Package ‘gh’

May 26, 2025
Title 'GitHub' 'API'
Version 1.5.0
Description Minimal client to access the 'GitHub' 'APT'.
License MIT + file LICENSE

URL https://gh.r-1lib.org/, https://github.com/r-1ib/gh#readme

BugReports https://github.com/r-1lib/gh/issues
Depends R (>=4.1)

Imports cli (>=3.0.1), gitcreds, glue, httr2 (>= 1.0.6), ini,
jsonlite, lifecycle, rlang (>= 1.0.0)

Suggests connectcreds, covr, knitr, rmarkdown, rprojroot, spelling,
testthat (>= 3.0.0), withr

VignetteBuilder knitr
Config/Needs/website tidyverse/tidytemplate
Config/testthat/edition 3
Config/usethis/last-upkeep 2025-04-29
Encoding UTF-8

Language en-US

RoxygenNote 7.3.2.9000
NeedsCompilation no

Author Gibor Csardi [cre, ctb],
Jennifer Bryan [aut],
Hadley Wickham [aut],
Posit Software, PBC [cph, fnd] (ROR: <https://ror.org/@3wc8by49>)

Maintainer Gabor Csardi <csardi.gabor@gmail.com>
Repository CRAN
Date/Publication 2025-05-26 13:10:02 UTC

https://gh.r-lib.org/
https://github.com/r-lib/gh#readme
https://github.com/r-lib/gh/issues
https://ror.org/03wc8by49

2 gh
Contents
gh e 2
gh_gql . . . e 6
gh_next e e 7
gh_rate_limit 8
gh_token e 9
gh_tree_remote e 10
gh_whoami e 10
print.gh_response e 11
Index 13
gh Query the GitHub API
Description
This is an extremely minimal client. You need to know the API to be able to use this client. All this
function does is:
* Try to substitute each listed parameter into endpoint, using the {parameter} notation.
* If a GET request (the default), then add all other listed parameters as query parameters.
* If not a GET request, then send the other parameters in the request body, as JSON.
* Convert the response to an R list using jsonlite: :fromJSON().
Usage
gh(
endpoint,

’

per_page = NULL,
.per_page = NULL,
.token = NULL,
.destfile = NULL,
.overwrite = FALSE,
.api_url = NULL,
.method = "GET",
.limit = NULL,
.accept = "application/vnd.github.v3+json”,
.send_headers = NULL,
.progress = TRUE,
.params = list(),
.max_wait = 600,
.max_rate = NULL

gh 3

Arguments

endpoint GitHub API endpoint. Must be one of the following forms:

e METHOD path, e.g. GET /rate_limit,

* path,e.g. /rate_limit,

e METHOD url,e.g. GET https://api.github.com/rate_limit,
e url,e.g. https://api.github.com/rate_limit.

If the method is not supplied, will use .method, which defaults to "GET".

Name-value pairs giving API parameters. Will be matched into endpoint place-
holders, sent as query parameters in GET requests, and as a JSON body of POST
requests. If there is only one unnamed parameter, and it is a raw vector, then it
will not be JSON encoded, but sent as raw data, as is. This can be used for
example to add assets to releases. Named NULL values are silently dropped. For
GET requests, named NA values trigger an error. For other methods, named NA
values are included in the body of the request, as JSON null.
per_page, .per_page

Number of items to return per page. If omitted, will be substituted by max (. limit,
100) if . 1imit is set, otherwise determined by the API (never greater than 100).

. token Authentication token. Defaults to gh_token().

.destfile Path to write response to disk. If NULL (default), response will be processed
and returned as an object. If path is given, response will be written to disk in
the form sent. gh writes the response to a temporary file, and renames that file
to .destfile after the request was successful. The name of the temporary file
is created by adding a -<random>.gh-tmp suffix to it, where <random> is an
ASCII string with random characters. gh removes the temporary file on error.

.overwrite If .destfile is provided, whether to overwrite an existing file. Defaults to
FALSE. If an error happens the original file is kept.

.api_url Github API url (default: https://api.github.com). Used if endpoint just
contains a path. Defaults to GITHUB_API_URL environment variable if set.

.method HTTP method to use if not explicitly supplied in the endpoint.

Jlimit Number of records to return. This can be used instead of manual pagination.

By default it is NULL, which means that the defaults of the GitHub API are used.
You can set it to a number to request more (or less) records, and also to Inf to
request all records. Note, that if you request many records, then multiple GitHub
API calls are used to get them, and this can take a potentially long time.

.accept The value of the Accept HTTP header. Defaults to "application/vnd.github.v3+json”
. If Accept is given in . send_headers, then that will be used. This parameter
can be used to provide a custom media type, in order to access a preview feature
of the APL

.send_headers Named character vector of header field values (except Authorization, which
is handled via .token). This can be used to override or augment the default
User-Agent header: "https://github.com/r-1lib/gh".

.progress Whether to show a progress indicator for calls that need more than one HTTP
request.

https://api.github.com

gh

Additional list of parameters to append to It is easier to use this than . .. if
you have your parameters in a list already.

Maximum number of seconds to wait if rate limited. Defaults to 10 minutes.

Maximum request rate in requests per second. Set this to automatically throttle
requests.

Answer from the API as a gh_response object, which is also a 1ist. Failed requests will generate
an R error. Requests that generate a raw response will return a raw vector.

gh_ggl () if you want to use the GitHub GraphQL API, gh_whoami () for details on GitHub API

4
.params
.max_wait
.max_rate
Value
See Also
token management.
Examples

Repositories of a user, these are equivalent
gh("/users/hadley/repos”, .limit = 2)
gh("/users/{username}/repos”, username = "hadley”, .limit = 2)

Starred repositories of a user
gh("/users/hadley/starred”, .limit = 2)
gh("/users/{username}/starred”, username = "hadley”, .limit = 2)

Create a repository, needs a token (see gh_token())
gh("POST /user/repos”, name = "foobar")

Issues of a repository
gh("/repos/hadley/dplyr/issues”)
gh("/repos/{owner}/{repo}/issues”, owner = "hadley"”, repo = "dplyr")

Automatic pagination
users <- gh("/users”, .limit = 50)

length(users)

Access developer preview of Licenses API (in preview as of 2015-09-24)
gh("/licenses"”) # used to error code 415

gh("/licenses”,

.accept = "application/vnd.github.drax-preview+json")

Access Github Enterprise API
Use GITHUB_API_URL environment variable to change the default.
gh("/user/repos”, type = "public”, .api_url = "https://github.foobar.edu/api/v3")

Use I() to force body part to be sent as an array, even if length 1

gh

This works whether assignees has length 1 or > 1

assignees <- "gh_user”

assignees <- c("gh_user1”, "gh_user2")

gh("PATCH /repos/OWNER/REPO/issues/1", assignees = I(assignees))

There are two ways to send JSON data. One is that you supply one or
more objects that will be converted to JSON automatically via

jsonlite::toJSON(). In this case sometimes you need to use

jsonlite::unbox() because fromJSON() creates lists from scalar vectors
by default. The Content-Type header is automatically added in this

case. For example this request turns on GitHub Pages, using this

API: https://docs.github.com/v3/repos/pages/#enable-a-pages-site

gh::gh(
"POST /repos/{owner}/{repo}/pages”,
owner = "r-1ib",
repo = "gh”,

source = list(
branch = jsonlite: :unbox("gh-pages"),
path = jsonlite::unbox("/")

))

.send_headers = c(Accept = "application/vnd.github.switcheroo-preview+json")

)

The second way is to handle the JSON encoding manually, and supply it
as a raw vector in an unnamed argument, and also a Content-Type header:

body <- '{ "source”: { "branch": "gh-pages", "path": "/" } }'
gh::gh(
"POST /repos/{owner}/{repo}/pages”,

owner = "r-1ib",
repo = "gh",
charToRaw(body),
.send_headers = c(
Accept = "application/vnd.github.switcheroo-preview+json”,
"Content-Type" = "application/json"
)
)
Pass along a query to the search/code endpoint via the ... argument
x <= gh::gh(
"/search/code",
g = "installation repo:r-lib/gh",
.send_headers = c("X-GitHub-Api-Version” = "2022-11-28")
)

str(x, list.len = 3, give.attr = FALSE)

6 gh_gql

gh_gqgl A simple interface for the GitHub GraphQL API v4.

Description

See more about the GraphQL API here: https://docs.github.com/graphgl

Usage
gh_gal(query, ...)
Arguments
query The GraphQL query, as a string.
Name-value pairs giving API parameters. Will be matched into endpoint place-
holders, sent as query parameters in GET requests, and as a JSON body of POST
requests. If there is only one unnamed parameter, and it is a raw vector, then it
will not be JSON encoded, but sent as raw data, as is. This can be used for
example to add assets to releases. Named NULL values are silently dropped. For
GET requests, named NA values trigger an error. For other methods, named NA
values are included in the body of the request, as JSON null.
Details

Note: pagination and the .1imit argument does not work currently, as pagination in the GraphQL
API is different from the v3 API. If you need pagination with GraphQL, you’ll need to do that
manually.

See Also
gh() for the GitHub v3 API.

Examples
gh_gql("query { viewer { login }}")

Get rate limit
ratelimit_query <- "query {
viewer {
login
}
rateLimit {
limit
cost
remaining
resetAt

https://docs.github.com/graphql

gh_next 7

gh_gql(ratelimit_query)

gh_next Get the next, previous, first or last page of results

Description

Get the next, previous, first or last page of results

Usage

gh_next(gh_response, .token = NULL, .send_headers = NULL)

NULL, .send_headers

gh_prev(gh_response, .token NULL)

gh_first(gh_response, .token = NULL, .send_headers = NULL)

gh_last(gh_response, .token = NULL, .send_headers = NULL)

Arguments

gh_response An object returned by a gh() call.
. token Authentication token. Defaults to gh_token().

.send_headers Named character vector of header field values (except Authorization, which
is handled via .token). This can be used to override or augment the default
User-Agent header: "https://github.com/r-1ib/gh".

Details

Note that these are not always defined. E.g. if the first page was queried (the default), then there are
no first and previous pages defined. If there is no next page, then there is no next page defined, etc.

If the requested page does not exist, an error is thrown.

Value

Answer from the API.

See Also

The .1imit argument to gh() supports fetching more than one page.

8 gh_rate_limit

Examples

x <- gh("/users")
vapply(x, "[[", character(1), "login")
x2 <- gh_next(x)
vapply(x2, "[[", character(1), "login")

gh_rate_limit Return GitHub user’s current rate limits

Description

gh_rate_limits() reports on all rate limits for the authenticated user. gh_rate_limit() reports
on rate limits for previous successful request.

Further details on GitHub’s API rate limit policies are available at https://docs.github.com/
v3/#rate-limiting.

Usage

gh_rate_limit(
response = NULL,
.token = NULL,
.api_url = NULL,
.send_headers = NULL
)

gh_rate_limits(.token = NULL, .api_url = NULL, .send_headers = NULL)

Arguments
response gh_response object from a previous gh call, rate limit values are determined
from values in the response header. Optional argument, if missing a call to
"GET /rate_limit" will be made.
. token Authentication token. Defaults to gh_token().
.api_url Github API url (default: https://api.github.com). Used if endpoint just

contains a path. Defaults to GITHUB_API_URL environment variable if set.

.send_headers Named character vector of header field values (except Authorization, which
is handled via .token). This can be used to override or augment the default
User-Agent header: "https://github.com/r-1ib/gh".

Value

A list object containing the overall 1imit, remaining limit, and the limit reset time.

https://docs.github.com/v3/#rate-limiting
https://docs.github.com/v3/#rate-limiting
https://api.github.com

gh_token 9

gh_token Return the local user’s GitHub Personal Access Token (PAT)

Description

If gh can find a personal access token (PAT) via gh_token(), it includes the PAT in its requests.
Some requests succeed without a PAT, but many require a PAT to prove the request is authorized by
a specific GitHub user. A PAT also helps with rate limiting. If your gh use is more than casual, you
want a PAT.

gh calls gitcreds: :gitcreds_get() with the api_url, which checks session environment vari-
ables (GITHUB_PAT, GITHUB_TOKEN) and then the local Git credential store for a PAT appropriate to
the api_url. Therefore, if you have previously used a PAT with, e.g., command line Git, gh may
retrieve and re-use it. You can call gitcreds: :gitcreds_get() directly, yourself, if you want to
see what is found for a specific URL. If no matching PAT is found, gitcreds: :gitcreds_get()

nn

errors, whereas gh_token() does not and, instead, returns "".

See GitHub’s documentation on Creating a personal access token, or use usethis: :create_github_token()
for a guided experience, including pre-selection of recommended scopes. Once you have a PAT, you

can use gitcreds::gitcreds_set() to add it to the Git credential store. From that point on, gh
(viagitcreds::gitcreds_get()) should be able to find it without further effort on your part.

Usage

gh_token(api_url = NULL)

gh_token_exists(api_url = NULL)

Arguments
api_url GitHub API URL. Defaults to the GITHUB_API_URL environment variable, if set,
and otherwise to https://api.github.com.
Value

A string of characters, if a PAT is found, or the empty string, otherwise. For convenience, the return
value has an S3 class in order to ensure that simple printing strategies don’t reveal the entire PAT.

Examples

Not run:
gh_token()

format(gh_token())
str(gh_token())

End(Not run)

https://docs.github.com/en/github/authenticating-to-github/creating-a-personal-access-token
https://api.github.com

10 gh_whoami

gh_tree_remote Find the GitHub remote associated with a path

Description

This is handy helper if you want to make gh requests related to the current project.

Usage

gh_tree_remote(path = ".")
Arguments

path Path that is contained within a git repo.
Value

If the repo has a github remote, a list containing username and repo. Otherwise, an error.

Examples

gh_tree_remote()

gh_whoami Info on current GitHub user and token

Description

Reports wallet name, GitHub login, and GitHub URL for the current authenticated user, the first bit
of the token, and the associated scopes.

Usage
gh_whoami (.token = NULL, .api_url = NULL, .send_headers = NULL)

Arguments
. token Authentication token. Defaults to gh_token().
.api_url Github API url (default: https://api.github.com). Used if endpoint just

contains a path. Defaults to GITHUB_API_URL environment variable if set.

.send_headers Named character vector of header field values (except Authorization, which
is handled via .token). This can be used to override or augment the default
User-Agent header: "https://github.com/r-1ib/gh".

https://api.github.com

print.gh_response 11

Details

Get a personal access token for the GitHub API from https://github.com/settings/tokens
and select the scopes necessary for your planned tasks. The repo scope, for example, is one many
are likely to need.

On macOS and Windows it is best to store the token in the git credential store, where most GitHub
clients, including gh, can access it. You can use the gitcreds package to add your token to the
credential store:

gitcreds::gitcreds_set()

See https://gh.r-1lib.org/articles/managing-personal-access-tokens.html and https:
//usethis.r-1lib.org/articles/articles/git-credentials.html for more about managing
GitHub (and generic git) credentials.

On other systems, including Linux, the git credential store is typically not as convenient, and you
might want to store your token in the GITHUB_PAT environment variable, which you can set in your
.Renviron file.

Value

A gh_response object, which is also a list.

Examples

gh_whoami ()

explicit token + use with GitHub Enterprise
gh_whoami (
.token = "8c70fd8419398999c9acbbacf3192882193cadf2",
.api_url = "https://github.foobar.edu/api/v3”
)

print.gh_response Print the result of a GitHub API call

Description

Print the result of a GitHub API call

Usage

S3 method for class 'gh_response'’
print(x, ...)

https://github.com/settings/tokens
https://gh.r-lib.org/articles/managing-personal-access-tokens.html
https://usethis.r-lib.org/articles/articles/git-credentials.html
https://usethis.r-lib.org/articles/articles/git-credentials.html

12

Arguments
X The result object.
Ignored.
Value

The JSON result.

print.gh_response

Index

gh, 2

gh(),6,7

gh_first (gh_next), 7

gh_gal, 6

gh_gal(), 4

gh_last (gh_next), 7
gh_next, 7

gh_prev (gh_next), 7
gh_rate_limit, 8
gh_rate_limits (gh_rate_limit), 8
gh_token, 9
gh_token(), 3,7, 8, 10
gh_token_exists (gh_token), 9
gh_tree_remote, 10
gh_whoami, 10

gh_whoami (), 4
gitcreds::gitcreds_get(), 9
gitcreds::gitcreds_set(), 9

jsonlite::fromJSON(), 2

print.gh_response, 11

13

	gh
	gh_gql
	gh_next
	gh_rate_limit
	gh_token
	gh_tree_remote
	gh_whoami
	print.gh_response
	Index

