
Package ‘httptest’
January 23, 2024

Type Package

Title A Test Environment for HTTP Requests

Description Testing and documenting code that communicates with remote servers
can be painful. Dealing with authentication, server state,
and other complications can make testing seem too costly to
bother with. But it doesn't need to be that hard. This package enables one
to test all of the logic on the R sides of the API in your package without
requiring access to the remote service. Importantly, it provides three
contexts that mock the network connection in different ways, as well as
testing functions to assert that HTTP requests were---or were
not---made. It also allows one to safely record real API responses to use as
test fixtures. The ability to save responses and load them offline also
enables one to write vignettes and other dynamic documents that can be
distributed without access to a live server.

Version 4.2.2

URL https://enpiar.com/r/httptest/,

https://github.com/nealrichardson/httptest

BugReports https://github.com/nealrichardson/httptest/issues

License MIT + file LICENSE

Depends R (>= 3.5.0), testthat

Imports curl, digest, httr, jsonlite, stats, utils

Suggests knitr, pkgload, rmarkdown, spelling, xml2

Language en-US

RoxygenNote 7.2.3

Encoding UTF-8

VignetteBuilder knitr

Config/testthat/edition 3

Config/Needs/coverage covr

NeedsCompilation no

1

https://enpiar.com/r/httptest/
https://github.com/nealrichardson/httptest
https://github.com/nealrichardson/httptest/issues

2 .mockPaths

Author Neal Richardson [aut, cre] (<https://orcid.org/0009-0002-7992-3520>),
Jonathan Keane [ctb],
Maëlle Salmon [ctb] (<https://orcid.org/0000-0002-2815-0399>)

Maintainer Neal Richardson <neal.p.richardson@gmail.com>

Repository CRAN

Date/Publication 2024-01-23 19:40:02 UTC

R topics documented:
.mockPaths . 2
block_requests . 3
build_mock_url . 4
capture_requests . 5
change_state . 7
expect_header . 7
expect_json_equivalent . 8
expect_verb . 9
fake_response . 10
gsub_response . 11
httptest . 12
public . 13
redact_cookies . 14
set_redactor . 15
set_requester . 16
skip_if_disconnected . 17
start_vignette . 17
stop_mocking . 18
use_httptest . 19
use_mock_api . 19
without_internet . 20
with_fake_http . 21
with_mock_api . 22
with_mock_dir . 22

Index 24

.mockPaths Set an alternate directory for mock API fixtures

Description

By default, with_mock_api will look for mocks relative to the current working directory (the test
directory). If you want to look in other places, you can call .mockPaths to add directories to the
search path.

https://orcid.org/0009-0002-7992-3520
https://orcid.org/0000-0002-2815-0399

block_requests 3

Usage

.mockPaths(new)

Arguments

new Either a character vector of path(s) to add, or NULL to reset to the default.

Details

It works like base::.libPaths(): any directories you specify will be added to the list and searched
first. The default directory will be searched last. Only unique values are kept: if you provide a path
that is already found in .mockPaths, the result effectively moves that path to the first position.

For finer-grained control, or to completely override the default behavior of searching in the current
working directory, you can set the option "httptest.mock.paths" directly.

Value

If new is omitted, the function returns the current search paths, a a character vector. If new is
provided, the updated value will be returned invisibly.

Examples

identical(.mockPaths(), ".")
.mockPaths("/var/somewhere/else")
identical(.mockPaths(), c("/var/somewhere/else", "."))
.mockPaths(NULL)
identical(.mockPaths(), ".")

block_requests Block HTTP requests

Description

This function intercepts HTTP requests made through httr and raises an informative error instead.
It is what without_internet() does, minus the automatic disabling of mocking when the context
finishes.

Usage

block_requests()

Details

Note that you in order to resume normal request behavior, you will need to call stop_mocking()
yourself—this function does not clean up after itself as ’without_internet‘ does.

4 build_mock_url

Value

Nothing; called for its side effects.

See Also

without_internet() stop_mocking() use_mock_api()

build_mock_url Convert a request to a mock file path

Description

Requests are translated to mock file paths according to several rules that incorporate the request
method, URL, query parameters, and body.

Usage

build_mock_url(req, method = "GET")

Arguments

req A request object, or a character "URL" to convert

method character HTTP method. If req is a ’request’ object, its request method will
override this argument

Details

First, the request protocol, such as "https://", is removed from the URL. Second, if the request
URL contains a query string, it will be popped off, hashed by digest::digest(), and the first six
characters appended to the file being read. Third, request bodies are similarly hashed and appended.
Finally, if a request method other than GET is used it will be appended to the end of the end of the
file name.

Mock file paths also have a file extension appended, based on the Content-Type of the response,
though this function, which is only concerned with the request, does not add the extension. In
an HTTP API, a "directory" itself is a resource, so the extension allows distinguishing directo-
ries and files in the file system. That is, a mocked GET("http://example.com/api/") may read
a "example.com/api.json" file, while GET("http://example.com/api/object1/") reads "exam-
ple.com/api/object1.json".

Other examples:

• GET("http://example.com/api/object1/?a=1") may read "example.com/api/object1-b64371.xml".

• POST("http://example.com/api/object1/?a=1") may read "example.com/api/object1-b64371-
POST.json".

capture_requests 5

This function is exported so that other packages can construct similar mock behaviors or override
specific requests at a higher level than with_mock_api mocks.

Note that if you are trying to guess the mock file paths corresponding to a test for which you intend
to create a mock file manually, instead of trying to build the URL, you should run the test with
with_mock_api as the error message will contain the mock file path.

Value

A file path and name, without an extension. The file, or a file with some extension appended, may
or may not exist: existence is not a concern of this function.

See Also

with_mock_api() capture_requests()

capture_requests Record API responses as mock files

Description

capture_requests is a context that collects the responses from requests you make and stores them
as mock files. This enables you to perform a series of requests against a live server once and then
build your test suite using those mocks, running your tests in with_mock_api().

Usage

capture_requests(expr, path, ...)

start_capturing(path = NULL, simplify = TRUE)

stop_capturing()

Arguments

expr Code to run inside the context

path Where to save the mock files. Default is the first directory in .mockPaths(),
which if not otherwise specified is the current working directory. It is generally
better to call .mockPaths() directly if you want to write to a different path,
rather than using the path argument.

... Arguments passed through capture_requests to start_capturing

simplify logical: if TRUE (default), JSON responses with status 200 will be written as just
the text of the response body. In all other cases, and when simplify is FALSE,
the "response" object will be written out to a .R file using base::dput().

6 capture_requests

Details

start_capturing and stop_capturing allow you to turn on/off request recording for more con-
venient use in an interactive session.

Recorded responses are written out as plain-text files. By storing fixtures as plain-text files, you can
more easily confirm that your mocks look correct, and you can more easily maintain them without
having to re-record them. If the API changes subtly, such as when adding an additional attribute to
an object, you can just touch up the mocks.

If the response has status 200 OK and the Content-Type maps to a supported file extension—
currently .json, .html, .xml, .txt, .csv, and .tsv—just the response body will be written out,
using the appropriate extension. 204 No Content status responses will be stored as an empty file
with extension .204. Otherwise, the response will be written as a .R file containing syntax that,
when executed, recreates the httr "response" object.

If you have trouble when recording responses, or are unsure where the files are being written, set
options(httptest.verbose=TRUE) to print a message for every file that is written containing the
absolute path of the file.

Value

capture_requests returns the result of expr. start_capturing invisibly returns the path it is
given. stop_capturing returns nothing; it is called for its side effects.

See Also

build_mock_url() for how requests are translated to file paths. And see vignette("redacting")
for details on how to prune sensitive content from responses when recording.

Examples

Not run:
capture_requests({

GET("http://httpbin.org/get")
GET("http://httpbin.org")
GET("http://httpbin.org/response-headers",
query = list(`Content-Type` = "application/json")

)
})
Or:
start_capturing()
GET("http://httpbin.org/get")
GET("http://httpbin.org")
GET("http://httpbin.org/response-headers",

query = list(`Content-Type` = "application/json")
)
stop_capturing()

End(Not run)

change_state 7

change_state Handle a change of server state

Description

In a vignette, put a call to change_state() before any code block that makes a change on the
server, or rather, before any code block that might repeat the same request previously done and
expect a different result.

Usage

change_state()

Details

change_state() works by layering a new directory on top of the existing .mockPaths(), so fix-
tures are recorded/loaded there, masking rather than overwriting previously recorded responses for
the same request. In vignettes, these mock layers are subdirectories with integer names.

Value

Invisibly, the return of .mockPaths() with the new path added.

expect_header Test that an HTTP request is made with a header

Description

This expectation checks that a HTTP header (and potentially header value) is present in a request. It
works by inspecting the request object and raising warnings that are caught by testthat::expect_warning().

Usage

expect_header(..., ignore.case = TRUE)

Arguments

... Arguments passed to expect_warning

ignore.case logical: if FALSE, the pattern matching is case sensitive and if TRUE, case is
ignored during matching. Default is TRUE; note that this is the opposite of
expect_warning but is appropriate here because HTTP header names are case
insensitive.

Details

expect_header works both in the mock HTTP contexts and on "live" HTTP requests.

8 expect_json_equivalent

Value

NULL, according to expect_warning.

Examples

library(httr)
with_fake_http({

expect_header(
GET("http://example.com", config = add_headers(Accept = "image/png")),
"Accept: image/png"

)
})

expect_json_equivalent

Test that objects would generate equivalent JSON

Description

Named lists in R are ordered, but they translate to unordered objects in JSON. This test expectation
loosens the equality check of two objects to ignore the order of elements in a named list.

Usage

expect_json_equivalent(
object,
expected,
info = NULL,
label = "object",
expected.label = "expected"

)

Arguments

object object to test

expected expected value

info extra information to be included in the message

label character name by which to refer to object in the test result. Because the tools
for deparsing object names that ’testthat’ uses aren’t exported from that package,
the default here is just "object".

expected.label character same as label but for expected

Value

Invisibly, returns object for optionally passing to other expectations.

expect_verb 9

See Also

testthat::expect_equivalent()

expect_verb Expectations for mocked HTTP requests

Description

The mock contexts in httptest can raise errors or messages when requests are made, and those
(error) messages have three elements, separated by space: (1) the request method (e.g. "GET"); (2)
the request URL; and (3) the request body, if present. These verb-expectation functions look for
this message shape. expect_PUT, for instance, looks for a request message that starts with "PUT".

This means that expect_verb functions won’t work outside of mock context, as no error would
be raised while making a request. Thus, any expect_verb function should be wrapped inside a
mocking function like without_internet(), as shown in the examples.

Usage

expect_GET(object, url = "", ...)

expect_POST(object, url = "", ...)

expect_PATCH(object, url = "", ...)

expect_PUT(object, url = "", ...)

expect_DELETE(object, url = "", ...)

expect_no_request(object, ...)

Arguments

object Code to execute that may cause an HTTP request
url character: the URL you expect a request to be made to. Default is an empty

string, meaning that you can just assert that a request is made with a certain
method without asserting anything further.

... character segments of a request payload you expect to be included in the request
body, to be joined together by paste0. You may also pass any of the following
named logical arguments, which will be passed to base::grepl():

• fixed: Should matching take the pattern as is or treat it as a regular expres-
sion. Default: TRUE, and note that this default is the opposite of the default
in grepl. (The rest of the arguments follow its defaults.)

• ignore.case: Should matching be done case insensitively? Default: FALSE,
meaning matches are case sensitive.

• perl: Should Perl-compatible regular expressions be used? Default: FALSE
• useBytes: Should matching be done byte-by-byte rather than character-by-

character? Default: FALSE

10 fake_response

Value

A testthat ’expectation’.

Examples

library(httr)
without_internet provides required mock context for expectations
without_internet({

expect_GET(
GET("http://httpbin.org/get"),
"http://httpbin.org/get"

)
expect_GET(GET("http://httpbin.org/get"),

"http://httpbin.org/[a-z]+",
fixed = FALSE

) # For regular expression matching
expect_PUT(

PUT("http://httpbin.org/put", body = '{"a":1}'),
"http://httpbin.org/put",
'{"a":1}'

)
expect_PUT(PUT("http://httpbin.org/put", body = '{"a":1}'))
expect_no_request(rnorm(5))

})

fake_response Return something that looks like a ’response’

Description

These functions allow mocking of HTTP requests without requiring an internet connection or server
to run against. Their return shape is a ’httr’ "response" class object that should behave like a real
response generated by a real request.

Usage

fake_response(
request,
verb = "GET",
status_code = 200,
headers = list(),
content = NULL

)

Arguments

request An ’httr’ request-class object. A character URL is also accepted, for which a
fake request object will be created, using the verb argument as well.

gsub_response 11

verb Character name for the HTTP verb, if request is a URL. Default is "GET".

status_code Integer HTTP response status

headers Optional list of additional response headers to return

content If supplied, a JSON-serializable list that will be returned as response content
with Content-Type: application/json. If no content is provided, and if the
status_code is not 204 No Content, the url will be set as the response content
with Content-Type: text/plain.

Value

An ’httr’ response class object.

gsub_response Find and replace within a ’response’ or ’request’

Description

These functions pass their arguments to base::gsub() in order to find and replace string patterns
(regular expressions) within request or response objects. gsub_request() replaces in the request
URL and any request body fields; gsub_response() replaces in the response URL, the response
body, and it calls gsub_request() on the request object found within the response.

Usage

gsub_response(response, pattern, replacement, ...)

gsub_request(request, pattern, replacement, ...)

Arguments

response An ’httr’ response object to sanitize.

pattern From base::gsub(): "character string containing a regular expression (or char-
acter string for fixed = TRUE) to be matched in the given character vector."
Passed to gsub(). See the docs for gsub() for further details.

replacement A replacement for the matched pattern, possibly including regular expression
backreferences. Passed to gsub(). See the docs for gsub() for further details.

... Additional logical arguments passed to gsub(): ignore.case, perl, fixed,
and useBytes are the possible options.

request An ’httr’ request object to sanitize.

Details

Note that, unlike gsub(), the first argument of the function is request or response, not pattern,
while the equivalent argument in gsub(), "x", is placed third. This difference is to maintain consis-
tency with the other redactor functions in httptest, which all take response as the first argument.

12 httptest

Value

A request or response object, same as was passed in, with the pattern replaced in the URLs and
bodies.

httptest httptest: A Test Environment for HTTP Requests

Description

If httr makes HTTP easy and testthat makes testing fun, httptest makes testing your code that uses
HTTP a simple pleasure.

Details

The httptest package lets you test R code that wraps an API without requiring access to the
remote service. It provides three test contexts that mock the network connection in different ways.
with_mock_api() lets you provide custom fixtures as responses to requests, stored as plain-text
files in your test directory. without_internet() converts HTTP requests into errors that print the
request method, URL, and body payload, if provided, allowing you to assert that a function call
would make a correctly-formed HTTP request or assert that a function does not make a request
(because if it did, it would raise an error in this context). with_fake_http() raises a "message"
instead of an "error", and HTTP requests return a "response"-class object. Like without_internet,
it allows you to assert that the correct requests were (or were not) made, but it doesn’t cause the
code to exit with an error.

httptest offers additional expectations to assert that HTTP requests were—or were not—made.
expect_GET(), expect_PUT(), expect_PATCH(), expect_POST(), and expect_DELETE() assert
that the specified HTTP request is made within one of the test contexts. They catch the error or
message raised by the mocked HTTP service and check that the request URL and optional body
match the expectation. expect_no_request() is the inverse of those: it asserts that no error or
message from a mocked HTTP service is raised. expect_header() asserts that an HTTP request,
mocked or not, contains a request header. expect_json_equivalent() checks that two R objects
would generate equivalent JSON, taking into account how JSON objects are unordered whereas R
named lists are ordered.

For an overview of testing with httptest, see vignette("httptest").

The package also includes capture_requests(), a context that collects the responses from re-
quests you make and stores them as mock files. This enables you to perform a series of requests
against a live server once and then build your test suite using those mocks, running your tests in
with_mock_api.

When recording requests, by default httptest looks for and redacts the standard ways that auth
credentials are passed in requests. This prevents you from accidentally publishing your personal
tokens. The redacting behavior is fully customizable, either by providing a function (response)
{...} to set_redactor(), or by placing a function in your package’s inst/httptest/redact.R
that will be used automatically any time you record requests with your package loaded. See
vignette("redacting") for details.

public 13

httptest also enables you to write package vignettes and other R Markdown documents that com-
municate with a remote API. By adding as little as start_vignette() to the beginning of your
vignette, you can safely record API responses from a live session, using your secret credentials.
These API responses are scrubbed of sensitive personal information and stored in a subfolder in
your vignettes directory. Subsequent vignette builds, including on continuous-integration ser-
vices, CRAN, and your package users’ computers, use these recorded responses, allowing the
document to regenerate without a network connection or API credentials. To record fresh API
responses, delete the subfolder of cached responses and re-run. See vignette("vignettes") for
more discussion and links to examples.

Author(s)

Maintainer: Neal Richardson <neal.p.richardson@gmail.com> (ORCID)

Other contributors:

• Jonathan Keane <jkeane@gmail.com> [contributor]

• Maëlle Salmon <maelle.salmon@yahoo.se> (ORCID) [contributor]

See Also

Useful links:

• https://enpiar.com/r/httptest/

• https://github.com/nealrichardson/httptest

• Report bugs at https://github.com/nealrichardson/httptest/issues

public Test that functions are exported

Description

It’s easy to forget to document and export a new function. Using testthat for your test suite
makes it even easier to forget because it evaluates your test code inside the package’s namespace,
so internal, non-exported functions can be accessed. So you might write a new function, get passing
tests, and then tell your package users about the function, but when they try to run it, they get
Error: object 'coolNewFunction' not found.

Usage

public(...)

Arguments

... Code to evaluate

https://orcid.org/0009-0002-7992-3520
https://orcid.org/0000-0002-2815-0399
https://enpiar.com/r/httptest/
https://github.com/nealrichardson/httptest
https://github.com/nealrichardson/httptest/issues

14 redact_cookies

Details

Wrap public() around test blocks to assert that the functions they call are exported (and thus fail
if you haven’t documented them with @export or otherwise added them to your package NAMES-
PACE file).

An alternative way to test that your functions are exported from the package namespace is with
examples in the documentation, which R CMD check runs in the global namespace and would thus
fail if the functions aren’t exported. However, code that calls remote APIs, potentially requiring
specific server state and authentication, may not be viable to run in examples in R CMD check.
public() provides a solution that works for these cases because you can test your namespace
exports in the same place where you are testing the code with API mocks or other safe testing
contexts.

Value

The result of ... evaluated in the global environment (and not the package environment).

redact_cookies Remove sensitive content from HTTP responses

Description

When recording requests for use as test fixtures, you don’t want to include secrets like authentication
tokens and personal ids. These functions provide a means for redacting this kind of content, or
anything you want, from responses that capture_requests() saves.

Usage

redact_cookies(response)

redact_headers(response, headers = c())

within_body_text(response, FUN)

redact_auth(response)

Arguments

response An ’httr’ response object to sanitize.

headers For redact_headers(), a character vector of header names to sanitize. Note
that redact_headers() itself does not do redacting but returns a function that
when called does the redacting.

FUN For within_body_text(), a function that takes as its argument a character vec-
tor and returns a modified version of that. This function will be applied to the
text of the response’s "content".

set_redactor 15

Details

redact_cookies() removes cookies from ’httr’ response objects. redact_headers() lets you
target selected request and response headers for redaction. redact_auth() is a convenience wrap-
per around them for a useful default redactor in capture_requests().

within_body_text() lets you manipulate the text of the response body and manages the parsing
of the raw (binary) data in the ’response’ object.

Value

All redacting functions return a well-formed ’httr’ response object.

See Also

vignette("redacting", package="httptest") for a detailed discussion of what these functions
do and how to customize them. gsub_response() is another redactor.

set_redactor Set a response redactor

Description

A redactor is a function that alters the response content being written out in the capture_requests()
context, allowing you to remove sensitive values, such as authentication tokens, as well as any other
modification or truncation of the response body. By default, the redact_auth() function will be
used to purge standard auth methods, but set_redactor() allows you to provide a different one.

Usage

set_redactor(FUN)

Arguments

FUN A function or expression that modifies response objects. Specifically, a valid
input is one of:

• A function taking a single argument, the response, and returning a valid
response object.

• A formula as shorthand for an anonymous function with . as the "response"
argument, as in the purrr package. That is, instead of function (response)
redact_headers(response, "X-Custom-Header"), you can use ~ redact_headers(.,
"X-Custom-Header")

• A list of redacting functions/formulas, which will be executed in sequence
on the response

• NULL, to override the default redact_auth().

16 set_requester

Details

Alternatively, you can put a redacting function in inst/httptest/redact.R in your package, and
any time your package is loaded (as in when running tests or building vignettes), the function will
be used automatically.

For further details on how to redact responses, see vignette("redacting").

Value

Invisibly, the redacting function, validated and perhaps modified. Formulas and function lists are
turned into proper functions. NULL as input returns the force() function.

See Also

set_requester()

set_requester Set a request preprocessor

Description

Set a request preprocessor

Usage

set_requester(FUN)

Arguments

FUN A function or expression that modifies request objects. Specifically, a valid
input is one of:

• A function taking a single argument, the request, and returning a valid
request object.

• A formula as shorthand for an anonymous function with . as the "request"
argument, as in the purrr package.

• A list of functions/formulas, which will be executed in sequence on the
request.

• NULL, to override the default redact_auth().

Value

Invisibly, FUN, validated and perhaps modified.

See Also

set_redactor()

skip_if_disconnected 17

skip_if_disconnected Skip tests that need an internet connection if you don’t have one

Description

Temporary connection trouble shouldn’t fail your build.

Usage

skip_if_disconnected(
message = paste("Offline: cannot reach", url),
url = "http://httpbin.org/"

)

Arguments

message character message to be printed, passed to testthat::skip()

url character URL to ping to check for a working connection

Details

Note that if you call this from inside one of the mock contexts, it will follow the mock’s behavior.
That is, inside with_fake_http(), the check will pass and the following tests will run, but inside
without_internet(), the following tests will be skipped.

Value

If offline, a test skip; else invisibly returns TRUE.

See Also

testthat::skip()

start_vignette Set mocking/capturing state for a vignette

Description

Use start_vignette() to either use previously recorded responses, if they exist, or capture real
responses for future use.

Usage

start_vignette(path, ...)

end_vignette()

18 stop_mocking

Arguments

path Root file path for the mocks for this vignette. A good idea is to use the file name
of the vignette itself.

... Optional arguments passed to start_capturing()

Details

In a vignette or other R Markdown or Sweave document, place start_vignette() in an R code
block at the beginning, before the first API request is made, and put end_vignette() in a R code
chunk at the end. You may want to make those R code chunks have echo=FALSE in order to hide
the fact that you’re calling them.

The behavior changes based on the existence of the path directory. The first time you build the
vignette, the directory won’t exist yet, so it will make real requests and record them inside of path.
On subsequent runs, the mocks will be used. To record fresh responses from the server, delete the
path directory, and the responses will be recorded again the next time the vignette runs.

If you have additional setup code that you’d like available across all of your package’s vignettes, put
it in inst/httptest/start-vignette.R in your package, and it will be called in start_vignette()
before the mock/record context is set. Similarly, teardown code can go in inst/httptest/end-vignette.R,
evaluated in end_vignette() after mocking is stopped.

Value

Nothing; called for its side effect of starting/ending response recording or mocking.

See Also

start_capturing() for how requests are recorded; use_mock_api() for how previously recorded
requests are loaded; change_state() for how to handle recorded requests when the server state is
changing; vignette("vignettes", package="httptest") for an overview of all

stop_mocking Turn off request mocking

Description

This function "untraces" the httr request functions so that normal, real requesting behavior can be
resumed.

Usage

stop_mocking()

Value

Nothing; called for its side effects

use_httptest 19

use_httptest Use ’httptest’ in your tests

Description

This function adds httptest to Suggests in the package DESCRIPTION and loads it in tests/testthat/setup.R.
Call it once when you’re setting up a new package test suite.

Usage

use_httptest(path = ".")

Arguments

path character path to the package

Details

The function is idempotent: if httptest is already added to these files, no additional changes will
be made.

Value

Nothing: called for file system side effects.

use_mock_api Turn on API mocking

Description

This function intercepts HTTP requests made through httr and serves mock file responses instead.
It is what with_mock_api() does, minus the automatic disabling of mocking when the context
finishes.

Usage

use_mock_api()

Details

Note that you in order to resume normal request behavior, you will need to call stop_mocking()
yourself—this function does not clean up after itself as with_mock_api does.

Value

Nothing; called for its side effects.

20 without_internet

See Also

with_mock_api() stop_mocking() block_requests()

without_internet Make all HTTP requests raise an error

Description

without_internet simulates the situation when any network request will fail, as in when you are
without an internet connection. Any HTTP request through the verb functions in httr will raise an
error.

Usage

without_internet(expr)

Arguments

expr Code to run inside the mock context

Details

The error message raised has a well-defined shape, made of three elements, separated by space: (1)
the request method (e.g. "GET"); (2) the request URL; and (3) the request body, if present. The
verb-expectation functions, such as expect_GET() and expect_POST(), look for this shape.

Value

The result of expr

See Also

block_requests() to enable mocking on its own (not in a context)

Examples

without_internet({
expect_error(
httr::GET("http://httpbin.org/get"),
"GET http://httpbin.org/get"

)
expect_error(httr::PUT("http://httpbin.org/put",

body = '{"a":1}'
),
'PUT http://httpbin.org/put {"a":1}',
fixed = TRUE
)

})

with_fake_http 21

with_fake_http Make all HTTP requests return a fake response

Description

In this context, HTTP verb functions raise a ’message’ so that test code can assert that the requests
are made. As in without_internet(), the message raised has a well-defined shape, made of three
elements, separated by space: (1) the request method (e.g. "GET" or "POST"); (2) the request
URL; and (3) the request body, if present. The verb-expectation functions, such as expect_GET and
expect_POST, look for this shape.

Usage

with_fake_http(expr)

Arguments

expr Code to run inside the fake context

Details

Unlike without_internet, the HTTP functions do not error and halt execution, instead returning
a response-class object so that code calling the HTTP functions can proceed with its response
handling logic and itself be tested. The response it returns echoes back most of the request itself,
similar to how some endpoints on http://httpbin.org do.

Value

The result of expr

Examples

with_fake_http({
expect_GET(req1 <- httr::GET("http://example.com"), "http://example.com")
req1$url
expect_POST(

req2 <- httr::POST("http://example.com", body = '{"a":1}'),
"http://example.com"

)
httr::content(req2)

})

http://httpbin.org

22 with_mock_dir

with_mock_api Serve a mock API from files

Description

In this context, HTTP requests attempt to load API response fixtures from files. This allows test code
to proceed evaluating code that expects HTTP requests to return meaningful responses. Requests
that do not have a corresponding fixture file raise errors, like how without_internet() does.

Usage

with_mock_api(expr)

Arguments

expr Code to run inside the fake context

Details

Requests are translated to mock file paths according to several rules that incorporate the request
method, URL, query parameters, and body. See build_mock_url() for details.

File paths for API fixture files may be relative to the ’tests/testthat’ directory, i.e. relative to the .R
test files themselves. This is the default location for storing and retrieving mocks, but you can put
them anywhere you want as long as you set the appropriate location with .mockPaths().

Value

The result of expr

See Also

use_mock_api() to enable mocking on its own (not in a context); build_mock_url(); .mockPaths()

with_mock_dir Use or create mock files depending on their existence

Description

This context will switch the .mockPaths() to tests/testthat/dir (and then resets it to what it
was before). If the tests/testthat/dir folder doesn’t exist, capture_requests() will be run
to create mocks. If it exists, with_mock_api() will be run. To re-record mock files, simply delete
tests/testthat/dir and run the test.

Usage

with_mock_dir(dir, expr, simplify = TRUE, replace = TRUE)

with_mock_dir 23

Arguments

dir character string, unique folder name that will be used or created under tests/testthat/

expr Code to run inside the fake context

simplify logical: if TRUE (default), JSON responses with status 200 will be written as just
the text of the response body. In all other cases, and when simplify is FALSE,
the "response" object will be written out to a .R file using base::dput().

replace Logical: should the mock directory replace current mock directories? Default is
TRUE.

Index

.mockPaths, 2

.mockPaths(), 5, 7, 22

base::.libPaths(), 3
base::dput(), 5, 23
base::grepl(), 9
base::gsub(), 11
block_requests, 3
block_requests(), 20
build_mock_url, 4
build_mock_url(), 6, 22

capture_requests, 5
capture_requests(), 5, 12, 14, 15, 22
change_state, 7
change_state(), 18

digest::digest(), 4

end_vignette (start_vignette), 17
expect_DELETE (expect_verb), 9
expect_DELETE(), 12
expect_GET (expect_verb), 9
expect_GET(), 12, 20
expect_header, 7
expect_header(), 12
expect_json_equivalent, 8
expect_json_equivalent(), 12
expect_no_request (expect_verb), 9
expect_no_request(), 12
expect_PATCH (expect_verb), 9
expect_PATCH(), 12
expect_POST (expect_verb), 9
expect_POST(), 12, 20
expect_PUT (expect_verb), 9
expect_PUT(), 12
expect_verb, 9

fake_response, 10

gsub_request (gsub_response), 11

gsub_response, 11
gsub_response(), 15

httptest, 12
httptest-package (httptest), 12

public, 13

redact (redact_cookies), 14
redact_auth (redact_cookies), 14
redact_auth(), 15
redact_cookies, 14
redact_headers (redact_cookies), 14

set_redactor, 15
set_redactor(), 16
set_requester, 16
set_requester(), 16
skip_if_disconnected, 17
start_capturing (capture_requests), 5
start_capturing(), 18
start_vignette, 17
start_vignette(), 13
stop_capturing (capture_requests), 5
stop_mocking, 18
stop_mocking(), 3, 4, 19, 20

testthat::expect_equivalent(), 9
testthat::expect_warning(), 7
testthat::skip(), 17

use_httptest, 19
use_mock_api, 19
use_mock_api(), 4, 18, 22

with_fake_http, 21
with_fake_http(), 12, 17
with_mock_api, 22
with_mock_api(), 5, 12, 19, 20, 22
with_mock_dir, 22
within_body_text (redact_cookies), 14

24

INDEX 25

without_internet, 20
without_internet(), 3, 4, 9, 12, 17, 21, 22

	.mockPaths
	block_requests
	build_mock_url
	capture_requests
	change_state
	expect_header
	expect_json_equivalent
	expect_verb
	fake_response
	gsub_response
	httptest
	public
	redact_cookies
	set_redactor
	set_requester
	skip_if_disconnected
	start_vignette
	stop_mocking
	use_httptest
	use_mock_api
	without_internet
	with_fake_http
	with_mock_api
	with_mock_dir
	Index

