXCEPT_AXIS_ORDER_GEOGCRS

Defaults to EQUIVALENT _EXCEPT_AXIS_ORDER_GEOGCRS
ignore_axis_mapping
Logical scalar. If TRUE, sets IGNORE_DATA_AXIS_TO_SRS_AXIS_MAPPING=YES
in the call to OSRIsSameEx () in the GDAL Spatial Reference System API. De-
faults to NO.
ignore_coord_epoch
Logical scalar. If TRUE, sets IGNORE_COORDINATE_EPOCH=YES in the call to
O0SRIsSameEx () in the GDAL Spatial Reference System API. Defaults to NO.

Value

Logical. TRUE if these two spatial references describe the same system, otherwise FALSE.



srs_to_wkt 117

See Also

srs_is_geographic(), srs_is_projected()

Examples

elev_file <- system.file("extdata/storml_elev.tif"”, package="gdalraster")
ds <- new(GDALRaster, elev_file, TRUE)

srs_is_same(ds$getProjectionRef (), epsg_to_wkt(26912))
srs_is_same(ds$getProjectionRef (), epsg_to_wkt(5070))

ds$close()

srs_to_wkt Convert various spatial reference formats to Well Known Text

Description

srs_to_wkt() converts a spatial reference system (SRS) definition in various text formats to WKT.
The function will examine the input SRS, try to deduce the format, and then export it to WKT.

Usage

srs_to_wkt(srs, pretty = FALSE)

Arguments
srs Character string containing an SRS definition in various formats (see Details).
pretty Logical. TRUE to return a nicely formatted WKT string for display to a person.
FALSE for a regular WKT string (the default).
Details

This is a wrapper for OSRSetFromUserInput() in the GDAL Spatial Reference System C API with
output to WKT. The input SRS may take the following forms:
¢ WKT - to convert WKT versions (see below)
* EPSG:n - EPSG code n
* AUTO:proj_id,unit_id,lon0,lat0 - WMS auto projections
 urn:ogc:def:crs:EPSG::n - OGC URNs
* PROJ.4 definitions
¢ filename - file to read for WKT, XML or PROJ.4 definition
¢ well known name such as NAD27, NAD83, WGS84 or WGS72
¢ IGNF:xxxx, ESRI:xxxx - definitions from the PROJ database
* PROJJISON (PROJ >=6.2)



118 transform_xy

This function is intended to be flexible, but by its nature it is imprecise as it must guess information
about the format intended. epsg_to_wkt () could be used instead for EPSG codes.

As of GDAL 3.0, the default format for WKT export is OGC WKT 1. The WKT version can be
overridden by using the OSR_WKT_FORMAT configuration option (see set_config_option()).
Valid values are one of: SFSQL, WKT1_SIMPLE, WKT1, WKT1_GDAL, WKT1_ESRI, WKT2_2015,
WKT2_2018, WKT2, DEFAULT. If SFSQL, a WKT1 string without AXIS, TOWGS84, AUTHOR-
ITY or EXTENSION node is returned. If WKT1_SIMPLE, a WKT1 string without AXIS, AU-
THORITY or EXTENSION node is returned. WKT1 is an alias of WKT1_GDAL. WKT2 will
default to the latest revision implemented (currently WKT2_2018). WKT2_2019 can be used as an
alias of WKT2_2018 since GDAL 3.2

Value

Character string containing OGC WKT.

See Also

epsg_to_wkt()

Examples

srs_to_wkt("NAD83")
writeLines(srs_to_wkt(”"NAD83", pretty=TRUE))
set_config_option("OSR_WKT_FORMAT", "WKT2")
writeLines(srs_to_wkt(”NAD83", pretty=TRUE))

set_config_option("OSR_WKT_FORMAT", "")
transform_xy Transform geospatial x/y coordinates
Description

transform_xy() transforms geospatial x/y coordinates to a new projection.

Usage

transform_xy(pts, srs_from, srs_to)

Arguments
pts A two-column data frame or numeric matrix containing geospatial x/y coordi-
nates.
srs_from Character string in OGC WKT format specifying the spatial reference system
for pts.
srs_to Character string in OGC WKT format specifying the output spatial reference

system.



translate 119

Value

Numeric array of geospatial x/y coordinates in the projection specified by srs_to.

See Also

epsg_to_wkt(), srs_to_wkt(), inv_project()

Examples

pt_file <- system.file("extdata/storml_pts.csv"”, package="gdalraster")
pts <- read.csv(pt_file)
print(pts)
## id, x, y in NAD83 / UTM zone 12N
## transform to NAD83 / CONUS Albers
transform_xy(pts = pts[,-1],
srs_from = epsg_to_wkt(26912),
srs_to = epsg_to_wkt(5070))

translate Convert raster data between different formats

Description

translate() is a wrapper of the gdal_translate command-line utility (see https://gdal.org/
programs/gdal_translate.html). The function can be used to convert raster data between dif-
ferent formats, potentially performing some operations like subsetting, resampling, and rescaling
pixels in the process. Refer to the GDAL documentation at the URL above for a list of command-
line arguments that can be passed in c1_arg.

Usage

translate(src_filename, dst_filename, cl_arg = NULL, quiet = FALSE)

Arguments

src_filename Character string. Filename of the source raster.

dst_filename  Character string. Filename of the output raster.

cl_arg Optional character vector of command-line arguments for gdal_translate (see
URL above).
quiet Logical scalar. If TRUE, a progress bar will not be displayed. Defaults to FALSE.
Value

Logical indicating success (invisible TRUE). An error is raised if the operation fails.


https://gdal.org/programs/gdal_translate.html
https://gdal.org/programs/gdal_translate.html

120 VSIFile-class

See Also

GDALRaster-class, rasterFromRaster (), warp()

ogr2ogr() for vector data

Examples

# convert the elevation raster to Erdas Imagine format and resample to 90m
elev_file <- system.file("extdata/storml_elev.tif"”, package="gdalraster")

# command-line arguments for gdal_translate
args <- c("-tr”, "90", "90", "-r", "average")
args <- c(args, "-of", "HFA", "-co", "COMPRESSED=YES")

img_file <- paste@(tempdir(), "/", "storml_elev_9@m.img")
translate(elev_file, img_file, args)

ds <- new(GDALRaster, img_file)
ds$getDriverLongName ()

ds$bbox ()

ds$res()

ds$getStatistics(band=1, approx_ok=FALSE, force=TRUE)
ds$close()

deleteDataset(img_file)

VSIFile-class Class wrapping the GDAL VSIVirtualHandle API for binary file I/O

Description

VSIFile provides bindings to the GDAL VSIVirtualHandle APIL. Encapsulates a VSIVirtualHandle
(https://gdal.org/api/cpl_cpp.html#_CPPv416VSIVirtualHandle). This API abstracts bi-
nary file I/O across "regular” file systems, URLs, cloud storage services, Zip/GZip/7z/RAR, and
in-memory files. It provides analogs of several Standard C file I/O functions, allowing virtualiza-
tion of disk I/O so that non-file data sources can be made to appear as files.

Arguments

filename Character string containing the filename to open. It may be a file in a regular
local filesystem, or a filename with a GDAL /vsiPREFIX/ (see https://gdal.
org/user/virtual_file_systems.html).

n,.n n

access Character string containing the access requested (i.e., "r", "r+", "w"). Defaults

n._n

to "r". Binary access is always implied and the "b" does not need to be included
in access.

Access Explanation If file exists

n_n

r open file for reading read from start
"r+" open file for read/write  read from start

noon

W create file for writing destroy contents


https://gdal.org/api/cpl_cpp.html#_CPPv416VSIVirtualHandle
https://gdal.org/user/virtual_file_systems.html
https://gdal.org/user/virtual_file_systems.html

VSIFile-class 121

options Optional character vector of NAME=VALUE pairs specifying filesystem-dependent
options (GDAL >= 3.3, see Details).

Value

An object of class VSIFile which contains a pointer to a VSIVirtualHandle, and methods that
operate on the file as described in Details. VSIFile is a C++ class exposed directly to R (via
RCPP_EXPOSED_CLASS). Methods of the class are accessed using the $ operator.

Usage

## Constructors

vf <- new(VSIFile, filename)

# specifying access:

vf <- new(VSIFile, filename, access)

# specifying access and options (both required):
vf <- new(VSIFile, filename, access, options)

## Methods (see Details)
vf$seek(offset, origin)
vf$tell()

vf$rewind()
vf$read(nbytes)
vf$write(object)
vf$eof ()
vf$truncate(new_size)
vf$flush()
vf$ingest(max_size)

vf$close()

vf$open()
vf$get_filename()
vf$get_access()
vf$set_access(access)

Details

new(VSIFile, filename) Constructor. Returns an object of class VSIFile, or an error is raised if
a file handle cannot be obtained.

new(VSIFile, filename, access) Alternate constructor for passing access as a character string
("r", "r+", "w"). Returns an object of class VSIFile with an open file handle, or an error is raised
if a file handle cannot be obtained.

new(VSIFile, filename, access, options) Alternate constructor for passing access as a char-
acter string, and options as a character vector of "NAME=VALUE" pairs (both arguments required,
GDAL >= 3.3 required for options support). Returns an object of class VSIFile with an open file
handle, or an error is raised if a file handle cannot be obtained.

The options argument is highly file system dependent. Supported options as of GDAL 3.9 include:



122 VSIFile-class

¢ MIME headers such as Content-Type and Content-Encoding are supported for the /vsis3/,
/vsigs/, /vsiaz/, /vsiadls/ file systems.

¢ DISABLE_READDIR_ON_OPEN=YES/NO (GDAL >= 3.6) for /vsicurl/ and other network-
based file systems. By default, directory file listing is done, unless YES is specified.

* WRITE_THROUGH=YES (GDAL >= 3.8) for Windows regular files to set the FILE_FLAG_WRITE_THROUGH
flag to the CreateFile() function. In that mode, the data are written to the system cache but
are flushed to disk without delay.

$seek(offset, origin) Seek to a requested offset in the file. offset is given as a positive
numeric scalar, optionally as bit64: : integer64 type. origin is given as a character string, one of
SEEK_SET, SEEK_CUR or SEEK_END. Package global constants are defined for convenience, so these
can be passed unquoted. Note that of fset is an unsigned type, so SEEK_CUR can only be used for
positive seek. If negative seek is needed, use:

vf$seek(vf$tell() + negative_offset, SEEK_SET)

Returns @ on success or -1 on failure.

$tell () Returns the current file read/write offset in bytes from the beginning of the file. The return
value is a numeric scalar carrying the integer64 class attribute.

$rewind() Rewind the file pointer to the beginning of the file. This is equivalent to vf$seek (@,
SEEK_SET). No return value, called for that side effect.

$read(nbytes) Read nbytes bytes from the file at the current offset. Returns a vector of R raw
type, or NULL if the operation fails.

$write(object) Write bytes to the file at the current offset. object is a raw vector. Returns
the number of bytes successfully written, as numeric scalar carrying the integer64 class attribute.
See also base R charToRaw() / rawToChar (), convert to or from raw vectors, and readBin() /
writeBin() which read binary data from or write binary data to a raw vector.

$eof () Test for end of file. Returns TRUE if an end-of-file condition occurred during the previous
read operation. The end-of-file flag is cleared by a successful call to $seek ().

$truncate(new_size) Truncate/expand the file to the specified new_size, given as a positive nu-
meric scalar, optionally as bit64: :integer64 type. Returns @ on success.

$flush() Flush pending writes to disk. For files in write or update mode and on file system types
where it is applicable, all pending output on the file is flushed to the physical disk. On Windows
regular files, this method does nothing, unless the VSI_FLUSH=YES configuration option is set (and
only when the file has not been opened with the WRITE_THROUGH option). Returns @ on success or
-1 on error.

$ingest(max_size) Ingest a file into memory. Read the whole content of the file into a raw
vector. max_size is the maximum size of file allowed, given as a numeric scalar, optionally as
bit64::integer64 type. If no limit, set to a negative value. Returns a raw vector, or NULL if the
operation fails.

$close() Closes the file. The file should always be closed when I/O has been completed. Returns
@ on success or -1 on error.

$open() This method can be used to re-open the file after it has been closed, using the same
filename, and same options if any are set. The file will be opened using access as currently



VSIFile-class 123

set. The $set_access() method can be called to change the requested access while the file is
closed. No return value. An error is raised if a file handle cannot be obtained.

$get_filename() Returns a character string containing the filename associated with this VSIFile
object (the filename originally used to create the object).

$get_access() Returns a character string containing the access as currently set on this VSIFile
object.

$set_access(access) Sets the requested read/write access on this VSIFile object, given as a
character string (i.e., "r", "r+", "w"). The access can be changed only while the VSIFile object is
closed, and will apply when it is re-opened with a call to $open(). Returns @ on success or -1 on

€ITor.

Note

File offsets are given as R numeric (i.e., double type), optionally carrying the bit64::integer64

class attribute. They are returned as numeric with the integer64 class attribute attached. The
integer64 type is signed, so the maximum file offset supported by this interface is 9223372036854775807
(the value of bit64::1im.integer64()[2]).

See Also

GDAL Virtual File Systems (compressed, network hosted, etc...):
/vsimem, /vsizip, /vsitar, /vsicurl, ...
https://gdal.org/user/virtual_file_systems.html

vsi_copy_file(), vsi_read_dir(), vsi_stat(), vsi_unlink()

Examples

# The examples make use of the FARSITE LCP format specification at:

# https://gdal.org/drivers/raster/lcp.html

# An LCP file is a raw format with a 7,316-byte header. The format

# specification gives byte offets and data types for fields in the header.

lcp_file <- system.file("extdata/storm_lake.lcp"”, package="gdalraster")

# identify a FARSITE v.4 LCP file
# function to check if the first three fields have valid data
# input is the first twelve raw bytes in the file
is_lcp <- function(bytes) {
values <- readBin(bytes, "integer"”, n = 3)
if ((values[1] == 20 || values[1] == 21) &&
(values[2] == 20 || values[2] == 21) &&
(values[3] >= -90 && values[3] <= 90)) {

return(TRUE)
} else {
return(FALSE)
}
}

vf <- new(VSIFile, lcp_file)


https://gdal.org/user/virtual_file_systems.html

124 VSIFile-class

vf$read(12) |> is_lcp()
vf$tell()

# read the whole file into memory
bytes <- vf$ingest(-1)
vf$close()

# write to a VSI in-memory file
mem_file <- "/vsimem/storml_copy.lcp”
vf <- new(VSIFile, mem_file, "w")
vf$write(bytes)

vf$tell ()
vf$rewind()
vf$tell()

vf$seek (0, SEEK_END)
(vf$tell() == vsi_stat(lcp_file, "size")) # TRUE

vf$rewind()
vf$read(12) |> is_lcp()

# read/write an integer field

# write invalid data for the Latitude field and then set back
# save the original first

vf$seek (8, SEEK_SET)

lat_orig <- vf$read(4)
readBin(lat_orig, "integer"”) # 46

# latitude -99 out of range

vf$seek(8, SEEK_SET)

writeBin(-99L, raw()) |> vfs$write()
vf$rewind()

vf$read(12) |> is_lcp() # FALSE
vf$seek (8, SEEK_SET)

vf$read(4) |> readBin("integer") # -99
# set back to original

vf$seek (8, SEEK_SET)

vf$write(lat_orig)

vf$rewind()

vf$read(12) |> is_lcp() # TRUE

# read a vector of doubles - xmax, xmin, ymax, ymin
# 327766.1, 323476.1, 5105082.0, 5101872.0

vf$seek (4172, SEEK_SET)

vf$read(32) |> readBin("double”, n = 4)

# read a short int, the canopy cover units
vf$seek (4232, SEEK_SET)
vf$read(2) |> readBin("integer"”, size = 2) # 1 = "percent”

# read the Description field
vf$seek (6804, SEEK_SET)



vsi_clear_path_options 125

bytes <- vf$read(512)
rawToChar (bytes)

# edit the Description
desc <- paste(rawToChar(bytes),
"Storm Lake AOI,",
"Beaverhead-Deerlodge National Forest, Montana.")

vf$seek (6804, SEEK_SET)
charToRaw(desc) |> vf$write()
vf$close()

# verify the file as a raster dataset
ds <- new(GDALRaster, mem_file)
ds$info()

# retrieve Description from the metadata

# band = @ for dataset-level metadata, domain = "" for default domain
ds$getMetadata(band = @, domain = "")

ds$getMetadataltem(band = @, mdi_name = "DESCRIPTION"”, domain = "")
ds$close()

vsi_unlink(mem_file)

vsi_clear_path_options
Clear path specific configuration options

Description

vsi_clear_path_options() clears path specific options previously set with vsi_set_path_option().
Wrapper for VSIClearPathSpecificOptions() in the GDAL Common Portability Library. Re-
quires GDAL >=3.6.

Usage

vsi_clear_path_options(path_prefix)

Arguments

path_prefix Character string. If set to "" (empty string), all path specific options are cleared.
If set to a path prefix, only those options set with vsi_set_path_option(path_prefix,

...) will be cleared.

Value

No return value, called for side effect.



126 vsi_copy._file

Note

No particular care is taken to remove options from RAM in a secure way.

See Also

vsi_set_path_option()

vsi_constants Constants for VSIFile$seek()

Description

These are package global constants for convenience in calling VSIFile$seek().
Usage

SEEK_SET

SEEK_CUR

SEEK_END

Format

An object of class character of length 1.
An object of class character of length 1.

An object of class character of length 1.

vsi_copy_file Copy a source file to a target filename

Description

vsi_copy_file() is a wrapper for VSICopyFile() in the GDAL Common Portability Library.
The GDAL VSI functions allow virtualization of disk I/O so that non file data sources can be made
to appear as files. See https://gdal.org/user/virtual_file_systems.html. Requires GDAL
>=3.7.

Usage

vsi_copy_file(src_file, target_file, show_progress = FALSE)


https://gdal.org/user/virtual_file_systems.html

vsi_copy._file 127

Arguments
src_file Character string. Filename of the source file.

target_file Character string. Filename of the target file.

show_progress Logical scalar. If TRUE, a progress bar will be displayed (the size of src_file
will be retrieved in GDAL with VSIStatL()). Default is FALSE.

Details

The following copies are made fully on the target server, without local download from source and
upload to target:

* /vsis3/ -> /vsis3/
o /vsigs/ -> [vsigs/
* /vsiaz/ -> /vsiaz/
* /vsiadls/ -> /vsiadls/

* any of the above or /vsicurl/ -> /vsiaz/ (starting with GDAL 3.8)

Value

@ on success or -1 on an error.

Note

If target_file has the form /vsizip/foo.zip/bar, the default options described for the function
addFilesInZip() will be in effect.

See Also

copyDatasetFiles(), vsi_stat(), vsi_sync()

Examples

elev_file <- system.file("extdata/storml_elev.tif"”, package="gdalraster")
tmp_file <- "/vsimem/elev_temp.tif"

# Requires GDAL >= 3.7

if (as.integer(gdal_version()[2]) >= 3070000) {
result <- vsi_copy_file(elev_file, tmp_file)
print(result)
print(vsi_stat(tmp_file, "size"))

vsi_unlink(tmp_file)
3



128 vsi_get_disk_free_space

vsi_curl_clear_cache Clean cache associated with /vsicurl/ and related file systems

Description

vsi_curl_clear_cache() cleans the local cache associated with /vsicurl/ (and related file sys-
tems). This function is a wrapper for VSICurlClearCache() and VSICurlPartialClearCache()
in the GDAL Common Portability Library. See Details for the GDAL documentation.

Usage
vsi_curl_clear_cache(partial = FALSE, file_prefix = "")
Arguments
partial Logical scalar. Whether to clear the cache only for a given filename (see De-
tails).
file_prefix Character string. Filename prefix to use if partial = TRUE.
Details

/vsicurl/ (and related file systems like /vsis3/, /vsigs/, /vsiaz/, /vsioss/, /vsiswift/) cache a number of
metadata and data for faster execution in read-only scenarios. But when the content on the server-
side may change during the same process, those mechanisms can prevent opening new files, or
give an outdated version of them. If partial = TRUE, cleans the local cache associated for a given
filename (and its subfiles and subdirectories if it is a directory).

Value

No return value, called for side effects.

Examples

vsi_curl_clear_cache()

vsi_get_disk_free_space
Return free disk space available on the filesystem

Description

vsi_get_disk_free_space() returns the free disk space available on the filesystem. Wrapper for
VSIGetDiskFreeSpace() in the GDAL Common Portability Library.



vsi_get_file_metadata 129

Usage

vsi_get_disk_free_space(path)

Arguments

path Character string. A directory of the filesystem to query.

Value

Numeric scalar. The free space in bytes (as bit64::integer64 type), or -1 in case of error.

Examples

tmp_dir <- file.path("/vsimem”, "tmpdir")
vsi_mkdir(tmp_dir)
vsi_get_disk_free_space(tmp_dir)
vsi_rmdir(tmp_dir)

vsi_get_file_metadata Get metadata on files

Description

vsi_get_file_metadata() returns metadata for file system objects. Implemented for network-
like filesystems. Starting with GDAL 3.7, implemented for /vsizip/ with SOZip metadata. Wrapper
of VSIGetFileMetadata() in the GDAL Common Portability Library.

Usage

vsi_get_file_metadata(filename, domain)

Arguments
filename Character string. The path of the file system object to be queried.
domain Character string. Metadata domain to query. Depends on the file system, see
Details.
Details

The metadata available depends on the file system. The following are supported as of GDAL 3.9:

 HEADERS: to get HTTP headers for network-like filesystems (/vsicurl/, /vsis3/, /vsgis/, etc).
» TAGS: for /vsis3/, to get S3 Object tagging information. For /vsiaz/, to get blob tags.

» STATUS: specific to /vsiadls/: returns all system-defined properties for a path (seems in prac-
tice to be a subset of HEADERS).

» ACL.: specific to /vsiadls/ and /vsigs/: returns the access control list for a path. For /vsigs/, a
single XML=xml_content string is returned.



130 vsi_get_fs_options

* METADATA: specific to /vsiaz/: blob metadata (this will be a subset of what domain=HEADERS
returns).

» ZIP: specific to /vsizip/: to obtain ZIP specific metadata, in particular if a file is SOZIP-enabled
(SOZIP_VALID=YES).

Value

A named list of values, or NULL in case of error or empty list.

See Also

vsi_stat(), addFilesInZip()

Examples

# create an SOZip-enabled file and validate
# Requires GDAL >= 3.7
f <- system.file("extdata/ynp_fires_1984_2022.gpkg", package="gdalraster")

if (as.integer(gdal_version()[2]) >= 3070000) {
zip_file <- tempfile(fileext=".zip")
addFilesInZip(zip_file, f, full_paths=FALSE, sozip_enabled="YES")
zip_vsi <- file.path("/vsizip", zip_file)
print("Files in zip archive:")
print(vsi_read_dir(zip_vsi))
print("S0Zip metadata:")
print(vsi_get_file_metadata(zip_vsi, domain="ZIP"))

vsi_unlink(zip_file)

vsi_get_fs_options Return the list of options associated with a virtual file system handler

Description

vsi_get_fs_options() returns the list of options associated with a virtual file system handler.
Those options may be set as configuration options with set_config_option(). Wrapper for
VSIGetFileSystemOptions() in the GDAL API.

Usage

vsi_get_fs_options(filename, as_list = TRUE)

Arguments
filename Filename, or prefix of a virtual file system handler.
as_list Logical scalar. If TRUE (the default), the XML string returned by GDAL will be

coerced to list. FALSE to return the configuration options as a serialized XML
string.



vsi_get_fs_prefixes 131

Value

An XML string, or empty string ("") if no options are declared. If as_list = TRUE (the default),
the XML string will be coerced to list with xm12::as_list().

See Also

set_config_option(), vsi_get_fs_prefixes()

https://gdal.org/user/virtual_file_systems.html

Examples

vsi_get_fs_options("/vsimem/")
vsi_get_fs_options("/vsizip/")

vsi_get_fs_options("/vsizip/", as_list = FALSE)

vsi_get_fs_prefixes Return the list of virtual file system handlers currently registered

Description

vsi_get_fs_prefixes() returns the list of prefixes for virtual file system handlers currently regis-
tered (e.g., "/vsimem/", "/vsicurl/", etc). Wrapper for VSIGetFileSystemsPrefixes() in the
GDAL API.

Usage

vsi_get_fs_prefixes()

Value

Character vector containing prefixes of the virtual file system handlers.

See Also

vsi_get_fs_options()

https://gdal.org/user/virtual_file_systems.html

Examples

vsi_get_fs_prefixes()


https://gdal.org/user/virtual_file_systems.html
https://gdal.org/user/virtual_file_systems.html

132 vsi_mkdir

vsi_mkdir Create a directory

Description

vsi_mkdir() creates a new directory with the indicated mode. For POSIX-style systems, the mode
is modified by the file creation mask (umask). However, some file systems and platforms may not
use umask, or they may ignore the mode completely. So a reasonable cross-platform default mode
value is @755. With recursive = TRUE, creates a directory and all its ancestors. This function is a
wrapper for VSIMkdir () and VSIMkdirRecursive() in the GDAL Common Portability Library.

Usage

vsi_mkdir(path, mode = "@755", recursive = FALSE)

Arguments
path Character string. The path to the directory to create.
mode Character string. The permissions mode in octal with prefix 0, e.g., "0755" (the
default).
recursive Logical scalar. TRUE to create the directory and its ancestors. Defaults to FALSE.
Value

@ on success or -1 on an error.

See Also

vsi_read_dir(), vsi_rmdir()

Examples

new_dir <- file.path(tempdir(), "newdir")
vsi_mkdir(new_dir)

vsi_stat(new_dir, "type")
vsi_rmdir(new_dir)



vsi_read_dir 133

vsi_read_dir Read names in a directory

Description

vsi_read_dir() abstracts access to directory contents. It returns a character vector containing the
names of files and directories in this directory. This function is a wrapper for VSIReadDirEx() in
the GDAL Common Portability Library.

Usage

vsi_read_dir(path, max_files = 0L)

Arguments
path Character string. The relative or absolute path of a directory to read.
max_files Integer scalar. The maximum number of files after which to stop, or 0 for no
limit (see Note).
Value

A character vector containing the names of files and directories in the directory given by path. An
empty string ("") is returned if path does not exist.

Note

If max_files is set to a positive number, directory listing will stop after that limit has been reached.
Note that to indicate truncation, at least one element more than the max_files limit will be returned.
If the length of the returned character vector is lesser or equal to max_files, then no truncation
occurred.

See Also

vsi_mkdir(), vsi_rmdir(), vsi_stat(), vsi_sync()

Examples

# regular file system for illustration
data_dir <- system.file("extdata"”, package="gdalraster")
vsi_read_dir(data_dir)



134 vsi_rename

vsi_rename Rename a file

Description

vsi_rename() renames a file object in the file system. The GDAL documentation states it should be
possible to rename a file onto a new filesystem, but it is safest if this function is only used to rename
files that remain in the same directory. This function goes through the GDAL VSIFileHandler vir-
tualization and may work on unusual filesystems such as in memory. Itis a wrapper for VSIRename ()
in the GDAL Common Portability Library. Analog of the POSIX rename () function.

Usage

vsi_rename(oldpath, newpath)

Arguments
oldpath Character string. The name of the file to be renamed.
newpath Character string. The name the file should be given.
Value

@ on success or -1 on an error.

See Also

renameDataset (), vsi_copy_file()

Examples

# regular file system for illustration

elev_file <- system.file("extdata/storml_elev.tif", package="gdalraster")
tmp_file <- tempfile(fileext = ".tif")

file.copy(elev_file, tmp_file)

new_file <- file.path(dirname(tmp_file), "storml_elev_copy.tif")
vsi_rename(tmp_file, new_file)

vsi_stat(new_file)

vsi_unlink(new_file)



vsi_rmdir 135

vsi_rmdir Delete a directory

Description

vsi_rmdir() deletes a directory object from the file system. On some systems the directory must
be empty before it can be deleted. With recursive = TRUE, deletes a directory object and its con-
tent from the file system. This function goes through the GDAL VSIFileHandler virtualization
and may work on unusual filesystems such as in memory. It is a wrapper for VSIRmdir () and
VSIRmdirRecursive() in the GDAL Common Portability Library.

Usage

vsi_rmdir(path, recursive = FALSE)

Arguments

path Character string. The path to the directory to be deleted.

recursive Logical scalar. TRUE to delete the directory and its content. Defaults to FALSE.
Value

@ on success or -1 on an error.

Note

/vsis3/ has an efficient implementation for deleting recursively. Starting with GDAL 3.4, /vsigs/ has
an efficient implementation for deleting recursively, provided that OAuth2 authentication is used.

See Also

deleteDataset(), vsi_mkdir(), vsi_read_dir(), vsi_unlink()

Examples

new_dir <- file.path(tempdir(), "newdir")
vsi_mkdir(new_dir)
vsi_rmdir(new_dir)



136 vsi_set_path_option

vsi_set_path_option Set a path specific option for a given path prefix

Description

vsi_set_path_option() sets a path specific option for a given path prefix. Such an option is typi-
cally, but not limited to, setting credentials for a virtual file system. Wrapper for VSISetPathSpecificOption()
in the GDAL Common Portability Library. Requires GDAL >= 3.6.

Usage

vsi_set_path_option(path_prefix, key, value)

Arguments

path_prefix Character string. A path prefix of a virtual file system handler. Typically of the
form /vsiXXX/bucket.
key Character string. Option key.

nn

value Character string. Option value. Passing value = "" (empty string) will unset a

value previously set by vsi_set_path_option().

Details

Options may also be set with set_config_option(), but vsi_set_path_option() allows spec-
ifying them with a granularity at the level of a file path. This makes it easier if using the same
virtual file system but with different credentials (e.g., different credentials for buckets "/vsis3/foo"
and "/vsis3/bar"). This is supported for the following virtual file systems: /vsis3/, /vsigs/, /vsiaz/,
/vsioss/, /vsiwebhdfs, /vsiswift.

Value

No return value, called for side effect.

Note

Setting options for a path starting with /vsiXXX/ will also apply for /vsiXXX_streaming/ requests.
No particular care is taken to store options in RAM in a secure way. So they might accidentally
hit persistent storage if swapping occurs, or someone with access to the memory allocated by the
process may be able to read them.

See Also

set_config_option(), vsi_clear_path_options()



vsi_stat 137

vsi_stat Get filesystem object info

Description

vsi_stat() fetches status information about a filesystem object (file, directory, etc). This function
goes through the GDAL VSIFileHandler virtualization and may work on unusual filesystems such
as in memory. It is a wrapper for VSIStatExL () in the GDAL Common Portability Library. Analog
of the POSIX stat () function.

Usage
vsi_stat(filename, info = "exists")
Arguments
filename Character string. The path of the filesystem object to be queried.
info Character string. The type of information to fetch, one of "exists” (the de-
fault), "type"” or "size".
Value

If info = "exists", returns logical TRUE if the file system object exists, otherwise FALSE. If info

= "type", returns a character string with one of "file" (regular file), "dir" (directory), "symlink"
(symbolic link), or empty string (""). If info = "size", returns the file size in bytes (as bit64: :integer64
type), or -1 if an error occurs.

Note

For portability, vsi_stat() supports a subset of stat()-type information for filesystem objects.
This function is primarily intended for use with GDAL virtual file systems (e.g., URLSs, cloud stor-
age systems, ZIP/GZip/7z/RAR archives, in-memory files). The base R functionutils::file_test()
could be used instead for file tests on regular local filesystems.

See Also

GDAL Virtual File Systems:
https://gdal.org/user/virtual_file_systems.html

Examples

data_dir <- system.file("extdata"”, package="gdalraster")
vsi_stat(data_dir)

vsi_stat(data_dir, "type")

# stat() on a directory doesn't return the sum of the file sizes in it,
# but rather how much space is used by the directory entry
vsi_stat(data_dir, "size")


https://gdal.org/user/virtual_file_systems.html

138 vsi_supports_rnd_write

elev_file <- file.path(data_dir, "storml_elev.tif")
vsi_stat(elev_file)

vsi_stat(elev_file, "type")

vsi_stat(elev_file, "size")

nonexistent <- file.path(data_dir, "nonexistent.tif")
vsi_stat(nonexistent)

vsi_stat(nonexistent, "type")

vsi_stat(nonexistent, "size")

# /vsicurl/ file system handler

base_url <- "https://raw.githubusercontent.com/usdaforestservice/"

f <- "gdalraster/main/sample-data/landsat_c2ard_sr_mt_hood_jul2022_utm.tif"
url_file <- paste@("/vsicurl/", base_url, f)

vsi_stat(url_file)
vsi_stat(url_file, "type")
vsi_stat(url_file, "size")

vsi_supports_rnd_write
Return whether the filesystem supports random write

Description
vsi_supports_rnd_write() returns whether the filesystem supports random write. Wrapper for
VSISupportsRandomWrite() in the GDAL API.

Usage

vsi_supports_rnd_write(filename, allow_local_tmpfile)

Arguments

filename Character string. The path of the filesystem object to be tested.
allow_local_tmpfile
Logical scalar. TRUE if the filesystem is allowed to use a local temporary file
before uploading to the target location.

Value

Logical scalar. TRUE if random write is supported.

Note

The location GDAL uses for temporary files can be forced via the CPL_TMPDIR configuration option.

See Also

vsi_supports_seq_write()



Vsi_supports_seq_write 139

Examples

# Requires GDAL >= 3.6
if (as.integer(gdal_version()[2]) >= 3060000)
vsi_supports_rnd_write("/vsimem/test-mem-file.gpkg", TRUE)

vsi_supports_seqg_write
Return whether the filesystem supports sequential write

Description

vsi_supports_seq_write() returns whether the filesystem supports sequential write. Wrapper
for VSISupportsSequentialWrite() in the GDAL APIL

Usage

vsi_supports_seqg_write(filename, allow_local_tmpfile)

Arguments

filename Character string. The path of the filesystem object to be tested.

allow_local_tmpfile
Logical scalar. TRUE if the filesystem is allowed to use a local temporary file
before uploading to the target location.

Value

Logical scalar. TRUE if sequential write is supported.

Note

The location GDAL uses for temporary files can be forced via the CPL_TMPDIR configuration option.

See Also

vsi_supports_rnd_write()

Examples

# Requires GDAL >= 3.6
if (as.integer(gdal_version()[2]) >= 3060000)
vsi_supports_seq_write("/vsimem/test-mem-file.gpkg", TRUE)



140 vsi_sync

vsi_sync Synchronize a source file/directory with a target file/directory

Description

vsi_sync() is a wrapper for VSISync() in the GDAL Common Portability Library. The GDAL
documentation is given in Details.

Usage

vsi_sync(src, target, show_progress = FALSE, options = NULL)

Arguments
src Character string. Source file or directory.
target Character string. Target file or directory.

show_progress Logical scalar. If TRUE, a progress bar will be displayed. Defaults to FALSE.
options Character vector of NAME=VALUE pairs (see Details).

Details

VSISync() is an analog of the Linux rsync utility. In the current implementation, rsync would
be more efficient for local file copying, but VSISync() main interest is when the source or target
is a remote file system like /vsis3/ or /vsigs/, in which case it can take into account the timestamps
of the files (or optionally the ETag/MD5Sum) to avoid unneeded copy operations. This is only
implemented efficiently for:

* local filesystem <—> remote filesystem

* remote filesystem <—> remote filesystem (starting with GDAL 3.1)
Where the source and target remote filesystems are the same and one of /vsis3/, /vsigs/ or
/vsiaz/. Or when the target is /vsiaz/ and the source is /vsis3/, /vsigs/, /vsiadls/ or /vsicurl/
(starting with GDAL 3.8)

Similarly to rsync behavior, if the source filename ends with a slash, it means that the content of the
directory must be copied, but not the directory name. For example, assuming "/home/even/foo" con-
tains a file "bar", VSISync("/home/even/foo/", "/mnt/media”, ...) will create a "/mnt/media/bar’
file. Whereas VSISync("/home/even/foo”, "/mnt/media"”, ...) will create a "/mnt/media/foo"
directory which contains a bar file.

1

The options argument accepts a character vector of name=value pairs. Currently accepted options
are:

* RECURSIVE=NO (the default is YES)



vsi_sync

Value

141

SYNC_STRATEGY=TIMESTAMP/ETAG/OVERWRITE. Determines which criterion is used to deter-
mine if a target file must be replaced when it already exists and has the same file size as
the source. Only applies for a source or target being a network filesystem. The default is
TIMESTAMP (similarly to how aws s3 sync’ works), that is to say that for an upload operation,
a remote file is replaced if it has a different size or if it is older than the source. For a down-
load operation, a local file is replaced if it has a different size or if it is newer than the remote
file. The ETAG strategy assumes that the ETag metadata of the remote file is the MD5Sum of
the file content, which is only true in the case of /vsis3/ for files not using KMS server side
encryption and uploaded in a single PUT operation (so smaller than 50 MB given the default
used by GDAL). Only to be used for /vsis3/, /vsigs/ or other filesystems using a MD5Sum as
ETAG. The OVERWRITE strategy (GDAL >= 3.2) will always overwrite the target file with the
source one.

NUM_THREADS=integer. Number of threads to use for parallel file copying. Only use for when
/vsis3/, Ivsigs/, /vsiaz/ or /vsiadls/ is in source or target. The default is 10 since GDAL 3.3.

CHUNK_SIZE=integer. Maximum size of chunk (in bytes) to use to split large objects when
downloading them from /vsis3/, /vsigs/, /vsiaz/ or /vsiadls/ to local file system, or for upload to
/vsis3/, /vsiaz/ or /vsiadls/ from local file system. Only used if NUM_THREADS > 1. For upload
to /vsis3/, this chunk size must be set at least to 5 MB. The default is 8 MB since GDAL 3.3.

x-amz-KEY=value. (GDAL >= 3.5) MIME header to pass during creation of a /vsis3/ object.
x-goog-KEY=value. (GDAL >= 3.5) MIME header to pass during creation of a /vsigs/ object.

x-ms-KEY=value. (GDAL >= 3.5) MIME header to pass during creation of a /vsiaz/ or /vsi-
adls/ object.

Logical scalar, TRUE on success or FALSE on an error.

See Also

copyDatasetFiles(), vsi_copy_file()

Examples

## Not run:

# sample-data is a directory in the git repository for gdalraster that is
# not included in the R package:

# https://github.com/USDAForestService/gdalraster/tree/main/sample-data

# A copy of sample-data in an AWS S3 bucket, and a partial copy in an

# Azure Blob container, were used to generate the example below.

src <- "/vsis3/gdalraster-sample-data/"

# s3

://gdalraster-sample-data is not public, set credentials

set_config_option(”"AWS_ACCESS_KEY_ID", "XXXXXXXXXXXXXX"
set_config_option(”"AWS_SECRET_ACCESS_KEY", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXX")



142

vsi_read_dir(src)

#> [1] "README.md"

#> [2] "bl_mrbl_ng_jul2004_rgh_720x360.tif"

#> [3] "blue_marble_ng_neo_metadata.xml”

#> [4] "landsat_c2ard_sr_mt_hood_jul2022_utm. json"
#> [5] "landsat_c2ard_sr_mt_hood_jul2022_utm.tif"
#> [6] "1f_elev_220_metadata.html”

#> [7] "1f_elev_220_mt_hood_utm.tif"

#> [8] "1f_fbfm40_220_metadata.html”

#> [9] "1f_fbfm40_220_mt_hood_utm.tif"

dst <- "/vsiaz/sampledata”
set_config_option("AZURE_STORAGE_CONNECTION_STRING",

"<connection_string_for_gdalraster_account>")
vsi_read_dir(dst)

#> [1] "1f_elev_220_metadata.html” "1f_elev_220_mt_hood_utm.tif"

# GDAL VSISync() supports direct copy for /vsis3/ -> /vsiaz/ (GDAL >= 3.8)

result <- vsi_sync(src, dst, show_progress = TRUE)
#>0...10...20...30...40...50...60...70...80...90...100 - done.
print(result)

#> [1] TRUE

vsi_read_dir(dst)

#> [1] "README.md"

#> [2] "bl_mrbl_ng_jul2004_rgbh_720x360.tif"

#> [3] "blue_marble_ng_neo_metadata.xml”

#> [4] "landsat_c2ard_sr_mt_hood_jul2022_utm. json”
#> [5] "landsat_c2ard_sr_mt_hood_jul2022_utm.tif"
#> [6] "1f_elev_220_metadata.html”

#> [7] "1f_elev_220_mt_hood_utm.tif"

#> [8] "1f_fbfm40_220_metadata.html”

#> [9] "1f_fbfm40_220_mt_hood_utm.tif"

## End(Not run)

vsi_unlink

vsi_unlink Delete a file

Description

vsi_unlink() deletes a file object from the file system. This function goes through the GDAL
VSIFileHandler virtualization and may work on unusual filesystems such as in memory. It is
a wrapper for VSIUnlink() in the GDAL Common Portability Library. Analog of the POSIX

unlink() function.

Usage

vsi_unlink(filename)



vsi_unlink_batch 143

Arguments

filename Character string. The path of the file to be deleted.

Value

@ on success or -1 on an error.

See Also

deleteDataset(), vsi_rmdir(), vsi_unlink_batch()

Examples

# regular file system for illustration

elev_file <- system.file("extdata/storml_elev.tif"”, package="gdalraster")
tmp_file <- paste@(tempdir(), "/", "tmp.tif")

file.copy(elev_file, tmp_file)

vsi_stat(tmp_file)

vsi_unlink(tmp_file)

vsi_stat(tmp_file)

vsi_unlink_batch Delete several files in a batch

Description

vsi_unlink_batch() deletes a list of files passed in a character vector. All files should belong to
the same file system handler. This is implemented efficiently for /vsis3/ and /vsigs/ (provided for
/vsigs/ that OAuth2 authentication is used). This function is a wrapper for VSIUnlinkBatch() in
the GDAL Common Portability Library.

Usage

vsi_unlink_batch(filenames)

Arguments

filenames Character vector. The list of files to delete.

Value

Logical vector of length(filenames) with values depending on the success of deletion of the
corresponding file. NULL might be returned in case of a more general error (for example, files
belonging to different file system handlers).

See Also

deleteDataset(), vsi_rmdir(), vsi_unlink()



144 warp

Examples

# regular file system for illustration
elev_file <- system.file("extdata/storml_elev.tif"”, package="gdalraster")
tcc_file <- system.file("extdata/storml_tcc.tif"”, package="gdalraster")

tmp_elev <- paste@(tempdir(), "/", "tmp_elev.tif")
file.copy(elev_file, tmp_elev)

tmp_tcc <- paste@(tempdir(), "/", "tmp_tcc.tif")
file.copy(tcc_file, tmp_tcc)
vsi_unlink_batch(c(tmp_elev, tmp_tcc))

warp Raster reprojection and mosaicing

Description

warp() is a wrapper of the gdalwarp command-line utility for raster mosaicing, reprojection and
warping (see https://gdal.org/programs/gdalwarp.html). The function can reproject to any
supported spatial reference system (SRS). It can also be used to crop, resample, and optionally write
output to a different raster format. See Details for a list of commonly used processing options that
can be passed as arguments to warp().

Usage

warp(src_files, dst_filename, t_srs, cl_arg = NULL, quiet = FALSE)

Arguments

src_files Character vector of source file(s) to be reprojected.
dst_filename  Character string. Filename of the output raster.

t_srs Character string. Target spatial reference system. Usually an EPSG code ("EPSG:#####")
or a well known text (WKT) SRS definition. If empty string "", the spatial ref-
erence of src_files[1] will be used (see Note).

cl_arg Optional character vector of command-line arguments to gdalwarp in addition
to —-t_srs (see Details).
quiet Logical scalar. If TRUE, a progress bar will not be displayed. Defaults to FALSE.
Details

Several processing options can be performed in one call to warp() by passing the necessary command-
line arguments. The following list describes several commonly used arguments. Note that gdalwarp
supports a large number of arguments that enable a variety of different processing options. Users
are encouraged to review the original source documentation provided by the GDAL project at the
URL above for the full list.

e —te <xmin> <ymin> <xmax> <ymax>
Georeferenced extents of output file to be created (in target SRS by default).


https://gdal.org/programs/gdalwarp.html

warp

145

-te_srs <srs_def>

SRS in which to interpret the coordinates given with -te (if different than t_srs).
-tr <xres> <yres>

Output pixel resolution (in target georeferenced units).

-tap

(target aligned pixels) align the coordinates of the extent of the output file to the values of the
-tr, such that the aligned extent includes the minimum extent. Alignment means that xmin /
resx, ymin / resy, xmax / resx and ymax / resy are integer values.

-ovr <level>|AUTO|AUTO-<n>|NONE

Specify which overview level of source files must be used. The default choice, AUTO, will
select the overview level whose resolution is the closest to the target resolution. Specify an
integer value (0-based, i.e., 0=1st overview level) to select a particular level. Specify AUTO-n
where n is an integer greater or equal to 1, to select an overview level below the AUTO one.
Or specify NONE to force the base resolution to be used (can be useful if overviews have been
generated with a low quality resampling method, and the warping is done using a higher
quality resampling method).

-wo <NAME>=<VALUE>

Set a warp option as described in the GDAL documentation for GDALWarpOptions Multiple
-wo may be given. See also -multi below.

-ot <type>

Force the output raster bands to have a specific data type supported by the format, which
may be one of the following: Byte, Int8, UInt16, Int16, UInt32, Int32, UInt64, Int64,
Float32, Float64, CInt16, CInt32, CFloat32 or CFloat64.

-r <resampling_method>

Resampling method to use. Available methods are: near (nearest neighbour, the default),
bilinear, cubic, cubicspline, lanczos, average, rms (root mean square, GDAL >= 3.3),
mode, max, min, med, g1 (first quartile), g3 (third quartile), sum (GDAL >= 3.1).

-srcnodata "<value>[ <value>]..."

Set nodata masking values for input bands (different values can be supplied for each band). If
more than one value is supplied all values should be quoted to keep them together as a single
operating system argument. Masked values will not be used in interpolation. Use a value of
None to ignore intrinsic nodata settings on the source dataset. If -srcnodata is not explicitly
set, but the source dataset has nodata values, they will be taken into account by default.

-dstnodata "<value>[ <value>]..."

Set nodata values for output bands (different values can be supplied for each band). If more
than one value is supplied all values should be quoted to keep them together as a single op-
erating system argument. New files will be initialized to this value and if possible the nodata
value will be recorded in the output file. Use a value of "None" to ensure that nodata is not
defined. If this argument is not used then nodata values will be copied from the source dataset.
-wm <memory_in_mb>

Set the amount of memory that the warp API is allowed to use for caching. The value is inter-
preted as being in megabytes if the value is <10000. For values >=10000, this is interpreted as
bytes. The warper will total up the memory required to hold the input and output image arrays
and any auxiliary masking arrays and if they are larger than the "warp memory" allowed it will
subdivide the chunk into smaller chunks and try again. If the -wm value is very small there is
some extra overhead in doing many small chunks so setting it larger is better but it is a matter
of diminishing returns.


https://gdal.org/api/gdalwarp_cpp.html#_CPPv415GDALWarpOptions

146 warp

e -multi
Use multithreaded warping implementation. Two threads will be used to process chunks of
image and perform input/output operation simultaneously. Note that computation is not mul-
tithreaded itself. To do that, you can use the -wo NUM_THREADS=val/ALL_CPUS option, which
can be combined with -multi.

» -of <format> Set the output raster format. Will be guessed from the extension if not specified.
Use the short format name (e.g., "GTiff").

* -co <NAME>=<VALUE>
Set one or more format specific creation options for the output dataset. For example, the
GeoTIFF driver supports creation options to control compression, and whether the file should
be tiled. getCreationOptions() can be used to look up available creation options, but the
GDAL Raster drivers documentation is the definitive reference for format specific options.
Multiple -co may be given, e.g.,

c("-co", "COMPRESS=LZW", "-co", "BIGTIFF=YES")

* -overwrite
Overwrite the target dataset if it already exists. Overwriting means deleting and recreating the
file from scratch. Note that if this option is not specified and the output file already exists, it
will be updated in place.

The documentation for gdalwarp describes additional command-line options related to spatial ref-
erence systems, source nodata values, alpha bands, polygon cutlines as mask including blending,
and more.

Mosaicing into an existing output file is supported if the output file already exists. The spatial extent
of the existing file will not be modified to accommodate new data, so you may have to remove it in
that case, or use the ~overwrite option.

Command-line options are passed to warp() as a character vector. The elements of the vector are
the individual options followed by their individual values, e.g.,

Cl_arg = C<"_tr", u3®u, 113011, "—F", llbilinear.n))

to set the target pixel resolution to 30 x 30 in target georeferenced units and use bilinear resampling.

Value

Logical indicating success (invisible TRUE). An error is raised if the operation fails.

Note

warp() can be used to reproject and also perform other processing such as crop, resample, and
mosaic. This processing is generally done with a single function call by passing arguments for
the target (output) pixel resolution, extent, resampling method, nodata value, format, and so forth.
If warp() is called with t_srs set to ""” (empty string), the target spatial reference will be set to
that of src_files[1], so that the processing options given in cl_arg will be performed without
reprojecting (in the case of one input raster or multiple inputs that all use the same spatial reference
system, otherwise would reproject inputs to the SRS of src_files[1] when they are different).

See Also

GDALRaster-class, srs_to_wkt(), translate()


https://gdal.org/drivers/raster/index.html
https://gdal.org/programs/gdalwarp.html

warp 147

Examples

# reproject the elevation raster to NAD83 / CONUS Albers (EPSG:5070)
elev_file <- system.file("extdata/storml_elev.tif"”, package="gdalraster")

# command-line arguments for gdalwarp
# resample to 90-m resolution and keep pixels aligned:

args <- C(”‘tr”, "9@", 119011’ n_rn’ ”CUbiC”, "—tap")
# write to Erdas Imagine format (HFA) with compression:
args <- c(args, "-of", "HFA", "-co", "COMPRESSED=YES")

alb83_file <- paste@(tempdir(), "/", "storml_elev_alb83.img")
warp(elev_file, alb83_file, t_srs="EPSG:5070", cl_arg = args)

ds <- new(GDALRaster, alb83_file)
ds$getDriverLongName()

ds$getProjectionRef ()

ds$res()

ds$getStatistics(band=1, approx_ok=FALSE, force=TRUE)
ds$close()

deleteDataset(alb83_file)



Index

+ datasets
DEFAULT_DEM_PROC, 32
DEFAULT_NODATA, 33
vsi_constants, 126

addFilesInZip, 6
addFilesInZip(), 5, 130

bandCopyWholeRaster, 9
bandCopyWholeRaster(), 5, 97
bbox_from_wkt, 10
bbox_from_wkt(), 5, 11-13, 63, 103
bbox_intersect, 11
bbox_intersect(), 5
bbox_to_wkt, 12
bbox_to_wkt(), 5, 10, 11, 13, 63
bbox_transform, 13
bbox_transform(), 5, 68
bbox_union (bbox_intersect), 11
bbox_union(), 5

buildRAT, 14
buildRAT(), 5, 26, 36, 49, 50
buildVRT, 17
buildVRT(), 5, 101, 103

calc, 19

calc(), 5, 26

CmbTable (CmbTable-class), 23
CmbTable-class, 23

combine, 25

combine(), 5, 21

copyDatasetFiles, 27
copyDatasetFiles(), 5, 34, 109, 127, 141
create, 28
create(), 5, 10,27, 31, 34, 55, 97, 109
createColorRamp, 29

createCopy, 31
createCopy(), 5, 10, 27, 28, 34, 55, 97, 109

DEFAULT_DEM_PROC, 32, 35

148

DEFAULT_NODATA, 33
deleteDataset, 33
deleteDataset(), 5, 27, 109, 135, 143
dem_proc, 34

dem_proc(), 5, 32

displayRAT, 35

displayRAT(), 5, 16
dump_open_datasets, 36
dump_open_datasets(), 5

epsg_to_wkt, 37
epsg_to_wkt(), 5, 118, 119

fillNodata, 38
fillNodata(), 5
footprint, 39
footprint(), 5

g_area, 59

g_area(), 5

g_binary_op, 60
g_binary_pred, 61
g_buffer, 62

g_buffer(), 5, 12
g_centroid, 63
g_centroid(), 5

g_contains (g_binary_pred), 61
g_contains(), 5

g_crosses (g_binary_pred), 61
g_crosses(),

g_difference (g_binary_op), 60
g_difference(), 5

g_disjoint (g_binary_pred), 61
g_disjoint(), 5
g_distance, 64
g_distance(), 5

g_equals (g_binary_pred), 61
g_equals(), 5

g_intersection (g_binary_op), 60
g_intersection(), 5



INDEX

g_intersects (g_binary_pred), 61
g_intersects(), S5
g_is_empty, 64

g_is_empty(), 5

g_is_valid, 65

g_is_valid(), 5

g_length, 66

g_length(), 5

g_name, 66

g_name(), 5

g_overlaps (g_binary_pred), 61
g_overlaps(), 5
g_sym_difference (g_binary_op), 60
g_sym_difference(), 5
g_touches (g_binary_pred), 61
g_touches(), 5

g_transform, 67
g_transform(), 5, 13

g_union (g_binary_op), 60
g_union(), 5

g_within (g_binary_pred), 61
g_within(), 5

gdal_formats, 53
gdal_formats(), 5, 85
gdal_version, 54
gdal_version(), 5, 55, 95
GDALRaster (GDALRaster-class), 40
gdalraster (gdalraster-package), 4
GDALRaster-class, 40
gdalraster-package, 4
GDALRaster$getChecksum(), 5
GDALRaster$getColorTable(), 30

GDALRaster$getDefaultRAT(), 5, 16, 36
GDALRasters$getGeoTransform(), 58, 70

GDALRaster$getPalettelnterp(), 30
GDALRasters$read(), 89, 108
GDALRaster$setColorTable(), 29
GDALRaster$setDefaultRAT(), 5, 16
geos_version, 54
geos_version(), 5, 95
get_cache_used, 56
get_cache_used(), 5
get_config_option, 56
get_config_option(), 5, 112
get_num_cpus, 57
get_num_cpus(), 5
get_pixel_line, 57
get_pixel_line(), 5,45, 70

149

get_usable_physical_ram, 59
get_usable_physical_ram(), 5
getCreationOptions, 55
getCreationOptions(), 5, 28, 31, 146

has_geos, 68
has_spatialite, 69
has_spatialite(), 5, 85
http_enabled, 70
http_enabled(), 5

inv_geotransform, 70
inv_geotransform(), 5, 58
inv_project, 71
inv_project(), 5, 119

ogr2ogr, 73

ogr2ogr(), 5, 76,85, 120
ogr_def_field (ogr_define), 77
ogr_def_field(), 82, 85
ogr_def_geom_field (ogr_define), 77
ogr_def_geom_field(), 82
ogr_def_layer (ogr_define), 77
ogr_def_layer(), 85
ogr_define, 5, 77, 82-84
ogr_ds_create (ogr_manage), 80
ogr_ds_create(), 79

ogr_ds_exists (ogr_manage), 80
ogr_ds_format (ogr_manage), 80
ogr_ds_layer_count (ogr_manage), 80
ogr_ds_layer_names (ogr_manage), 80
ogr_ds_test_cap (ogr_manage), 80
ogr_execute_sql (ogr_manage), 80
ogr_execute_sql (), 69
ogr_field_create (ogr_manage), 80
ogr_field_create(), 79
ogr_field_delete (ogr_manage), 80
ogr_field_index (ogr_manage), 80
ogr_field_rename (ogr_manage), 80
ogr_geom_field_create (ogr_manage), 80
ogr_layer_create (ogr_manage), 80
ogr_layer_create(), 79
ogr_layer_delete (ogr_manage), 80
ogr_layer_exists (ogr_manage), 80
ogr_layer_field_names (ogr_manage), 80
ogr_layer_test_cap (ogr_manage), 80
ogr_manage, 5, 74, 76, 80

ogrinfo, 75
ogrinfo(), 5, 69, 74, 79, 85



150

plot_raster, 87
plot_raster(), 5, 106
polygonize, 90
polygonize(), 5, 40, 100
pop_error_handler, 93
pop_error_handler(), 5, 96
proj_networking, 94
proj_networking(), 5, 95
proj_search_paths, 94
proj_search_paths(), 5, 94, 95
proj_version, 95
proj_version(), 5, 55, 94, 95
push_error_handler, 96
push_error_handler(), 5, 93

rasterFromRaster, 97
rasterFromRaster(), 5, 10, 28, 31, 120
rasterize, 98
rasterize(), 5, 92
rasterToVRT, 101
rasterToVRT(), 5, 18, 21, 26
Rcpp_CmbTable (CmbTable-class), 23
Rcpp_CmbTable-class (CmbTable-class), 23
Rcpp_GDALRaster (GDALRaster-class), 40
Rcpp_GDALRaster-class
(GDALRaster-class), 40
Rcpp_RunningStats (RunningStats-class),
110
Rcpp_RunningStats-class
(RunningStats-class), 110
Rcpp_VSIFile (VSIFile-class), 120
Rcpp_VSIFile-class (VSIFile-class), 120
read_ds, 106
read_ds(), 43, 51,87, 89
renameDataset, 108
renameDataset(), 5, 27, 34, 134
RunningStats (RunningStats-class), 110
RunningStats-class, 110

SEEK_CUR (vsi_constants), 126

SEEK_END (vsi_constants), 126

SEEK_SET (vsi_constants), 126

set_config_option, 112

set_config_option(), 5, 8, 37,45, 50, 57,
89,118,131, 136

sieveFilter, 113

sieveFilter(), 5

srs_is_geographic, 115

srs_is_geographic(), 5, 116, 117

INDEX

srs_is_projected, 115
srs_is_projected(), 5, 115,117
srs_is_same, 116
srs_is_same(), 5, 115, 116
srs_to_wkt, 117

srs_to_wkt(), 5,37,78,82,107, 119, 146

transform_xy, 118
transform_xy(), 5, 73
translate, 119
translate(), 5, 31, 74, 97, 146

vsi_clear_path_options, 125
vsi_clear_path_options(), 5, 136
vsi_constants, 126
vsi_copy_file, 126
vsi_copy_file(), 5,27,123, 134, 141
vsi_curl_clear_cache, 128
vsi_curl_clear_cache(), 5
vsi_get_disk_free_space, 128
vsi_get_disk_free_space(), 5
vsi_get_file_metadata, 129
vsi_get_file_metadata(), 5,8
vsi_get_fs_options, 130
vsi_get_fs_options(), 5, 131
vsi_get_fs_prefixes, 131
vsi_get_fs_prefixes(), 5, 131
vsi_mkdir, 132
vsi_mkdir(), 5, 133, 135
vsi_read_dir, 133
vsi_read_dir(), 5, 123,132,135
vsi_rename, 134

vsi_rename(), 5

vsi_rmdir, 135
vsi_rmdir(), 5, 132, 133, 143
vsi_set_path_option, 136
vsi_set_path_option(), 5, 126
vsi_stat, 137
vsi_stat(), 5, 123,127, 130, 133
vsi_supports_rnd_write, 138
vsi_supports_rnd_write(), 5, 139
vsi_supports_seq_write, 139
vsi_supports_seq_write(), 5, 138
vsi_sync, 140
vsi_sync(), 5, 127,133
vsi_unlink, 142
vsi_unlink(), 5, 123, 135, 143
vsi_unlink_batch, 143
vsi_unlink_batch(), 5, 143



INDEX 151

VSIFile, 5
VSIFile (VSIFile-class), 120
VSIFile-class, 120

warp, 144
warp(), 5, 103, 120



	gdalraster-package
	addFilesInZip
	bandCopyWholeRaster
	bbox_from_wkt
	bbox_intersect
	bbox_to_wkt
	bbox_transform
	buildRAT
	buildVRT
	calc
	CmbTable-class
	combine
	copyDatasetFiles
	create
	createColorRamp
	createCopy
	DEFAULT_DEM_PROC
	DEFAULT_NODATA
	deleteDataset
	dem_proc
	displayRAT
	dump_open_datasets
	epsg_to_wkt
	fillNodata
	footprint
	GDALRaster-class
	gdal_formats
	gdal_version
	geos_version
	getCreationOptions
	get_cache_used
	get_config_option
	get_num_cpus
	get_pixel_line
	get_usable_physical_ram
	g_area
	g_binary_op
	g_binary_pred
	g_buffer
	g_centroid
	g_distance
	g_is_empty
	g_is_valid
	g_length
	g_name
	g_transform
	has_geos
	has_spatialite
	http_enabled
	inv_geotransform
	inv_project
	ogr2ogr
	ogrinfo
	ogr_define
	ogr_manage
	plot_raster
	polygonize
	pop_error_handler
	proj_networking
	proj_search_paths
	proj_version
	push_error_handler
	rasterFromRaster
	rasterize
	rasterToVRT
	read_ds
	renameDataset
	RunningStats-class
	set_config_option
	sieveFilter
	srs_is_geographic
	srs_is_projected
	srs_is_same
	srs_to_wkt
	transform_xy
	translate
	VSIFile-class
	vsi_clear_path_options
	vsi_constants
	vsi_copy_file
	vsi_curl_clear_cache
	vsi_get_disk_free_space
	vsi_get_file_metadata
	vsi_get_fs_options
	vsi_get_fs_prefixes
	vsi_mkdir
	vsi_read_dir
	vsi_rename
	vsi_rmdir
	vsi_set_path_option
	vsi_stat
	vsi_supports_rnd_write
	vsi_supports_seq_write
	vsi_sync
	vsi_unlink
	vsi_unlink_batch
	warp
	Index

