Package ‘jamba’

March 23, 2025

Title Just Analysis Methods Base
Version 1.0.4

Description Just analysis methods ('jam') base functions
focused on bioinformatics.
Version- and gene-centric alphanumeric sort,
unique name and version assignment, colorized console and 'HTML' output,
color ramp and palette manipulation,
'Rmarkdown' cache import, styled 'Excel' worksheet import and export,
interpolated raster output from smooth scatter and image plots,
list to delimited vector, efficient list tools.

Depends R (>=3.0.0)

Imports methods, grDevices, graphics, stats, utils, colorspace,
RColorBrewer, KernSmooth, withr

Suggests crayon, farver, knitr, rmarkdown, testthat (>= 3.0.0)

Enhances ggplot2, ggridges, IRanges, S4Vectors, openxlsx, kableExtra,
matrixStats, viridisLite, ComplexHeatmap, circlize,
GenomicRanges, igraph, pryr, rstudioapi, Matrix,
sparseMatrixStats

License MIT + file LICENSE
Encoding UTF-8

URL https://jmw86069.github.io/jamba/

BugReports https://github.com/jmw86069/jamba/issues

VignetteBuilder knitr

RoxygenNote 7.3.2

Config/testthat/edition 3

NeedsCompilation no

Author James M. Ward [aut, cre, cph] (<https://orcid.org/0000-0002-9510-2848>)
Maintainer James M. Ward <jmw86069@gmail . com>

Repository CRAN

Date/Publication 2025-03-23 16:30:02 UTC

https://jmw86069.github.io/jamba/
https://github.com/jmw86069/jamba/issues
https://orcid.org/0000-0002-9510-2848

2 Contents

Contents
adjustAxisLabelMargins 4
alpha2col e 6
applyCLrange 7
applyXlsxCategoricalFormat L 9
applyXlsxConditionalFormat 11
asDate L e 15
ASSIZE e 16
breakDensity L. e e 17
breaksByVector 19
call_fn_ellipsis e 21
cell_fun_label e 22
checkLightMode e 24
check_pkg installed 25
col2alpha e e 27
colZhcl. . . . L e 28
colZhsl e 29
col2hsv . . . 30
colNum2excelName e 31
color2gradient 32
color_dither e e 35
coordPresets e 37
cPaste 40
dateToDaysOld e 44
decideMfrow L 45
deg2rad L 46
drawLabels e 47
exp2signed e e e 51
fillBlanks e 52
fixYellow e e 53
fixYellowHue e 54
formatlnt 55
getAxisLabel 57
getColorRamp 58
getDate L e e 62
getPlotAspect L e e e e 63
SIEPlS . . o e e 64
groupedAXiS e 65
gsubOrdered L 67
SSUDS . . L e 69
handleArgsText e 70
hel2col . . o o e 72
heads L L e 74
heatmap_column_order L 75
heatmap_row_order 77
hsl2col e 79

Contents

3
IZIED « v v o o e e e e e 81
igrepHas 82
igrepl ..o 83
imageByColors L e 84
imageDefault 87
1SColor. . . . L e e e 90
iISFALSEV .« . o e 91
iISTRUEV . . o e 92
jamCalcDensity 93
jam_rapply ... 94
JATES o o 95
kable_coloring e 97
List2df e 100
Hdf . . o e 101
log2signed L e e e 103
makeColorDarker 104
makeNames e e e 106
make_html_styles 108
make_styles L e 110
merge AlLXY . . . 112
middle 114
minorLogTicks e 115
minorLogTicksAXis 118
mixedOrder 123
mixedSort e 126
mixedSortDFo 129
mixedSOorts 132
mmixedOrder 135
NAMEVECIOT o i i e e e e e 137
nameVectorN L. e 138
newestFile 140
noiseFloor 141
normScale e e e 143
nullPlot 144
padlnteger 147
padString e e 148
pasteByRow 149
pasteByRowOrdered 150
plotPolygonDensity e e e 152
plotRidges e 157
plotSmoothScatter 159
printDebug 164
PIOVIZIED . . o o v o i i e e e e e e e e e e e e e e e 170
rad2deg e e 172
rainbow2 173
rbindList L. 174
readOpenxISxX 176

relist. named L L 178

4 adjustAxisLabelMargins
reload_rmarkdown_cache 180
renameColumn e e e e e e e 182
rgb2col . Lo e e 183
rlengths L 185
rmInfinite e e e 186
TMNA . . e e e 187
TMNAS . . . e e 189
rmNULL . . . e e e 190
TOWGIoUPMEeans v i i e e e e e e e e e e e 191
rowRmMadOutliers e e e 194
SClass . .. e e 197
SAIM e e e e 198
setCLranges e e e 201
setPrompt L 203
setTextContrastColor o o i i e e e e e e e 206
set_xIsx_colwidths 208
set_xIsx_rowheights L 210
shadowText e e e 211
shadowText_options L e e 213
ShoWCOlOTS e e e e e e 216
SIZEASNUM e e e e e e e e 219
smoothScatterJam L e 220
SATEAXIS . o v v e e e e e e e 223
ECOUNL e e e e e e e e e e e e e e e e 224
UCHITSE . . . o o e e e e e e 226
unalpha L 227
UNIZIED + . v v o v e 228
UNIQUES . o o oo v e e e e e e e e e e e e e e e 229
unnestList L L e e e 230
UNVIZIED .+« v v v v v e 232
ustBox . . .o e 233
VEIED o v vt e e e e e e e e e e e e 234
VIGIED . o o o e e e e e e e e 235
warpAroundZero e e 235
warpRamp 237
WriteOpenxISX L 238

Index 245

adjustAxislLabelMargins
Adjust axis label margins
Description

Adjust axis label margins to accommodate axis labels

adjustAxisLabelMargins 5

Usage
adjustAxisLabelMargins(
X,
margin = 1,
maxFig = 1/2,

cex = graphics::par(”cex"),
cex.axis = graphics::par(”cex.axis"),

prefix = "-- -= ",
)
Arguments
X character vector of axis labels
margin integer value indicating which margin to adjust, using the order by graphics: :par("mar"),
1=bottom, 2=left, 3=top, 4=right.
maxFig numeric fraction less than 1, indicating the maximum size of margin relative to
the figure size. Setting margins too large results in an error otherwise.
cex numeric or NULL, default graphics::par(”cex"), used as a convenience
with cex * cex.axis passedto graphics::strwidth(). However, graphics: :axis()
itself should use cex.axis when adjusting axis label font size.
cex.axis numeric, default graphics: :par(”cex.axis") to define the axis label font
size.
prefix character string to add whitespace around the axis label in order to add a
"buffer" of whitespace.
additional parameters are ignored.
Details

This function takes a vector of axis labels, and the margin where they will be used, and adjusts the
relevant axis margin to accomodate the label size, up to a maximum fraction of the figure size as
defined by maxFig.

Labels are assumed to be perpendicular to the axis, for example argument las=2 when using
graphics::text().

Note this function does not render labels in the figure, and therefore does not revert axis margins to
their original size. That process should be performed separately.
Value

list named "mai" suitable for use in graphics: :par() to adjust margin size using in inches.

See Also

Other jam plot functions: coordPresets(), decideMfrow(), drawLabels(), getPlotAspect(),

groupedAxis(), imageByColors(), imageDefault(), minorLogTicksAxis(), nullPlot(), plotPolygonDensity(),
plotRidges(), plotSmoothScatter (), shadowText(), shadowText_options(), showColors(),

sqrtAxis(), usrBox ()

6 alpha2Zcol

Examples

xlabs <- paste@("item_", (1:20));
ylabs <- paste@("rownum_", (1:20));

proper adjustment should be done using withr, for example

x_cex <- 0.8;

y_cex <- 1.2;

withr::with_par(adjustAxisLabelMargins(xlabs, 1, cex.axis=x_cex), {
withr::local_par(adjustAxisLabelMargins(ylabs, 2, cex.axis=y_cex))
nullPlot(xlim=c(1,20), ylim=c(1,20), doMargins=FALSE);
graphics::axis(1, at=1:20, labels=xlabs, las=2, cex.axis=x_cex);
graphics::axis(2, at=1:20, labels=ylabs, las=2, cex.axis=y_cex);

b

withr::with_par(adjustAxisLabelMargins(xlabs, 3, cex.axis=x_cex), {
withr::local_par(adjustAxisLabelMargins(ylabs, 4, cex.axis=y_cex))
nullPlot(xlim=c(1,20), ylim=c(1,20), doMargins=FALSE);
graphics::axis(3, at=1:20, labels=xlabs, las=2);
graphics::axis(4, at=1:20, labels=ylabs, las=2);

1)

par("mar")

alpha2col set R color alpha value

Description

Define the alpha transparency per R color

Usage
alpha2col(x, alpha = 1, maxValue = 1, ...)
Arguments
X R compatible color, either a color name, or hex value, or a mixture of the two.
Any value compatible with col2rgb.
alpha numeric alpha transparency to use per x color. alpha is recycled to length(x) as
needed.
maxValue numeric maximum value to return, useful when the downstream alpha range
should be 255. By default maxValue=1 is returned.
Additional arguments are ignored.
Value

character vector of R colors, with alpha values.

applyCLrange 7

See Also

Other jam color functions: applyCLrange(), col2alpha(), col2hcl(), col2hsl(), col2hsv(),
color2gradient(), fixYellow(), fixYellowHue(), getColorRamp(), hcl2col(), hsl2col(),
hsv2col (), isColor(), kable_coloring(), makeColorDarker(), rainbow2(), rgh2col(), setCLranges(),
setTextContrastColor(), showColors(), unalpha(), warpRamp()

Examples

withr::with_par(list("mfrow”"=c(2,2)), {
for (alpha in c(1, 0.8, 0.5, 0.2)) {
nullPlot(plotAreaTitle=paste@("alpha=", alpha),
doMargins=FALSE);
usrBox(fill=alpha2col("yellow",
alpha=alpha));

applyCLrange Apply CL color range

Description

Restrict chroma (C) and luminance (L) ranges for a vector of R colors

Usage

applyCLrange(
X,
lightMode = NULL,
Crange = getOption("”jam.Crange"),
Lrange = getOption("jam.Lrange"),
Cgrey = getOption("jam.Cgrey", 5),
fixYellow = TRUE,
CLmethod = c("scale”, "floor"”, "expand"),

fixup = TRUE,
)
Arguments
X vector of R colors
lightMode NULL or logical. When lightMode=NULL then Crange and Lrange values

are used as-is; when lightMode=TRUE or 1ightMode=FALSE then default val-
ues are used for Crange and Lrange values, where lightMode=TRUE is in-
tended for colors to have contrast against a light/bright/white background, and
lightMode=FALSE is intended for colors to have contrast against a dark back-
ground.

8 applyCLrange

Crange NULL or numeric range with minimum and maximum allowed values for the
chroma (C) component.

Lrange NULL or numeric range with minimum and maximum allowed values for the
luminance (L) component.

Cgrey numeric chroma (C) value, which defines grey colors at or below this chroma.
Any colors at or below the grey cutoff will have their C values unchanged. This
mechanism prevents converting black to red, for example. To disable the effect,
set Cgrey=-1.

fixYellow logical indicating whether to "fix" the darkening of yellow, which otherwise
turns to green. Instead, since JAM can, JAM will make the yellow slightly more
golden before darkening, which is achieved by calling fixYellowHue().

CLmethod character string indicating how to alter values outside the respective Crange
and Lrange ranges. "scale" will rescale values only if any are outside of range,
and will rescale the full range of c(Crange, Cvalues) to c(Crange). In this
way, only values outside the range are rescaled. "floor" will apply a fixed cutoff,
any values outside the range are set to equal the range boundary itself. "expand”
will rescale all values so the range is equal to Crange.

fixup logical passed to hcl2col() and subsequently to colorspace: :hex() when
converting colors outside the color gamut (visible range.) When fixup is NULL,
the hcl2col () method applies its own aggressive technique to restrict the color
range.

additional argyments are passed to fixYellowHue () when fixYellow is TRUE.

Details

This function is primarily intended to restrict the range of brightness values so they contrast with a
background color, particularly when the background color may be bright or dark.

Note that output is slightly different when supplying one color, compared to supplying a vector of
colors. One color is simply restricted to the Crange and Lrange. However, a vector of colors is
scaled within the ranges so that relative C and L values are maintained, for visual comparison.

The C and L values are defined by colorspace: :polarLUV(), where C is typically restricted to
0..100 and L is typically @. . 100. For some colors, values above 100 are allowed.

Values are restricted to the given numeric range using one of three methods, set via the CLmethod
argument.

As an example, consider what should be done when Crange <- ¢(10,70) and the C values are
Cvalues <- c(50, 60, 70, 80).

1. "floor" uses jamba::noiseFloor() to apply fixed cutoffs at the minimum and maximum
range. This method has the effect of making all values outside the range into an equal final
value.

2. "scale" will apply jamba: :normScale() to rescale only values outside the given range. For
example, c(Crange, Cvalues) as the initial range, it constrains values to c(Crange). This
method has the effect of maintaining the relative difference between values.

3. "expand" will simply apply jamba: :normScale() to fit the values to the minimum and max-
imum range values. This method has the effect of forcing colors to fit the full numeric range,
even when the original differences between values were small.

apply XIsxCategoricalFormat 9

In case (1) above, Cvalues will become c(50, 60, 70, 70). In case (2) above, Cvalues will become
c(44, 53, 61, 70) In case (3) above, Cvalues will become c(10, 30, 50, 70)

Note that colors with C (chroma) values less than Cgrey will not have the C value changed, in order
to maintain colors at a greyscale, without colorizing them. Particularly for pure grey, which has
C=0, but is still required to have a hue H, it is important not to increase C.

Value

vector of colors after applying the chroma (C) and luminance (L) ranges.

See Also

Other jam color functions: alpha2col(), col2alpha(), col2hcl(), col2hsl(), col2hsv(),
color2gradient(), fixYellow(), fixYellowHue(), getColorRamp(), hcl2col(), hsl2col(),
hsv2col (), isColor(), kable_coloring(), makeColorDarker(), rainbow2(), rgh2col(), setCLranges(),
setTextContrastColor(), showColors(), unalpha(), warpRamp()

Examples

cl <- c("red”, "blue”, "navy", "yellow”, "orange");
cl_lite <- applyCLrange(cl, lightMode=TRUE);
cl_dark <- applyCLrange(cl, lightMode=FALSE);

individual colors
cl_lite_ind <- sapply(cl, applyClLrange, lightMode=TRUE);
cl_dark_ind <- sapply(cl, applyCLrange, lightMode=FALSE);

display colors

showColors(list(input colors =cl,
“lightMode=TRUE, vector =cl_lite,
“lightMode=TRUE, individual®=cl_lite_ind,
“lightMode=FALSE, vector =cl_dark,
“lightMode=FALSE, individual - =cl_dark_ind))

printDebug(cl, lightMode=TRUE);

applyXlsxCategoricalFormat
Add categorical colors to "Excel’ ’xlsx’ worksheets

Description

Add categorical colors to ’Excel’ "xIsx” worksheets

applyXlIsxCategoricalFormat

applyXlsxCategoricalFormat(

10

Usage
xlsxFile,
sheet = 1,
rowRange =

NULL,

colRange = NULL,
colorSub = NULL,

colorSubText = setTextContrastColor(colorSub),
trimCatNames = TRUE,
overwrite = TRUE,
wrapText = FALSE,
stack = TRUE,
verbose = FALSE,
)
Arguments
x1sxFile character filename to a file with ".xIsx" extension, or Workbook object defined
in the openx1sx package. When x1sxFile is a Workbook the output is not saved
to a file.
sheet integer index of the worksheet or worksheets.

rowRange, colRange

colorSub

colorSubText

trimCatNames

overwrite

wrapText

stack

integer vectors of rows and columns to apply categorical colors in the *Excel’
"x1sx’ worksheet, passed as openx1sx: : readWorkbook(. .., rows=rowRange,
cols=colRange). This step defines which columns are read from each work-
book, however when colorSub is provided as a 1ist whose names are intended
to match colnames(), only matching colnames are processed.

one of the following types of input:

* Named character vector of valid R colors, whose names correspond to
values in worksheet cells.

e Named list whose names correspond to colnames one or more work-
books in sheet. Each list element should be a character vector named
by column values, or color function that takes column values and returns
a character vector of colors for each value.

optional character vector of colors, whose names correspond to values in the
worksheet cells. In absence of a specific text color, setTextContrastColor()
is used to define a contrasting text color to be visible on the colored background.

logical whether to trim whitespace and punctuation from colorSub and from
"Excel’ cell fields before matching colors to "Excel’ values.

logical indicating whether new cell color styles should be forced overwrite of
previous cell styles.
logical indicating whether to wrap text.

logical indicating whether new color rules should be applied above existing
styles, many of whose styles may not affect the specific cell color, for example
the font size and font name.

applyXIsxConditionalFormat 11

verbose logical indicating whether to print verbose output.

additional arguments are ignored.

Details

This function is a convenient wrapper for applying categorical color formatting to cell background
colors, and applies a contrasting color to the text in cells using setTextContrastColor(). It uses
a named character vector of colors supplied as colorSub to define cell background colors, and
optionally colorSubText to define a specific color for the cell text.

Value

Workbook object as defined by the openx1sx package is returned invisibly with invisible(). This
Workbook can be used in argument wb to provide a speed boost when saving multiple sheets to the
same file.

See Also

Other jam export functions: applyX1lsxConditionalFormat(), readOpenxlsx(), set_x1lsx_colwidths(),
set_xlsx_rowheights(), writeOpenxlsx()

Examples

write to tempfile for examples
if (check_pkg_installed("openxlsx")) {
out_xlsx <- tempfile(pattern="writeOpenxlsx_", fileext=".x1lsx")
df <- data.frame(a=LETTERS[1:5], b=1:5);
writeOpenxlsx(x=df,
file=out_x1sx,
sheetName="jamba_test");

colorSub <- nameVector(
rainbow2(5, s=c(0.8, 1), v=c(0.8, 1)),
LETTERS[1:5]);
applyXlsxCategoricalFormat(out_x1sx,
sheet="jamba_test",
colorSub=colorSub

applyXlsxConditionalFormat
Xlsx Conditional formatting

Description

Xlsx Conditional formatting

12 applyXlisxConditionalFormat

Usage

applyXlsxConditionalFormat(
xlsxFile,
sheet = 1,
fcColumns = NULL,
fcGrep = NULL,
fcStyle = c("#4F81BD", "#EEECE1", "#C@504D"),
fcRule = c(-6, 0, 6),
fcType = "colourScale”,
1fcColumns = NULL,
1fcGrep = NULL,
1fcStyle = c("#4F81BD", "#EEECE1", "#C0504D"),
1fcRule = c(-3, 9, 3),
1fcType = "colourScale”,
hitColumns = NULL,
hitGrep = NULL,
hitStyle = c("#4F81BD", "#EEECE1", "#C0504D"),
hitRule = c(-1.5, 0, 1.5),
hitType = "colourScale”,
intColumns = NULL,
intGrep = NULL,
intStyle = c("#EEECE1”, "#FDC99B", "#F77F30"),
intRule = c(0@, 100, 10000),
intType = "colourScale”,
numColumns = NULL,
numGrep = NULL,
numStyle = c("#F2FQF7", "#B4B1D4", "#938EC2"),
numRule = c(1, 10, 20),
numType = "colourScale”,
pvalueColumns = NULL,
pvalueGrep = NULL,
pvalueStyle = c("#F77F30", "#FDC99B", "#EEECE1"),
pvalueRule = c(@, 0.01, 0.05),
pvalueType = "colourScale”,
verbose = FALSE,
startRow = 2,
overwrite = TRUE,

)
Arguments
x1lsxFile character filename to a file with ".xlsx" extension, or Workbook object defined
in the openx1sx package. When x1sxFile is a Workbook the output is not saved
to a file.
sheet integer or character, either the worksheet number, in order or character work-

sheet name. This vector can contain multiple values, which will cause condi-
tional formatting to be applied to each worksheet in the order given.

applyXIsxConditionalFormat 13

fcColumns, 1fcColumns, hitColumns, intColumns, numColumns,

pvalueColumns
integer column indices, or character colnames indicating which columns are to
be treated as each of the various column types.

fcGrep, 1fcGrep, hitGrep, intGrep, numGrep, pvalueGrep
optional character vector which is used by provigrep to colnames(x). This pro-
cess may be more convenient to apply formatting to known colname character
patterns, rather than supplying exact column indices or colnames.

fcStyle, 1fcStyle, hitStyle, intStyle, numStyle, pvalueStyle
color vector of length=3, corresponding to the numeric thresholds defined by the
corresponding Rules.

fcRule, 1fcRule, hitRule, intRule, numRule, pvalueRule
numeric vector of length=3, used to define three numeric thresholds for color
gradients to be applied.

fcType, 1fcType, hitType, intType, numType, pvalueType
character string indicating the type of conditional rule to apply, which in most
cases should be "colourScale" which allows three numeric thresholds, and three
corresponding colors. For other allowed values, see openx1sx: :conditionalFormatting().

verbose logical indicating whether to print verbose output.

startRow integer indicating which row to begin applying conditional formatting. In most
cases startRow=2, which allows one row for column headers. Howeyver, if there
are multiple header rows, startRow should be 1 more than the number of header
TOWS.

overwrite logical indicating whether the original Excel’ files will be replaced with the
new one, or whether a new file will be created.

additional parameters are ignored.

Details

This function is a convenient wrapper for applying conditional formatting to *Excel’ *xlsx” work-
sheets, with reasonable settings for commonly used data types.

Note that this function does not apply cell formatting, such as numeric formatting as displayed in
’Excel’.

A description of column types follows:

"fe'' Fold change, typically positive and negative values, which are formatted to show one decimal
place, and use commas to separate thousands places, e.g. 1,020.1. Colors are applied with a
neutral midpoint, coloring values which are above and below zero.

"Ifc" log fold change, typically positive and negative values, which are formatted to show one
decimal place, and use commas to separate thousands places, e.g. 12.1. Colors are applied
with a neutral midpoint, coloring values which are above and below zero. Log fold changes
have slightly different color thresholds than fold changes.

"hit" Hit columns, often just values like c(-1, @, 1), but which could be fold changes for statistical
hits for example. They are formatted to show one decimal place, and use commas to separate
thousands places, e.g. 1.5. Colors are applied with a neutral midpoint, coloring values which
are above and below zero, typically with a fairly low threshold.

14 applyXlisxConditionalFormat

"int" Integer columns, which are formatted to hide decimal place values even if present, which can
help clean up visible tabular data. They are formatted to use commas to separate thousands
places, e.g. 1,020. Colors are applied with a baseline of zero, intended for highlighting two
thresholds of values above zero.

"num'' Numeric columns, which are formatted to display 2 decimal places, and to use commas to
separate thousands places, e.g. 1,020.1. Colors are applied with a baseline of zero, intended
for highlighting two thresholds of values above zero.

""pvalue" P-value columns, which are formatted to display scientific notation always, for consis-
tency, with two decimal places, e.g. 1.02e-02. Colors are applied starting at white for P-value
of 1 (non-significant) and becoming more red as the P-value approaches 0.01, then 0.0001.

For each column type, one can describe the column using integer indices, or colnames, or optionally
use the Grep parameters. The Grep parameters are intended for pattern matching, and may contain a
vector of grep patterns which are used by provigrep() to match to colnames. The Grep method is
particularly useful when applying conditional formatting for multiple worksheets in the same *xIsx’
file, where the colnames are not identical in each worksheet.

Each column type has an associated 3-threshold rule, and three associated colors. In order to apply
different thresholds, one would need to call this function multiple times, specifying different subsets
of columns corresponding to each set of thresholds. The same process is required in order to apply
different color gradients to different columns. Note that styles are by default "stacked", which
maintains font and cell border styles without removing them. However, it this "stacking" means
that applying two rules to the same cell will not work, since only the first rule will be applied by
’Microsoft Excel’. Interestingly, if multiple conditional rules are applied to the same cell, they will
be visible in order inside the "Microsoft Excel” application.

Value

Workbook object as defined by the openx1sx package is returned invisibly with invisible(). This
Workbook can be used in argument wb to provide a speed boost when saving multiple sheets to the
same file.

See Also

Other jam export functions: applyXlsxCategoricalFormat(), readOpenxlsx(), set_x1lsx_colwidths(),
set_xlsx_rowheights(), writeOpenxlsx()

Examples

write to tempfile for examples
if (check_pkg_installed("openxlsx")) {
out_xlsx <- tempfile(pattern="writeOpenxlsx_’
df <- data.frame(a=LETTERS[1:5], b=1:5);
writeOpenxlsx(x=df,
file=out_xlsx,
sheetName="jamba_test");

I

, fileext=".x1sx")

applyXlsxConditionalFormat(out_x1lsx,
sheet="jamba_test",
intColumns=2,
intRule=c(9,3,5),

asDate 15

intStyle=c("#FFFFFF", "#1E9QFF", "#9932CC")

asDate convert date DDmmmYYYY to Date

Description

convert date DDmmmYYYY to Date

Usage

asDate(getDateValues, dateFormat = "%d%b%Y", ...)

Arguments

getDateValues character date, in format recognized by dateFormat

dateFormat character string representing the recognized date format, by default "DDmmmYYYY",
which recognizes "23aug2007".

additional parameters are ignored.

Details

This function converts a text date string to Date object, mainly to allow date-related math operations,
for example difftime.

Value

Date object

See Also

Other jam date functions: dateToDays01d(), getDate()

Examples

asDate(getDate());

16 asSize

asSize convert numeric value or R object to human-readable size

Description

convert numeric value or R object to human-readable size

Usage

asSize(
X,
digits = 3,
abbreviateUnits = TRUE,
unitType = "bytes”,
unitAbbrev = gsub("*(.).*x$", "\\1", unitType),
kiloSize = 1024,

n o n

sep =)
)
Arguments

X numeric vector, class object_size which is converted to numeric, any other
R object is converted to a single numeric value using utils::object.size().

digits integer number of digits used by base: : format () when formatting the num-
ber to create a character string

abbreviateUnits
logical, default TRUE, whether to print abbreviated units, for example using
k, M, G, T, P instead of kilo, mega, Giga, Tera, Peta, respectively.

unitType character string indicating the base unit of measure, by default "bytes". Note
that trailing "s" is removed when the number is singular.

unitAbbrev character string indicating an abbreviated base unit, by default it uses the first
character from unitType.

kiloSize numeric, default 1024, number of base units when converting from to one "kilo"
base unit. For computer-based size such as file size and object size, this value
is 1024. For other purposes, such as scientific or monetary numbers, this value
should usually be 1000.

sep delimiter used between the numeric value and the unit, default " ".
other parameters passed to base: : format ().

Details

This function returns human-readable size based upon numeric input. Alternatively, when input
is any other R object, it calls utils: :object.size() to produce a single numeric value which is
then used to produce human-readable size.

breakDensity 17

The default behavior is to report computer size in bytes, where 1024 is considered "kilo", however
argument kiloSize can be used to produce values where kiloSize=1000 which is suitable for
monetary and other scientific values.

Value
character vector representing human-friendly size, based upon the kiloSize argument to deter-
mine whether to report byte (1024) or scientific (1000) units.

See Also

Other jam string functions: breaksByVector(), fillBlanks(), formatInt(), gsubOrdered(),

gsubs (), makeNames (), nameVector (), nameVectorN(), padInteger(), padString(), pasteByRow(),

pasteByRowOrdered(), sizeAsNum(), tcount(), ucfirst()

Examples

asSize(c(1, 10,2010,22000,52200))
#> "1 byte” "10 bytes” "2 kb” "21 kb” "51 kb”

demonstration of straight numeric units

asSize(c(1, 100, 1000, 10000), unitType="", kiloSize=100)
breakDensity Calculate more detailed density of numeric values
Description

Calculate more detailed density of numeric values

Usage

breakDensity(
X,
breaks = length(x)/3,
bw = NULL,
width = NULL,
densityBreaksFactor = 3,
weightFactor = 1,
addZeroEnds = TRUE,
baseline = 0,
floorBaseline = FALSE,
verbose = FALSE,

18 breakDensity

Arguments
X numeric vector
breaks numeric breaks as described for stats::density() except that single integer
value is multiplied by densityBreaksFactor.
bw character name of a bandwidth function, or NULL.
width NULL or numeric value indicating the width of breaks to apply.
densityBreaksFactor

numeric factor to adjust the width of density breaks, where higher values result
in less detail.

weightFactor optional vector of weights length(x) to apply to the density calculation.

addZeroEnds logical indicating whether the start and end value should always be zero, which
can be helpful for creating a polygon.

baseline optional numeric value indicating the expected baseline, which is typically zero,
but can be set to a higher value to indicate a "noise floor".

floorBaseline logical indicating whether to apply a noise floor to the output data.
verbose logical indicating whether to print verbose output.

additional parameters are sent to stats: :density().

Details

This function is a drop-in replacement for stats: :density(), simply to provide a quick alternative
that defaults to a higher level of detail. Detail can be adjusted using densityBreaksFactor, where
higher values will use a wider step size, thus lowering the detail in the output.

Note that the density height is scaled by the total number of points, and can be adjusted with
weightFactor. See Examples for how to scale the y-axis range similar to stats: :density().

Value
list output equivalent to stats: :density():

* x: The n coordinates of the points where the density is estimated.
* y: The estimated density values, non-negative, but can be zero.

* bw: The bandidth used.

* n: The sample size after elimination of missing values.

 call: the call which produced the result.

* data.name: the deparsed name of the x argument.

* has.na: logical for compatibility, and always FALSE.

See Also

Other jam practical functions: call_fn_ellipsis(), checkLightMode(), check_pkg_installed(),
colNum2excelName (), color_dither (), exp2signed(), getAxisLabel (), isFALSEV(), isTRUEV(),
jargs(), kable_coloring(), 11df (), log2signed(), middle(), minorLogTicks(), newestFile(),
printDebug(), reload_rmarkdown_cache(), renameColumn(), rmInfinite(), rmNA(), rmNAs(),
rmNULL (), setPrompt ()

breaksBy Vector 19

Examples

x <- c(stats::rnorm(15000),
stats::rnorm(5500)*0.25 + 1,
stats::rnorm(12500)*0.5 + 2.5)

plot(stats::density(x))

plot(breakDensity(x))
plot(breakDensity(x, densityBreaksFactor=200))

trim values to show abrupt transitions

x2 <- x[x >0 & x < 4]

plot(stats::density(x2), lwd=2)

lines(breakDensity(x2, weightFactor=1/length(x2)/10), col="red")

graphics::legend("topright”, c("stats::density()"”, "breakDensity()"),
col=c("black”, "red"), lwd=c(2, 1))

breaksByVector break a vector into groups

Description

breaks a vector into groups

Usage
breaksByVector(x, labels = NULL, returnFractions = FALSE, ...)
Arguments
X character vector of labels
labels character vector of custom labels to represent the items in x
returnFractions
logical whether to return fractional coordinates for labels that should be posi-
tioned between two labels
additional parameters are ignored.
Details

This function takes a vector of values, determines "chunks" of identical values, from which it defines
where breaks occur. It assumes the input vector is ordered in the way it will be displayed, with
some labels being duplicated consecutively. This function defines the breakpoints where the labels
change, and returns the ideal position to put a single label to represent a duplicated consecutive set
of labels.

It can return fractional coordinates, for example when a label represents two consecutive items, the
fractional coordinate can be used to place the label between the two items.

This function is useful for things like adding labels to imageDefault() color image map of sample
groupings, where it may be ideal to label only unique elements in a contiguous set.

20 breaksBy Vector

Value

list with the following named elements:

* "breakPoints": The mid-point coordinate between each break. These midpoints would be
good for drawing dividing lines for example.

* "labelPoints": The ideal point to place a label to represent the group.

* "newLabels"”: A vector of labels the same length as the input data, except using blank values
except where a label should be drawn. This output is good for text display.

* "uselLabels"”: The unique set of labels, without blanks, corresponding to the coordinates
supplied by labelPoints.

* "breakLengths": The integer size of each set of labels.

See Also

Other jam string functions: asSize(), fillBlanks(), formatInt(), gsubOrdered(), gsubs(),
makeNames (), nameVector (), nameVectorN(), padInteger(), padString(), pasteByRow(), pasteByRowOrdered(),
sizeAsNum(), tcount(), ucfirst()

Examples

b <- rep(LETTERS[c(1:5, 1)1, c(2,3,5,4,3,4));
bb <- breaksByVector(b);
Example showing how labels can be minimized inside a data.frame
data.frame(b,
newLabels=bb$newLabels);

Example showing how to reposition text labels

so duplicated labels are displayed in the middle

of each group

bb2 <- breaksByVector(b, returnFractions=TRUE);

ylabs <- c("minimal labels”, "all labels”);

withr::with_par(adjustAxisLabelMargins(ylabs, 2), {
withr::local_par(adjustAxisLabelMargins(bb2$uselLabels, 1))
nullPlot(xlim=range(seqg_along(b)), ylim=c(0,3),

doBoxes=FALSE, doUsrBox=TRUE);

graphics::axis(2, las=2, at=c(1,2), ylabs);
graphics::text(y=2, x=seq_along(b), b);
graphics: :text(y=1, x=bb2$labelPoints, bb2$uselLabels);

Print axis labels in the center of each group
graphics::axis(3,

las=2,

at=bb2$labelPoints,

labels=bb2$uselLabels);

indicate each region
for (i in seq_along(bb2$breakPoints)) {
graphics::axis(1,
at=c(c(@, bb2$breakPoints)[i]+0.8, bb2$breakPoints[i]+0.2),
labels=c("", ""));

call_fn_ellipsis 21

}
place the label centered in each region without adding tick marks
graphics::axis(1,
las=2,
tick=FALSE,
at=bb2$labelPoints,
labels=bb2$uselLabels);
abline to indicate the boundaries, if needed
graphics::abline(v=c(@, bb2$breakPoints) + 0.5,
1ty="dashed",
col="blue");

b

The same process is used by imageByColors()

call_fn_ellipsis Safely call a function using ellipsis

Description

Safely call a function using ellipsis

Usage
call_fn_ellipsis(FUN, ...)
Arguments
FUN function that should be called with arguments in . . .
arguments are passed to FUN() in safe manner.
Details
This function is a wrapper function intended to help pass ellipsis arguments ... from a parent
function to an external function in a safe way. It will only include arguments from ... that are

recognized by the external function.
The logic is described as follows:
* When the external function FUN arguments formals() include ellipsis .. ., then the ellipsis

... will be passed as-is without change. In this way, any arguments inside the original ellipsis
. will either match arguments in FUN, or will be ignored in that function ellipsis

* When the external function FUN arguments formals() do not include ellipsis . . ., then named
arguments in . . . are passed to FUN only when the arguments names are recognized by FUN.

Note that arguments therefore must be named.

22 cell fun_label

Value

output from FUN() when called with relevant named arguments from ellipsis . . .

See Also

Other jam practical functions: breakDensity(), checkLightMode(), check_pkg_installed(),
colNum2excelName(), color_dither (), exp2signed(), getAxisLabel (), isFALSEV(), isTRUEV(),
jargs(), kable_coloring(), 11df (), log2signed(), middle(), minorLogTicks(), newestFile(),
printDebug(), reload_rmarkdown_cache(), renameColumn(), rmInfinite(), rmNA(), rmNAs(),
rmNULL (), setPrompt ()

Examples

new_mean <- function(x, trim=@, na.rm=FALSE) {
mean(x, trim=trim, na.rm=na.rm)

3

x <= ¢c(1, 3, 5, NA);

new_mean(x, na.rm=TRUE);

throws an error as expected (below)

tryCatch({
new_mean(x, na.rm=TRUE, color="red")

3}, error=function(e){
print("Error is expected, shown below:");
print(e)

»

call_fn_ellipsis(new_mean, x=x, na.rm=TRUE, color="red")

cell_fun_label ComplexHeatmap cell function to label heatmap cells

Description

ComplexHeatmap cell function to label heatmap cells

Usage

cell_fun_label(
m,
prefix = "",
suffix = "",
cex =1,
col_hm = NULL,
outline = FALSE,
abbrev = FALSE,
show = NULL,

rot = 0,

cell_fun_label 23

sep = "\n",
verbose = FALSE,

Arguments

m numeric matrix or list of matrix objects. The first matrix object must be
numeric and compatible with the color function col_hm.

prefix, suffix character vectors that define a prefix and suffix for each value in m for each

cell.
cex numeric adjustment for the fontsize used for each label, which is multiplied by
the default fontsize=10 to determine the fontsize.
col_hm function as returned by circlize: :colorRamp2() which should be the same
function used to create the heatmap
outline logical indicating whether to draw an outline around each heatmap cell
abbrev logical indicating whether numeric values should be abbreviated using jamba: :asSize(.. .,

kiloSize=1000) which effectively reduces large numbers to k for thousands, M
for millions (M for Mega), G for billions (G for Giga), etc.

show integer used when m is supplied as a 1ist of matrices, in which case show is
used to define which values should be used as cell labels. By default, all matrices
are used.

rot numeric value used to rotate cell label text, default O is horizontal.

sep character string, default "\n" newline, used when there are multiple labels per

cell, which also requires m as a list, and show is NULL or has multiple values.

verbose logical indicating whether to print verbose output, specifically printing label
information for position (1, 1). This output will only be seen when rendering
or building the Heatmap object.

additional arguments are ignored.

Details
This function serves as a convenient method to add text labels to each cell in a heatmap produced
by ComplexHeatmap: :Heatmap(), via the argument cell_fun.

Note that this function requires re-using the specific color function used for the heatmap in the call
to ComplexHeatmap: :Heatmap ().

This function is slightly unique in that it allows multiple labels, if m is supplied as a 1ist of matrix
objects. In fact, some matrix objects may contain character values with custom labels.

Cell labels are colored based upon the heatmap cell color, which is passed to jamba: : setTextContrastColor()
to determine whether to use light or dark text color for optimum contrast.

TODO: Option to supply a logical matrix to define a subset of cells to label, for example only
labels that meet a filter criteria. Alternatively, the matrix data supplied in m can already be filtered.

TODO: Allow some matrix values that contain character data to use gridtext for custom mark-
down formatting. That process requires a slightly different method.

24 checkLightMode

Value

function sufficient to use as input to ComplexHeatmap: :Heatmap() argument cell_fun.

See Also

Other jam heatmap functions: heatmap_column_order(), heatmap_row_order()

Examples

m <- matrix(stats::rnorm(16)*2, ncol=4)

colnames(m) <- LETTERS[1:4]

rownames(m) <- letters[1:4]

col_hm <- circlize::colorRamp2(breaks=(-2:2) * 2,
colors=c(”"navy”, "dodgerblue”, "white”, "tomato", "red4"))

the heatmap can be created in one step
hm <- ComplexHeatmap: :Heatmap(m,
col=col_hm,
heatmap_legend_param=list(
color_bar="discrete",
border=TRUE,
at=-4:4),
cell_fun=cell_fun_label(m,
col_hm=col_hm))
ComplexHeatmap: :draw(hm)

the cell label function can be created first
cell_fun <- cell_fun_label(m,
outline=TRUE,
cex=1.5,
col_hm=col_hm)
hm2 <- ComplexHeatmap: :Heatmap(m,
col=col_hm,
cell_fun=cell_fun)
ComplexHeatmap: :draw(hm2)

checkLightMode check lightMode for light background color

Description

check lightMode for light background color

Usage
checkLightMode(lightMode = NULL, ...)

check_pkg_installed 25

Arguments
lightMode logical or NULL, indicating whether the lightMode parameter has been de-
fined in the function call.
Additional arguments are ignored.
Details

Check the lightMode status through function parameter, options, or environment variable. If the
function defines lightMode, it is used as-is. If lightMode is NULL, then options("jam.lightMode")
is used if defined. Otherwise, it tries to detect whether the R session is running inside Rstudio using
the environmental variable "RSTUDIO", and if so it assumes lightMode==TRUE.

To set a default lightMode, add options("jam.lightMode"=TRUE) to .Rprofile, or to the relevant R
script.

Value

logical or length=1, indicating whether lightMode is defined

See Also

Other jam practical functions: breakDensity (), call_fn_ellipsis(), check_pkg_installed(),
colNum2excelName (), color_dither (), exp2signed(), getAxisLabel (), isFALSEV(), isTRUEV(),
jargs(), kable_coloring(), 11df (), log2signed(), middle(), minorLogTicks(), newestFile(),
printDebug(), reload_rmarkdown_cache(), renameColumn(), rmInfinite(), rmNA(), rmNAs(),
rmNULL (), setPrompt ()

Examples

checkLightMode (TRUE);
checkLightMode();

check_pkg_installed Lightweight method to check if an R package is installed

Description

Lightweight method to check if an R package is installed

Usage

check_pkg_installed(x, useMethod = c("packagedir”, "requireNamespace”), ...)

26 check_pkg_installed

Arguments

X character string of package or packages to test.
useMethod character default "packagedir" with the method of package confirmation.

» "packagedir" provides a rapid test for the presence of an R package, without
loading the package namespace. It tests whether system. file(package=x)
returns a non-empty value, then "DESCRIPTION” file exists in the package
directory. It answers the question: "Is *x’ package installed?" It does not
answer: "Is ’x’ package usable in the current R session?" When useMethod
also includes "requireNamespace", for any FALSE result it will also per-
form a secondary check as well, to confirm the package cannot be loaded
by another mechanism.

* "requireNamespace" uses requireNamespace(x, quietly=TRUE), with slight
benefit that it accepts multiple values for x, and returns the result without
using invisible(). This method loads the package namespace, but does
not attach it. This method therefore takes the same time as loading the
package, in return for providing the most accurate answer to the question:
"Is ’x’ package usable by this R session right now?"

additional arguments are ignored.

Details

There are many methods to test for an installed package. Most approaches incur some time or
resource penalty, so check_pkg_installed() is motivated for rapid results without loading the
package namespace.

This function also accepts multiple values for x for convenience.
There are two available methods defined by useMethod:
1. useMethod="packagedir"” confirms: this function represents possibly the most gentle and

rapid approach. It simply calls system.file(package=x), for each entry of x, then checks
these requirements:

* Does the package directory exist via system. file(package=x)

* Does the package directory contain the file 'DESCRIPTION’?

* It does not check whether the package can be loaded into the current R session.
2. useMethod="requireNamespace” confirms:

* requireNamespace(x, quietly=TRUE) returns TRUE

* It therefore loads the package namespace to confirm, but does not attach the package to
the current session. It therefore may take time and resources, despite not altering the R
environment search path.

n

The default behavior first tests by "packagedir”, then for any FALSE results it also tests "requireNamespace”.

Value

logical vector indicating whether each value in x represents an installed R package. The vector is
named by packages provided in x.

col2alpha 27

See Also

Other jam practical functions: breakDensity (), call_fn_ellipsis(), checkLightMode (), colNum2excelName(),
color_dither(), exp2signed(), getAxisLabel (), isFALSEV(), isTRUEV(), jargs(), kable_coloring(),

11df (), log2signed(), middle(), minorLogTicks (), newestFile(), printDebug(), reload_rmarkdown_cache(),
renameColumn(), rmInfinite(), rmNA(), rmNAs (), rmNULL (), setPrompt ()

Examples

check_pkg_installed("methods")

check_pkg_installed(c("jamba",
"multienrichjam”,
"venndir”,
"methods”,
"blah"))

col2alpha get R color alpha value

Description

Return the alpha transparency per R color

Usage
col2alpha(x, maxValue = 1, ...)
Arguments
X character R compatible color, either a color name, hex value, or a mixture of
the two. Any value compatible with grDevices: :col2rgbh().
maxValue numeric maximum value to return, useful when the downstream alpha range
should be 255. By default maxValue=1 is returned.
Additional arguments are ignored.
Value

numeric vector of alpha values

See Also

Other jam color functions: alpha2col(), applyCLrange(), col2hcl(), col2hsl(), col2hsv(),
color2gradient(), fixYellow(), fixYellowHue(), getColorRamp(), hcl2col(), hsl2col(),
hsv2col (), isColor (), kable_coloring(), makeColorDarker(), rainbow2(), rgh2col(), setCLranges(),
setTextContrastColor(), showColors(), unalpha(), warpRamp()

28 col2hcl

Examples

col2alpha(c("red”, "#99004499", "beige"”, "transparent”, "#FFFFFF00"))

col2hcl convert R color to HCL color matrix

Description

convert R color to HCL color matrix

Usage

col2hcl(
X,
maxColorValue = 255,
model = getOption(”jam.model”, c("hcl”, "polarLUV", "polarLAB")),

Arguments

X character R compatible color, either a color name, hex value, or a mixture of
the two. Any value compatible with grDevices: :col2rgbh().

maxColorValue numeric maximum value to return, useful when the downstream alpha range
should be 255. By default maxValue=1 is returned.

model character color model to use

* "hcl” to use farver HCL
e "polarLUV" for the standard R conventional HCL,
e "polarLAB" which uses the LAB-based HCL values.

additional arguments are ignored.

Details

This function takes an R color and converts to an HCL matrix, using the colorspace package, and
RGB and polarLUV functions. It is also used to maintain alpha transparency, to enable interconver-
sion via other color manipulation functions as well.

When model="hcl" this function uses farver: :decode_colour() and bypasses colorspace. In
future the colorspace dependency will likely be removed in favor of using farver. In any event,
model="hcl"” is equivalent to using model="polarLUV" and fixup=TRUE, except that it should be
much faster.

Value

numeric matrix with H, C, L values.

col2hsl 29

See Also

Other jam color functions: alpha2col (), applyCLrange(), col2alpha(), col2hsl(), col2hsv(),
color2gradient(), fixYellow(), fixYellowHue(), getColorRamp(), hcl2col(), hsl2col(),
hsv2col (), isColor(), kable_coloring(), makeColorDarker(), rainbow2(), rgh2col(), setCLranges(),
setTextContrastColor(), showColors(), unalpha(), warpRamp()

Examples

col2hcl("#FF000044")

col2hsl convert R color to HSL color matrix

Description

convert R color to HSL color matrix

Usage
col2hsl(x, ...)
Arguments
X character vector with R compatible colors.
additional arguments are ignored.
Details

This function takes an R color and converts to an HSL matrix, using the farver package farver: :decode_colour()
the colorspace package, and RGB and polarLUV functions. It is also used to maintain alpha trans-
parency, to enable interconversion via other color manipulation functions as well.

When model="hsl" this function uses farver::decode_colour() and bypasses colorspace. In
future the colorspace dependency will likely be removed in favor of using farver. In any event,
model="hsl" is equivalent to using model="polarLUV" and fixup=TRUE, except that it should be
much faster.

Value

numeric matrix of H, S, L color values.

See Also

Other jam color functions: alpha2col (), applyCLrange(), col2alpha(), col2hcl(), col2hsv(),
color2gradient(), fixYellow(), fixYellowHue(), getColorRamp(), hcl2col(), hsl2col(),
hsv2col (), isColor (), kable_coloring(), makeColorDarker(), rainbow2(), rgh2col(), setCLranges(),
setTextContrastColor(), showColors(), unalpha(), warpRamp()

30 col2hsv

Examples

x <- c("#FF000044", "#FF0000", "firebrick”);
names(x) <- Xx;

showColors(x)

xhsl <- col2hsl(x)

xhsl

xhex <- hsl2col(xhsl)

showColors(list(x=x,
xhex=xhex),
groupCellnotes=FALSE)

withr::with_par(list("mfrow”"=c(4, 4), "mar"=c(0.2, 1, 4, 1)), {

for (H in seq(from=0, to=360, length.out=17)[-17]) {
S <- 75;
Lseq <- seq(from=15, to=95, by=10);
hsl_gradient <- hsl2col(
H=H,
S=85,
L=Lseq);
hcl_gradient <- hcl2col(
H=H,
C=85,
L=Lseq);
names(hsl_gradient) <- Lseq;
names(hcl_gradient) <- Lseq;
showColors(xaxt="n",
list(
hsl=hsl_gradient,
hcl=hcl_gradient),
main=paste@("Hue: ", round(H),
"\nSat: ", S,
"\nLum: (as labeled)"),
groupCellnotes=FALSE)
3
»

col2hsv Convert R color to HSV matrix

Description

Convert R color to HSV matrix

Usage
col2hsv(x, ...)

colNumZ2excelName 31

Arguments
X R color
additional parameters are ignored
Details

This function takes a valid R color and converts to a HSV matrix. The output can be effectively
returned to R color with hsv2col, usually after manipulating the HSV color matrix.

Value

matrix of HSV colors

See Also

Other jam color functions: alpha2col (), applyCLrange(), col2alpha(), col2hcl(), col2hsl1(),
color2gradient(), fixYellow(), fixYellowHue(), getColorRamp(), hcl2col(), hsl2col(),
hsv2col(), isColor(), kable_coloring(), makeColorDarker(), rainbow2(), rgh2col(), setCLranges(),
setTextContrastColor(), showColors(), unalpha(), warpRamp()

Examples

start with a color vector
red and blue with partial transparency
colorV <- c("#FFQ0Q055", "#00339999");

confirm the hsv matrix maintains transparency
col2hsv(colorV);

convert back to the original color
hsv2col(col2hsv(colorV));

colNum2excelName convert column number to ’'Excel’ column name

Description

convert column number to ’Excel’ column name

Usage

colNum2excelName(x, uselLetters = LETTERS, zeroVal = "a", ...)

32 color2gradient

Arguments
X integer vector
uselLetters character vector of single-digit characters to use as digits in the resulting col-
umn name. Note that these characters can be of almost any length, with any
content.
zeroVal character single-digit to be used whenever x==0, or as a prefix for negative
values. In theory there should be no negative input values, but this basic mech-
anism is used to handle the possibility.
Additional arguments are ignored.
Details

The purpose is to convert an integer column number into a valid ’Excel’ column name, using
LETTERS starting at A. This function implements an arbitrary number of digits, which may or may
not be compatible with each version of "Excel’. 18,278 columns would be the maximum for three
digits, "A" through "ZZZ".

This function is useful when referencing "Excel’ columns via another interface such as via openxlsx.
It is also used by makeNames () when the numberStyle="1letters", in order to provide letter suffix
values.

One can somewhat manipulate the allowed column names via the useLetters argument, which by
default uses the entire 26-letter Western alphabet.

Value

character vector with length(x)

See Also

Other jam practical functions: breakDensity(), call_fn_ellipsis(), checkLightMode(), check_pkg_installed(),
color_dither(), exp2signed(), getAxisLabel (), isFALSEV(), isTRUEV(), jargs(), kable_coloring(),

11df (), log2signed(), middle(), minorLogTicks(), newestFile(), printDebug(), reload_rmarkdown_cache(),
renameColumn(), rmInfinite(), rmNA(), rmNAs(), rmNULL (), setPrompt()

Examples

colNum2excelName(1:30)

color2gradient Make a color gradient

Description

Make a color gradient

color2gradient 33

Usage

color2gradient(
col,
n = NULL,
gradientWtFactor = NULL,
dex =1,
reverseGradient = TRUE,
verbose = FALSE,

Arguments

col some type of recognized R color input as:

* character vector of one or more individual colors, each color is expanded
into a gradient of length n, where n is recycled to the number of unique
colors. The value n is applied in the order the colors appear in col.

» list of color vectors where each vector contains one repeated color

e character vector of repeated colors, where n is defined by the number of
each color present.

n integer vector of length one or more, which defines the number of colors to
return for each gradient. When n=0 then only duplicated colors will be expanded
into a gradient.

gradientWtFactor
numeric fraction representing the amount to expand a color toward its maximum
brightness and darkness. It is recommended to use dex and not this argument.

* When gradientWtFactor=NULL this value is calculated based upon the
number of colors requested, and the initial luminance in HCL space of the
starting color.

* When gradientWtFactor is defined, values are recycled to length(col),
and can be independently applied to each color.

dex numeric value to apply dramatic dark expansion, where:

e dex > 1 will make the gradient more dramatic, values

* dex <1 will make the gradient less dramatic, and are considered fractions
1/x.

* dex < @ will make the gradient less dramatic, and values are internally con-
verted to fractions using 1/(2 + abs(dex))

reverseGradient

logical whether to return light-to-dark gradient (TRUE) or dark-to-light gradi-
ent (FALSE).

verbose logical whether to print verbose output.

other parameters are ignored.

34 color2gradient

Details

This function converts a single color into a color gradient by expanding the initial color into lighter
and darker colors around the central color. The amount of gradient expansion is controlled by
gradientWtFactor, which is a weight factor scaled to the maximum available range of bright to dark
colors.

As an extension, the function can take a vector of colors, and expand each into its own color gra-
dient, each with its own number of colors. If a vector with supplied that contains repeated colors,
these colors are expanded in-place into a gradient, bypassing the value for n.

If a list is supplied, a list is returned of the same length, where each vector inside the list is a color
gradient of length specified by n. If the input list contains multiple values, only the first color is
used to define the color gradient.

Value

character vector of R colors.

See Also

Other jam color functions: alpha2col (), applyCLrange(), col2alpha(), col2hcl(), col2hsl1(),
col2hsv(), fixYellow(), fixYellowHue(), getColorRamp(), hcl2col(), hsl2col(), hsv2col(),
isColor(), kable_coloring(), makeColorDarker (), rainbow2(), rgb2col (), setCLranges(),
setTextContrastColor(), showColors(), unalpha(), warpRamp()

Examples

given a list, it returns a list
x <- color2gradient(list(Reds=c("red"), Blues=c("blue”)), n=c(4,7));
showColors(x);

given a vector, it returns a vector
xv <- color2gradient(c(red="red"”, blue="blue"), n=c(4,7));
showColors(xv);

Expand colors in place

This process is similar to color jittering

colorsl <- c("red”,"blue")[c(1,1,2,2,1,2,1,1)];

names(colors1) <- colorsi;

colors2 <- color2gradient(colors1);

showColors(list(Input colors =colorsl, ~Output colors =colors2));

You can do the same using a list intermediate
colorsiL <- split(colorsl, colorsl);
showColors(colorsiL);

colors2L <- color2gradient(colorsiL);
showColors(colors2L);

comparison of fixed gradientWtFactor with dynamic gradientWtFactor
showColors(list(
“dynamic\ngradientWtFactor\ndex=1"=color2gradient(
c("yellow”, "navy", "firebrick”, "orange"),

color_dither 35

n=3,
gradientWtFactor=NULL,
dex=1),

“dynamic\ngradientWtFactor\ndex=2"=color2gradient(
c("yellow”, "navy", "firebrick”, "orange"),
n=3,
gradientWtFactor=NULL,
dex=2),

“fixed\ngradientWtFactor=2/3"=color2gradient(
c("yellow”, "navy"”, "firebrick"”, "orange"),
n=3,
gradientWtFactor=2/3,
dex=1)

)
color_dither Make dithered color pattern light-dark
Description

Make dithered color pattern light-dark

Usage
color_dither(
X’
L_diff = 4,
L_max = 90,
L_min = 30,

min_contrast = 1.25,

direction = 1,

returnType = c("vector”, "list"”, "matrix"),
debug = FALSE,

)
Arguments
X character vector of R colors
L_diff numeric value added or subtracted from the L in HSL color space for each color,
until contrast is at least min_contrast.
L_max, L_min numeric values that define the permitted range of L values in HSL color space,

which ranges from 0 to 100.

min_contrast numeric minimum contrast as defined by colorspace::contrast_ratio()
for the input and potential output color.

direction numeric that defines the initial direction, where values >= 0 start by making
colors lighter, and values < 0 make colors darker.

36 color_dither

returnType character string that defines the output of this function:

* vector: two colors for every input color in x
* matrix: two rows, input colors on first row, output colors on second row

e list: a list with two colors in each element, with input and output colors
together in each vector.

debug logical indicating whether to plot the color iterations using showColors().

additional arguments are ignored.

Details

This function serves a very simple purpose, mainly for printDebug() to use subtle alternating
light/dark colors for vector output. It takes a color and returns two colors which are slightly lighter
and darker than each other, to a minimum contrast defined by colorspace: :contrast_ratio().

Value
format defined by argument returnType:
* vector: two colors for every input color in x

* matrix: two rows, input colors on first row, output colors on second row

e list: a list with two colors in each element, with input and output colors together in each
vector.

See Also

Other jam practical functions: breakDensity (), call_fn_ellipsis(), checkLightMode(), check_pkg_installed(),
colNum2excelName (), exp2signed(), getAxisLabel (), isFALSEV(), isTRUEV(), jargs(), kable_coloring(),
11df (), log2signed(), middle(), minorLogTicks(), newestFile(), printDebug(), reload_rmarkdown_cache(),
renameColumn(), rmInfinite(), rmNA(), rmNAs (), rmNULL (), setPrompt()

Examples

x <= "firebrick1";
showColors(color_dither(x))

showColors(color_dither(x, direction=-1))
x <- vigrep("*green[0-9]", grDevices::colors())
showColors(color_dither(x))

showColors(color_dither(x, direction=-1, returnType="list"))

x <- c("greenl1”, "cyan"”, "blue”, "red”, "gold”, "yellow", "pink")
showColors(color_dither(x))

color_dither(x, debug=TRUE)

coordPresets 37

coordPresets Process coordinate adjustment presets

Description

Process coordinate adjustment presets

Usage

coordPresets(
preset = "default”,
X =0,
y =0,
adjPreset = "default”,
adjX = 0.5,
adjY = 0.5,
adjoffsetX =
adjoffsetY =
preset_type = c("plot"),
verbose = FALSE,

o,
o,

)
Arguments
preset character vector of coordinate positions, or the default "default” to use the x,y
coordinates.
* Recognized terms: center, bottom, top, left, right, topleft, topright, bottom-
left, bottomright.
X,y numeric vectors indicating the default coordinates x, y.
adjPreset character vector of text label positions, or the default "default” to use preset,
or when preset="default"” the adjX, adjY values are used.
* Recognized terms: center, bottom, top, left, right, topleft, topright, bottom-
left, bottomright.
adjX, adjy numeric vectors indicating default text adjustment values, as described for adj

in graphics::text().

adjoffsetX, adjOffsetY
numeric vector used to apply an offset value to the adjX,adjY values, where
positive values would place a label farther away from center. Note these units
are relative to the text label size, when used with graphics::text(), larger
labels will be adjusted more than smaller labels.

preset_type character string indicating the reference point for the preset boundaries:

* "plot” uses the plot border.

38 coordPresets

* "margin” uses the margin border. Note that the margin used is the inner
margin around the plot figure, not the outer margin which may be applied
around multi-panel plot figures.

verbose logical indicating whether to print verbose output.

additional arguments are ignored.

Details

This function is intended to be a convenient way to define coordinates using preset terms like

"topleft", "bottom", "center".

Similarly, it is intended to help define corresponding text adjustments, using adj compatible with

graphics::text(), using preset terms like "bottomright", "center".

When preset is "default”, the original x,y coordinates are used. Otherwise the x,y coordinates
are defined using the plot region coordinates, where "left"” uses graphics: :par("usr”)[1], and
"top" uses graphics: :par("usr”)[4].

When adjPreset is "default” it will use the preset to define a reciprocal text placement. For ex-
ample when preset="topright" the text placement will be equivalent to adjPreset="bottomleft".
The adjPreset terms "top”, "bottom”, "right”, "left”, and "center” refer to the text label
placement relative to x, y coordinate.

If both preset="default” and adjPreset="default" the original adjX, adjY values are returned.

The function is vectorized, and uses the longest input argument, so one can supply a vector of
preset and it will return coordinates and adjustments of length equal to the input preset vector.
The preset value takes priority over the supplied x,y coordinates.

Value

data.frame after adjustment, where the number of rows is determined by the longest input argu-
ment, with colnames:

e X

*y

* adjX

e adjY

* preset

* adjPreset

See Also

Other jam plot functions: adjustAxisLabelMargins(), decideMfrow(), drawLabels(), getPlotAspect(),
groupedAxis(), imageByColors(), imageDefault(), minorLogTicksAxis(), nullPlot(), plotPolygonDensity(),
plotRidges(), plotSmoothScatter (), shadowText(), shadowText_options(), showColors(),

sqrtAxis(), usrBox ()

coordPresets

Examples

determine coordinates
presetV <- c("top",
"bottom”,
"left",
"right”,
"topleft");
cpl <- coordPresets(preset=presetV);
cpl;

make sure to prepare the plot region first
jamba: :nullPlot(plotAreaTitle="");
graphics::points(cp1$x, cpl1$y, pch=20, cex=2, col="red");

unfortunately graphics::text() does not have vectorized adj
so it must iterate each row
graphics::title(main="graphics::text() is not vectorized, text is adjacent to edges"”)
for (i in seq_along(presetV)) {
graphics::text(cp1$x[il, cpl1$ylil,
labels=presetV[il,
adj=c(cpl1$adjX[il, cpls$adjY[il));
3

drawLabels() will be vectorized for unique adj subsets
and adds a small buffer around text
jamba: :nullPlot(plotAreaTitle="");
graphics::title(main="drawLabels() is vectorized, includes small buffer")
drawLabels(txt=presetV,
preset=presetV)

jamba: :nullPlot(plotAreaTitle="");
graphics::title(main="drawLabels() can place labels outside plot edges")
drawLabels(txt=presetV,

preset=presetV,

adjPreset=presetV)

drawLabels() is vectorized for example
jamba: :nullPlot(plotAreaTitle="");
graphics::title(main="Use adjPreset to position labels at a center point")
presetV2 <- c("topleft”,

"topright”,

"bottomleft”,

"bottomright”);
cp2 <- coordPresets(preset="center"”,

adjPreset=presetV2,

adjoffsetX=0.1,

adjoffsetY=0.4);
graphics: :points(cp2$x,

cp2sy,

pch=20,

cex=2,

col="red");

40 cPaste

drawLabels(x=cp2$x,
y=cp2$y,
adjX=cp2%$adjX,
adjY=cp2$adjy,
txt=presetVv2,
boxCexAdjust=c(1.15,1.6),
labelCex=1.3,
Ix=rep(1.5, 4),
ly=rep(1.5, 4))

demonstrate margin coordinates

withr::with_par(list("oma"=c(1, 1, 1, 1)), {

nullPlot(xlim=c(@, 1), ylim=c(1, 5));

cpxy <- coordPresets(rep(c("top”, "bottom”, "left"”, "right"”), each=2),
preset_type=rep(c("plot”, "figure"), 4));

drawLabels(preset=c("top”, "top"),
txt=c("top label relative to figure”,

"top label relative to plot”),

preset_type=c("figure”, "plot"))

graphics: :points(cpxy$x, cpxy$y, cex=2,
col="red4"”, bg="red1"”, xpd=NA,
pch=rep(c(21, 23), 4))

»

cPaste paste a list into a delimited vector

Description

Paste a list of vectors into a character vector, with values delimited by default with a comma.

Usage

cPaste(
X,
sep = ","
doSort = FALSE,
makeUnique = FALSE,
na.rm = FALSE,
keepFactors = FALSE,
checkClass = TRUE,
useBioc = TRUE,
uselLegacy = FALSE,
honorFactor = TRUE,
verbose = FALSE,

cPaste

cPasteS(

)

X,

sep = ",",

doSort = TRUE,
makeUnique = FALSE,
na.rm = FALSE,
keepFactors = FALSE,
checkClass = TRUE,
useBioc = TRUE,

cPasteSU(

)

X,

sep = ",",

doSort = TRUE,
makeUnique = TRUE,
na.rm = FALSE,
keepFactors = FALSE,
checkClass = TRUE,
useBioc = TRUE,

cPasteUnique(

)

X,
sep = ",",

doSort = FALSE,
makeUnique = TRUE,
na.rm = FALSE,
keepFactors = FALSE,
checkClass = TRUE,
useBioc = TRUE,

cPasteU(

X,

sep = ",",

doSort = FALSE,
makeUnique = TRUE,
na.rm = FALSE,
keepFactors = FALSE,
checkClass = TRUE,
useBioc = TRUE,

41

42 cPaste

Arguments

X list of vectors
sep character delimiter used to paste multiple values together
doSort logical indicating whether to sort each vector using mixedOrder ().
makeUnique logical indicating whether to make each vector in the input list unique before
pasting its values together.
na.rm logical indicating whether to remove NA values from each vector in the input
list. When na. rmis TRUE and a list element contains only NA values, the resulting
string will be "".
keepFactors logical only used when useLegacy=TRUE and doSort=TRUE; indicating whether
to preserve factors, keeping factor level order. When keepFactors=TRUE, if
any list element is a factor, all elements are converted to factors. Note that
this step combines overall factor levels, and non-factors will be ordered using
base: :order() instead of jamba: :mixedOrder () (for now.)
checkClass logical, default TRUE, whether to check the class of each vector in the input
list.
* When TRUE, it confirms the class of each element in the 1ist before pro-
cessing, to prevent conversion which may otherwise lose information.
* For all cases when a known vector is split into a 1ist, checkClass=FALSE
is preferred since there is only one class in the resulting list elements.
This approach is faster especially for for large input lists, 10000 or more.

* When checkClass=FALSE it assumes all entries can be coerced to character,
which is fastest, but does not preserve factor levels due to R coersion meth-
ods used by unlist().

useBioc logical indicating whether this function should try to use S4Vectors: :unstrsplit()
when the Bioconductor package S4Vectors is installed, otherwise it will use a
less efficient mapply () operation.

uselLegacy logical indicating whether to enable to previous legacy process used by cPaste().

honorFactor logical passed to mixedSorts(), whether any factor vector should be sorted
in factor level order. When honorFactor=FALSE then even factor vectors are
sorted as if they were character vectors, ignoring the factor levels.

verbose logical indicating whether to print verbose output.
additional arguments are passed to mixedOrder () when doSort=TRUE.

Details

* cPaste() concatenates vector values using a delimiter.

* cPasteS() sorts each vector using mixedSort().

* cPasteU() applies uniques() to retain unique values per vector.
* cPasteSU() applies mixedSort() and uniques().

This function is essentially a wrapper for S4Vectors: :unstrsplit() except that it also optionally
applies uniqueness to each vector in the list, and sorts values in each vector using mixedOrder ().
The sorting and uniqueness is applied to the unlisted vector of values, which is substantially

faster than any apply family function equivalent. The uniqueness is performed by uniques(),
which itself will use S4Vectors: :unique() if available.

cPaste 43

Value

character vector with the same names and in the same order as the input list x.

See Also
Other jam list functions: heads(), jam_rapply(), list2df (), mergeAllXY(), mixedSorts(),
rbindList(), relist_named(), rlengths(), sclass(), sdim(), uniques(), unnestList()

Examples

L1 <- list(CA=LETTERS[c(1:4,2,7,4,6)1, B=letters[c(7:11,9,3)1);

cPaste(L1);
CA B
,IA!B’C’D!B’G’D!F" “gyh,i»jyk;iycu

cPaste(L1, doSort=TRUE);
CA B
"A!BYB!C!DYD!F'G” ”CVg!th!i!ij"

The sort can be done with convenience function cPasteS()

cPasteS(L1);
CA B
,IA!BYB’C!D’D’F!G" ”c’g’th’i!j’k"

Similarly, makeUnique=TRUE and cPasteU() are the same
cPaste(L1, makeUnique=TRUE);

cPasteU(L1);

CA B

"A,B,C,D,G,F" "g,h,i,j,k,c"

Change the delimiter

cPasteSU(L1T, sep="; ")

CA B
"A; B; C; D; F; G" "c¢; g; h; i; j; K"

test mix of factor and non-factor
L2 <= c(
list(D=factor(letters[1:12],
levels=letters[12:1]1)),
L1);
L2;
cPasteSU(L2, keepFactors=TRUE);

tricky example with mix of character and factor
and factor levels are inconsistent
end result: factor levels are defined in order they appear
L <- list(entryA=c("miR-112", "miR-12", "miR-112"),
entryB=factor(c("A","B","A","B"),
levels=c("B","A")),
entryC=factor(c("C","A","B","B","C"),
levels=c("A","B","C")),

44 dateToDaysOld

entryNULL=NULL)
L;
cPaste(L);
cPasteU(L);

by default keepFactors=FALSE, which means factors are sorted as characters
cPasteS(L);

cPasteSU(L);

keepFactors=TRUE will keep unique factor levels in the order they appear
this is the same behavior as unlist(L[c(2,3)]) on a list of factors
cPasteSU(L, keepFactors=TRUE);

levels(unlist(L[c(2,3)]1))

dateToDays0Old convert date to age in days

Description

convert date to age in days

Usage
dateToDaysOld(testDate, nowDate = Sys.Date(), units = "days”, ...)
Arguments
testDate character date recognized by asDate (), representing the test date.
nowDate character date recognized by asDate(), representing the reference date, by
default the current day.
units character indicating the units, as used by difftime().
additional parameters are ignored.
Value

integer value with the number of calendar days before the current date, or the nowDate if supplied.

See Also

Other jam date functions: asDate(), getDate()

Examples

dateToDays01d("23aug2007")

decideMftrow 45

decideMfrow Decide plot panel rows, columns for graphics::par(mfrow)

Description

Decide plot panel rows, columns for graphics::par(mfrow)

Usage

decideMfrow(
n,
method = c("aspect”, "wide"”, "tall"),
doTest = FALSE,
xyratio = 1,
trimExtra = TRUE,

)
Arguments
n integer number of plot panels
method character string indicating the type of layout to favor.
"aspect'' uses the device size and aspect ratio of the plot to try to maintain
roughly square plot panels.
"wide'" tries to keep the columns and rows similar, erring on the side of more
columns than rows.
"tall" tries to keep the columns and rows similar, erring on the side of more
rows than columns.
doTest logical whether to provide a visual test. Note that n is required as the number
of plot panels requested.
xyratio numeric default 1, with the desired target x-to-y ratio. For example, to have
plots slightly wider (x width) than tall (y height), use xyratio=1.3. The ob-
served device aspect ratio is divided by xyratio to determine the target aspect
ratio of plot panels.
trimExtra logical default TRUE, whether to trim blank rows or columns in the expected
layout when it would be entirely blank. For example, n=4 may produce c(3, 2)
output to meet the desired aspect ratio, however with trimeExtra=TRUE it would
be reduced to c(2, 2) to minimize unused whitespace.
additional parameters are ignored.
Details

This function returns the recommended rows and columns of panels to be used in graphics: :par("mfrow")
with R base plotting. It attempts to use the device size and plot aspect ratio to keep panels roughly

46 deg2rad

square. For example, a short-wide device would have more columns of panels than rows; a tall-thin
device would have more rows than columns.

The doTest=TRUE argument will create n number of panels with the recommended layout, as a
visual example.

Note this function calls getPlotAspect (), therefore if no plot device is currently open, the call to
graphics: :par() will open a new graphics device.

Value

numeric vector length=2, with the recommended number of plot rows and columns, respectively.
It is intended to be used directly in this form: graphics: :par("mfrow"=decideMfrow(n=5))

See Also

Other jam plot functions: adjustAxisLabelMargins(), coordPresets(), drawLabels(), getPlotAspect(),
groupedAxis(), imageByColors(), imageDefault (), minorLogTicksAxis(), nullPlot(), plotPolygonDensity(),
plotRidges(), plotSmoothScatter (), shadowText(), shadowText_options(), showColors(),

sqrtAxis(), usrBox ()

Examples

display a test visualization showing 6 panels
withr::with_par(list("mar"=c(2, 2, 2, 2)), {
decideMfrow(n=6, doTest=TRUE);

»

use a custom target xyratio of plot panels
withr::with_par(list("mar"=c(2, 2, 2, 2)), {
decideMfrow(n=3, xyratio=3, doTest=TRUE);

»

a manual demonstration creating 6 panels

n <- 6;

withr::with_par(list(
"mar"=c(2, 2, 2, 2),
"mfrow”"=decideMfrow(n)), {

for(i in seq_len(n)){
nullPlot(plotAreaTitle=paste("Plot"”, i));

3

»

deg2rad Convert degrees to radians

Description

Convert degrees to radians

drawLabels 47

Usage
deg2rad(x, ...)

Arguments
X numeric vector, expected to be degree values between zero and 360.
other parameters are ignored.
Details

This function simply converts degrees which range from 0 to 360, into radians which range from
Zero to pi*2.

Value

numeric vector after coverting degrees to radians.

See Also

Other jam numeric functions: noiseFloor(), normScale(), rad2deg(), rowGroupMeans(), rowRmMadOutliers(),
warpAroundZero()

Examples

deg2rad(rad2deg(c(pi*2, pi/2)))/pi;

drawLabels Draw text labels on a base R plot

Description

Draw text labels on a base R plot

Usage

drawLabels(
txt = NULL,
newCoords = NULL,
x = NULL,
y = NULL,
1x = NULL,
ly = NULL,

segmentlwd = 1,

segmentCol = "#00000088",
drawSegments = TRUE,
boxBorderColor = "#0000QQ0AA",

48 drawLabels
boxColor = "#FFEECC",
boxLwd = 1,
drawBox = TRUE,
drawLabels = TRUE,
font = 1,
labelCex = 0.8,
boxCexAdjust = 1.9,
labelCol = alpha2col(alpha = 0.8, setTextContrastColor(boxColor)),
doPlot = TRUE,
xpd = NA,
preset = "default”,
adjPreset = "default”,
preset_type = "plot”,
adjX = 0.5,
adjY = 0.5,
panelWidth = "default”,
trimReturns = TRUE,
text_fn = getOption("jam.text_fn", graphics::text),
verbose = FALSE,
)
Arguments
txt character vector of labels, length equal to x and y.
newCoords data.frame optional, typically as a result of a previous call to drawLabels().
In general, it should contain colnames equivalent to the function parameters of
drawLabels().
X,y numeric vector of x- and y- coordinates.
1x, 1y numeric optional vector of segment endpoint coordinates, used to draw a line

from x,y coordinates to the segment Ix,ly coordinate.
segmentLwd, segmentCol

numeric vector of segment line widths, and character colors, respectively.
Each vector will be recycled to length(txt) as needed.

drawSegments logical whether to draw segments, where applicable.

boxBorderColor character vector of colors used for the box border around each label.

boxColor character vector of colors used for the box background behind each label.

boxLwd numeric vector of box line widths, sent to graphics::rect(), this vector will
be recycled to length(txt).

drawBox logical whether to draw boxes behind each text label.

drawLabels logical whether to draw each text label.

font integer vector of font values as described in graphics: :par(), where 1=nor-
mal, 2=bold, 3=italics, 4=bold-italics.

labelCex numeric vector of cex values used for text labels, recycled to length(txt) as

needed.

drawLabels 49

boxCexAdjust numeric vector length=2, used to expand the x-width and y-height of the box
around around text labels.

labelCol character vector of label colors, by default it calls jamba: : setTextContrastColor()
to generate a color to contrast the background box color.

doPlot logical whether to perform any plot operations. Set FALSE to calculate coordi-
nates and return a data. frame of label coordinates, which can then be manipu-
lated before calling drawLabels () again.

xpd logical value compatible with graphics: :par("xpd"), where NA allows la-
bels anywhere in the device region, TRUE retricts labels within the figure region,
and FALSE restricts labels within the plot region.

preset character vector passed to coordPresets() used to position text labels rel-
ative to the x,y coordinate, where "topleft" will position the label so the entire
label box is top-left of the point, therefore the point will be at the bottom-right
corner of the label box. When preset is anything by "none” the adjX and adjY
values are ignored.
preset_type, adjPreset
character passed to coordPresets() to define orientation of each label rela-
tive to the x,y coordinate.
adjX, adjy numeric the text adjustment of labels relative to the x,y coordinate. The values
are recycled to length(txt).
panelWidth character string or vector, recycled to the number of labels to be displayed.
The argument indicates whether to size each label box relative to the plot panel
width, intended when the label preset and adjPreset are set for the label to be
inside the plot panel, e.g. preset="top", adjPreset="top", or preset="topleft"”, adjPreset="top
Either both are centered, or one is "right" and the other is "left". In these cases,
the label box is expanded to the full plot panel width, thus filling the full visible
x-axis range for the plot panel. Allowed values for panelWidth:
* "default” size label boxes by text dimensions
» "force” size label to full plot panel width
* "minimum” size label at least the plot panel width, or larger if necessary to
fit the text label
* "maximum” size label to the text label width, but no larger than the plot
panel width

trimReturns logical whether to trim leading and trailing return (newline) characters from
labels.
text_fn function used to render text, by default it checks getOption(”jam. text_fn",

graphics: : text) which then defaults to graphics: : text.

 This argument is specifically to enable jamba: : shadowText (), for exam-
ple text_fn=jamba: : shadowText.

* Previous to version 0.0.107.900, one could assign text <- jamba: : shadowText
however that option was removed to make jamba more compliant with rec-
ommended R code, and ready for CRAN.

verbose logical whether to print verbose output.
additional arguments are passed to graphics: : segments() when segments are
drawn, to graphics: :rect() when label boxes are drawn, and to graphics: : text ()
when text labels are drawn.

50 drawLabels

Details

This function takes a vector of coordinates and text labels, and draws the labels with colored rect-
angles around each label on the plot. Each label can have unique font, cex, and color, and are drawn
using vectorized operations.

To enable shadow text include argument: text_fn=jamba: : shadowText

TODO: In future allow rotated text labels. Not that useful within a plot panel, but sometimes useful
when draw outside a plot, for example axis labels.

Value

invisible data.frame containing label coordinates used to draw labels. This data.frame can be ma-
nipulated and provided as input to drawLabels() for subsequent customized label positioning.

See Also

Other jam plot functions: adjustAxisLabelMargins(), coordPresets(), decideMfrow(), getPlotAspect(),
groupedAxis(), imageByColors(), imageDefault(), minorLogTicksAxis(), nullPlot(), plotPolygonDensity(),
plotRidges(), plotSmoothScatter (), shadowText(), shadowText_options(), showColors(),

sqrtAxis(), usrBox ()

Examples

nullPlot(plotAreaTitle="");
dl_topleft <- drawLabels(x=graphics::par("usr”)[1],
y=graphics::par("usr”)[4],
txt="Top-left\nof plot”,
preset="topleft”,
boxColor="blue4");

drawLabels(x=graphics: :par("usr")[2],
y=graphics::par("usr")[3],
txt="Bottom-right\nof plot”,
preset="bottomright"”,
boxColor="green4");

drawLabels(x=mean(graphics: :par("usr”)[1:2]),
y=mean(graphics::par("usr”)[3:4]),
txt="Center\nof plot”,
preset="center"”,
boxColor="purple3");

graphics: :points(x=c(graphics::par("usr”)[1], graphics::par("usr”")[2],
mean(graphics: :par("usr”)[1:2])),
y=c(graphics::par("usr”)[4], graphics::par("usr”)[3],
mean(graphics: :par("usr")[3:4])),
pch=20,
col="red",
xpd=NA) ;

nullPlot(plotAreaTitle="");

exp2signed 51

graphics::title(main="place label across the full top plot panel”, line=2.5)
dl_top <- drawlLabels(
txt=c("preset="topright', adjPreset='topright', \npanelWidth='force'",
"preset="topright',\nadjPreset="'bottomleft'",
"preset="bottomleft', adjPreset='topright',\npanelWidth="force'"),
preset=c("topright”, "topright”, "bottomleft"),
adjPreset=c("topleft”, "bottomleft”, "topright"),
panelWidth=c("force”, "none", "force"),
boxColor=c("red4",
"blue4”,
"purple3"));
graphics: :box(1lwd=2);

withr::with_par(list("mfrow”=c(1, 3), "xpd”"=TRUE), {

isub <- c(force="Always full panel width",
minimum="At least full panel width or larger”,
maximum="No larger than panel width");
for (i in c("force”, "minimum”, "maximum")) {
nullPlot(plotAreaTitle="", doMargins=FALSE);
graphics::title(main=paste@("panelWidth="", i, "'\n",
isub[i]));
drawLabels(labelCex=1.2,
txt=c("Super-wide title across the top\npanelWidth='force'",
"bottom label"),
preset=c("top”, "bottom"),
panelWidth=i,
boxColor="red4")

exp2signed exponentiate log2 values with directionality

Description

exponentiate log2 values with directionality

Usage
exp2signed(x, offset = 1, base = 2, ...)
Arguments
X numeric vector
offset numeric subtracted from exponentiated values prior to multiplying by the sign(x).
base numeric value indicating the logarithmic base used. For example base=2 indi-

cates values were transformed using log2().

additional arguments are ignored.

52 fillBlanks

Details

This function is the reciprocal to log2signed().

It # exponentiates the absolute values of x, then subtracts the of fset, then multiplies results by the
sign(x).

The of fset is typically used to maintain directionality of values during log transformation by re-
quiring all absolute values to be 1 or larger, thus by default of fset=1.

Value

numeric vector of exponentiated values.

See Also

Other jam practical functions: breakDensity(), call_fn_ellipsis(), checkLightMode(), check_pkg_installed(),
colNum2excelName (), color_dither(), getAxisLabel(), isFALSEV(), isTRUEV(), jargs(),

kable_coloring(), 11df (), log2signed(), middle(), minorLogTicks(), newestFile(), printDebug(),
reload_rmarkdown_cache(), renameColumn(), rmInfinite (), rmNA(), rmNAs (), rmNULL (), setPrompt ()

Examples

X <= c(-100:100)/10;

z <- log2signed(x);

#plot(x=x, y=z, xlab="x", ylab="log2signed(x)")

plot(x=x, y=exp2signed(z), xlab="x", ylab="exp2signed(log2signed(x))")

plot(x=z, y=exp2signed(z), xlab="log2signed(x)", ylab="exp2signed(log2signed(x))")

fillBlanks Fill blank entries in a vector

Description

Fill blank entries in a vector

Usage
fillBlanks(x, blankGrep = c("[\tl*"), first = "", ...)
Arguments
X character vector
blankGrep vector of grep patterns, or NA, indicating the type of entry to be considered blank.
Each blankGrep pattern is searched using jamba: :proigrep(), which by de-
fault uses case-insensitive regular expression pattern matching.
first options character string intended when the first entry of x is blank. By default

nn

is used.

additional parameters are ignored.

fix Yellow 53

Details

This function takes a character vector and fills any blank (missing) entries with the last non-blank
entry in the vector. It is intended for situations like imported *Excel’ data, where there may be one
header value representing a series of cells.

The method used does not loop through the data, and should scale fairly well with good efficiency
even for extremely large vectors.

Value

character vector where blank entries are filled with the most recent non-blank value.

See Also

Other jam string functions: asSize(), breaksByVector(), formatInt(), gsubOrdered(), gsubs(),
makeNames (), nameVector (), nameVectorN(), padInteger(), padString(), pasteByRow(), pasteByRowOrdered(),
sizeAsNum(), tcount (), ucfirst()

Examples
X <= (A", MM, mw_ww wpw owew ww oww o Na
IIDIIy IIVI, VIII’ IIEII, IIFIV’ "G", VIII’ IIII);
data.frame(x, fillBlanks(x));
’ ’

fixYellow Fix yellow color

Description

Fix yellow color to be less green than default "yellow"

Usage
fixYellow(col, Hrange = c(70, 100), Hshift = -20, fixup = TRUE, ...)
Arguments
col R color, either in hex color format or using values from grDevices: :colors().
Hrange numeric vector whose range defines the region of hues to be adjusted. By default
hues between 80 and 90 are adjusted. If NULL, HCL is return unchanged.
Hshift numeric value length one, used to adjust the hue of colors within the range
Hrange. If NULL, HCL is return unchanged.
fixup logical, default TRUE, whether to apply fixup to the resulting color, passed to

hcl2col()

additional arguments are passed to col2hcl(), and hcl2col().

54 fix YellowHue

Details

This function "fixes" the color yellow, which by default appears green especially when darkened.
The effect of this function is to make yellows appear more red, which appears more visibly yellow
even when the color is darkened.

This function is intended to be tolerant to missing values. For example if any of the values col,
Hrange, or Hshift are length 0, the original col is returned unchanged.

Value

returns a vector of R colors the same length as input col. In the event col, Hrange, or Hshift have
length O, or if any step in the conversion produces length 0, then the original col is returned.

See Also

Other jam color functions: alpha2col (), applyCLrange(), col2alpha(), col2hcl(), col2hsl(),
col2hsv(), color2gradient(), fixYellowHue(), getColorRamp(), hcl2col (), hsl2col(), hsv2col(),
isColor(), kable_coloring(), makeColorDarker(), rainbow2(), rgb2col (), setCLranges(),
setTextContrastColor(), showColors(), unalpha(), warpRamp()

Examples

yellows <- vigrep("yellow”, grDevices::colors());

fixedYellows <- fixYellow(yellows);

showColors(list(yellows=yellows,
fixedYellows=fixedYellows));

fixYellowHue Fix yellow color hue

Description

Fix yellow color hue to be less green than default "yellow"

Usage
fixYellowHue(HCL, Hrange = c(80, 90), Hshift = -15, ...)
Arguments
HCL numeric matrix with HCL color values, as returned by col2hcl (), but requiring
only one rowname "H"” representing the color hue on a scale of 0 to 360. If
input data does not contain numeric values with rowname "H", HCL is return
unchanged.
Hrange numeric vector whose range defines the region of hues to be adjusted. By default

hues between 80 and 90 are adjusted. If NULL, HCL is return unchanged.

formatInt 55

Hshift numeric value length one, used to adjust the hue of colors within the range
Hrange. If NULL, HCL is return unchanged.

additional arguments are ignored.

Details

This function "fixes" the color yellow, which by default appears green especially when darkened.
The effect of this function is to make yellows appear more red, which appears more visibly yellow
even when the color is darkened.

This function is intended to be tolerant to missing values. For example if any of the values HCL,
Hrange, or Hshift are length O, the original HCL is returned unchanged.

Value

returns the input HCL data where rowname "H" has hue values adjusted accordingly. In the event
HCL, Hrange, or Hshif't have length 0, the original HCL is returned. If input data does not meet the
expected format, the input HCL is returned unchanged.

See Also

Other jam color functions: alpha2col (), applyCLrange(), col2alpha(), col2hcl(), col2hsl(),
col2hsv(), color2gradient (), fixYellow(), getColorRamp(), hcl2col(), hsl2col(), hsv2col(),
isColor(), kable_coloring(), makeColorDarker (), rainbow2(), rgb2col (), setCLranges(),
setTextContrastColor(), showColors(), unalpha(), warpRamp()

Examples

yellows <- vigrep("yellow”, grDevices::colors());

yellowsHCL <- col2hcl(yellows);

fixedYellowsHCL <- fixYellowHue(yellowsHCL);

fixedYellows <- hcl2col(fixedYellowsHCL);

showColors(list(yellows=yellows,
fixedYellows=fixedYellows));

formatInt Format an integer as a string

Description

Format an integer as a string

56 formatInt

Usage

formatInt(
X,
big.mark = ",",
trim = TRUE,
forcelnteger = TRUE,
scientific = FALSE,

Arguments

X numeric vector or matrix

big.mark, trim, scientific
passed to base: :format() but configured with defaults intended for integer
values:

n o n

e big.mark="," adds comma between thousands.
* trim=TRUE to trim excess whitespace.
* scientific=FALSE to prevent exponential notation.

forcelnteger logical, default TRUE, whether to round numeric to integer prior to calling
base::format().

Additional arguments are ignored.

Details
This function is a quick wrapper function around base: : format () to display integer values as text
strings. It will also return a matrix if the input is a matrix.

Value

character vector if x is a vector, or if x is a matrix a matrix will be returned.

See Also

Other jam string functions: asSize(), breaksByVector (), fillBlanks(), gsubOrdered(), gsubs(),
makeNames (), nameVector (), nameVectorN(), padInteger (), padString(), pasteByRow(), pasteByRowOrdered(),
sizeAsNum(), tcount (), ucfirst()

Examples

x <- c(1234, 1234.56, 1234567.89);
By default, commas are used for big.mark, and decimal values are hidden
formatInt(x);

By default, commas are used for big.mark
formatInt(x, forcelnteger=FALSE);

getAxisLabel 57

getAxisLabel Get axis label for minorLogTicks

Description

Get axis label for minorLogTicks

Usage

getAxisLabel(
i,
asValues,
logAxisType = c("normal”, "flip"”, "pvalue"),
logBase,
base_limit = 2,
offset = 0,
symmetricZero = (offset > @),

)
Arguments
i numeric axis value
asValues logical indicating whether the value should be evaluated.
logAxisType character string with the type of axis values:
* "normal”: axis values as-is.
* "flip": inverted axis values, for example where negative values should be
displayed as negative log-transformed values.
e "pvalue": for values transformed as -1og10(pvalue)
logBase numeric logarithmic base
base_limit numeric value indicating the minimum value that should be written as an expo-
nential.
offset numeric value of offset used for log transformation.

symmetricZero logical indicating whether negative values should be displayed as negative log-
transformed values.

additional arguments are ignored.

Details

This function is intended to be called internally by jamba: :minorLogTicks().

Value

character or expression axis label as appropriate.

58 getColorRamp

See Also

Other jam practical functions: breakDensity (), call_fn_ellipsis(), checkLightMode(), check_pkg_installed(),
colNum2excelName(), color_dither(), exp2signed(), isFALSEV(), isTRUEV(), jargs(), kable_coloring(),
11df (), log2signed(), middle(), minorLogTicks (), newestFile(), printDebug(), reload_rmarkdown_cache(),
renameColumn(), rmInfinite(), rmNA(), rmNAs (), rmNULL (), setPrompt()

Examples

x <- logle(c(1, 2, 5, 10, 20, 50, 100, 200, 500))
getAxisLabel (x, asValues=TRUE, logBase=10)

xlexp <- c(1, 2, 3, 4, 5)
plot(1:6, main="exponential values")
for (i in seq_along(xlexp)) {
text(x=i, y=i + 0.2,
getAxisLabel (x1exp[i], asValues=FALSE, logBase=10))
3

xTexp <- c(-3:3)
plot(-3:3, main="log2 fold change values")
for (i in seqg_along(xlexp)) {
text(x=i, y=i + 0.3 - 4,
getAxisLabel (x1exp[i],
logAxisType="flip",
asValues=TRUE, logBase=2))
3

xlexp <- c(1, 2, 3, 4, 5)
plot(1:6, main="P-value style")
for (i in seqg_along(xlexp)) {
text(x=i, y=1i + 0.2,
getAxisLabel (x1exp[il],
logAxisType="pvalue”, asValues=FALSE, logBase=10))

getColorRamp get color ramp by name, color, or function

Description

get color ramp by name, color, or function

Usage

getColorRamp(
col,
n =15,
trimRamp = c(@, 0),

getColorRamp 59

gradientN = 15,
defaultBaseColor = "grey99”,
reverseRamp = FALSE,

alpha = TRUE,
gradientWtFactor = NULL,

dex = 1,

lens = 0,

divergent = NULL,

verbose = FALSE,

Arguments

col one of the following:

* character vector of two or more R colors. A color gradient will be defined
using these colors in order with colorRampPalette().

* character vector length=1 with one R color. A color gradient is defined
from defaultBaseColor to col using color2gradient(). To adjust the
range of light to dark luminance, use the dex argument, where higher values
increase the range, and lower values decrease the range.

* character vector length=1, with one recognized color ramp name: any

color palette from RColorBrewer, for example rownames (RColorBrewer: :brewer.pal.info());

any color palette function name from viridisLite.

* character vector length=1, with one color function name, for example
col="rainbow_hcl". Input is equivalent to supplying one color function,
see below.

* function whose first argument expects integer number of colors to re-
turn, for example col=viridisLite::viridis defines the function itself
as input.

* function derived from circlize: :colorRamp2(), recognized by having
attribute names "breaks"” and "colors"”. Note that only the colors are used
for the individual color values, not the break points.

n integer number of output colors to return, or NULL if the output should be a
color function in the form function(n) which returns n colors.

trimRamp integer vector, expanded to length=2 as needed, which defines the number of
colors to trim from the beginning and end of the color vector, respectively. When
reverseRamp=TRUE, the colors are reversed before the trimming is applied. If
the two trimRamp values are not identical, symmetric divergent color scales will
no longer be symmetric.

gradientN integer number of colors to expand gradient colors prior to trimming colors.
defaultBaseColor
character vector indicating a color from which to begin a color gradient, only
used when col is a single color.

reverseRamp logical indicating whether to reverse the resulting color ramp. This value is

ignored when a single value is supplied for col, and where "_r" or "_rev" is
detected as a substring at the end of the character value.

60

getColorRamp

alpha logical indicating whether to honor alpha transparency whenever colorRampPalette
is called. If colors contain no alpha transparency, this setting has no effect, oth-
erwise the alpha value is applied by grDevices: :colorRampPalette() using
a linear gradient between each color.

gradientWtFactor
numeric value used to expand single color input to a gradient, using color2gradient(),
prior to making a full gradient to the defaultBaseColor. Note that dex is the
preferred method for adjusting the range of light to dark for the given color col.

dex numeric darkness expansion factor, used only with input col is a single color,
which is then split into a color gradient using defaultBaseColor by calling
color2gradient(). The dex factor adjusts the range of dark to light colors,
where higher values for dex increase the range, making the changes more dra-
matic.

lens, divergent arguments sent to warpRamp () to apply a warp effect to the color ramp, to com-
press or expand the color gradient: lens scales the warp effect, with positive
values compressing colors toward baseline and negative values expanding col-
ors near baseline; divergent is a logical indicating whether the middle color is
considered the baseline.

verbose logical whether to print verbose output

additional arguments are ignored.

Details

This function accepts a color ramp name, a single color, a vector of colors, or a function names, and
returns a simple vector of colors of the appropriate length, suitable as input to a number of plotting
functions.

When n is NULL, this function returns a color function, wrapped by grDevices: :colorRampPalette().
The colors used are defined by gradientN, so the grDevices: :colorRampPalette() function ac-
tually uses a starting palette of gradientN number of colors.

When n is an integer greater than 0, this function returns a vector of colors with length n.

When col is a single color value, a color gradient is created by appending defaultColorBase to the
output of color2gradient(..., n=3, gradientWtFactor=gradientWtFactor). These 4 colors
are used as the internal palette before applying grDevices: :colorRampPalette() as appropriate.
In this case, gradientWtFactor is used to adjust the strength of the color gradient. The intended use
is: getColorRamp("red”, n=5). To remove the leading white color, use getColorRamp("red”,
n=5, trimRamp=c(1,0)).

When col contains multiple color values, they are used to define a color ramp directly.

When col is not a color value, it is compared to known color palettes from RColorBrewer: :RColorBrewer
and viridisLite, and will use the corresponding color function or color palette.

When col refers to a color palette, the suffix "_r" may be used to reverse the colors. For example,
getColorRamp(col="RdBu_r", n=9) will recognize the RColorBrewer color palette "RdBu”, and
will reverse the colors to return blue to red, more suitable for heatmaps where high values associated
with heat are colored red, and low values associated with cold are colored blue.

The argument reverseRamp=TRUE may be used to reverse the returned colors.

getColorRamp 61

Color functions from viridisLite are recognized: "viridis”, "cividis”, "inferno”, "magma”,
"plasma”.

The argument trimRamp is used to trim colors from the beginning and end of a color ramp, respec-
tively. This mechanism is useful to remove the first or last color when those colors may be too
extreme. Note that internally, colors are expanded to length gradientN, then trimmed, then the
corresponding n colors are returned.

The trimRamp argument is also useful when returning a color function, which occurs when n=NULL.
In this case, colors are expanded to length gradientN, then are trimmed using the values from
trimRamp, then the returned function can be used to create a color ramp of arbitrary length.

Note that when reverseRamp=TRUE, colors are reversed before trimRamp is applied.

By default, alpha transparency will be maintained if supplied in the input color vector. Most
color ramps have no transparency, in which case transparency can be added after the fact using
alpha2col().

Value

character vector of R colors, or when N is NULL, function sufficient to create R colors.

See Also

Other jam color functions: alpha2col (), applyCLrange(), col2alpha(), col2hcl(), col2hsl(),
col2hsv(), color2gradient (), fixYellow(), fixYellowHue(), hcl2col(), hsl2col(), hsv2col(),
isColor(), kable_coloring(), makeColorDarker (), rainbow2(), rghb2col(), setCLranges(),
setTextContrastColor(), showColors(), unalpha(), warpRamp()

Examples

get a gradient using red4
red4 <- getColorRamp("red4");
showColors(getColorRamp(red4));

make a custom gradient

BuOr <- getColorRamp(c("dodgerblue”,"grey10","orange"));
showColors(BuOr);

colorList <- list(red4=red4, BuOr=BuOr);

From RColorBrewer use a brewer name

RdBu <- getColorRamp("RdBu");

RdBu_r <- getColorRamp("RdBu_r");

colorList <- c(colorList, list(RdBu=RdBu, RdBu_r=RdBu_r));
showColors(RdBu);

if (requireNamespace("viridisLite", quietly=TRUE)) {
viridisV <- getColorRamp("viridis");
colorList <- c(colorList, list(viridis=viridisV));

}

for fun, put a few color ramps onto one plot
showColors(colorList, cexCellnote=0.7);

62 getDate

showColors(list(“white background\ncolor="'red'~=getColorRamp("red"),
“black background\ncolor="'red' =getColorRamp(”red”, defaultBaseColor="black"),
“white background\ncolor="'gold'~=getColorRamp("gold"),
“black background\ncolor="'gold' =getColorRamp("”gold”, defaultBaseColor="black")))

getDate get simple date string

Description

get simple date string in the format DDmonYYY'Y such as 17jul2018.

Usage
getDate(t = Sys.time(), trim = TRUE, dateFormat = "%d%b%Y", ...)
Arguments
t current time in an appropriate class such as "POSIXct” or "POSIXt". The default
is output of Sys.time().
trim logical whether to trim the output of format () in the event that multiple values
are sent for argument t.
dateFormat character string representing the recognized date format, by default "DDmmmYYYY",
which recognizes "23aug2007".
additional parameters sent to format ().
Details

Gets the current date in a simplified text string. Use asDate() to convert back to Date object.

Value

character vector with simplified date string

See Also

Other jam date functions: asDate(), dateToDays01d()

Examples

getDate();

getPlotAspect 63

getPlotAspect Get aspect ratio for coordinates, plot, or device

Description

Get aspect ratio for coordinates, plot, or device

Usage

getPlotAspect(
type = c("coords”, "plot”, "device"),
parUsr = graphics::par("usr"),
parPin = graphics::par(”"pin”),

parDin = graphics::par("din"),
)
Arguments
type character type of aspect ratio to calculate.

"coords' calculates plot coordinate aspect ratio, which is helpful for creating
proper circular shapes, for example, where the x-axis and y-axis ranges are
very different. Note that this calculation does also correct for margin sizes.

"plot" calculates plot aspect ratio, based upon the actual size of the plot, in-
dependent of the numeric coordinate range of the plot. This aspect ratio
reflects the relative visual height and width of the plot area, ignoring mar-
gins.

"device' calculates plot aspect ratio, based upon the complete graphical device,
i.e. the full space including all panels, margins, and plot areas.

parUsr, parPin, parDin

numeric values equivalent to their respective graphics: :par() output, from

graphics::par("usr"), graphics: :par("pin"), and graphics: :par("din").

Values can be supplied directly, which among other things, prevents opening a

graphical device if one is not already opened. Any call to graphics: :par()

will otherwise cause a graphic device to be opened, which may not be desired
on a headless R server.

additional parameters are ignored.

Value

numeric plot aspect ratio for a plot device, of the requested type, see the type argument.

See Also

Other jam plot functions: adjustAxisLabelMargins(), coordPresets(), decideMfrow(), drawLabels(),
groupedAxis(), imageByColors(), imageDefault(), minorLogTicksAxis(), nullPlot(), plotPolygonDensity(),
plotRidges(), plotSmoothScatter (), shadowText(), shadowText_options(), showColors(),

sqrtAxis(), usrBox ()

64

Examples

grepls

withr::with_par(list("mfrow”=c(2, 4), "mar"=c(1, 1, 1, 1)), {

for (i in 1:8) {

nullPlot(plotAreaTitle=paste("Plot”, i), xlim=c(1,100), ylim=c(1,10),
doMargins=FALSE) ;

graphics::axis(1, las=2);

graphics::axis(2, las=2);

}

device aspect inside the 2x4 layout
getPlotAspect("plot”);

»

device aspect outside the 2x4 layout
getPlotAspect("plot”);

grepls

Search for objects in the environment

Description

Search for objects in the environment

Usage

grepls(
X)

where = "all”,
ignore.case = TRUE,
searchNames = TRUE,

verbose =

Arguments

X

where

ignore.case

searchNames

verbose

FALSE,

character string used as a grep pattern

character string compatible with base: : 1s() orifinstalled, AnnotationDbi: :1s().
A special value "all” will search all environments on the search path base: : search()
in order.

logical indicating whether the pattern match is case-insensitive.

logical indicating whether names should also be searched, which is only rele-
vant for AnnDb objects, for example org.Mm. egSYMBOL2EG from the org.Mm.eg. db
Bioconductor package.

logical indicating whether to print verbose output.

additional parameters are ignored.

groupedAxis 65

Details

This function searches the active R environment for an object name using vigrep() (value, case-
insensitive grep). It is helpful when trying to find an object using a substring, for example grepls(”statshits").

Value

character vector of matching object names, or if where="all" it returns a named list whose names
indicate the search environment name, and whose entries are matching object names within each
environment.

See Also

Other jam grep functions: igrep(), igrepHas(), igrepl(), provigrep(), unigrep(), unvigrep(),
vgrep(), vigrep()

Examples

Find all objects named "grep", which should find
base grep() and jamba::vigrep() among other results.
grepls(“grep”);

Find objects in the local environment

allStatsHits <- c(1:12);

someStatsHits <- c(1:3);

grepls(”"statshits”);

shortcut way to search only the .GlobalEnv, the active local environment
grepls(”statshits”, 1);

return objects with "raw” in the name
grepls("raw");

Require "Raw” to be case-sensitive
grepls("Raw”, ignore.case=FALSE)

groupedAxis Draw grouped axis labels

Description

Draw grouped axis labels given a character vector.

Usage
groupedAxis(
side = 1,
X)

group_style = c("partial_grouped”, "grouped”, "centered"),

66 groupedAxis

las = 2,
returnFractions = TRUE,
nudge = 0.2,

do_abline = FALSE,
abline_lty = "solid",
abline_col = "grey40",
do_plot = TRUE,

)
Arguments
side integer indicating the axis side, passed to graphics::axis(). 1=bottom,
2=left, 3=top, 4=right.
X character vector of axis labels
group_style character string indicating the style of label:
* "partial_grouped” - uses square bracket to bound 2+ repeated entries,
and single line tick mark for non-repeated entries.
* "grouped"” - uses square bracket to bound each set of repeated entries in-
cluding non-repeated entries.
* "centered” - only labels the center of each group of repeated entries with
no bracket bounding the entries.
las integer indicating whether labels should be perpendicular, see graphics: :par(”las").
returnFractions
logical passed to breaksByVector () to calculate label positions. Set returnFractions=FALSE
and all labels will only appear at integer locations on the axis.
nudge numeric adjustment for labels away from the plot border.
do_abline logical indicating whether to draw graphics: :abline() lines inside the plot
to indicate the exact breakpoints between each group of labels.
abline_lty line type compatible with graphics: :par(”1ty"), used when do_abline=TRUE.
abline_col character color used when do_abline=TRUE.
do_plot logical whether to plot the resulting axis, as an option to suppress the out-
put and do something else with the data. frame of coordinates returned by this
function.
additional arguments are passed to breaksByVector (), and/or to graphics: :axis().
Details

This function extends breaksByVector () specifically for axis labels. It is intended where character
labels are spaced at integer steps, and some labels are expected to be repeated.

Value

data. frame invisibly, which contains the relevant axis coordinates, labels, and whether the coordi-
nate should appear with a tick mark.

gsubOrdered 67

See Also

Other jam plot functions: adjustAxisLabelMargins(), coordPresets(), decideMfrow(), drawLabels(),
getPlotAspect (), imageByColors(), imageDefault(), minorLogTicksAxis(), nullPlot(),
plotPolygonDensity(), plotRidges(), plotSmoothScatter (), shadowText(), shadowText_options(),
showColors(), sqrtAxis(), usrBox()

Examples

withr::with_par(list("mar"=c(4,4,6,6)), {
b <- rep(LETTERS[1:5], c(2,3,5,4,3));
b2 <- c(b[1:2], makeNames(b[3:5]), b[6:16]);
nullPlot(doBoxes=FALSE,
doUsrBox=TRUE,
x1im=c(0,18),
ylim=c(0,18));

groupedAxis(1, b);

groupedAxis(2, b, group_style="grouped");

groupedAxis(2, b, group_style="centered");

groupedAxis(3, b2, do_abline=TRUE);

groupedAxis(4, b2, group_style="grouped");

graphics: :mtext(side=1, "group_style='partial_grouped'”, line=2, las=0);
graphics: :mtext(side=2, "group_style='grouped'”, line=2, las=0);
graphics: :mtext(side=3, "group_style='partial_grouped'”, line=2, las=0);
graphics: :mtext(side=4, "group_style='grouped'”, line=2, las=0);

»

gsubOrdered Global substitution into ordered factor

Description

Global substitution into ordered factor

Usage

gsubOrdered(
pattern,
replacement,
X,
ignore.case = FALSE,
perl = FALSE,
fixed = FALSE,
useBytes = FALSE,
sortFunc = mixedSort,

68 gsubOrdered

Arguments

pattern, replacement, x, ignore.case, perl, fixed, useBytes
arguments sent to base: :gsub()

sortFunc function used to sort factor levels, which is not performed if the input x is a
factor.

additional arguments are passed to sortFunc

Details

This function is an extension of base: :gsub() that returns an ordered factor output. When input
is also a factor, the output factor levels are retained in the same order, after applying the string
substitution.

This function is very useful when making changes via base: : gsub () to a factor with ordered levels,
because it retains the the order of levels after modification.

Tips:
¢ To convert a character vector to a factor, whose levels are sorted, use sortFunc=sort.

* To convert a character vector to a factor, whose levels are the order they appear in the input x,
use sortFunc=c.

* To convert a character vector to a factor, whose levels are sorted alphanumerically, use sortFunc=mixedSort.

Value

factor whose levels are based upon the order of input levels when the input x is a factor; or if the
input x is not a factor, it is converted to a factor using the provided sort function sortFunc.

See Also

Other jam string functions: asSize(), breaksByVector (), fillBlanks(), formatInt(), gsubs(),
makeNames (), nameVector (), nameVectorN(), padInteger (), padString(), pasteByRow(), pasteByRowOrdered(),
sizeAsNum(), tcount (), ucfirst()

Examples

x <- c(paste0(
rep(c("first”, "second”, "third"), 2),
rep(c("Section”, "Choice"), each=3)),
"Choice");

f <- factor(x, levels=x);

f;

default gsub() will return a character vector

gsub("(first|second|third)", "", f)
converting to factor resets the factor level order
factor(gsub("(first|second|third)", "", f))

gsubOrdered() maintains the factor level order
gsubOrdered(" (first|third)", "", f)
gsubOrdered(” (first)", "", f)

gsubs 69

to convert character vector to factor, levels in order they appear

nn nn

gsubOrdered("", , X, sortFunc=c)

to convert character vector to factor, levels alphanumeric sorted

gsubOrdered(""”, "", x, sortFunc=mixedSort)
gsubs Pattern replacement with multiple patterns
Description

Pattern replacement with multiple patterns

Usage

gsubs(
pattern,
replacement,
X,
ignore.case = TRUE,
replaceMultiple = rep(TRUE, length(pattern)),

)
Arguments
pattern character vector of patterns
replacement character vector of replacements
X character vector with input data to be curated
ignore.case logical indicating whether to perform pattern matching in case-insensitive
manner, where ignore.case=TRUE will ignore the uppercase/lowercase distinc-
tion.
replaceMultiple
logical vector indicating whether to perform global substitution, where replaceMultiple=FALSE
will only replace the first occurrence of the pattern, using base: :sub(). Note
that this vector can refer to individual entries in pattern.
additional arguments are passed to base: :gsub() or base: :sub().
Details

This function is a simple wrapper around base: :gsub() when considering a series of pattern-
replacement combinations. It applies each pattern match and replacement in order and is therefore
not vectorized.

When x input is a 1ist each vector in the 1ist is processed, somewhat differently than processing
one vector.

70 handleArgsText

1. When the 1list contains another 1ist, or when length(x) < 100, each value in x is iterated
calling gsubs (). This process is the slowest option, however not noticeble until x has length
over 10,000.

2. When the list does not contain another 1ist and all values are non-factor, or all values are
factor, they are unlisted, processed as a vector, then relisted. This process is nearly the same
speed as processing one single vector, except the time it takes to confirm the list element
classes.

3. When values contain a mix of non-factor and factor values, they are separately unlisted,
processed by gsubs(), then relisted and combined afterward. Again, this process is only
slightly slower than option 2 above, given that it calls gsubs () twice, with two vectors.

4. Note that factor values at input are replaced with character values at output, consistent
with gsub ().
Value

character vector when input x is an atomic vector, or 1ist when input x is a list.

See Also

Other jam string functions: asSize(), breaksByVector(), fillBlanks(), formatInt(), gsubOrdered(),
makeNames (), nameVector (), nameVectorN(), padInteger(), padString(), pasteByRow(), pasteByRowOrdered(),
sizeAsNum(), tcount (), ucfirst()

Examples
gsubs(c("one”, "two"), c("three"”, "four"), "one two five six")
gsubs(c("one"”, "two"), c("three"), "one two five six")
handleArgsText Handle function arguments as text
Description

Handles a list or list of lists, converting to human-readable text format

Usage

handleArgsText(
argTextA,
name = "",
coll = "mediumpurple2”,
col2 = "mediumaquamarine”,
colT = "dodgerblue3”,
colF = "red1",

colNULL = "grey60",
lightMode = NULL,

handleArgsText

71

Crange = getOption("jam.Crange"),
Lrange = getOption("”jam.Lrange"),
adjustRgb = getOption("jam.adjustRgbh"),

nn

indent = ,

useCollapselList

n’\n u,

n n

useCollapseBase ,

level =1,
debug = @

useColor = TRUE,
verbose = FALSE,

Arguments

argTextA

name

object passed by jargs() when iteratively parsing function argument values.

character name of the argument.

col1, col2, colT, colF, colINULL

lightMode

Crange

Lrange

adjustRgb

indent

useCollapselist

useCollapseBase

level

debug

useColor

character colors used as defaults for first and second arguments, TRUE, FALSE,
NULL, respectively.

logical or NULL, indicating whether the text background color is light, thus im-
posing a maximum brightness for colors displayed. It use lightMode if defined
by the function caller, otherwise it will use getOption(”jam.lightMode")
if defined, lastly it will attempt to detect whether running inside Rstudio by
checking the environment variable "RSTUDIO", and if so it will assume light-
Mode==TRUE.

numeric range of chroma values, ranging between 0 and 100. When NULL,
default values will be assigned to Crange by setCLranges().
numeric range of luminance values, ranging between 0 and 100. When NULL,
default values will be assigned to Lrange by setCLranges().

numeric value adjustment used during the conversion of RGB colors to ANSI
colors, which is inherently lossy. If not defined, it uses the default returned
by setCLranges() which itself uses getOption("”jam.adjustRgb") with de-
fault=0. In order to boost color contrast, an alternate value of -0.1 is suggested.

character string used as a prefix in output to help apply text indent.

character string inserted between multiple values to split list entries across
multiple lines.

character string used to separate multiple values in a vector which is not split
across multiple lines.

integer indicating the level of depth in iterative parsing.

integer value, greater than O will cause debug-type verbose output, useful be-
cause parameters are hard!

logical whether to display results in color, if the crayon package is available,
and terminal console is capable.

72 hcl2col

verbose logical whether to print verbose output.

Additional arguments are ignored.

Details

This function is a rare non-exported function intended to be called by jargs(), but separated in
order to help isolate the logical steps required.

Value

character vector including ANSI coloring when available.

See Also

Other jam internal functions: jamCalcDensity (), make_html_styles(), make_styles(), smoothScatterJam()

Examples

cat(paste@(handleArgsText(formals(graphics::hist.default)), "\n"), sep="")

hcl2col convert HCL to R color

Description

Convert an HCL color matrix to vector of R hex colors

Usage
hcl2col(
x = NULL,
H = NULL,
C = NULL,
L = NULL,

ceiling = 255,

maxColorValue = 255,

alpha = NULL,

fixup = TRUE,

model = getOption(”jam.model”, c("hcl”, "polarLUV", "polarLAB")),
verbose = FALSE,

hcl2col 73

Arguments
X matrix of colors, with rownames "H", "C", "L", or if not supplied it looks for
vectors H, C, and L accordingly. It can alternatively be supplied as an object of
class polarLUV.
H,C, L numeric vectors supplied as an alternative to x, with ranges 0 to 360, 0 to 100,
and O to 100, respectively.
ceiling numeric value indicating the maximum values allowed for R, G, and B after

conversion by colorspace::as(x, "RGB"). This ceiling is applied after the
maxColorValue is used to scale numeric values, and is intended to correct for
the occurrence of values above 255, which would be outside the typical color
gamut allowed for RGB colors used in R. In general, this value should not be
modified.
maxColorValue numeric value indicating the maximum RGB values, typically scaling values to
a range of 0 to 255, from the default returned range of 0 to 1. In general, this
value should not be modified.
alpha optional vector of alpha values. If not supplied, and if x is supplied as a matrix
with rowname "alpha”, then values will be used from x["alpha”,].
fixup boolean indicating whether to use colorspace::hex(...,fixup=TRUE) for
conversion to R hex colors, which is not recommended since this conversion
applies some unknown non-linear transformation for colors outside the color
gamut. It is here is an option for comparison, and if specifically needed.
model character string indicating the color model to use:
¢ hcl (default) uses farver
* polarLUV uses colorspace polarLUV
 polarLAB uses ‘colorspace polarLAB
verbose logical whether to print verbose output.

other arguments are ignored.

Details

This function takes an HCL matrix,and converts to an R color using the colorspace package colorspace: :polarLUV()
and colorspace: :hex().

When model="hcl" this function uses farver::encode_colour() and bypasses colorspace. In
future the colorspace dependency will likely be removed in favor of using farver. In any event,
model="hcl" is equivalent to using model="polarLUV" and fixup=TRUE, except that it should be
much faster.

Value

vector of R colors, or where the input was NA, then NA values are returned in the same order.

See Also

Other jam color functions: alpha2col (), applyCLrange(), col2alpha(), col2hcl(), col2hsl(),
col2hsv(), color2gradient(), fixYellow(), fixYellowHue(), getColorRamp(), hsl2col(),
hsv2col (), isColor(), kable_coloring(), makeColorDarker(), rainbow2(), rgh2col(), setCLranges(),
setTextContrastColor(), showColors(), unalpha(), warpRamp()

74 heads

Examples

Prepare a basic HCL matrix
hclM <- col2hcl(c(red="red",
blue="blue",
yellow="yellow",
orange="#FFAAQ066"));
hclM;

Now convert back to R hex colors
colorV <- hcl2col(hclM);

colorV;

showColors(colorV);

heads Apply head() across each element in a list of vectors

Description

Apply head() across each element in a list of vectors

Usage
heads(x, n =6, ...)
Arguments

X list of atomic vectors, assumed to be the same atomic type.

n integer maximum number of items to include from each element in the list x.
When n contains multiple values, they are recycled to length(x) and applied to
each list element in order.
additional arguments are passed to utils: :head().

Details

Note that this function currently only operates on a list of vectors. This function is notably faster
than lapply(x, head, n) because it operates on the entire vector in one step.

Also the input n can be a vector so that each element in the list has a specific number of items
returned.

Value

list with at most n elements per vector.

heatmap_column_order 75

See Also

Other jam list functions: cPaste(), jam_rapply(), list2df(), mergeAllXY(), mixedSorts(),
rbindList(), relist_named(), rlengths(), sclass(), sdim(), uniques(), unnestList()

Examples

1 <- list(a=1:10, b=2:5, c=NULL, d=1:100);
heads(1, 1);

heads(1, 2);

heads(l, n=c(2, 1, 3, 5))

heatmap_column_order Return Heatmap column order from ComplexHeatmap heatmap object

Description

Return Heatmap column order from ComplexHeatmap heatmap object

Usage

heatmap_column_order(hm, which_heatmap = NULL)

Arguments

hm Heatmap or HeatmapList object as defined by the Bioconductor package via
ComplexHeatmap: :Heatmap().

which_heatmap used to specify a specific heatmap with hm is provided as a HeatmapList. When
NULL (default) the first heatmap in hm@ht_list is used. When one value is
supplied, only that heatmap is used. When multiple values are supplied, a 1ist
is returned. Input can be either:

* numeric - indicating the heatmap number in hm@ht_list
e character - indicating the heatmap name seen in names (hm@ht_list)

Details

This function is a helpful utility to return the fully qualified list of colnames in a ComplexHeatmap: :Heatmap
object.

The core intention is for the output to be usable with the original data matrix used in the heatmap.
Therefore, the vector values are colnames() when present, or integer column index values when
there are no colnames (). If heatmap column_labels are defined, they are returned as names().

Note that names () are assigned inside try () to allow the case where column_labels, or column_title
labels cannot be coerced to character values, for example using gridtext for markdown format-
ting.

76 heatmap_column_order

Value

output depends upon the heatmap:

* When heatmap columns are grouped using column_split, and when the data matrix contains
colnames, returns a character vector of colnames in the order they appear in the heatmap.
When there are no colnames, integer column index values are returned. If the heatmap has
column labels, they are returned as vector names.

* When columns are grouped using column_split, it returns a 1ist of vectors as described
above. The list is named using the column_title labels only when there is an equal number
of column labels.

See Also

Other jam heatmap functions: cell_fun_label(), heatmap_row_order()

Examples

if (check_pkg_installed("ComplexHeatmap”)) {
set.seed(123);

mat <- matrix(stats::rnorm(18 * 24),

ncol=24);
rownames(mat) <- paste@("row”, seq_len(18))
colnames(mat) <- paste@(”column”, seq_len(24))

obtaining row order first causes a warning message
hm1 <- ComplexHeatmap::Heatmap(mat);

best practice is to draw() and store output in an object
to ensure the row orders are absolutely fixed

hm1_drawn <- ComplexHeatmap::draw(hm1);
print(heatmap_row_order (hmi_drawn))
print(heatmap_column_order(hm1_drawn))

row and column split

hm1_split <- ComplexHeatmap: :Heatmap(mat,
column_split=3, row_split=3, border=TRUE);

hm1_split_drawn <- ComplexHeatmap::draw(hml_split);

print(heatmap_row_order(hml_split_drawn))

print(heatmap_column_order(hml_split_drawn))

display two heatmaps side-by-side
mat2 <- mat + stats::rnorm(18x24);
hm2 <- ComplexHeatmap: :Heatmap(mat2, border=TRUE, row_split=4);

hm1hm2_drawn <- ComplexHeatmap::draw(hmi_split + hm2,
ht_gap=grid::unit(1, "cm"));

print(heatmap_row_order (hmlhm2_drawn))

print(heatmap_row_order (hm1hm2_drawn, which_heatmap=2))

by default the order uses the first heatmap

print(heatmap_column_order (hmihm2_drawn))

heatmap_row_order

the second heatmap can be returned
print(heatmap_column_order (hmihm2_drawn, which_heatmap=2))
or a list of heatmap orders can be returned
print(heatmap_column_order (hmihm2_drawn, which_heatmap=1:2))

stacked vertical heatmaps

hm1hm2_drawn_tall <- ComplexHeatmap: :draw(
ComplexHeatmap::~%v% (hml_split, hm2),
ht_gap=grid::unit(1, "cm"));

print(heatmap_row_order (hm1hm2_drawn))

print(heatmap_row_order (hmlhm2_drawn, which_heatmap=2))

print(heatmap_row_order (hmlhm2_drawn, which_heatmap=1:2))

print(heatmap_row_order (hm1hm2_drawn,
which_heatmap=names(hmihm2_drawn@ht_list)))

annotation heatmap

ha <- ComplexHeatmap: :rowAnnotation(left=rownames(mat))
ha_drawn <- ComplexHeatmap::draw(ha + hml)
print(sdim(ha_drawn@ht_list))

print(heatmap_row_order (ha_drawn))
print(heatmap_column_order(ha_drawn))

stacked vertical heatmaps with top annotation
ta <- ComplexHeatmap: :HeatmapAnnotation(top=colnames(mat))
hm1_ha <- ComplexHeatmap: :Heatmap(mat,
left_annotation=ha,
column_split=3, row_split=3, border=TRUE);
hm1hm2_drawn_tall <- ComplexHeatmap: :draw(
ComplexHeatmap::~%v% (ta,
ComplexHeatmap::~%v% (hm1_ha, hm2)),
ht_gap=grid::unit(1, "cm"));
print(sdim(hmihm2_drawn_tall@ht_list))
print(heatmap_row_order(hmlhm2_drawn_tall))
print(heatmap_row_order (hm1hm2_drawn_tall, 2))

77

heatmap_row_order

Return Heatmap row order from ComplexHeatmap heatmap object

Description

Return Heatmap row order from ComplexHeatmap heatmap object

Usage

heatmap_row_order (hm, which_heatmap = NULL)

78 heatmap_row_order

Arguments

hm Heatmap or HeatmapList object as defined by the Bioconductor package via
ComplexHeatmap: :Heatmap().

which_heatmap integer, default NULL, used when the input is a HeatmapList with multiple
heatmaps.

Details

This function is a helpful utility to return the fully qualified list of rownames in a ComplexHeatmap: : Heatmap
object.

The core intention is for the output to be usable with the original data matrix used in the heatmap.
Therefore, the vector values are rownames() when present, or integer row index values when
there are no rownames (). If heatmap row_labels are defined, they are returned as names ().

Note that names () are assigned inside try() to allow the case where row_labels, or row_title
labels cannot be coerced to character values, for example using gridtext for markdown format-
ting.

Final note: It is best practice to draw the heatmap first with ComplexHeatmap: :draw() then store
the output in a new object. This step creates the definitive clustering and therefore the row order is
absolutely final, not subject to potential randomness during clustering.

Value

output depends upon the heatmap:

* When heatmap rows are grouped using row_split, and when the data matrix contains row-
names, returns a character vector of rownames in the order they appear in the heatmap.
When there are no rownames, integer row index values are returned. If the heatmap has row
labels, they are returned as vector names.

* When rows are grouped using row_split, it returns a 1ist of vectors as described above. The
list is named using the row_title labels only when there is an equal number of row labels.

See Also

Other jam heatmap functions: cell_fun_label(), heatmap_column_order()

Examples

See heatmap_column_order() for examples

hsl2col 79

hsl2col convert HCL to R color

Description

Convert an HCL color matrix to vector of R hex colors

Usage
hsl2col(
x = NULL,
H = NULL,
S = NULL,
L = NULL,
alpha = NULL,

verbose = FALSE,

)
Arguments
X numeric matrix of colors, with rownames "H", "S", "L", or if not supplied it
looks for vectors H, S, and L accordingly.
H, S, L numeric vectors supplied as an alternative to x, with ranges 0 to 360, 0 to 100,
and O to 100, respectively.
alpha numeric vector of alpha values, default NULL. If not supplied, and if x is
supplied as a matrix with rowname "alpha”, then values will be used from
x["alpha",].
verbose logical indicating whether to print verbose output.
other arguments are ignored.
Details

This function takes an HCL matrix,and converts to an R color using the colorspace package colorspace: :polarLUV()
and colorspace: :hex().

When model="hcl" this function uses farver::encode_colour() and bypasses colorspace. In
future the colorspace dependency will likely be removed in favor of using farver. In any event,
model="hcl" is equivalent to using model="polarLUV" and fixup=TRUE, except that it should be
much faster.

Value

vector of R colors, or where the input was NA, then NA values are returned in the same order.

80 hsv2col

See Also

Other jam color functions: alpha2col (), applyCLrange(), col2alpha(), col2hcl(), col2hsl(),
col2hsv(), color2gradient(), fixYellow(), fixYellowHue(), getColorRamp(), hcl2col(),
hsv2col (), isColor(), kable_coloring(), makeColorDarker(), rainbow2(), rgh2col(), setCLranges(),
setTextContrastColor(), showColors(), unalpha(), warpRamp()

Examples

See col2hcl() for more extensive examples

Prepare a basic HSL matrix

x_colors <- c(red="red",
blue="blue",
yellow="yellow",
orange="#FFAAQ066") ;

hslM <- col2hsl(x_colors);

hs1M;

Now convert back to R hex colors
colorV <- hsl2col(hslM);
colorV;

showColors(list(x_colors=x_colors,
colorV=nameVector(colorV)));

hsv2col Convert HSV matrix to R color

Description

Converts a HSV color matrix to R hex color

Usage
hsv2col (hsvvalue, ...)
Arguments
hsvValue numeric HSV matrix, with rownames c("h","s","v") in any order, and optionally
"alpha" rowname for alpha transparency.
additional arguments are ignored.
Details

This function augments the grDevices: :hsv() function in that it handles output from grDevices: : rgb2hsv()
or col2hsv(), sufficient to run a series of conversion functions, e.g. hsv2col(col2hsv("red")).

This function also maintains alpha transparency, which is not maintained by the grDevices: :hsv()

function.

igrep 81

Value

character vector of R colors.

See Also

Other jam color functions: alpha2col (), applyCLrange(), col2alpha(), col2hcl(), col2hsl(),
col2hsv(), color2gradient(), fixYellow(), fixYellowHue(), getColorRamp(), hcl2col(),
hsl2col(), isColor(), kable_coloring(), makeColorDarker(), rainbow2(), rgh2col(), setCLranges(),
setTextContrastColor(), showColors(), unalpha(), warpRamp()

Examples

start with a color vector
red and blue with partial transparency
colorV <- c("#FFQ0Q055", "#00339999");

confirm the hsv matrix maintains transparency
col2hsv(colorV);

convert back to the original color
hsv2col(col2hsv(colorV));

igrep case-insensitive grep

Description

case-insensitive grep

Usage
igrep(..., ignore.case = TRUE)
Arguments
..., 1lgnore.case
parameters sent to base: :grep()
Details

This function is a simple wrapper around base: : grep() which runs in case-insensitive mode. It is
mainly used to save keystrokes, but is consistently named alongside vgrep and vigrep.

Value

vector of matching indices

82 igrepHas

See Also

Other jam grep functions: grepls(), igrepHas(), igrepl (), provigrep(), unigrep(), unvigrep(),
vgrep(), vigrep()

Examples
V <- paste@(LETTERS[1:5], LETTERS[4:81);
igrep("D", V);
igrep("d”, V);

vigrep("d", V);

igrepHas vector contains any case-insensitive grep match

Description

vector contains any case-insensitive grep match

Usage

igrepHas(
pattern,
x = NULL,
ignore.case = TRUE,
minCount = 1,
naToBlank = FALSE,

)
Arguments
pattern the grep pattern to use with base: :grep()
X vector to use in the grep
ignore.case logical default TRUE, meaning the grep will be performed in case-insensitive
mode.
minCount integer minimum number of matches required to return TRUE.
naToBlank logical whether to convert NA to blank, instead of allowing grep to handle NA
values as-is.
additional arguments are ignored.
Details

This function checks the input vector for any elements matching the grep pattern. The grep is
performed case-insensitive (igrep). This function is particularly useful when checking function
arguments or object class, where the class(a) might return multiple values, or where the name of the
class might be slightly different than expected, e.g. data.frame, data_frame, DataFrame.

igrepl 83

Value

logical indicating whether the grep match criteria were met, TRUE indicates the grep pattern was
present in minCount or more number of entries.

See Also

base: :grep()

Other jam grep functions: grepls(), igrep(), igrepl(), provigrep(),unigrep(), unvigrep(),
vgrep(), vigrep()

Examples

a <- c("data.frame”,"data_frame”,"tibble","tb1l");
igrepHas("Data.*Frame"”, a);
igrepHas("matrix”, a);

igrepl case-insensitive logical grepl

Description

case-insensitive logical grepl

Usage
igrepl(..., ignore.case = TRUE)
Arguments
...,ignore.case
parameters sent to base: :grep()
Details

This function is a simple wrapper around base: :grepl() which runs in case-insensitive mode
simply by adding default ignore.case=TRUE. It is mainly used for convenience.

Value

logical vector indicating pattern match

See Also

Other jam grep functions: grepls(), igrep(), igrepHas(), provigrep(), unigrep(), unvigrep(),
vgrep(), vigrep()

84

Examples

V <- paste@(LETTERS[1:5], LETTERS[4:81);
igl <- grepl("D", V);
ig2 <- igrepl("D", V);
ig3 <- grepl("d”, V);
ig4 <- igrepl("d”, V);
data.frame(V,
grepl_D=ig1,
grepl_d=ig3,
igrepl_D=ig2,
igrepl_d=ig4);

imageByColors

imageByColors Display color raster image using a matrix of colors

Description

Display color raster image using a matrix of colors

Usage

imageByColors(
X7
useRaster = FALSE,
fixRasterRatio = TRUE,
maxRatioFix = 100,

nan

xaxt = "s",

yaxt = "s",
doPlot = TRUE,
cellnote = NULL,
cexCellnote = 1,
srtCellnote = 0,
fontCellnote = 1,

groupCellnotes = TRUE,

groupBy = c("column”, "row"),
groupByColors = TRUE,
adjBy = c("column”, "row"),

adjustMargins = FALSE,

interpolate = getOption("interpolate”, TRUE),
verbose = FALSE,

xpd = NULL,

bty = graphics::par("bty"),

flip = c("none”, "y", "x", "xy"),
keepTextAlpha = FALSE,

doTest = FALSE,

add = FALSE,

imageByColors 85

Arguments
X matrix or data. frame containing colors
useRaster logical sent to imageDefault to enable raster rendering, as opposed to poly-

gon rendering. This parameter is highly recommended when the matrix is large
(>50 columns or rows).

fixRasterRatio logical sentto imageDefault.
maxRatioFix numeric sent to imageDefault.

xaxt, yaxt character values compatible with par to determine whether x- and y-axes are
plotted. Set both to "n" to suppress display of axes.

doPlot logical whether to create a plot, or simply return data which would have been
used to create the plot.

cellnote matrix or data.frame of labels to be displayed on the image. If groupCell-
notes==TRUE labels will be placed in the center of consecutive cells with the
same label and identical color. Currently, cell text is colored using setTextContrastColor
which uses either white or black depending upon the brightness of the back-
ground color.

cexCellnote, srtCellnote, fontCellnote
numeric vectors, with values applied to cellnote text to be compatible with
graphics: :par("cex"), graphics::par("srt"), and graphics: :par("font"),
respectively. If supplied a matrix or data.frame with it is used as-is or expanded
to equivalent dimensions of x. If the vector is named by colnames(x) then it is
applied by column in order, otherwise it is applied by row, with values recycled
to the number of columns or rows, respectively. Note cexCellnote can also be
a list, with the list elements being applied to individual cells in order. If the list
is named by colnames(x), each list element is applied to values in each column,
in order. In future this parameter may also accept a matrix of cex values as input.
Final note: values are applied to each cell, but when cell labels are combined
with groupCellnotes==TRUE, the value for the first matching cell is used. Re-
member that values are placed by coordinate, bottom-to-top on the y-axis, and
left-to-right on the x-axis.

groupCellnotes logical whether to group labels where consecutive cells contain the same label
and identical cell colors, thus only displaying one label in the center of these
groups.

groupBy character value indicating the direction to group cellnotes, when groupCellnotes=TRUE:
"row” will group cellnote values by row; "column” will group cellnote values
by column. By default, it will first group cellnotes by "row” then by "column”.

groupByColors logical indicating whether the cellnote grouping should also include the cell
color. When groupByColors=FALSE, cellnote values will be grouped together
regardless whether the underlying colors change, which may be preferred when
applying text label to topographical data.

adjBy character value indicating how to apply adjustments for cexCellnote, srtCell-
note, and fontCellnote, as described above.

adjustMargins logical indicating whether to adjust the axis label margins to ensure enough
room to draw the text rownames and colnames.

86

imageByColors

interpolate logical whether to implement image interpolation, by default TRUE when
useRaster=TRUE.

verbose logical whether to print verbose output.
xpd NULL or logical used for graphics: :par(”"xpd"”) whether to crop displayed
output to the plot area.
e If xpd=NULL then graphics::par("xpd"”) will not be modified, other-
wise graphics: :par(”"xpd”=xpd) will be defined while adding any cell
notes, then reverted to its previous value afterward. This parameter is

mainly useful when cellnote labels may overhang the plot space, and would
be cropped and not visible if graphics: :par("xpd”=TRUE).

bty character used to control box type, default graphics: :par(”bty")
flip character string, default "none", with optional axis flip:

* none: perform no axis flip
* x: flip x-axis orientation
* y: flip y-axis orientation
* xy: flip both x- and y-axis orientation
keepTextAlpha logical defaulit FALSE, passed to setTextContrastColor(), whether the

text label color should inherit the alpha transparency from the background color.
If TRUE then fully transparent background colors will not have a visible label.

doTest logical whether to run a test showing basic features.

add logical, default FALSE, whether to add to an existing device, otherwise it
creates a new plot.

Additional arguments are ignored.

Details

This function is similar to image except that it takes a matrix which already has colors defined
for each cell. This function calls imageDefault which enables updated use of the useRaster
functionality.

Additionally, if cellnote is supplied, which contains a matrix of labels for the image cells, those
labels will also be displayed. By default, labels are grouped, so that only one label is displayed
whenever two or more labels appear in consecutive cells. This behavior can be disabled with group-
Cellnotes=FALSE.

The groupCellnotes behavior uses breaksByVector() to determine where to place consecutive
labels, and it applies this logic starting with rows, then columns. Note that labels are only grouped
when both the cell color and the cell label are identical for consecutive cells.

In general, if a large rectangular set of cells contains the same label, and cell colors, the resulting
label will be positioned in the center. However, when the square is not symmetric, the label will be
grouped only where consecutive columns contain the same groups of consecutive rows for a given
label.

It is helpful to rotate labels partially to prevent overlaps, e.g. srtCellnote=10 or srtCellnote=80.
To do:

* Detect the size of the area being labeled and determine whether to rotate the label sideways.

imageDefault 87

* Detect the size of the label, compared to its bounding box, and resize the label to fit the
available space.

* Optionally draw border around contiguous colored and labeled polygons. Whether to draw
border based only upon color, or color and label, or just label... it may get confusing.

 Label proper contiguous polygons based upon color and label, especially when color and label
are present on multiple rows and columns, but not always the same columns per row.

Value

list invisibly, with elements sufficient to create an image plot. This function is called for the
byproduct of creating an image visualization.

See Also

Other jam plot functions: adjustAxisLabelMargins(), coordPresets(), decideMfrow(), drawLabels(),
getPlotAspect(), groupedAxis(), imageDefault (), minorLogTicksAxis(), nullPlot(), plotPolygonDensity(),
plotRidges(), plotSmoothScatter (), shadowText(), shadowText_options(), showColors(),

sqrtAxis(), usrBox ()

Examples

al <- c("red4”,"blue")[c(1,1,2)];

b1 <- c("yellow"”,"orange")[c(1,2,2)];

cl <- c("purple”,"orange")[c(1,2,2)];

dl <- c("purple”,"greend4")[c(1,2,2)];

df1 <- data.frame(a=al, b=b1, c=cl1, d=d1);

default using polygons
imageByColors(df1, cellnote=df1);

using useRaster, edges are slightly blurred with small tables
imageByColors(df1, cellnote=df1, useRaster=TRUE);

some text features, rotation, font size, etc

imageByColors(df1, cellnote=df1, useRaster=TRUE, adjBy="column”,
cexCellnote=list(c(1.5,1.5,1), c(1,1.5), c(1.6,1.2), c(1.6,1.5)),
srtCellnote=1ist(c(90,0,0), c(0,45), c(0,0,0), c(0,90,0)));

imageDefault Display a color raster image

Description

Display a color raster image

88 imageDefault

Usage

imageDefault(
x = seq_len(nrow(z) + 1) - 0.5,
y = seqg_len(ncol(z) + 1) - 0.5,

z,
zlim = range(zlis.finite(z)]),
xlim = range(x),

ylim = range(y),
col = grDevices::hcl.colors(12, "Y1OrRd"”, rev = TRUE),

add = FALSE,
xaxs = "i",
yaxs = "i",
xaxt = "n",
yaxt = "n",
xlab,

ylab,
breaks,

nyn no,n

flip = c("none”, "x", "y", "xy"),

oldstyle = TRUE,

useRaster = NULL,

fixRasterRatio = TRUE,

maxRatioFix = 10,

minRasterMultiple = NULL,

rasterTarget = 200,

interpolate = getOption("interpolate”, TRUE),
verbose = FALSE,

)
Arguments

X numeric location of grid lines at which the intervals in z are measured.

y numeric location of grid lines at which the intervals in z are measured.
numeric or logical matrix containing the values to be plotted, where NA values
are allowed.

zlim numeric range allowed for values in z.

x1lim numeric range to plot on the x-axis, by default the x range.

ylim numeric range to plot on the y-axis, by default the y range.

col character vector of colors to be mapped to values in z.

add logical whether to add to an existing active R plot, or create a new plot window.

Xaxs character value compatible with graphics::par(xaxs), mainly useful for sup-
pressing the x-axis, in order to produce a custom x-axis range, most useful to
restrict the axis range expansion done by R by default.

yaxs character value compatible with graphics::par(yaxs), mainly useful for sup-

pressing the y-axis, in order to produce a custom y-axis range, most useful to
restrict the axis range expansion done by R by default.

imageDefault 89

xaxt character value compatible with graphics::par(xaxt), mainly useful for sup-
pressing the x-axis, in order to produce a custom x-axis by other mechanisms,
e.g. log-scaled x-axis tick marks.

yaxt character value compatible with graphics::par(yaxt), mainly useful for sup-
pressing the y-axis, in order to produce a custom y-axis by other mechanisms,
e.g. log-scaled y-axis tick marks.

x1lab character label for the x-axis

ylab character label for the y-axis

breaks numeric vector of breakpoints for colors.

flip character string, default "none", with optional axis flip:

* none: perform no axis flip

* x: flip x-axis orientation

* y: flip y-axis orientation

* xy: flip both x- and y-axis orientation

oldstyle logical whether to delineate axis coordinates with an integer spacing for each
column and row. Note: the only allowed parameter is TRUE, since useRaster=TRUE
requires it. Therefore, this function for consistency will only output this format.

useRaster logical whether to force raster image scaling, which is especially useful for
large data matrices. In this case a bitmap raster image is created instead of
polygons, then the bitmap is scaled to fit the plot space. Otherwise, individual
polygons can be obscured on monitor screens, or may result in an extremely
large file size when writing to vector image format such as 'PDF’ or "SVG’.

fixRasterRatio logical whether to implement a simple workaround to the requirement for
square pixels, in the event the x- and y-axis dimensions are not roughly equal.

maxRatioFix integer maximum number of times any axis may be replicated to create a ma-
trix of roughly equal x- and y-axis dimensions.

minRasterMultiple
integer minimum number of times the x- and y-axis will be duplicated, which
is mostly useful when creating useRaster=TRUE for small matrix sizes, other-
wise the result will be quite blurry. For example, minRasterMultiple=10 will
duplicate each axis 10 times. Values are aplied to rows then columns. These
values are automatically defined if minRasterMultiple is NULL and rasterTarget
is not NULL.

rasterTarget integer number of cells below which cells are duplicated in order to maintain
detail. The default 200 defines minRasterMultiple=c(1,1) if there are 200 rows
and 200 columns, or minRasterMultiple=c(1,100) if there are 200 rows but 2
columns.

interpolate logical whether to implement image interpolation, by default TRUE when
useRaster=TRUE.

verbose logical whether to enable verbose output, useful for debugging.

Additional arguments are ignored.

90 isColor

Details

This function augments the image function, in that it handles the useRaster parameter for non-
symmetric data matrices, in order to minimize the distortion from image-smoothing when pixels
are not square.

The function also by default creates the image map using coordinates where each integer rep-
resents the center point of one column or row of data, known in the default image function as
oldstyle=TRUE. For consistency, imageDefault will only accept oldstyle=TRUE.

Value

list composed of elements suitable to call graphics: :image.default().

See Also
image

Other jam plot functions: adjustAxisLabelMargins(), coordPresets(), decideMfrow(), drawLabels(),
getPlotAspect(), groupedAxis(), imageByColors(), minorLogTicksAxis(), nullPlot(), plotPolygonDensity(),
plotRidges(), plotSmoothScatter (), shadowText(), shadowText_options(), showColors(),

sqrtAxis(), usrBox()

Examples

ps <- plotSmoothScatter(doTest=TRUE)

isColor detect valid R color

Description

detect valid R color

Usage
isColor(x, makeNamesFunc = c, ...)
Arguments
X character vector of potential R colors

makeNamesFunc function used to make names for the resulting vector

additional parameters are ignored

Details

This function determines whether each element in a vector is a valid R color, based upon the R color
names, valid hex color format, and the word "transparent" which is valid as an R color.

isFALSEV 91

Value

logical vector with length(x).

See Also

Other jam color functions: alpha2col (), applyCLrange(), col2alpha(), col2hcl(), col2hsl(),
col2hsv(), color2gradient(), fixYellow(), fixYellowHue(), getColorRamp(), hcl2col(),
hsl2col (), hsv2col(), kable_coloring(), makeColorDarker(), rainbow2(), rgh2col(), setCLranges(),
setTextContrastColor(), showColors(), unalpha(), warpRamp()

Examples

isColor(c("red”, "blue”, "beige”, "#99000099", "#aa@@ff", "#AAE", "bleh”))

isFALSEV Vectorized isFALSE

Description

Vectorized isSFALSE

Usage

iSFALSEV(x, ...)

Arguments

X vector

additional arguments are ignored

Details

This function applies three criteria to an input vector, to determine if each entry in the vector is
FALSE:

1. It must be class logical.
2. It must not be NA.
3. It must evaluate as FALSE.

Value

logical vector with length matching x.

92 isTRUEV

See Also

Other jam practical functions: breakDensity(), call_fn_ellipsis(), checkLightMode(), check_pkg_installed(),
colNum2excelName (), color_dither (), exp2signed(), getAxisLabel (), isTRUEV(), jargs(),

kable_coloring(), 11df (), log2signed(), middle(), minorLogTicks(), newestFile(), printDebug(),
reload_rmarkdown_cache(), renameColumn(), rmInfinite(), rmNA(), rmNAs (), rmNULL (), setPrompt()

Examples

iSFALSEV(c(TRUE, FALSE, NA, TRUE))

isTRUEV Vectorized isTRUE

Description

Vectorized isTRUE

Usage
isTRUEV(x, ...)

Arguments

X vector

additional arguments are ignored

Details

This function applies three criteria to an input vector, to determine if each entry in the vector is
TRUE:

1. It must be class logical.
2. It must not be NA.

3. It must evaluate as TRUE.

Value

logical vector with length matching x.

See Also

Other jam practical functions: breakDensity (), call_fn_ellipsis(), checkLightMode(), check_pkg_installed(),
colNum2excelName(), color_dither (), exp2signed(), getAxisLabel (), isFALSEV(), jargs(),
kable_coloring(), 11df (), log2signed(), middle(), minorLogTicks(), newestFile(), printDebug(),
reload_rmarkdown_cache(), renameColumn(), rmInfinite (), rmNA(), rmNAs(), rmNULL (), setPrompt()

jamCalcDensity 93

Examples

iSTRUEV(c(TRUE, FALSE, NA, TRUE))

jamCalcDensity Calculate scatter plot point density

Description

Calculate scatter plot point density

Usage

jamCalcDensity(x, nbin, bandwidth = NULL, range.x)

Arguments
X numeric matrix with two columns representing x,y coordinates.
nbin integer number of bins to subdivide the scatterplot, expanded to length 2 to
accommodate x and y axis bins.
bandwidth numeric or NULL representing the bandwidth used for point density determina-
tion.
range.x numeric vector length 2 representing the range of values to consider for point
density.
Details

This function is called internally by plotSmoothScatter(), and is an equivalent replacement for
grDevices non-exported function .smoothScatterCalcDensity(), understandably a requirement by
CRAN. A package should not rely on another package hidden function.

Value

list with elements used internally by plotSmoothScatter (), with: x1, x2, that, bandwidth.

See Also

Other jam internal functions: handleArgsText (), make_html_styles(), make_styles(), smoothScatterJam()

Examples

sdim(jamCalcDensity(cbind(x=rnorm(1000) + 4, y=rnorm(1000) + 4), nbin=30))

94 jam_rapply

jam_rapply Jam-specific recursive apply

Description

Jam-specific recursive apply

Usage
jam_rapply(x, FUN, how = c("unlist”, "list"), ...)
Arguments
X list
FUN function to be called on non-list elements in x.
how character string indicating whether to return the 1ist or whether to call unlist ()
on the result.
additional arguments are passed to FUN.
Details

This function is a very lightweight customization to base: : rapply(), specifically that it does not
remove NULL entries.

Value

vector or list based upon argument how.

See Also

Other jam list functions: cPaste(), heads(), list2df (), mergeAl1XY(), mixedSorts(), rbindList(),
relist_named(), rlengths(), sclass(), sdim(), uniques(), unnestList()

Examples

L <- list(entryA=c("miR-112", "miR-12", "miR-112"),
entryB=factor(c("A","B","A","B"),
levels=c("B","A")),
entryC=factor(c("C","A","B","B","C"),
levels=c("A","B","C")),
entryNULL=NULL)
rapply(L, length)
jam_rapply(L, length)

LO <- list(A=1:3, B=list(C=1:3, D=4:5, E=NULL));
rapply (L@, length)
jam_rapply (L@, length)

Jargs

95

jargs

Show R function arguments jam-style

Description

Show R function arguments jam-style

Usage

Jjargs(
X’

grepString = NULL,

sortVars =
useMessage

FALSE,
TRUE,

asList = TRUE,

useColor =

lightMode

TRUE,
NULL,

Crange = getOption(”jam.Crange"),
Lrange = getOption(”jam.Lrange"),
adjustRgb = getOption("jam.adjustRgh"),

useCollapseBase = ", ",
verbose = FALSE,
debug = 0,
)
Arguments
X function or character name of a function.
grepString NULL, logical, or character grep regular expression pattern used to filter func-
tion arguments by name. Very useful to search a function for arguments with a
substring "row".
e If logical, it is assumed to be sortVars, and indicates whether to sort the
parameter names.
* if character it will subset the function arguments by name matching this
regular expression pattern.
sortVars logical whether to sort the function parameter names.
* sortVars=FALSE returns arguments in the order they appear in the function
definition.
* sortVars=TRUE returns arguments sorted alphabetically.
useMessage logical default TRUE, whether to print output using message(), otherwise
text is returned invisibly to be displayed separately.
asList logical default TRUE, display one entry per line or display results as a data. frame.
useColor logical whether to display results in color, if the crayon package is available,

and terminal console is capable.

96

Jargs

lightMode logical or NULL, indicating whether the text background color is light, thus im-
posing a maximum brightness for colors displayed. It use lightMode if defined
by the function caller, otherwise it will use getOption("”jam.lightMode")
if defined, lastly it will attempt to detect whether running inside Rstudio by
checking the environment variable "RSTUDIO", and if so it will assume light-
Mode==TRUE.

Crange numeric range of chroma values, ranging between 0 and 100. When NULL,
default values will be assigned to Crange by setCLranges().

Lrange numeric range of luminance values, ranging between 0 and 100. When NULL,
default values will be assigned to Lrange by setCLranges().

adjustRgb numeric value adjustment used during the conversion of RGB colors to ANSI
colors, which is inherently lossy. If not defined, it uses the default returned
by setCLranges() which itself uses getOption(”jam.adjustRgb") with de-
fault=0. In order to boost color contrast, an alternate value of -0.1 is suggested.

useCollapseBase
character string used to combine multiple parameter values.
verbose logical whether to print verbose output.
debug integer value, greater than O will cause debug-type verbose output, useful be-
cause parameters are hard!
Additional arguments are installed.
Details

This function displays R function arguments, organized with one argument per line, and colorized
using the crayon package if installed.

Output is nicely spaced to help visual alignment of argument names and argument values.

Output can be filtered by character pattern. For example the function ComplexHeatmap: :Heatmap ()
is amazing, and offers numerous arguments. To find arguments relevant to dendrograms, use
"dend":

jargs(ComplexHeatmap: :Heatmap, "dend”)

NOTE: This function has edge case issues displaying complex function argument values such as
nested lists and custom functions. In that case the argument name is printed as usual, and the
argument value is displayed as a partial snippet of the default argument value.

Generic functions very often contain no useful parameters, making it difficult to discover required
parameters without reading the function documentation from the proper dispatched function and
calling package. In that case, try using jargs(functionname.default) for example compare:

jargs(barplot)
to:

jargs(barplot.default)

Value

NULL this function called for the byproduct of printing its output.

kable_coloring 97

See Also

Other jam practical functions: breakDensity (), call_fn_ellipsis(), checkLightMode(), check_pkg_installed(),
colNum2excelName(), color_dither(), exp2signed(), getAxisLabel (), isFALSEV(), isTRUEV(),
kable_coloring(), 11df (), log2signed(), middle(), minorLogTicks(), newestFile(), printDebug(),
reload_rmarkdown_cache(), renameColumn(), rmInfinite(), rmNA(), rmNAs(), rmNULL (), setPrompt()

Examples

args(jargs)
jargs(jargs)

retrieve parameters involving notes from imageByColors
jargs(imageByColors, "note")

kable_coloring Extend kableExtra colorization of 'Rmarkdown’ tables

Description

Extend kableExtra colorization of ’Rmarkdown’ tables

Usage

kable_coloring(
df,
colorSub = NULL,
background_as_tile = TRUE,
color_cells = TRUE,
row_color_by = NULL,
sep = "_",
border_left = "1px solid #DDDDDD",
border_right = FALSE,

extra_css = "white-space: nowrap;"”,

format = "html”,

format.args = list(trim = TRUE, big.mark = ","),
row.names = NA,

align = NULL,

return_type = c("kable”, "data.frame"),
verbose = FALSE,

Arguments

df data. frame input. Note that kable input is not supported.

colorSub one of the following inputs:

98

kable_coloring

e character vector of R colors, whose names match entries in the data. frame
which are given these assigned colors

* function that takes column values as input, and returns a character vec-
tor with one color per value, using NA or NULL to indicate "transparent”

* list whose names match colnames(df), where each entry contains either
character or function option as described above. A character vec-
tor should be named by values expected in each column. A function
should take column values as input, and return a character vector with
same length of R colors.

background_as_tile

color_cells

row_color_by

sep

logical default TRUE, whether the cell background color will appear as a rounded
tile (TRUE) or a rectangle (FALSE). Either way, the color does not fill the entire
whitespace of the table cell, but only around the text itself.

logical indicating whether to color individual cells, default TRUE. This may be
FALSE when also applying row_color_by, so the entire row will be colorized.

character vector with one or more colnames, indicating how to colorize en-
tire rows of a table. When one column is defined, colors in colorSub are used
as normal. When multiple columns are defined, values from each column are
concatenated using sep delimiter. Then resulting values are compared with
colorSub.

character delimiter used to combine values in multiple columns when row_color_by
is supplied and contains multiple colnames. The delimited character strings are
compared to colorSub to assign colors.

border_left, border_right, extra_css

format

format.args

row.names

align

character values optionally passed to kableExtra: :column_spec() as a con-
venient way to apply borders for each column (border_left, border_right)
or enable or disable word-wrapping by column. Some helpful examples:

* border_left=FALSE: disables left border

* border_left="1px solid #DDDDDD": light gray 1 pixel left border

* border_right=FALSE: disables right border

* border_right="1px solid #DDDDDD": light gray 1 pixel right border

* extra_css=NULL: disables word-wrap

* extra_css="whitespace: nowrap;": enables text word-wrap

* when all options above contain only FALSE or NULL, then kableExtra: : column_spec()

is not applied.

character passed to knitr::kable(), default "html"” which is the intended
format for most scenarios. It can be set to NULL to enable auto-detection of the
format.

list of arguments passed to base::format() intended mainly for numeric
columns.

logical indicating whether to include rownames(df). When row.names=NA
the default is to display rownames if they are not NULL and not equal to 1:nrow(df).

character passed to kableExtra: :kable() to define alignment of each col-
umn.

kable_coloring 99

return_type character string indicating the type of data to return.
e return_type="kable": (default) returns object with class "kableExtra"”, "knitr_kable"
suitable for downstream processing.
e return_type="data.frame": returns a data.frame whose cells contain
HTML markup with corresponding colors defined.
verbose boolean indicating whether to print verbose output.

additional arguments are passed to kableExtra::kable() which allows the
usual customizations on the initial call.

Details

This function extends the kableExtra package, and is only available for use if the kableExtra
package is installed. It is intended to allow specific color assignment of elements in a data.frame,
but otherwise uses the kableExtra functions to apply those colors.

The use case is to provide colorized HTML output for 'Rmarkdown’, it has not been tested with
other format output.

The argument colorSub accepts:

* character vector input where names should match column values
» function that accepts column values and returns a character vector of colors of equal length

e list input where names should match colnames(df), and where each list element should
contain either a character vector, or function as described above.

Value

object with class c("kableExtra”, "knitr_kable") by default when return_type="kable",
suitable to render inside an ’Rmarkdown’ or HTML context. Or returns data. frame when return_type="data.frame".

See Also

Other jam color functions: alpha2col (), applyCLrange(), col2alpha(), col2hcl(), col2hsl(),
col2hsv(), color2gradient(), fixYellow(), fixYellowHue(), getColorRamp(), hcl2col(),
hsl2col (), hsv2col(), isColor(), makeColorDarker (), rainbow2(), rgb2col(), setCLranges(),
setTextContrastColor(), showColors(), unalpha(), warpRamp()

Other jam practical functions: breakDensity(), call_fn_ellipsis(), checkLightMode(), check_pkg_installed(),
colNum2excelName (), color_dither (), exp2signed(), getAxisLabel (), isFALSEV(), isTRUEV(),

jargs(), 11df (), log2signed(), middle(), minorLogTicks(), newestFile(), printDebug(),
reload_rmarkdown_cache(), renameColumn(), rmInfinite (), rmNA(), rmNAs (), rmNULL (), setPrompt ()

Examples

expt_df <- data.frame(
Sample_ID="",
Treatment=rep(c("Vehicle", "Dex"), each=6),
Genotype=rep(c("Wildtype", "Knockout"), each=3),
Rep=paste@("rep"”, c(1:3)))

expt_df$Sample_ID <- pasteByRow(expt_df[, 2:4])

100 list2df

define colors
colorSub <- c(Vehicle="palegoldenrod”,
Dex="navy",
Wildtype="gold",
Knockout="firebrick",
nameVector(
color2gradient("grey48", n=3, dex=10),
rep("rep”, 3),
suffix=""),
nameVector(
color2gradient(n=3,
c("goldenrod1”, "indianred3", "royalblue3”, "darkorchid4")),
expt_df$Sample_ID))
kbl <- kable_coloring(

expt_df,
caption="Experiment design table showing categorical color assignment.”,
colorSub)

Note that the HTML table is rendered in 'Rmarkdown', not pkgdown

kbl

return_type="data.frame” is a data.frame with HTML contents
kdf3 <- kable_coloring(
return_type="data.frame"”,

df=expt_df,
colorSub=colorSub)
kdf3;
list2df Convert list of vectors to data.frame with item, value, name
Description

Convert list of vectors to data.frame with item, value, name

Usage
list2df(x, makeUnique = TRUE, useVectorNames = TRUE, ...)
Arguments
X list of vectors
makeUnique logical indicating whether the data.frame should contain unique rows.

useVectorNames logical indicating whether vector names should be included in the data.frame, if
they exist.

additional arguments are ignored.

ldf 101

Details

This function converts a list of vectors to a tall data.frame with colnames item to indicate the list
name, value to indicate the vector value, and name to indicate the vector name if useVectorNames=TRUE
and if names exist.

Value

data.frame with two columns, or three columns when useVectorNames=TRUE and the input x
contains names.

See Also
Other jam list functions: cPaste(), heads(), jam_rapply(), mergeAl1XY(), mixedSorts(),

rbindList(), relist_named(), rlengths(), sclass(), sdim(), uniques(), unnestList()

Examples

list2df(list(lower=head(letters, 5), UPPER=head(LETTERS, 10)))

list2df(list(lower=nameVector(head(letters, 5)),
UPPER=nameVector (head(LETTERS, 10))))

list2df(list(lower=nameVector(head(letters, 5)),
UPPER=nameVector (head(LETTERS, 10))),
useVectorNames=FALSE)

11df Long listing of R session objects

Description

Long listing of R session objects

Usage
11df(
n = Inf,
envir = -1L,
items = NULL,

use_utils_objectsize = TRUE,
all.names = TRUE,

102 1df

Arguments
n integer or Inf indicating how many objects to include in the output data. frame.
envir environment where the list of objects is obtained, default -1L searches the en-
vironment of the caller, usually the user workspace. Other recognized options:
* character string suitable for as.environment() which recognizes the
search path returned by search()
* integer or numeric equivalent to environment relative position as used in
1s() argument pos.
items character of items to include, default NULL.

use_utils_objectsize
logical, default TRUE, whether to prefer utils: :object.size(), otherwise
it will attempt to use pryr: :object_size() if the package is installed.

all.names logical passed to base: :1s() indicating whether to include all names, where
all.names=TRUE will include hidden objects whose name begin with "." such
as ".First".

additional arguments are passed to 1s(), notably pattern can be passed to sub-
set objects by regular expression.

Details
This function expands base: :1s() by also determining the object size, and sorting to display the
top n objects by size, largest first.

This package will call pryr: :object_size if available, otherwise falls back toutils: :object.size().

Value

data. frame with summary of objects and object sizes, sorted by decreasing object size.

See Also

Other jam practical functions: breakDensity (), call_fn_ellipsis(), checkLightMode(), check_pkg_installed(),
colNum2excelName(), color_dither (), exp2signed(), getAxisLabel (), isFALSEV(), isTRUEV(),

jargs(), kable_coloring(), log2signed(), middle(), minorLogTicks(), newestFile(), printDebug(),
reload_rmarkdown_cache(), renameColumn(), rmInfinite (), rmNA(), rmNAs(), rmNULL (), setPrompt()

Examples

11df(10);

custom environment

newenv <- new.env();

newenv$A <- 1:10;

newenv$df <- data.frame(A=1:10, B=11:20);
11df (envir=newenv);

rm(newenv) ;

log2signed 103

log2signed log?2 transformation with directionality

Description

log2 transformation with directionality

Usage
log2signed(x, offset = 1, base = 2, ...)
Arguments
X numeric vector
offset numeric value added to the absolute values of x prior to applying the log trans-
formation.
base numeric value indicating the logarithmic base, by default 2 in order to apply
base::log2().
additional arguments are ignored.
Details

This function applies a log2 transformation but maintains the sign of the input data, allowing for
log2 transformation of negative values.

The method applies an offset to the absolute value abs(x), in order to handle values between zero
and 1, then applies log2 transformation, then multiplies by the original sign from sign(x).

The argument of f'set is used to adjust values, for example of fset=1 will apply log2 transformation
log2(1 + x), except using the absolute value of x. This method allows for positive and negative
input data to contain values between 0 and 1, and between -1 and 0.

This function could be described as applying a log2 transformation of the "magnitude” of values in
x, while maintaining the positive or negative directionality.

If any abs(x) are less than of fset this function will raise an error.

Value

numeric vector of log-transformed magnitudes.

See Also

Other jam practical functions: breakDensity (), call_fn_ellipsis(), checkLightMode(), check_pkg_installed(),
colNum2excelName(), color_dither(), exp2signed(), getAxisLabel (), isFALSEV(), isTRUEV(),

jargs(), kable_coloring(), 11df (), middle(), minorLogTicks(), newestFile(), printDebug(),
reload_rmarkdown_cache(), renameColumn(), rmInfinite(), rmNA(), rmNAs(), rmNULL (), setPrompt()

104 makeColorDarker
Examples
X <= ¢(-100:100)/10;
log2signed(x);
plot(x=x, y=log2signed(x), xlab="x", ylab="log2signed(x)")
makeColorDarker make R colors darker (or lighter)
Description
Makes R colors darker or lighter based upon darkFactor
Usage
makeColorDarker(
hexColor,
darkFactor = 2,
sFactor = 1,
fixAlpha = NULL,
verbose = FALSE,
keepNA = FALSE,
useMethod = 1,
)
Arguments
hexColor character vector of colors to adjust
darkFactor numeric value to adjust darkness, values above 1 make the color darker, values
below 1 (or below 0) make the color brighter.
sFactor numeric value to adjust saturation, values above 1 become more saturated.
fixAlpha numeric, default NULL, to assign a fixed alpha transparency value, where O is
transparent and 1 is opaque.
verbose logical indicating whether to print verbose output.
keepNA logical, default FALSE, whether to keep NA values as NA values in the output,
otherwise NA values are considered grey input.
useMethod integer with two alternate methods, 1 is default.

Additional arguments are ignored.

makeColorDarker 105

Details

This function was originally intended to create border colors, or to create slightly darker colors used
for labels. It is also useful for for making colors lighter, in adjusting color saturation up or down, or
applying alpha transparency during the same step.

Note when colors are brightened beyond value=1, the saturation is gradually reduced in order to
produce a visibly lighter color. The saturation minimu is set to 0.2, to maintain at least some
amount of color.

Value

character vector of R colors.

See Also

Other jam color functions: alpha2col (), applyCLrange(), col2alpha(), col2hcl(), col2hsl(),
col2hsv(), color2gradient(), fixYellow(), fixYellowHue(), getColorRamp(), hcl2col(),
hsl2col(), hsv2col(), isColor(), kable_coloring(), rainbow2(), rgb2col(), setCLranges(),
setTextContrastColor(), showColors(), unalpha(), warpRamp()

Examples

n on

colorV <- c("red"”,"orange", "purple”,"blue");
colorVdark2 <- makeColorDarker(colorV, darkFactor=2);
colorVlite2 <- makeColorDarker(colorV, darkFactor=-2);
showColors(cexCellnote=0.7,

list(

“darkFactor=2"=colorVdark2,

“original colors”=colorV,

“darkFactor=-2"=colorVlite2

));

these adjustments work really well inside a network diagram
when coloring nodes, and providing an outline of comparable

color.
plot(x=c(1,2,1,2), y=c(1,2,2,1), pch=21,
xaxt="n", yaxt="n", xlab="", ylab="",

x1lim=c(0.5,2.5), ylim=c(0.5,2.5),
bg=colorV, col=colorVdark2, cex=4, lwd=2);

graphics: :points(x=c(1,2,1,2), y=c(1,2,2,1), pch=20, cex=4,
col=colorVlite2);

Making a color lighter can make it easier to add labels

The setTextContrastColor() function also helps.

graphics::text(x=c(1,2,1,2), y=c(1,2,2,1), 1:4,
col=setTextContrastColor(colorVlite2));

106 makeNames

makeNames make unique vector names

Description

make unique vector names

Usage
makeNames (
X,
unique = TRUE,
suffix = "_v",

renameOnes = FALSE,

doPadInteger = FALSE,

startN = 1,

numberStyle = c("number”, "letters"”, "LETTERS"),
useNchar = NULL,

renamefFirst = TRUE,

keepNA = TRUE,

)
Arguments

X character vector to be used when defining names. All other vector types will be
coerced to character prior to use.

unique argument which is ignored, included only for compatibility with base: : make . names.
All results from makeNames () are unique.

suffix character separator between the original entry and the version, if necessary.

renameOnes logical whether to rename single, unduplicated, entries.

doPadInteger logical whether to pad integer values to a consistent number of digits, based
upon all suffix values needed. This output allows for more consistent sorting of
names. To define a fixed number of digits, use the useNchar parameter.

startN integer number used when numberStyle is "number", this integer is used for
the first entry to be renamed. You can use this value to make zero-based suffix
values, for example.

numberStyle character style for version numbering

"number' Use integer numbers to represent each duplicated entry.

"letters'' Use lowercase letters to represent each duplicated entry. The 27th
entry uses the pattern "aa" to represent two 26-base digits. When doPad-
Integer=TRUE, a zero is still used to pad the resulting version numbers,
again to allow easy sorting of text values, but also because there is no letter
equivalent for the number zero. It is usually best to change the suffix to "_"

or "" when using "letters".

makeNames 107

"LETTERS" Use uppercase letters to represent each duplicated entry, with the
same rules as applied to "letters".

useNchar integer or NULL, number of digits to use when padding integer values with
leading zero, only relevant when usePadInteger=TRUE.

renameFirst logical whether to rename the first entry in a set of duplicated entries. If FALSE
then the first entry in a set will not be versioned, even when renameOnes=TRUE.

keepNA logical whether to retain NA values using the string "NA". If keepNA is FALSE,

then NA values will remain NA, thus causing some names to become <NA>,
which can cause problems with some downstream functions which assume all
names are either NULL or non-NA.

Additional arguments are ignored.

Details

This function extends the basic goal from make.names which is intended to make syntactically
valid names from a character vector. This makeNames function makes names unique, and offers
configurable methods to handle duplicate names. By default, any duplicated entries receive a suffix
_v# where # is s running count of entries observed, starting at 1. The make.names function, by
contrast, renames the second observed entry starting at .1, leaving the original entry unchanged.
Optionally, makeNames can rename all entries with a numeric suffix, for consistency.

For example: A, A, A, B, B, C becomes: A_v1, A_v2, A_v3, B_vl, B_v2, C

"non

Also, makeNames always allows

This makeNames function is similar to make . unique which also converts a vector into a unique vec-
tor by adding suffix values, however the make . unique function intends to allow repeated operations
which recognize duplicated entries and continually increment the suffix number. This makeNames
function currently does not handle repeat operations. The recommended approach to workaround
having pre-existing versioned names would be to remove suffix values prior to running this func-
tion. One small distinction from make.unique is that makeNames does version the first entry in a
set.

Value

character vector of unique names

See Also

Other jam string functions: asSize(), breaksByVector(), fillBlanks(), formatInt(), gsubOrdered(),
gsubs (), nameVector (), nameVectorN(), padInteger (), padString(), pasteByRow(), pasteByRowOrdered(),
sizeAsNum(), tcount (), ucfirst()

Examples

V <- rep(LETTERS[1:3], ¢(2,3,1));

makeNames (V) ;

makeNames(V, renameOnes=TRUE);

makeNames(V, renameFirst=FALSE);

exons <- makeNames(rep("exon", 3), suffix="");
makeNames(rep(exons, c(2,3,1)), numberStyle="letters"”, suffix="");

108 make_html_styles

make_html_styles vectorized make_styles for html span output

Description

vectorized make_styles for html span output

Usage

make_html_styles(
style = NULL,
text,
bg = FALSE,
bg_style = NULL,
grey = FALSE,
Cgrey = getOption("jam.Cgrey"),
lightMode = NULL,
Crange = getOption("jam.Crange"),
Lrange = getOption("jam.Lrange"),
adjustRgb = getOption("jam.adjustRgbh"),
adjustPower = 1.5,
fixYellow = TRUE,
alphaPower = 2,
setOptions = FALSE,
verbose = FALSE,

)
Arguments

style character vector of one or more styles. When NULL or NA, no style is applied,
except when bg_style is supplied and is neither NA nor NULL, in which case
entries with a bg_style and no style will use setTextContrastColor() to
define a contrasting style.

text character vector (or coerced to character) of one or more values,.

bg logical indicating whether the style should be applied to the background in-
stead of foreground. This argument is ignored when bg_style is supplied.

bg_style NULL or a character vector of one or more background styles. When this
argument is not NULL, it applies both the foreground style and background
bg_style together, and therefore ignores Crange and Lrange settings.

grey logical, default FALSE, whether to use greyscale.

Cgrey numeric chroma (C) value, which defines grey colors at or below this chroma.

Any colors at or below the grey cutoff will have use ANSI greyscale coloring.
To disable, set Cgrey=-1.

make_html_styles 109

lightMode logical indicating whether the background color is light (TRUE is bright), or
dark (FALSE is dark.) By default it calls checkLightMode() which queries
getOption("lightMode").

Crange numeric range of chroma values, ranging between 0 and 100. When NULL,
default values will be assigned to Crange. When supplied, range(Crange) is
used.

Lrange numeric range of luminance values, ranging between 0 and 100. When NULL,
default values will be assigned to Lrange. When supplied, range(Lrange) is
used.

adjustRgb numeric value adjustment used during the conversion of RGB colors to ANSI
colors, which is inherently lossy. If not defined, it uses the default returned
by setCLranges() which itself uses getOption("”jam.adjustRgb") with de-
fault=0. In order to boost color contrast, an alternate value of -0.1 is suggested.

adjustPower numeric adjustment power factor

fixYellow logical indicating whether to "fix" the darkening of yellow, which otherwise
turns to green. Instead, since JAM can, JAM will make the yellow slightly more
golden before darkening. This change only affects color hues between 80 and
90. This argument is passed to applyCLrange().

alphaPower numeric value, used to adjust the RGB values for alpha values less than 255,
by raising the ratio to 1/alphaPower, which takes the ratio of square roots. al-
phaPower=100 for minimal adjustment.

setOptions character or logical whether to update Crange and Lrange options during
the subsequent call to setCLranges(). By default,

e "ifnull” will update only options which were previously NULL;
* "FALSE" prevents modifying the global options;
e "TRUE" will update these options with the current values.

verbose logical indicating whether to print verbose output

additional parameters are ignored

Details

Note this function is experimental.

Value

character vector with the same length as text input vector, where entries are surrounded by the
relevant HTML consistent with the style defined at input. In short, a character vector as input,
colorized HTML character vector as output.

See Also

Other jam internal functions: handleArgsText (), jamCalcDensity(), make_styles(), smoothScatterJam()

Examples

make_html_styles(style=c("red”, "orange"), text=c("one ", "two"))

110

make_styles

make_styles

vectorized make_styles for crayon output

Description

vectorized make_styles for crayon output

Usage

make_styles(

style
text,

bg = FALSE,

bg_style = NULL,

grey = FALSE,

colors = NULL,

Cgrey = getOption("jam.Cgrey", 5),
lightMode = NULL,

Crange = getOption("”jam.Crange"),
Lrange = getOption("jam.Lrange"),
adjustRgb = getOption("jam.adjustRgbh"),
adjustPower = 1.5,

fixYellow = TRUE,

colorTransparent = "grey45"”,

alphaPower = 2,

setOptions = c("ifnull”, "FALSE"”, "TRUE"),

verbose = FALSE,

)
Arguments

style character vector of one or more styles. When NULL or NA, no style is applied,
except when bg_style is supplied and is neither NA nor NULL, in which case
entries with a bg_style and no style will use setTextContrastColor() to
define a contrasting style.

text character vector (or coerced to character) of one or more values,.

bg logical indicating whether the style should be applied to the background in-
stead of foreground. This argument is ignored when bg_style is supplied.

bg_style NULL or a character vector of one or more background styles. When this
argument is not NULL, it applies both the foreground style and background
bg_style together, and therefore ignores Crange and Lrange settings.

grey logical, default FALSE, whether to use greyscale.

colors integer, default NULL, number of colors for console output, when NULL it

calls crayon: :num_colors() to detect console capabilities.

make_styles

Cgrey

lightMode

Crange

Lrange

adjustRgb

adjustPower
fixYellow

111

numeric chroma (C) value, which defines grey colors at or below this chroma.
Any colors at or below the grey cutoff will have use ANSI greyscale coloring.
To disable, set Cgrey=-1.

logical indicating whether the background color is light (TRUE is bright), or
dark (FALSE is dark.) By default it calls checkLightMode() which queries
getOption("lightMode").

numeric range of chroma values, ranging between 0 and 100. When NULL,
default values will be assigned to Crange. When supplied, range(Crange) is
used.

numeric range of luminance values, ranging between 0 and 100. When NULL,
default values will be assigned to Lrange. When supplied, range(Lrange) is
used.

numeric value adjustment used during the conversion of RGB colors to ANSI
colors, which is inherently lossy. If not defined, it uses the default returned
by setCLranges() which itself uses getOption(”jam.adjustRgb") with de-
fault=0. In order to boost color contrast, an alternate value of -0.1 is suggested.

numeric adjustment power factor

logical indicating whether to "fix" the darkening of yellow, which otherwise
turns to green. Instead, since JAM can, JAM will make the yellow slightly more
golden before darkening. This change only affects color hues between 80 and
90. This argument is passed to applyCLrange().

colorTransparent

alphaPower

setOptions

verbose

Details

character color used to substitute for "transparent” which a valid R color, but
not a valid color for the crayon package.

numeric value, used to adjust the RGB values for alpha values less than 255,
by raising the ratio to 1/alphaPower, which takes the ratio of square roots. al-
phaPower=100 for minimal adjustment.

character or logical whether to update Crange and Lrange options during
the subsequent call to setCLranges(). By default,

e "ifnull” will update only options which were previously NULL;
* "FALSE" prevents modifying the global options;
* "TRUE" will update these options with the current values.

logical indicating whether to print verbose output

additional parameters are ignored

This function is essentially a vectorized version of crayon: :make_style () in order to style a vector
of character strings with a vector of foreground and background styles.

Value

character vector with the same length as text input vector, where entries are surrounded by the
relevant encoding consistent with the style defined at input. In short, a character vector as input, a
colorized character vector as output.

112

See Also

mergeAlIXY

Other jam internal functions: handleArgsText(), jamCalcDensity(), make_html_styles(),

smoothScatterJam()

Examples

cat(make_styles(style=c("red”, "yellow"), text=c("one ", "two")), "\n")

mergeAllXY Merge list of data.frames retaining all rows

Description

Merge list of data.frames retaining all rows

Usage

mergeAllXY(...)

Arguments

arguments are handled as described:

Details

* named arguments are passed through to base: :merge.data. frame(), with
the exception of all.x and all.y which are both defined all.x=TRUE and
all.y=TRUE. and all other arguments are assumed to be data.frame or
equivalent, and are merged in order they appear as arguments. The order
of these data. frame objects should not affect the output content, but will
affect the row and column order of the resulting data. frame.

This function is a wrapper around base: :merge.data.frame() except that it allows more than
two data.frame objects, and applies default arguments all.x=TRUE and all.y=TRUE for each merge
operation to ensure that all rows are kept.

Value

data.frame after iterative calls to base: :merge.data. frame().

See Also

Other jam list functions: cPaste(), heads(), jam_rapply(), list2df (), mixedSorts(), rbindList(),
relist_named(), rlengths(), sclass(), sdim(), uniques(), unnestList()

mergeAlIXY 113

Examples

df1 <- data.frame(City=c("New York”, "Los Angeles”, "San Francisco"),
State=c(”"New York"”, "California”, "California"))
df2 <- data.frame(Team=c("Yankees"”, "Mets"”, "Giants", "Dodgers"),
City=c("New York"”, "New York", "San Francisco”, "Los Angeles"))
df3 <- data.frame(State=c(”"New York", "California”),
“State Population™=c(39.24e9, 8.468e9),
check.names=FALSE)
mergeAllXY(df1, df3, df2)

df4 <- data.frame(check.names=FALSE,
CellLine=rep(c("ul3”, "dH1A", "dHIB"), each=2),
Treatment=c("Vehicle", "Dex"))

df4$CellLine <- factor(df4$CelllLine,
levels=c("ul3", "dH1A", "dH1B"))

df4$Treatment <- factor(df4$Treatment,
levels=c("Vehicle", "Dex"))

df5 <- data.frame(
Treatment=rep(c("Vehicle", "Dex"), each=3),
Time=c("@h", "12h", "24h"))

df6 <- data.frame(check.names=FALSE,
CelllLine=c("ul3"”, "dH1A", "dH1B"),
Type=c("Control”, "KO", "KO0"))

mergeAllXY(df4, df5, df6)

note the factor order is maintained
mergeAllXY(df4, df5, df6)$CelllLine
mergeAllXY(df4, df5)$Treatment

merge "all” can append rows to a data.frame
df4b <- data.frame(check.names=FALSE,
CellLine=rep("dH1C", 2),
Treatment=c("Vehicle", "Dex"))
mergeAllXY(df4, df4b)

factor order is maintained, new levels are appended
mergeAllXY(df4, df4b)$CelllLine

merge proceeds except shows missing data
mergeAllXY(df4, df4b, df5, df6)

note that appending rows is tricky, the following is incorrect
dféb <- data.frame(check.names=FALSE,

CellLine="dH1C",

Type="K0")
mergeAllXY(df4, df4b, df5, df6, dféb)

but it can be resolved by merging df6 and df6b
mergeAllXY(df4, df4b, df5, mergeAllXY(df6, df6b))

it may be easier to recognize by sorting with mixedSortDF()
mixedSortDF (honorFactor=TRUE,

114 middle

mergeAllXY(df4, df4b, df5, mergeAllXY(df6, df6b)))

again, factor order is maintained
mergeAllXY(df4, df4b, df5, sort=FALSE, mergeAllXY(df6, df6b))$CellLine

the result can be sorted properly
mixedSortDF (honorFactor=TRUE,
mergeAllXY(df4, df4b, df5, mergeAllXY(df6, dféb)))

middle Return the middle portion of data similar to head and tail

Description

Return the middle portion of data similar to head and tail

Usage
middle(x, n = 10, evenly = TRUE, ...)
Arguments
X input data that can be subset
n numeric number of entries to return
evenly logical indicating whether to return evenly spaced entries along the full length
of x. When evenly=FALSE only the middle n entries are returned.
additional arguments are ignored.
Details

This function is very simple, and is intended to mimic head() and tail() to inspect data without
looking at every value
Value

an object of class equivalent to x.

See Also

Other jam practical functions: breakDensity (), call_fn_ellipsis(), checkLightMode(), check_pkg_installed(),
colNum2excelName(), color_dither(), exp2signed(), getAxisLabel (), isFALSEV(), isTRUEV(),

jargs(), kable_coloring(),11df (), log2signed(), minorLogTicks(), newestFile(), printDebug(),
reload_rmarkdown_cache(), renameColumn(), rmInfinite (), rmNA(), rmNAs(), rmNULL (), setPrompt()

minorLogTicks 115

Examples

x <- 1:101;
middle(x);
middle(x, evenly=TRUE)

xdf <- data.frame(n=1:101,

excel_colname=jamba: : colNum2excelName(1:101));
middle(xdf)
middle(xdf, evenly=TRUE)

minorLogTicks Calculate major and minor tick marks for log-scale axis

Description

Calculate major and minor tick marks for log-scale axis

Usage

minorLogTicks(
side = NULL,
lims = NULL,
logBase = 2,
displayBase = 10,
logStep = 1,
minorWhich = c(2, 5),
asValues = TRUE,
offset = 0,
symmetricZero = (offset > 0),
col = "black”,
col.ticks = col,
combine = FALSE,
logAxisType = c("normal”, "flip", "pvalue"),
verbose = FALSE,

)
Arguments

side integer value indicating which axis to produce tick marks, 1=bottom, 2=left,
3=top, 4=right.

lims numeric vector length=2, indicating specific numeric range to use for tick marks.

logBase numeric value indicating the logarithmic base, assumed to be applied to the
numeric 1ims limits, or the axis range, previously.

displayBase numeric value indicating the base used to position axis labels, typically displayBase=10

is used to draw labels at typical positions.

116

logStep

minorWhich

asValues

offset

symmetricZero

col, col.ticks

combine

logAxisType

verbose

Details

minorLogTicks

integer value indicating the number of log steps between major axis label po-

sitions. Typically logStep=1 will draw a label every log position based upon
displayBase, for example displayBase=10 and logStep=1 will use c(1,10,100,1000);
and displayBase=10 and logStep=2 would use c(1,100,10000).

integer vector of values to label, where those integer values are between 1 and
displayBase, for example displayBase=10 may label only c(2,5), which im-
plies minor tick labels at c(2, 5, 20, 50, 200, 500). Any minor labels which
would otherwise equal a major tick position are removed. By default, when
displayBase=2, minorWhich=c(1.5) which has the effect of drawing one mi-
nor label between each two-fold major tick label.

logical indicating whether to create exponentiated numeric labels. When asValues=FALSE,
it creates expression objects which include the exponential value. Use asValues=FALSE
and logAxisType="pvalue" to draw P-value labels.

numeric value added during log transformation, typically of the form log(1 +
x) where offset=1. The offset is used to determine the accurate numeric label
such that values of @ are properly labeled by the original numeric value.

logical indicating whether numeric values are symmetric around zero. For ex-

ample, log fold changes should use symmetricZero=TRUE which ensures a log2

value of -2 is labeled -4 to indicate a negative four fold change. If symmetricZero=FALSE
alog2 value of -2 would be labeled @.0625.

character color used for the axis label, and axis tick marks, respectively, de-
fault "black".

logical, default FALSE, whether to combine major and minor ticks into one
continuous set of major tick marks.

character string indicating the type of log axis:

* normal: typical axis style and orientation
* flipped: used for reverse orientation
e pvalue: used for -log1@(pvalue) orientation.

logical indicating whether to print verbose output.

additional parameters are ignored.

This function is called by minorLogTicksAxis(), and it may be better to use that function, or
logFoldAxis() or pvalueAxis() which has better preset options.

This function calculates log units for the axis of an existing base R plot. It calculates appropriate
tick and label positions for:

* major steps, which are typically in log steps; and

* minor steps, which are typically a subset of steps at one lower log order.

For example, log 10 steps would be: c(1, 10, 100, 1000), and minor steps would be c(2, 5, 20,
50, 200, 500, 2000, 5000).

Motivation:

This function is motivated to fill a few difficult cases:

minorLogTicks 117

1. Label axis ticks properly when used together with of fset. For example log2(1 + x) uses
offset=1. Other offsets can be used as relevant.

2. Create axis labels which indicate negative fold change values, for example -2 in log2 fold
change units would be labeled with fold change -4, and not @.0625.

3. Use symmetric tick marks around x=0 when applied to log fold changes.
4. Display actual P-values when plotting 1og10(Pvalue), which is common for volcano plots.

Value

list of axis tick positions, and corresponding labels, for major and minor ticks. Note that labels
may be numeric, character, or expression. Specifically when expression the graphics: :axis()
must be called once per label.

* majorTicks: numeric position of each major tick mark

* minorTicks: numeric position of each minor tick mark

* allTicks: numeric position of each major tick mark

* majorLabels: label to show for each tick mark

* minorLabels: label to show for each tick mark

* minorSet: the numeric steps requested for minor ticks

* minorWhich: the numeric steps requested for minor labels

* allLabelsDF: data.frame with all tick marks and labels, with colname "use” indicating
whether the label is displayed beside each tick mark.

See Also

Other jam practical functions: breakDensity (), call_fn_ellipsis(), checkLightMode(), check_pkg_installed(),
colNum2excelName(), color_dither(), exp2signed(), getAxisLabel (), isFALSEV(), isTRUEV(),

jargs(), kable_coloring(), 11df (), log2signed(), middle(), newestFile(), printDebug(),
reload_rmarkdown_cache(), renameColumn(), rmInfinite (), rmNA(), rmNAs(), rmNULL (), setPrompt ()

Examples

This example shows how to draw axis labels manually,
but the function minorLogTicksAxis() is easier to use.
xlim <- c(0,4);
nullPlot(xlim=x1lim, doMargins=FALSE);
mlt <- minorLogTicks(1,

logBase=10,

offset=1,

minTick=0);
maj <- subset(mlt$alllLabelsDF, type %in% "major");
graphics::axis(1, las=2,

at=maj$tick, label=maj$text);
min <- subset(mlt$alllLabelsDF, type %in% "minor");
graphics::axis(1, las=2, cex.axis=0.7,

at=min$tick, label=min$text,

col="blue");
graphics::text(x=log10(1+c(0,5,50,1000)), y=rep(1.7, 4),

118 minorLogTicksAxis

label=c(0,5,50,1000), srt=90);

nullPlot(xlim=c(-4,10), doMargins=FALSE);

abline(v=0, lty=2)

graphics::axis(3, las=2);

minorLogTicksAxis(1, logBase=2, displayBase=10, symmetricZero=TRUE);

nullPlot(xlim=c(-4,10), doMargins=FALSE);

graphics::axis(3, las=2);

minorLogTicksAxis(1, logBase=2, displayBase=10, offset=1);
X2 <- stats::rnorm(1000) x 40;

d2 <- stats::density(log2(1+abs(x2)) * ifelse(x2<0@, -1, 1));
lines(x=d2$x, y=normScale(d2$y)+1, col="green4");

nullPlot(x1lim=c(@,10), doMargins=FALSE);

graphics::axis(3, las=2);

minorLogTicksAxis(1, logBase=2, displayBase=10, offset=1);

x1 <- c(0, 5, 15, 200);

graphics: :text(y=rep(1.0, 4), x=log2(1+x1), label=x1, srt=90, adj=c(0,0.5));
graphics: :points(y=rep(0.95, 4), x=log2(1+x1), pch=20, cex=2, col="blue");

minorLogTicksAxis Display major and minor tick marks for log-scale axis

Description

Display major and minor tick marks for log-scale axis, with optional offset for proper labeling of
log2(1+x) with numeric offset.

Log fold axis

Usage

minorLogTicksAxis(
side = NULL,
lims = NULL,
logBase = 2,
displayBase = 10,
offset = 0,
symmetricZero = (offset > @),
majorCex = 1,
minorCex = 0.65,
doMajor = TRUE,
doMinor = TRUE,
doLabels = TRUE,
doMinorLabels = TRUE,
asValues = TRUE,
logAxisType = c("normal”, "flip"”, "pvalue"),

minorLogTicksAxis 119

padj = NULL,
doFormat = TRUE,
big.mark = ","
scipen = 10,

minorWhich = c(2, 5),
logStep = 1,

cex =1,

las = 2,

col = "black”,

col.ticks = col,
minorLogTicksData = NULL,
verbose = FALSE,

’

)

logFoldAxis(
side = NULL,
lims = NULL,
logBase = 2,
displayBase = 2,
offset = 0,
symmetricZero = TRUE,
asValues = TRUE,
minorWhich = NULL,
doMinor = TRUE,
doMinorLabels = NULL,
scipen = 1,

)

pvalueAxis(
side = 2,
lims = NULL,
displayBase = 10,
logBase = 10,
logAxisType = "pvalue",
asValues = FALSE,
doMinor = FALSE,
doMinorLabels = FALSE,

scipen = 1,
)
Arguments
side integer indicating the axis side, 1=bottom, 2=left, 3=top, 4=right.
lims NULL or numeric range for which the axis tick marks will be determined. If

NULL then the corresponding graphics: :par("usr") will be used.

120

logBase

displayBase

offset

symmetricZero

minorLogTicksAxis

numeric value indicating the log base units, which will be used similar to how
base is used in log(x, base).

numeric value indicating the log base units to use when determining the numeric
label position. For example, data may be log2 scaled, and yet it is visually
intuitive to show log transformed axis units in base 10 units. See examples.

numeric offset used in transforming the numeric data displayed on this axis.
For example, a common technique is to transform data using 1og2 (1+x) which
adds 1 to values prior to the log2 transformation. In this case, offset=1, which
ensures the axis labels exactly match the initial numeric value prior to the log2
transform.

logical indicating whether numeric values are symmetric around zero. For ex-

ample, log fold changes should use symmetricZero=TRUE which ensures a log2

value of -2 is labeled -4 to indicate a negative four fold change. If symmetricZero=FALSE
a log2 value of -2 would be labeled 0. 0625.

majorCex, minorCex

numeric base text size factors, relative to cex=1 for default text size. These
factors are applied in addition to existing graphics: :par("cex") values, pre-
serving any global text size defined there.

doMajor, doMinor, doLabels, doMinorLabels

asValues

logAxisType

padj

doFormat

big.mark, scipen

minorWhich

logical, default TRUE, whether to display each type of tick and label.
* doMajor display major ticks, at displayBase positions
* doMinor display minor ticks at intermediate positions
* doLabels display any labels
* doMinorLabels display minor labels

logical, default TRUE, whether to print the exponentiated value, otherwise
FALSE will print the log value.

character string with the type of axis values:

e "normal”: axis values as-is.

* "flip": inverted axis values, for example where negative values should be
displayed as negative log-transformed values.

e "pvalue”: for values transformed as -1og1@(pvalue)

numeric vector length 2, which is used to position axis labels for the minor
and major labels, respectively. For example, padj=c(@, 1) will position minor
labels just to the left of the tick marks, and major labels just to the right of tick
marks. This example is helpful when minor labels bunch up on the right side of
each section.

logical indicating whether to apply base: : format () to format numeric labels.

arguments passed to base: : format() when doFormat=TRUE.

integer vector indicating which of the minor tick marks should be labeled.
Labels are generally numbered from 2 to displayBase-1. So by default, log 10
units would add minor tick marks and labels to the c(2,5) position. For log2
units only, the second label is defined at 1.5, which shows minor labels at c(3,
6, 12), whichare 1.5 x c(2, 4, 8).

minorLogTicksAxis 121

logStep integer the number of log units per "step", typically 1.
cex, col, col.ticks, las

parameters used for axis label size, axis label colors, axis tick mark colors, and
label text orientation, respectively.

minorLogTicksData

list object created by running jamba::minorLogTicks(), which allows in-
specting and modifying the content for custom control.

verbose logical indicating whether to print verbose output.

Additional arguments are ignored.

Details

This function displays log units on the axis of an existing base R plot. It calls jamba: :minorLogTicks()
which calculates appropriate tick and label positions.

Note: This function assumes the axis values have already been log-transformed. Make sure to adjust
the of fset to reflect the method of log-transformation, for example:
* log2(1+x) would require logBase=2 and of fset=1 in order to represent values properly at
Or near zero.
* log(@.5+x) would require logBase=exp(1) and offset=0.5.
* log10(x) would require logBase=10 and of fset=0.
The defaults logBase=2 and displayBase=10@ assume data has been log2-transformed, and dis-

plays tick marks using the common base of 10. To display tick marks at two-fold intervals, use
displayBase=2.

This function was motivated in order to label log-transformed data properly in some special cases,
like using 1og2(1+x) where the resulting values are shifted "off by one" using standard log-scaled
axis tick marks and labels.

For log fold changes, set symmetricZero=TRUE, which will create negative log scaled fold change
values as needed for negative values. For example, this option would label a logBase=2 value of
-2 as -4 and not as 0. 25.

Note that by default, whenever of fset > @ the argument symmetricZero=TRUE is also defined,
since a negative value in that scenario has little meaning. This behavior can be turned off by setting
symmetricZero=FALSE.

Value

list with vectors:

* majorLabels: character vector of major axis labels
* majorTicks: numeric vector of major axis tick positions
* minorLabels: character vector of minor axis labels
* minorTicks: numeric vector of minor axis tick positions

* alllLabelsDF: data.frame containing all axis tick positions and corresponding labels.

122 minorLogTicksAxis

See Also

Other jam plot functions: adjustAxisLabelMargins(), coordPresets(), decideMfrow(), drawLabels(),
getPlotAspect(), groupedAxis(), imageByColors(), imageDefault (), nullPlot(), plotPolygonDensity(),
plotRidges(), plotSmoothScatter (), shadowText(), shadowText_options(), showColors(),

sqrtAxis(), usrBox()

Examples

plotPolygonDensity(0:100, breaks=100);

plotPolygonDensity(@:100, breaks=50, log="x",
main="plotPolygonDensity() uses minorLogTicksAxis()",
xlab="x (log-scaled)");

plotPolygonDensity(log2(1+0:100), breaks=50,
main="manually called minorLogTicksAxis(logBase=2)",
xaxt="n",
xlab="x (log-scaled)");

minorLogTicksAxis(1, offset=1, logBase=2);

plotPolygonDensity(log10(1+0:100), breaks=50,
main="manually called minorLogTicksAxis(logBase=10)",
xaxt="n",
xlab="x (log-scaled)");

minorLogTicksAxis(1, offset=1, logBase=10);

example with log fold axes
k <= c(-5:5)
plot(x=k, y=k, xaxt="n", yaxt="n",
xlab="log2 base, displaying tick marks with logl@ intervals”,
ylab="1log2 base, displaying tick marks with log2 intervals")
axis(3, las=2)
axis(4, las=2)
1fax <- logFoldAxis(side=1, logBase=2, displayBase=2)
1fay <- logFoldAxis(side=2, logBase=2, displayBase=10)
optionally add x-axis ablines
abline(v=1fax$allTicks, lty="dotted”, col="grey88")
abline(v=1fax$majorTicks, lty="dashed”, col="grey82")
optionally add y-axis ablines
abline(h=1fay$allTicks, lty="dotted”, col="grey88")
abline(h=1fay$majorTicks, lty="dashed”, col="grey82")

example showing volcano plot features

set.seed(123);

n <- 1000;

vdf <- data.frame(lfc=rnorm(n) * 2)

vdf$ -logl@ (padj)” <- abs(vdf$lfc) * abs(rnorm(n))

plotSmoothScatter(vdf, xaxt="n", yaxt="n", xlab="Fold change”,
main="Volcano plot\ndisplayBase=2")

logFoldAxis(1)

pvalueAxis(2)

mixedOrder

123

"nan

plotSmoothScatter(vdf, xaxt="n", yaxt="n", xlab="Fold change”,
main="Volcano plot\ndisplayBase=10")
logFoldAxis(1, displayBase=10)

pvalueAxis(2)

mixedOrder

order alphanumeric values keeping numeric values in proper order

Description

order alphanumeric values keeping numeric values in proper order

Usage
mixedOrder(
X,
blanksFirst = TRUE,
na.last = NAlast,
keepNegative = FALSE,

keepInfinite = FALSE,
keepDecimal = FALSE,

ignore.case

TRUE,

useCaseTiebreak = TRUE,

honorFactor

FALSE,

returnDebug = FALSE,
returnType = c("order”, "rank"),
NAlast = TRUE,

verbose =

Arguments

X

blanksFirst

na.last

keepNegative

FALSE,
debug = FALSE

input vector
additional parameters are sent to mixedOrder ().
logical whether to order blank entries before entries containing a value.

logical whether to move NA entries to the end of the sort. When na. last=TRUE
then NA values will always be last, even following blanks and infinite values.
When na.last=FALSE then NA values will always be first, even before blanks
and negative infinite values.

)

logical whether to keep ’-’ associated with adjacent numeric values, in or-
der to sort them as negative values. Note that keepNegative=TRUE also forces
keepDecimal=TRUE, and enables matching of scientific notation such as -1.23e-10
as a numeric value. When keepNegative=FALSE the dash "-" is treated as a
common delimiter.

124 mixedOrder

keepInfinite logical whether to allow "Inf" in the input x to be considered a numeric in-
finite value. Note that "-Inf" is only treated as a negative infinite value when
keepNegative=TRUE. Also note that "Inf" is only recognized as infinite when
it appears between non-character delimiters, and not part of a larger character
string like "Information”. Be careful with keepInfinite=TRUE when sorting
gene symbols, there are gene symbols like "Inf3"” which should not be sorted
as infinite. Lastly, infinite values are sorted at the end, notably after all character
values which differs from some mixed sorting algorithms.

keepDecimal logical whether to keep the decimal in numbers, sorting as a true number and
not as a version number. By default keepDecimal=FALSE" ~, which means "v1.200" will be ordered
Decimal=TRUE, the numeric sort orders "v1.200"before"v1.30"*.

ignore.case logical whether to ignore uppercase and lowercase characters when defining
the sort order.

useCaseTiebreak
logical indicating whether to break ties when ignore. case=TRUE, using mixed
case as a tiebreaker.

honorFactor logical indicating whether to honor the order of levels if the input x is a
factor. The default honorFactor=FALSE is to maintain consistent legacy be-
havior. The purpose of this function is to enable alphanumeric sorting, which is
not the purpose of sorting by factor levels.

returnDebug logical indicating whether to include additional debug info as attributes.
returnType character string to define the return type:

* "order": returns integer order, equivalent to order ()
* "rank": returns integer rank, equivalent to rank()

NAlast logical DEPRECATED in favor of na.last for consistency with other base R
functions.
verbose logical whether to print verbose output.
debug logical indicating whether to return intermediate data useful only for debug-
ging purposes.
Details

This function is a refactor of gtools mixedorder() which was the source of inspiration for this
function, thanks to Gregory R. Warnes! This function was designed to improve the efficiency for
large vectors, and to handle special cases slightly differently. It was driven by some need to sort
gene symbols, and miRNA symbols in numeric order, for example:

test set: miR-12,miR-1,miR-122,miR-1b,miR-1a,miR-2

sort: miR-1,miR-12,miR-122,miR-1a,miR-1b,miR-2

gtools: :mixedsort: miR-122,miR-12,miR-2,miR-1,miR-1a,miR-1b
mixedSort: miR-1,miR-1a,miR-1b,miR-2,miR-12,miR-122

s

This function does not by default consider negative numbers as negative, instead it treats *-’ as a
delimiter, unless keepNegative=TRUE.

mixedOrder 125

When keepNegative=TRUE this function also recognizes scientific notation, for example "1.23e-2"
will be treated as numeric @.0123. Note that keepNegative=TRUE also forces keepDecimal=TRUE.

When keepDecimal=TRUE this function maintains numeric values that include one ".".

This function is the core of a family of mixedSort functions:

mixedSort() Applies mixedOrder() to an input vector.

mixedSorts() Applies mixedOrder() to a list of vectors, returning the list where each vector is
independently sorted.

mixedSortDF () Applies mixedOrder() to each column of a data.frame or comparable object,
optionally specifying the order of columns used during the sort.

Extra thanks to Gregory R. Warnes for the gtools mixedorder() that proved to be so useful it
ultimately inspired this function.

Value

integer vector of orders derived from x, or when returnType="rank"” an integer vector of ranks
allowing ties. The rank is therefore valid for use in chains, such as multiple columns of a data. frame.

See Also

gtools: :mixedorder(), gtools: :mixedsort()

Other jam sort functions: mixedSort(), mixedSortDF (), mixedSorts(), mmixedOrder ()

Examples

x <= c("miR-12","miR-1","miR-122","miR-1b", "miR-1a","miR-2");
mixedOrder(x);

x[mixedOrder(x)1;

mixedSort(x);

order(x);

x[order(x)1;

sort(x);

Complex example including NA, blanks, and infinite "Inf"
x <= c("Inf",

"+Inf12",

NA,

"-Inf14",

n_n
’
n "

"Inf12",
"Hnf12",
"Information”);
By default, strings are sorted as-is, "Hnf" before "Inf" before "JInf"

blanks are first, NA values are last
x[mixedOrder(x)1;

blanks are last, but before NA values which are also last

126 mixedSort

x[mixedOrder(x, blanksFirst=FALSE)];

Recognize infinite, but not the negative sign
Now infinite values are at the end, ordered by the number that follows.
x[mixedOrder(x, blanksFirst=FALSE, keepInfinite=TRUE)]

Now also recognize negative infinite values,
which puts "-Inf14" at the very beginning.
x[mixedOrder(x, blanksFirst=FALSE, keepInfinite=TRUE, keepNegative=TRUE)]

test factor level order

factor1 <- factor(c(”"Cnot9”, "Cnot8", "Cnot10"))
sort(factorl)

mixedSort(factor?)

factor1[mixedOrder(factor1)]
factor1[mixedOrder(factorl, honorFactor=TRUE)]

mixedSort sort alphanumeric values keeping numeric values in proper order

Description

sort alphanumeric values keeping numeric values in proper order

Usage

mixedSort(
X7
blanksFirst = TRUE,
na.last = NAlast,
keepNegative = FALSE,
keepInfinite = FALSE,
keepDecimal = FALSE,
ignore.case = TRUE,
useCaseTiebreak = TRUE,
honorFactor = FALSE,
sortByName = FALSE,
verbose = FALSE,
NAlast = TRUE,

)
Arguments
X vector
blanksFirst logical whether to order blank entries before entries containing a value.

na.last logical indicating whether to move NA entries at the end of the sort.

mixedSort 127

keepNegative logical whether to keep -’ associated with adjacent numeric values, in order
to sort them as negative values.

keepInfinite logical whether to allow "Inf" to be considered a numeric infinite value.

keepDecimal logical whether to keep the decimal in numbers, sorting as a true number
and not as a version number. By default keepDecimal=FALSE, which means
"v1.200" should be ordered before "v1.30". When keepDecimal=TRUE, the
numeric sort considers only "1.2" and "1.3" and sorts in that order.

ignore.case logical whether to ignore uppercase and lowercase characters when defining
the sort order. Note that when x is factor the factor levels are converted us-
ing unique (toupper(levels(x))), therefore the values in x will be sorted by
factor level.

useCaseTiebreak
logical indicating whether to break ties when ignore. case=TRUE, using mixed
case as a tiebreaker.

honorFactor logical, default TRUE, indicating whether to honor factor level order in the
output, otherwise when FALSE it sorts as character.

sortByName logical whether to sort the vector x by names(x) instead of sorting by x itself.

verbose logical whether to print verbose output.

NAlast logical deprecated in favor of argument na. last for consistency with base: : sort().

additional parameters are sent to mixedOrder.

Details

This function is a refactor of gtools mixedsort(), a clever bit of R coding from the gtools package.
It was extended to make it slightly faster, and to handle special cases slightly differently. It was
driven by the need to sort gene symbols, miRNA symbols, chromosome names, all with proper
numeric order, for example:

test set: miR-12,miR-1,miR-122,miR-1b,mir-1a
gtools::mixedsort: miR-122,miR-12,miR-1,miR-1a,mir-1b
mixedSort: miR-1,miR-1a,miR-1b,miR-12,miR-122

The function does not by default recognize negative numbers as negative, instead it treats ’-’ as a
delimiter, unless keepNegative=TRUE.

)

This function also attempts to maintain ’.
when sorting IP addresses, for example.

as part of a decimal number, which can be problematic

This function is really just a wrapper function for mixedOrder (), which does the work of defining
the appropriate order.

The sort logic is roughly as follows:
» Split each term into alternating chunks containing character or numeric substrings, split
across columns in a matrix.

* Apply appropriate ignore. case logic to the character substrings, effectively applying toupper ()
on substrings

128 mixedSort

* Define rank order of character substrings in each matrix column, maintaining ties to be re-
solved in subsequent columns.

* Convert character to numeric ranks via factor intermediate, defined higher than the highest
numeric substring value.

¢ When ignore.case=TRUE and useCaseTiebreak=TRUE, an additional tiebreaker column is
defined using the character substring values without applying toupper ().

* A final tiebreaker column is the input string itself, with toupper () applied when ignore.case=TRUE.

* Apply order across all substring columns.
Therefore, some expected behaviors:

* When ignore.case=TRUE and useCaseTiebreak=TRUE (default for both) the input data is
ordered without regard to case, then the tiebreaker applies case-specific sort criteria to the
final product. This logic is very close to default sort() except for the handling of internal
numeric values inside each string.

Value

vector of values from argument x, ordered by mixedOrder(). The output class should match
class(x).

See Also

Other jam sort functions: mixedOrder (), mixedSortDF (), mixedSorts(), mmixedOrder()

Examples

X <= c("miR-12","miR-1","miR-122","miR-1b", "miR-1a", "miR-2");
sort(x);
mixedSort(x);

test honorFactor
mixedSort(factor(c(”"Cnot9"”, "Cnot8"”, "Cnot10")))
mixedSort(factor(c(”"Cnot9”, "Cnot8"”, "Cnotl10")), honorFactor=TRUE)

test ignore.case

mixedSort(factor(c(”"Cnot9”, "Cnot8"”, "CNOT9", "Cnot10")))
mixedSort(factor(c(”"CNOT9", "Cnot8"”, "Cnot9”, "Cnot10")))
mixedSort(factor(c(”"Cnot9”, "Cnot8"”, "CNOT9", "Cnot10")), ignore.case=FALSE)
mixedSort(factor(c(”"Cnot9”, "Cnot8"”, "CNOT9", "Cnot10")), ignore.case=TRUE)

mixedSort(factor(c(”"Cnot9"”, "Cnot8"”, "CNOT9", "Cnot10")), useCaseTiebreak=TRUE)
mixedSort(factor(c(”"CNOT9", "Cnot8"”, "Cnot9"”, "Cnot10")), useCaseTiebreak=FALSE)

mixedSortDF 129

mixedSortDF sort data.frame keeping numeric values in proper order

Description

sort data.frame keeping numeric values in proper order

Usage

mixedSortDF (
df,
byCols = seq_len(ncol(df)),
na.last = TRUE,
decreasing = NULL,
useRownames = FALSE,
verbose = FALSE,
blanksFirst = TRUE,
keepNegative = FALSE,
keepInfinite = FALSE,
keepDecimal = FALSE,
ignore.case = TRUE,
useCaseTiebreak = TRUE,
sortByName = FALSE,
honorFactor = TRUE,

Arguments

df data.frame input
byCols one of two types of input:

1. integer vector referring to the order of columns to be used by mmixedOrder ()
to order the data. frame. Note that negative values will reverse the sort or-
der for the corresponding column number. To sort rownames (df) use zero
0, and to reverse sorting rownames(x) use -0.1 where the negative sign
will reverse the sort, and -0. 1 will be rounded to 0.

2. character vector of values in colnames(df), optionally including prefix
"-" to reverse the sort. Note that the argument decreasing can also be
used to specify columns to have reverse sort, either as a single value or
vector to be applied to each column in byCols. To sort rownames(df)
use "rownames” or "row.names"”. To reverse sorting rownames(df) use
"-rownames” or "-row.names".

na.last logical whether to move NA entries to the end of the sort. When na.last=TRUE
then NA values will always be last, even following blanks and infinite values.
When na.last=FALSE then NA values will always be first, even before blanks
and negative infinite values.

130 mixedSortDF

decreasing NULL or logical vector indicating which columns in byCols should be sorted
in decreasing order. By default, the sign(byCols) is used to define the sort
order of each column, but it can be explicitly overridden with this decreasing
parameter.

useRownames logical whether to use rownames(df) as a last tiebreaker in the overall rank
ordering. This parameter has the primary effect of assuring a reproducible result,
provided the rownames are consistently defined, or if rownames are actually row
numbers. When useRownames=FALSE then rows that would otherwise be ties
will be returned in the same order they were provided in df.

verbose logical whether to print verbose output. When verbose=2 there is slightly
more verbose output.

blanksFirst, keepNegative, keepInfinite, keepDecimal, ignore.case,

useCaseTiebreak, sortByName
arguments passed to mmixedOrder (), except sortByName which is not passed
along.

honorFactor logical, default TRUE, indicating whether to honor factor level order in the
output, otherwise when FALSE it sorts as character.

additional arguments passed to mmixedOrder () for custom sort options as de-
scribed in mixedSort().

Details

This function is a wrapper around mmixedOrder() so it operates on data.frame columns in the
proper order, using logic similar that used by base: :order() when operating on a data. frame.
The sort order logic is fully described in mixedSort() and mixedOrder ().

Note that byCols can either be given as integer column index values, or character vector of
colnames(x). In either case, using negative prefix - will reverse the sort order of the corresponding
column.

For example byCols=c(2, -1) will sort column 2 increasing, then column 1 decreasing.

Similarly, one can supply colnames(df), such as byCols=c("colname2”, "-colnamel"). Values
are matched as-is to colnames(df) first, then any values not matched are compared again after
removing prefix - from the start of each character string. Therefore, if colnames(df) contains
"-colname1” it will be matched as-is, but "--colname1"” will only be matched after removing the
first -, after which the sort order will be reversed for that column.

For direct control over the sort order of each column defined in byCols, you can supply logical
vector to argument decreasing, and this vector is recycled to length(byCols).

Finally, for slight efficiency, only unique columns defined in byCols are used to determine the
row order, so even if a column is defined twice in byCols, only the first instance is passed to
mmixedOrder () to determine row order.

Value

data.frame whose rows are ordered using mmixedOrder ().

See Also

Other jam sort functions: mixedOrder (), mixedSort(), mixedSorts(), mmixedOrder()

mixedSortDF 131

Examples

start with a vector of miRNA names

<- c("miR-12","miR-1", "miR-122","miR-1b", "miR-1a","miR-2");
add some arbitrary group information

<- rep(c("Air", "Treatment”, "Control”), 2);

create a data.frame

df <- data.frame(group=g,

miRNA=x,

stringsAsFactors=FALSE);

H o0 H X FHF

input data
df’;

output when using order()
df[do.call(order, df), , drop=FALSE];

output with mixedSortDF()
mixedSortDF (df);

mixedSort respects factor order
reorder factor levels to demonstrate.
"Control” should come first
gf <- factor(g, levels=c("Control”, "Air", "Treatment"));
df2 <- data.frame(groupfactor=gf,
miRNA=x,
stringsAsFactors=FALSE);

now the sort properly keeps the group factor levels in order,
which also sorting the miRNA names in their proper order.
mixedSortDF (df2);

x <- data.frame(li1=letters[1:10],
12=rep(letters[1:2+10], 5),
L1=LETTERS[1:10],
L2=rep(LETTERS[1:2+20], each=5));

set.seed(123);

rownames (x) <- sample(seq_len(10));

X;

sort by including rownames
mixedSortDF(x, byCols=c("rownames”));
mixedSortDF(x, byCols=c("L2", "-rownames"));

demonstrate sorting a matrix with no rownames
m <- matrix(c(2, 1, 3, 4), ncol=2);
mixedSortDF(m, byCols=-2)

add rownames

rownames(m) <- c("c", "a");
mixedSortDF(m, byCols=0)
mixedSortDF(m, byCols="-rownames")

132

mixedSortDF(m, byCols="rownames")

mixedSorts

mixedSortDF (data.frame(factori=factor(c(”"Cnot9"”, "Cnot8"”, "Cnot10"))), honorFactor=FALSE)

test date columns

testfiles <- system.file(package="jamba"”, c("TODO.md”, "README.md", "NEWS.md"))

testinfo <- file.info(testfiles)
testinfo
mixedSortDF(testinfo, byCols="mtime")

mixedSorts

sort alphanumeric values within a list format

Description

sort alphanumeric values within a list format

Usage

mixedSorts(
X,
blanksFirst = TRUE,
na.last = NAlast,
keepNegative = FALSE,
keepInfinite = TRUE,
keepDecimal = FALSE,
ignore.case = TRUE,
useCaseTiebreak = TRUE,
sortByName = FALSE,
na.rm = FALSE,
verbose = FALSE,
NAlast = TRUE,
honorFactor = TRUE,
xclass = NULL,
indent = 0,
debug = FALSE,

Arguments
X
blanksFirst
na.last

keepNegative

vector

logical whether to order blank entries before entries containing a value.

logical indicating whether to move NA entries at the end of the sort.

logical whether to keep ’-’ associated with adjacent numeric values, in order

to sort them as negative values.

mixedSorts 133

keepInfinite logical whether to allow "Inf" to be considered a numeric infinite value.

keepDecimal logical whether to keep the decimal in numbers, sorting as a true number
and not as a version number. By default keepDecimal=FALSE, which means
"v1.200" should be ordered before "v1.30". When keepDecimal=TRUE, the
numeric sort considers only "1.2" and "1.3" and sorts in that order.

ignore.case logical whether to ignore uppercase and lowercase characters when defining
the sort order. Note that when x is factor the factor levels are converted us-
ing unique (toupper(levels(x))), therefore the values in x will be sorted by
factor level.

useCaseTiebreak
logical indicating whether to break ties when ignore. case=TRUE, using mixed
case as a tiebreaker.

sortByName logical whether to sort the vector x by names(x) instead of sorting by x itself.

na.rm logical, default FALSE, indicating whether to remove NA values.

verbose logical whether to print verbose output.

NAlast logical deprecated in favor of argument na. last for consistency with base: : sort().

honorFactor logical, default TRUE, used to enforce factor level sort order, when FALSE it
sorts as character.

xclass character vector of classes in x, used for slight optimization to re-use this
vector if it has already been defined for x. When NULL it is created within this
function.

indent numeric used only when verbose=TRUE to determine the number of spaces in-

dented for verbose output, passed to printDebug().
debug logical, default FALSE, whether to print detailed debug output.

additional parameters are sent to mixedOrder.

Details

This function is an extension to mixedSort () to sort each vector in a list. It applies the sort to the
whole unlisted vector then splits back into list form.

In the event the input is a nested list of lists, only the first level of list structure is maintained in the
output data. For more information, see rlengths() which calculates the recursive nested list sizes.
An exception is when the data contained in x represents multiple classes, see below.

When data in x represents multiple classes, for example character and factor, the mechanism
is slightly different and not as well- optimized for large length x. The method uses rapply(x,
how="replace"”, mixedSort) which recursively, and iteratively, calls mixedSort () on each vector,
and therefore returns data in the same nested 1ist structure as provided in x.

When data in x represents only one class, data is unlist() to one large vector, which is sorted with
mixedSort(), then split back into 1ist structure representing x input.

Value

list after applying mixedSort() to its elements.

134 mixedSorts

See Also

Other jam sort functions: mixedOrder (), mixedSort (), mixedSortDF (), mmixedOrder ()

Other jam list functions: cPaste(), heads(), jam_rapply(), list2df (), mergeAllXY(), rbindList(),
relist_named(), rlengths(), sclass(), sdim(), uniques(), unnestList()

Examples

set up an example list of mixed alpha-numeric strings

set.seed(12);

X <- paste@(sample(letters, replace=TRUE, 52), rep(1:30, length.out=52));
X;

split into a list as an example

xL <- split(x, rep(letters[1:5], c(6,7,5,4,4)));

xL;

now run mixedSorts(xL)
Notice "e6"” is sorted before "e30"
mixedSorts(xL)

for fun, compare to lapply(xL, sort)
Notice "e6"” is sorted after "e30"
lapply(xL, sort)

test super-long list

xL10k <- rep(xL, length.out=10000);
names(xL10k) <- as.character(seg_along(xL10k));
print(head(mixedSorts(xL10k), 10))

Now make some list vectors into factors

xF <- xL;

xF$c <- factor(xL$c)

for fun, reverse the levels

xF$c <- factor(xFs$c,
levels=rev(levels(xF$c)))

xF

mixedSorts(xF)

test super-long list

xF10k <- rep(xF, length.out=10000);
names(xF10k) <- as.character(seg_along(xF10k));
print(head(mixedSorts(xF10k), 10))

Make a nested list
set.seed(1);
11 <- list(
A=sample(nameVector(11:13, rev(letters[11:131))),
B=list(
C=sample(nameVector(4:8, rev(LETTERS[4:8]))),
D=sample(nameVector (LETTERS[2:5], rev(LETTERS[2:51)))

mmixedOrder 135

The output is a nested list with the same structure
mixedSorts(11);
mixedSorts(1l1, sortByName=TRUE);

Make a nested list with two sub-lists
set.seed(1);
12 <- list(
A=list(
E=sample(nameVector(11:13, rev(letters[11:13])))
),
B=list(
C=sample(nameVector(4:8, rev(LETTERS[4:81))),
D=sample(nameVector (LETTERS[2:5], rev(LETTERS[2:5])))

)

12;

The output is a nested list with the same structure
mixedSorts(12);

mixedSorts(1l2, sortByName=TRUE);

when one entry is missing

Lo <- list(A=3:1,
B=1ist(C=c(1:3,NA,0Q),
D=LETTERS[c(4,5,2)],
E=NULL));

Lo

mixedSorts(L@)

mixedSorts(L@, na.rm=TRUE)

mmixedOrder order alphanumeric values from a list

Description

order alphanumeric values from a list

Usage

mmixedOrder(
decreasing = FALSE,
blanksFirst = TRUE,
na.last = NAlast,
keepNegative = FALSE,
keepInfinite = FALSE,
keepDecimal = FALSE,
ignore.case = TRUE,
useCaseTiebreak = TRUE,

136 mmixedOrder

sortByName = FALSE,
NAlast = TRUE,
honorFactor = TRUE,
verbose = FALSE,
matrixAsDF = TRUE

)
Arguments
arguments treated as a 1ist of vectors to be ordered in proper order, based upon
the mechanism by base: :order(), and as such data. frame is equivalent to a
list.
decreasing logical, default FALSE, used to reverse the sort order.

blanksFirst, na.last, keepNegative, keepInfinite, keepDecimal,
ignore.case, useCaseTiebreak, sortByName
arguments passed to mixedOrder(), except sortByName which is not passed

along.
NAlast logical deprecated in favor of argument na. last for consistency with base: : sort().
honorFactor logical, default TRUE, used to enforce factor level sort order, when FALSE it
sorts as character.
verbose logical indicating whether to print verbose output, passed as verbose - 1 to
mixedOrder ().
matrixAsDF logical if ... supplies only one matrix object, then matrixAsDF=TRUE will

cause it to be converted to a data. frame, then coerce to a 1ist before process-
ing. By default, in the event only one matrix object is supplied, this conversion
is performed, in order to define a sort order based upon each column in order,
consistent with behavior of data. frame input.

Details

This function is a minor extension to mixedOrder (), "multiple mixedOrder ()", which accepts
list input, similar to how base: :order () operates. This function is mainly useful when sorting
something like a data.frame, where ties in column 1 should be maintained then broken by non-
equal values in column 2, and so on.

This function essentially converts any non-numeric column to a factor, whose levels are sorted using
mixedOrder (). That factor is converted to numeric value, multiplied by -1 when decreasing=TRUE.
Finally the list of numeric vectors is passed to base: :order().

In fact, mixedSortDF () calls this mmixedOrder () function, in order to sort a data. frame properly
by column.

See mixedOrder () and mixedSort() for a better description of how the sort order logic operates.

Value

integer vector of row orders

See Also

Other jam sort functions: mixedOrder (), mixedSort(), mixedSortDF (), mixedSorts()

name Vector 137

Examples

test factor level order

factor1l <- factor(c(”"Cnot9”, "Cnot8", "Cnot10"))
sort(factorl)

mixedSort(factor?)

factor1[mixedOrder(factor1)]
factor1[mixedOrder(factorl, honorFactor=FALSE)]
factor1[mixedOrder(factorl, honorFactor=TRUE)]

factor1[mmixedOrder(list(factor1))]
factor1[mmixedOrder(list(factor1), honorFactor=FALSE)]
factor1[mmixedOrder(list(factor1), honorFactor=TRUE)]

nameVector assign unique names for a vector

Description

assign unique names for a vector

Usage
nameVector(x, y = NULL, makeNamesFunc = makeNames, ...)
Arguments
X character vector, or data.frame or equivalent (matrix, or tibble) with two
columns, the second column is used to name values in the first column.
y character or NULL, with names. If NULL then x is used. Note that y is

recycled to the length of x, prior to being sent to the makeNamesFunc. In fringe
cases, y can be a matrix, data.frame, or tibble, in which case pasteByRow() will
be used to create a character string to be used for vector names. Note this case
is activated only when x is not a two column matrix, data.frame, or tibble.

makeNamesFunc function to make names unique, by default makeNames () which ensures names
are unique.

passed to makeNamesFunc, or to pasteByRow() if y is a two column data.frame,
matrix, or tibble. Thus, sep can be defined here as a delimiter between column
values.

Details

This function assigns unique names to a vector, if necessary it runs makeNames to create unique
names. It differs from setNames in that it ensures names are unique, and when no names are
supplied, it uses the vector itself to define names. It is helpful to run this function inside an lapply
function call, which by default maintains names, but does not assign names if the input data did not
already have them.

138 name VectorN

When used with a data.frame, it is particularly convenient to pull out a named vector of values. For
example, log2 fold changes by gene, where the gene symbols are the name of the vector.

nameVector(genedatal,c("Gene”, "log2FC")1)

Value

vector with names defined

See Also

Other jam string functions: asSize(), breaksByVector(), fillBlanks(), formatInt(), gsubOrdered(),
gsubs (), makeNames (), nameVectorN(), padInteger(), padString(), pasteByRow(), pasteByRowOrdered(),
sizeAsNum(), tcount (), ucfirst()

Examples

it generally just creates names from the vector values
nameVector (LETTERS[1:5]);

if values are replicated, the makeNames() function makes them unique
V <- rep(LETTERS[1:5], each=3);
nameVector(V);

for a two-column data.frame, it creates a named vector using

the values in the first column, and names in the second column.
df <- data.frame(seqg_along(V), V);

df;

nameVector(df);

Lastly, admittedly a fringe case, it can take a multi-column data.frame
to generate labels:
nameVector(V, df);

nameVectorN define a named vector using vector names

Description

define a named vector using vector names

Usage

nameVectorN(x, makeNamesFunc = makeNames, ...)

name VectorN 139

Arguments

X character vector or any object which has names available names (x).

makeNamesFunc function used to create unique names, in the event that the names(x) are not
unique.

Additional arguments are ignored.

Details

This function creates a vector from the names of the input vector, then assigns the same as names.
The utility is mainly for lapply functions which maintain the name of a vector in its output. The
reason to run lapply using names is so the lapply function is operating only on the name and not
the data it references, which can be convenient when the name of the element is useful to known
inside the function body. The reason to name the names, is so the list object returned by lapply is
also named with these same consistent names.

Consider a list of data.frames, each of which represents stats results from a contrast and fold change.
The data.frame may not indicate the name of the contrast, while the list itself may be named by the
contrast. One would lapply(nameVectorN(1listDF), function(iName)iName) which allows the
internal function access to the name of each list element. This could for example be added to the
data.frame.

Value

vector of names, whose names are uniquely assigned using makeNames using the values of the
vector.

See Also

Other jam string functions: asSize(), breaksByVector (), fillBlanks(), formatInt(), gsubOrdered(),
gsubs (), makeNames (), nameVector (), padInteger(), padString(), pasteByRow(), pasteByRowOrdered(),
sizeAsNum(), tcount (), ucfirst()

Examples

a simple integer vector with character names
L <- nameVector(1:5, LETTERS[1:5]);
L;

we can make a vector of names, retaining the names
nameVectorN(L);

Now consider a named list, where the name is important

to keep for downstream work.

K <- list(A=(1:3)"3, B=7:10, C=(1:4)"2);

K;

Typical lapply-style work does not operate on the name,
making it difficult to use the name inside the function.
Here, we just add the name to the colnames, but anything
could be useful.

lapply (K, function(i){

140 newestFile

data.frame(mean=mean(i), median=stats::median(i));

s

So the next step is to run lapply() on the names

lapply(names(K), function(i){
iDF <- data.frame(mean=mean(K[[i]]), median=stats::median(K[[i]]));
colnames(iDF) <- paste(c("mean”, "median"), i);
iDF;

1)

The result is good, but the list is no longer named.

The nameVectorN() function is helpful for maintaining the names.

So we run lapply() on the named-names, which keeps the names in
the resulting list, and sends it into the function.
lapply(nameVectorN(K), function(i){

iDF <- data.frame(mean=mean(K[[i]]), median=stats::median(K[[i]]));

colnames(iDF) <- paste(c("mean”, "median"), 1i);
iDF;
D
newestFile Return the newest file from a vector of files
Description

Return the newest file from a vector of files

Usage
newestFile(x, timecol = "mtime”, n =1, ...)
Arguments
X character vector of files, specifying file path where required.
timecol character value from the output of base::file.info() indicating the time
column used to order files. By default "mtime” refers to the time the file was
last modified.
n integer number of files to return, in order of the most recent to the least recent.
By default n=1 returns only the one newest file.
additional parameters are ignored.
Details

This function returns the newest file, defined by the most recently modified time obtained from
base::file.info().

noiseFloor 141

Value

character vector length=1 of the most recently modified file from the input vector x. Note that
any files not found are removed, using base: : file.exists(), which means invalid symlinks will
be ignored.

See Also

Other jam practical functions: breakDensity (), call_fn_ellipsis(), checkLightMode(), check_pkg_installed(),
colNum2excelName (), color_dither(), exp2signed(), getAxisLabel (), isFALSEV(), isTRUEV(),

jargs(), kable_coloring(), 11df (), log2signed(), middle(), minorLogTicks (), printDebug(),
reload_rmarkdown_cache(), renameColumn(), rmInfinite (), rmNA(), rmNAs(), rmNULL (), setPrompt ()

Examples

newestFile(list.files());

noiseFloor Apply noise floor and ceiling to numeric vector

Description

Apply noise floor and ceiling to numeric vector

Usage

noiseFloor(
X,
minimum = 0,
newValue = minimum,
adjustNA = FALSE,
ceiling = NULL,
newCeiling = ceiling,

)
Arguments

X numeric vector or matrix

minimum numeric floor value

newValue numeric, by default the same as the floor value. Sometimes it can be useful to
define a different value, one example is to define values as NA, or another distinct
number away from the floor.

adjustNA logical whether to change NA values to the newValue.

ceiling numeric value, optionally a ceiling. If defined, then values above the ceiling

value are set to newCeiling.

142 noiseFloor

newCeiling numeric value when ceiling is defined, values above the ceiling are set to this
numeric value.

additional parameters are ignored.

Details

A noise floor is useful when detected numeric values are sometimes below a clear noise threshold,
and where some downstream ratio may be calculated using these values. Applying a noise floor
ensures the ratios and not artificially higher, especially in cases where the values involved are least
reliable. This procedure is expected to produce more conservative and appropriate ratios in that
scenario.

A ceiling is similar, values above the ceiling are set to the ceiling, which is practical when values
above a certain threshold are conceptually similar to those at the threshold. One clear example is
plotting -1og10(Pvalue) when the range of P-values might approach 1e-1000. In this case, setting
a ceiling of 50 conceptually equates P-values below 1e-50, while also restricting the axis range of a
plot.

The ability to set values at the floor to a different value, using newValue different from minimum, is
intended to allow separation of numeric values from the floor for illustrative purposes.

Value

numeric vector or matrix, matching the input type x where numeric values are fixed to the minimum
and ceiling values as defined by newValue and newCeiling, respectively.

See Also

Other jam numeric functions: deg2rad(), normScale(), rad2deg(), rowGroupMeans(), rowRmMadOutliers(),
warpAroundZero()

Examples

start with some random data
n <- 2000;

x1 <- stats::rnorm(n);

y1 <- stats::rnorm(n);

apply noise floor and ceiling
x2 <- noiseFloor(x1, minimum=-2, ceiling=2);
y2 <- noiseFloor(y1l, minimum=-2, ceiling=2);

apply noise floor and ceiling with custom replacement values
xm <- cbind(x=x1, y=y1);
xm3 <- noiseFloor(xm,

minimum=-2, newValue=-3,

ceiling=2, newCeiling=3);

withr::with_par(list("mfrow"=c(2,2)), {
plotSmoothScatter(x1, y1);
plotSmoothScatter(x2, y2);
plotSmoothScatter(xm3);

normScale

b

143

normScale

Scale a numeric vector from 0 to 1

Description

Scale a numeric vector from O to 1

Usage

normScale(
X)
from

:®’
to =1,

low = min(x, na.rm = TRUE),

high = max(x,
naValue = NA,

singletMethod = c("mean”,

Arguments

X
from
to

low

high

naValue

singletMethod

na.rm = TRUE),

noson

min", "max"),

numeric vector.
the minimum numeric value to re-scale the input numeric vector.
the maximum numeric value to re-scale the input numeric vector.

numeric value defining the low end of the input numeric range, intended when
input values might not contain the entire numeric range to be re-scaled.

numeric value defining the high end of the input numeric range, intended when
input values might not contain the entire numeric range to be re-scaled.

optional numeric value used to replace NA, usually by replacing NA with zero.

character value describing how to handle singlet input values, for example
how to scale the number 5 by itself.

* "mean" then it uses the average of from and to,
* "min" uses the from value, and

¢ "max" uses the to value.

additional parameters are ignored.

144 nullPlot

Details

This function is intended as a quick way to scale numeric values between 0 and 1, however other
ranges can be defined as needed.

NA values are ignored and will remain NA in the output. To handle NA values, use the rmNA()
function, which can optionally replace NA with a fixed numeric value.

The parameters low and high are used optionally to provide a fixed range of values expected for
x, which is useful for consistent scaling of x. Specifically, if x may be a vector of numeric values
ranging from 0 and 100, you would define 1ow=0 and high=100 so that x will be consistently scaled
regardless what actual range is represented by x.

Note that when x contains only one value, and low and high are not defined, then x will be scaled
based upon the argument singletMethod. For example, if you provide x=2 and want to scale
x values to between 0 and 10... x can either be the mean value 5; the minimum value 9; or the
maximum value 10.

However, if 1low or high are defined, then x will be scaled relative to that range.

Value

numeric vector after applying the transformations.

See Also
Other jam numeric functions: deg2rad(), noiseFloor(), rad2deg(), rowGroupMeans(), rowRmMadOutliers(),

warpAroundZero()

Examples

Notice the first value 1 is re-scaled to @
normScale(1:11);

Scale values from @ to 10
normScale(1:11, from=0, to=10);

Here the low value is defined as @
normScale(1:10, low=0);

normScale(c(10,20,40,30), from=50, to=65);

nullPlot Create a blank plot with optional labels

Description

Create a blank plot with optional labels for margins

nullPlot

Usage

145

nullPlot(

xaxt = "n",
yaxt = "n",
xlab = "",
ylab = "",
col = "transparent”,
xlim = c(1, 2),
ylim = c(1, 2),
las = graphics::par("las"”),
doBoxes = TRUE,
doUsrBox = doBoxes,
fill = "#FFFF9966",
doAxes = FALSE,
doMargins = TRUE,

marginUnit = c("lines”, "inches"),
plotAreaTitle = "Plot Area”,
plotSrt = 0,
plotNumPrefix = "",
bty = n n n ,
showMarginsOnly = FALSE,
add = FALSE,
Arguments
xaxt character value compatible withoptions("xaxt")
yaxt character value compatible with options("xaxt")
x1lab character x-axis label
ylab character y-axis label
col character colors passed to plot()
x1lim numeric x-axis range
ylim numeric y-axis range
las integer value indicating whether axis labels should be parallel (1) or perpen-
dicular (2) to the axis line.
doBoxes logical whether to draw annotated boxes around the plot and inner and outer
margins.
doUsrBox logical whether to draw a colored bow indicating the exact plot space, using
the function usrBox().
fill character R color used to fill the background of the plot as used by usrBox().
doAxes logical whether to draw default x- and y-axes.
doMargins logical whether to label margins, only active when doBoxes=TRUE.
marginUnit character indicating the units used for margin labels.

146 nullPlot

plotAreaTitle character label printed in the center of the plot area.

plotSrt numeric angle for the plotAreaTitle, which is good for labeling this plot with
vertical text when displaying a plot panel inside a grid layout, where the plot is
taller than it is wide.

plotNumPrefix character or integer label appended as suffix to margin labels, which is use-
ful when annotating multiple plots in a grid layout, where labels are sometimes
quite close together. This label is but a simple attempt to sidestep the real prob-
lem of fitting labels inside each visual component.

bty character passed plot(), default "n" suppresses the default box, which can
then be optionally drawn based upon the doBoxes parameter.
showMarginsOnly
logical whether to create a new plot or to annotate an existing active plot.
add logical whether to add to an existing active R plot, or create a new plot window.

additional arguments are ignored.

Details

This function creates an empty plot space, using the current graphics: :par () settings for margins,
text size, etc. By default it displays a box around the plot window, and labels the margins and plot
area for review. It can be useful as a visual display of various base graphics settings, or to create
an empty plot window with pre-defined axis ranges. Lastly, one can use this function to create a
"blank" plot which uses a defined background color, which can be a useful precursor to drawing an
image density which may not cover the whole plot space.

Value
no output, this function is called for the byproduct of creating a blank plot, optionally annotating
the margins.

See Also

Other jam plot functions: adjustAxisLabelMargins(), coordPresets(), decideMfrow(), drawLabels(),
getPlotAspect(), groupedAxis(), imageByColors(), imageDefault(), minorLogTicksAxis(),
plotPolygonDensity(), plotRidges(), plotSmoothScatter (), shadowText(), shadowText_options(),
showColors(), sqrtAxis(), usrBox()

Examples

nullPlot()

nullPlot(doBoxes=FALSE)

padInteger 147

padInteger prefix integers with leading zeros

Description

prefix integers with leading zeros

Usage
padInteger(x, padCharacter = "@", useNchar = NULL, ...)
Arguments
X integer, numeric, or character vector. In reality, only nchar(x) is required

to determine padding.
padCharacter character with nchar(padCharacter)==1, used to pad each digit as a prefix.

useNchar NULL or integer number of digits used, or if the maximum nchar (x) is higher,
that number of digits is used. Note useNchar is mostly useful when all numbers
are less than 10, but the desired output is to have a fixed number of digits 2 or
higher.

additional parameters are ignored.

Details

The purpose of this function is to pad integer numbers so they contain a consistent number of digits,
which is helpful when sorting values as character strings.

Value

character vector of length(x).

See Also

Other jam string functions: asSize(), breaksByVector (), fillBlanks(), formatInt(), gsubOrdered(),
gsubs (), makeNames (), nameVector (), nameVectorN(), padString(), pasteByRow(), pasteByRowOrdered(),
sizeAsNum(), tcount (), ucfirst()

Examples

padInteger(c(1, 10, 20, 300, 5000))

148 padString

padString pad a character string to a fixed length

Description

pad a character string to a fixed length

Usage

padString(
X’
stringlength = max(nchar(x)),

padCharacter = ,
justify = "left”,

Arguments

X character vector

stringlLength integer length for the resulting character strings in x. By default, all strings are
padded to the length of the longest entry, however stringLength can be defined
to impose strict number of characters for all entries.

padCharacter character string with nchar=1 used for padding.

justify character string with "left", "right", "center" to indicate alignment of the re-
sulting text string.

additional parameters are ignored.

Value

character vector of length(x)

See Also

Other jam string functions: asSize(), breaksByVector (), fillBlanks(), formatInt(), gsubOrdered(),
gsubs (), makeNames (), nameVector (), nameVectorN(), padInteger (), pasteByRow(), pasteByRowOrdered(),
sizeAsNum(), tcount (), ucfirst()

Examples

non

padString(c("one”,"two","three"));
padString(c("one”,"two","three","four"), padCharacter="_", justify="center");

pasteByRow

149

pasteByRow

Paste data.frame rows into character vector

Description

Paste data.frame rows into a character vector, optionally removing empty fields in order to avoid
delimiters being duplicated.

Usage
pasteByRow(
X!
sep = II_”’
na.rm = TRUE,

condenseBlanks = TRUE,

includeNames = FALSE,

sepName = ":",
blankGrep = "*[J]x$",

verbose = FALSE,

Arguments

X
sep
na.rm

condenseBlanks

includeNames

sepName

blankGrep

verbose

Details

data. frame or comparable object such as matrix or tibble.
character string separator to use between columns.
logical whether to remove NA values, or include them as "NA" strings.

logical whether to condense blank or empty values without including an extra
delimiter between columns.

logical whether to include the colname delimited prior to the value, using sep-
Name as the delimiter.

character string relevant when includeNames=TRUE, this value becomes the
delimiter between name:value.

character string used as regular expression pattern in grep() to recognize
blank entries; by default any field containing no text, or only whitespace, is
considered a blank entry.

logical whether to print verbose output.

additional arguments are ignored.

This function is intended to paste data.frame (or matrix, or tibble) values for each row of data.
It differs from using apply(x, 2, paste):

* it handles factors without converting to integer factor level numbers.

150 pasteByRowOrdered

* it also by default removes blank or empty fields, preventing the delimiter from being included
multiple times, per the condenseBlanks argument.

* it is notably faster than apply, by means of running paste() on each column of data, making
the output vectorized, and scaling rather well for large data. frame objects.

The output can also include name:value pairs, which can make the output data more self-describing
in some circumstances. That said, the most basic usefulness of this function is to create row labels.

Value

character vector of length nrow(x).

See Also

Other jam string functions: asSize(), breaksByVector (), fillBlanks(), formatInt(), gsubOrdered(),
gsubs (), makeNames (), nameVector (), nameVectorN(), padInteger (), padString(), pasteByRowOrdered(),
sizeAsNum(), tcount (), ucfirst()

Examples

create an example data.frame

al <- c("red”,"blue")[c(1,1,2)];

b1 <- c("yellow"”,"orange")[c(1,2,2)];
dl <- c("purple”,"green")[c(1,2,2)];
df2 <- data.frame(a=al, b=bl1, d=d1);
df2;

the basic output
pasteByRow(df2);

Now remove an entry to show the empty field is skipped
df2[3,3] <- "";
pasteByRow(df2);

the output tends to make good rownames
rownames (df2) <- pasteByRow(df2);

since the data.frame contains colors, we display using
imageByColors()
withr::with_par(list("mar"=c(5,10,4,2)), {
imageByColors(df2, cellnote=df2);

»

pasteByRowOrdered Paste data.frame rows into an ordered factor

Description

Paste data.frame rows into an ordered factor

pasteByRowOrdered

Usage

151

pasteByRowOrdered(

X,
sep = II_H’

na.rm = TRUE,

condenseBlanks = TRUE,
includeNames = FALSE,

keepOrder =

FALSE,

byCols = seq_len(ncol(x)),
na.last = TRUE,

Arguments

X
sep
na.rm

condenseBlanks

includeNames

keepOrder

byCols

na.last

Details

data.frame
character separator to use between columns
logical whether to remove NA values, or include them as "NA"

logical whether to condense blank or empty values without including an extra
delimiter between columns.

logical whether to include the colname delimited prior to the value, using sep-
Name as the delimiter.

logical indicating whether non-factor columns should order factor levels based
upon the existing order of unique items. This option is intended for data. frame
whose columns are already sorted in proper order, but where columns are not
factor with appropriate factor levels. Note that even when keepOrder=TRUE
all existing factor columns will honor the order of factor levels already present
in those columns.

integer or character passed to mixedSortDF (). This argument defines the
order of columns sorted by mixedSortDF (), and does not affect the order of
columns pasted. Columns are always pasted in the same order they appear in x.
This argument byCols was previously passed via . . . but is added here to make
this connection more direct.

logical passed to base: : factor () to determine whether NA values are first or
last in factor level order.

additional arguments are passed to jamba: : pasteByRow(), and to jamba: :mixedSortDF ().

This function is an extension to jamba: : pasteByRow() which pastes rows from a data. frame into
a character vector. This function defines factor levels by running jamba: : mixedSortDF (unique(x))
and calling jamba: : pasteByRow() on the result. Therefore the original order of the input x is main-
tained while the factor levels are based upon the appropriate column-based sort.

Note that the ...

additional arguments are passed to jamba: :mixedSortDF() to customize the

column-based sort order, used to define factor levels. A good way to test the order of factors is

152 plotPolygonDensity

to run jamba: :mixedSortDF (unique(x)) with appropriate arguments, and confirm the rows are
ordered as expected.

Note also that jamba: :mixedSortDF () uses jamba: :mixedSort() which itself performs alphanu-
meric sort in order to keep values in proper numeric order where possible.

Value

factor vector whose levels are defined by existing factor levels, then by sorted values.

See Also

Other jam string functions: asSize(), breaksByVector (), fillBlanks(), formatInt(), gsubOrdered(),
gsubs (), makeNames (), nameVector (), nameVectorN(), padInteger(), padString(), pasteByRow(),
sizeAsNum(), tcount (), ucfirst()

Examples

f <- LETTERS;

df <- data.frame(A=f[rep(1:3, each=2)1],
B=c(NA, f[31),
C=c(NA, NA, f[21))

df

note that output is consistent with mixedSortDF ()
jamba: :mixedSortDF (df)
jamba: : pasteByRowOrdered(df)

jamba: :mixedSortDF (df, na.last=FALSE)
jamba: :pasteByRowOrdered(df, na.last=FALSE)

jamba: :mixedSortDF (df, byCols=c(3, 2, 1))
jamba: :pasteByRowOrdered(df, byCols=c(3, 2, 1))

df1 <- data.frame(group=rep(c(”Control”, "ABC1"), each=6),
time=rep(c("Hour2"”, "Hour10"), each=3),
rep=paste@("Rep”, 1:3))

default will sort each column alphanumerically

pasteByRowOrdered(df1)

keepOrder=TRUE will honor existing order of character columns
pasteByRowOrdered(df1, keepOrder=TRUE)

plotPolygonDensity Plot distribution and histogram overlay

Description

Plot distribution and histogram overlay

plotPolygonDensity

Usage

plotPolygonDensity(

X’

doHistogram = TRUE,
doPolygon = TRUE,
col = NULL,

barCol = "#00337799",

polyCol = "#00449977",

polyBorder = makeColorDarker(polyCol),
histBorder = makeColorDarker(barCol, darkFactor
colAlphas = c(0.8, 0.6, 0.9),

darkFactors = c(-1.3, 1, 3),

lwd = 2,

las = 2,

u5.bias = 0,

pretty.n = 10,

bw = NULL,

breaks = 100,

width = NULL,
densityBreaksFactor =
axisFunc = graphics::axis,
bty = "1",

cex.axis = 1.5,

doPar = TRUE,

heightFactor = .95,
weightFactor = NULL,

main = "Histogram distribution”,
xaxs = "i",
yaxs = "i",
xaxt = "s",
yaxt = "s",
xlab = "",
ylab = "",
log = NULL,

xScale = c("default”, "logl@", "sqrt"),

usePanels = TRUE,
useOnePanel = FALSE,
ablineV = NULL,
ablineH = NULL,

ablineVcol = "#44444499"
ablineHcol = "#44444499",

ablineVlty = "solid",
ablineHlty = "solid",
removeNA = TRUE,

add = FALSE,
ylimQuantile = 0.99,
ylim = NULL,

xlim = NULL,

3,

153

154 plotPolygonDensity

highlightPoints = NULL,
highlightCol = "gold",
verbose = FALSE,

Arguments
X numeric vector, or numeric matrix. When a matrix is provided, each column in
the matrix is used as its own data source.
doHistogram logical indicating whether to plot histogram bars.
doPolygon logical indicating whether to plot the density polygon.
col character color, or when x is supplied as a matrix, a vector of colors is applied

to across plot panels. Note that col will override all colors defined for barCol,
polyCol, histBorder, polyBorder.

barCol, polyCol, polyBorder, histBorder
character colors used when col is not supplied. They define colors for the
histogram bars, polygon fill, polygon border, and histogram bar border, respec-
tively.

colAlphas numeric vector with length 3, indicating the alpha transparency to use for his-
togram bar fill, polygon density fill, and border color, respectively. Alpha trans-
parency should be scaled between O (fully transparent) and 1 (fully opaque).
These alpha transparency values are applied to each color in col when col is

defined.

darkFactors numeric used to adjust colors when col is defined. Values are applied to his-
togram bar fill, polygon density fill, and border color, respectively, by calling
makeColorDarker ().

lwd numeric line width.

las integer used to define axis label orientation.

u5.bias, pretty.n
numeric arguments passed to to base::pretty() to define pretty axis label
positions.

bw character string of the bandwidth name to use in the density calculation, passed
to jamba: :breakDensity(). By default stats: :density() calls a very smooth
density kernel, which obscures finer details, so the defaultin jamba: :breakDensity ()
uses a more detailed kernel.

breaks numeric breaks sent to hist to define the number of histogram bars. It can be in
the form of a single integer number of equidistant breaks, or a numeric vector
with specific break positions, but remember to include a starting value lower the
the lowest value in x, and an ending value higher than the highest value in x.
Passed to breakDensity().

width numeric passed to breakDensity().
densityBreaksFactor

numeric scaling factor to control the level of detail in the density, passed to
breakDensity().

plotPolygonDensity 155

axisFunc function optionally used in place of graphics: :axis() to define axis labels.
bty character string used to define the plot box shape, see graphics: :box().
cex.axis numeric scalar to adjust axis label font size.

doPar logical indicating whether to apply graphics: :par(), specifically when x is

supplied as a multi-column matrix. When doPar=FALSE, no panels nor margin
adjustments are made at all.

heightFactor numeric value indicating the height of the y-axis plot scale to use when scaling
the histogram and polygon density within each plot panel.

weightFactor numeric passed to breakDensity().
main character title to display above the plot, used only when x is supplied as a

single numeric vector. Otherwise each plot title uses the relevant colnames (x)

value.
xaxs, yaxs, xaxt, yaxt

character string indicating the type of x-axis and y-axis to render, see graphics: :par().
x1lab, ylab character labels for x-axis and y-axis, respectively.
log character vector, optionally containing "x" and/or "y" to to indicate which

axes are log-transformed. If "x" %in% log then it sets xScale="1og1@", both
methods are equivalent in defining the log-transformation of the x-axis.

xScale character string to define the x-axis transformation:

* "default"” applies no transform;
e "log1@" applies a log10 transform, specifically log10(x + 1)
* "sqrt” applies a sqrt transform.
usePanels logical indicating whether to separate the density plots into panels when x con-
tains multiple columns. When useOnePanel=FALSE the panels will be defined
so that all columns will fit on one page.
useOnePanel logical indicating whether to define multiple panels on one page. Therefore
useOnePanel=TRUE will create multiple pages with one panel on each page,
which may work well for output in multi-page "PDF’ files.
ablineV, ablineH
numeric vector representing abline vertical and horizontal positions, respec-
tively. These values are mostly helpful in multi-panel plots, to draw consistent
reference lines on each panel.
ablineVcol, ablineHcol
default"#44444499", with the abline color, used when ablineV or ablineH are
supplied, respectively.
ablineVlty, ablineHlty
numeric or character indicating the line type to use for ablineV and ablineH,

respectively.

removeNA logical indicating whether to remove NA values prior to running histogram and
density calculations. Presence of NA values generally causes both functions to
fail.

add logical indicating whether to add the plot to an existing visualization.

ylimQuantile numeric value between 0 and 1, indicating the quantile value of the density y
values to use for the ylim. This threshold is only applied when ylim is NULL.

156 plotPolygonDensity

ylim, x1im numeric y-axis and x-axis ranges, respectively. When either is NULL, the axis
range is determined independently for each plot panel. Either value can be sup-
plied as a 1list to control the numeric range for each individual plot, relevant
only when x is supplied as a multi-column matrix.

highlightPoints
character vector of optional rownames, or integer values with row indices,
for rows to be highlighted. When x is supplied as a matrix, highlightPoints
can be supplied as a 1ist of vectors, referring to each column in x. When rows
are highlighted, the plot is drawn with all points, then the highlighted points are
drawn again over the histogram bars, and polygon density, as relevant.

highlightCol character vector of colors to use to fill the histogram when highlightPoints
is supplied. Multiple values are recycled one per column in x, if x is supplied as
a multi-column matrix.

verbose logical indicating whether to print verbose output.

additional arguments are passed to relevant internal functions.

Details

This function is a wrapper around graphics: :hist() and stats::density(), with enough cus-
tomization to cover most of the situations that need customization.

For example log="x" will automatically log-transform the x-axis, keeping the histogram bars uni-
formly sized. Alternatively, xScale="sqrt"” will square root transform the data, and transform the
x-axis while keeping the numeric values constant.

It also scales the density profile height to be similar to the histogram bar height, using the 99th
quantile of the y-axis value, which helps prevent outlier peaks from dominating the y-axis range,
thus obscuring interesting smaller features.

If supplied with a data matrix, this function will create a layout with ncol (x) panels, and plot the
distribution of each column in its own panel, using categorical colors from rainbow2().

For a similar style using ggplot2, see plotRidges(), which displays only the density profile for
each sample, but in a much more scalable format for larger numbers of columns.

By default NA values are ignored, and the distributions represent non-NA values.

Colors can be controlled using the parameter col, but can be specifically defined for bars with
barCol and the polygon with polyCol.

Value

invisible 1ist with density and histogram data output, however this function is called for the by-
product of its plot output.

See Also

Other jam plot functions: adjustAxisLabelMargins(), coordPresets(), decideMfrow(), drawLabels(),
getPlotAspect(), groupedAxis(), imageByColors(), imageDefault(), minorLogTicksAxis(),
nullPlot(), plotRidges(), plotSmoothScatter(), shadowText(), shadowText_options(),
showColors(), sqrtAxis(), usrBox()

plotRidges 157

Examples

basic density plot

set.seed(123);

x <- stats::rnorm(2000);

plotPolygonDensity(x, main="basic polygon density plot”);

fewer breaks

plotPolygonDensity(x,
breaks=20,
main="breaks=20");

log-scaled x-axis
plotPolygonDensity(10*(3+stats::rnorm(2000)), log="x",
breaks=50,
main="log-scaled x-axis");

highlighted points

set.seed(123);

plotPolygonDensity(x,
highlightPoints=sample(which(abs(x) > 1), size=200),
breaks=40,
main="breaks=40");

hide axis labels

set.seed(123);

plotPolygonDensity(x,
highlightPoints=sample(which(abs(x) > 1), size=200),
breaks=40,

xaxt="n",
won

yaxt="n",
main="breaks=40");

multiple columns

set.seed(123);

xm <- do.call(cbind, lapply(1:4, function(i){stats::rnorm(2000)}))
plotPolygonDensity(xm, breaks=20)

plotRidges Plot ridges density plots for numeric matrix input

Description

Plot ridges density plots for numeric matrix input

Usage

plotRidges(
X,

158 plotRidges

xScale = c("none”, "-logl1@", "logl@"),
xlab = NULL,
ylab = NULL,

title = ggplot2::waiver(),
subtitle = ggplot2::waiver(),
caption = ggplot2::waiver(),
xlim = NULL,

color_sub = NULL,
rel_min_height = 0,

bandwidth = NULL,

adjust =1,

scale = 1,

share_bandwidth = TRUE,

Arguments
X matrix with numeric values, or a 1ist of numeric vectors. In either case the
data is converted to long-tall format before plotting.
xScale character string indicating whether to transform the x-axis values:

¢ "none": no transformation

e "-1og1@": values are transformed with 1og10(x) and x-axis labels are ad-
justed accordingly.

* "log1@": values are transformed with 1og1@(1 + x) except that negative
values are transformed with -1og10(1 - x). The x-axis labels are plotted
to account for the log10(1 + x) offset.

x1lab, ylab character strings optionally used as x-axis and y-axis labels.

title, subtitle, caption
character string values optionally passed to the relevant downstream ggplot?2

functions.
xlim passed to ggplot2::x1im() to define the x-axis range.
color_sub character vector named by colnames(x), or when x isa 1ist, names(color_sub)

should contain names (x), used to define specific colors for each ridge plot.
rel_min_height numeric values passed to ggridges: :geom_density_ridges2()

bandwidth numeric value used to define the bandwidth density when share_bandwidth=TRUE
which is default. The bandwidth affects the level of detail presented in each
ridgeline, and when shared across ridgelines share_bandwidth=TRUE then each
ridgeline will use the same consistent level of detail. In this case, it is passed to
ggridges: :geom_density_ridges2(). Note when bandwidth=NULL a default
value is derived from the range of data to be plotted.

adjust numeric used to adjust the default bandwidth only when bandwidth=NULL. It is
intended as a convenient method to adjust the level of detail.

scale numeric passed directly to ggridges: :geom_density_ridges2().

plotSmoothScatter 159

share_bandwidth
logical indicating whether to supply ggridges: :geom_density_ridges2()
a specific bandwidth to use for all ridgelines. When share_bandwidth=FALSE
then each ridgeline is presented using the default bandwidth in ggridges: : geom_density_ridges2().

additional arguments are ignored.

Details

This function is a convenient wrapper for ggridges: :geom_density_ridges2(), intended to be
analogous to plotPolygonDensity() which differs by plotting each item in a separate plot panel
using base graphics. This function plots each item as a ridgeline plot in the same plot window using
ggplot2::ggplot().

Value

object with class "gg", "ggplot” with density plot in the form of ridges.

See Also

Other jam plot functions: adjustAxisLabelMargins(), coordPresets(), decideMfrow(), drawLabels(),
getPlotAspect(), groupedAxis(), imageByColors(), imageDefault(), minorLogTicksAxis(),
nullPlot(), plotPolygonDensity(), plotSmoothScatter (), shadowText(), shadowText_options(),
showColors(), sqrtAxis(), usrBox()

Examples

multiple columns

set.seed(123);

xm <- do.call(cbind, lapply(1:4, function(i){stats::rnorm(2000)}))
plotRidges(xm)

set.seed(123);
x <- stats::rnorm(2000)
plotRidges(x)

plotSmoothScatter Smooth scatter plot with enhancements

Description

Produce scatter plot using point density instead of displaying individual data points.

plotSmoothScatter(
X,
y = NULL,
bwpi = 50,
binpi = 50,
bandwidthN = NULL,
nbin = NULL,

expand = c(0.04, 0.04),

transFactor = 0.25,

transformation = function(x) x*transFactor,
xlim = NULL,

plotSmoothScatter

ylim = NULL,

xlab = NULL,

ylab = NULL,

nrpoints = 0,

colramp = c("white"”, "lightblue", "blue"”, "orange", "orangered2"),
col = "black”,

doTest = FALSE,
fillBackground = TRUE,

naAction = c("remove”, "floor@", "floor1"),
xaxt = "s",
yaxt = "s”,
add = FALSE,
asp = NULL,

applyRangeCeiling = TRUE,
useRaster = TRUE,
verbose = FALSE,

Arguments

X numeric vector, or data matrix with two or more columns.

y numeric vector, or if data is supplied via x as a matrix, y is NULL.

bwpi numeric value indicating the bandwidth "per inch" to scale the bandwidth based
upon visual space available. This argument is used to define bandwidthN, how-
ever bwpi is only used when bandwidthN=NULL. The bandwidth is used to define
the 2-dimensional point density.

binpi numeric value indicating the number of bins "per inch", to scale based upon
visual space available. This argument is used to define nbin, however binpi is
only used when nbin=NULL.

bandwidthN integer number of bandwidth steps to use across the visible plot window. Note

that this bandwidth differs from default graphics: :smoothScatter() in that
it uses the visible plot window instead of the data range, so if the plot window
is not sufficiently similar to the data range, the resulting smoothed density will

plotSmoothScatter 161

not be visibly distorted. This parameter also permits display of higher (or lower)
level of detail.

nbin integer number of bins to use when converting the kernel density result (which
uses bandwidthN above) into a usable image. This setting is effectively the res-
olution of rendering the bandwidth density in terms of visible pixels. For exam-
ple nbin=256 will create 256 visible pixels wide and tall in each plot panel; and
nbin=32 will create 32 visible pixels, with lower detail which may be suitable
for multi-panel plots. To use a variable number of bins, try binpi.

expand numeric value indicating the fraction of the x-axis and y-axis ranges to add to
create an expanded range, used when add=FALSE. The default expand=c (0. 04,
0.04) mimics the R base plot default which adds 4 percent total, therefore 2
percent to each side of the visible range.

transFactor numeric value used by the default transformation function, which effectively
scales the density of points to a reasonable visible distribution. This argument
is a convenience method to avoid having to type out the full transformation
function.

transformation function which converts point density to a number, typically related to square
root or cube root transformation. Note that the default uses transFactor but if
a custom function is supplied, it will not use transFactor unless specified.

x1lim numeric x-axis range, or NULL to use the data range.

ylim numeric y-axis range, or NULL to use the data range.

xlab, ylab character labels for x- and y-axis, respectively.

nrpoints integer number of outlier datapoints to display, as defined by graphics: : smoothScatter(),

however the default here is nrpoints=0 to avoid additional clutter in the output,
and because the default arguments bwpi, binpi usually indicate all individual
points.

colramp any input recognized by getColorRamp():

* character vector with multiple colors

* character string length 1, with valid R color used to create a linear color
gradient

* character name of a known color gradient from RColorBrewer or viridis

» function that itself produces vector of colors, in the form function(n)
where n defines the number of colors.

col character string with R color used when nrpoints is non-zero, this color de-
fines the color of those points.

doTest logical indicating whether to create a visual set of test plots to demonstrate the
utility of this function.

fillBackground logical indicating whether to fill the background of the plot panel with the first
color in colramp. The default fillBackground=TRUE is useful since the plot
panel may be slightly wider than the range of data being displayed, and when the
first color in colramp is not the same as the plot device background color. Run a
test using: plotSmoothScatter (doTest=TRUE, fillBackground=FALSE, colramp="viridis")
and compare with: plotSmoothScatter(doTest=TRUE, colramp="viridis")

162

naAction

xaxt

yaxt

add

asp

plotSmoothScatter

character string indicating how to handle NA values, typically when x is NA
and y is not NA, or vice versa. valid values:

"remove'' ignore any points where either x or y are NA
"floor0" change any NA values to zero O for either x or y
"floor1" change any NA values to one 1 for either x or y

The latter two options are useful when the desired plot should indicate the pres-
ence of an NA value in either x or y, while also indicating the the corresponding
non-NA value in the opposing axis. The driving use was plotting gene fold
changes from two experiments, where the two experiments may not have mea-
sured the same genes.

character value compatible with graphics::par(xaxt), used to control the x-axis
range, similar to its use in plot() generic functions.

character value compatible with graphics::par(yaxt), used to control the y-axis
range, similar to its use in plot() generic functions.

logical whether to add to an existing active R plot, or create a new plot window.

numeric with optional aspect ratio, as described in graphics: :plot.window(),
where asp=1 defines x- and y-axis coordinate ranges such that distances between
points are rendered accurately. One data unit on the y-axis is equal in length to
asp multiplied by one data unit on the x-axis. Notes:

* When add=TRUE, the value asp is ignored, because the existing plot device
is re-used.

* When add=FALSE and asp is defined with numeric value, a new plot device
is opened using plot.window(), and the x1im and ylim values are passed
to that function. As a result the graphics: :par("usr") values are used to
define x1im and y1lim for the purpose of determining visible points, relevant
to applyRangeCeiling.

applyRangeCeiling

useRaster

logical indicating how to handle points outside the visible plot range. Valid
values:

TRUE Points outside the viewing area are fixed to the plot boundaries, in order
to represent that there are additional points outside the boundary. This set-
ting is recommended when the reasonable viewing area is smaller than the
actual data, for example to be consistent across plot panels, but where you
want to indicate that points may be outside the range.

FALSE Points outside the viewing area is not displayed, with no special visual
indication. This setting is useful when data may contain a large number of
points at c(@, @) and the density overwhelms the detail in the rest of the

plot. In that case setting x1im=c(1e-1@, 10) and applyRangeCeiling=FALSE

would obscure these points.

logical indicating whether to produce plots using the graphics: :rasterImage()

function which produces a plot raster image offline then scales this image to vis-
ible plot space. This technique has two benefits:
1. It produces substantially faster plot output.

2. Output contains substantially fewer plot objects, which results in much
smaller file sizes when saving in "PDF’ or ’'SVG’ format.

plotSmoothScatter 163

verbose logical indicating whether to print verbose output.

additional arguments are passed to called functions, including getColorRamp(),
nullPlot(), smoothScatterJam().

Details

This function intends to make several potentially customizable features of graphics: : smoothScatter ()
plots much easier to customize. For example bandwidthN allows defining the number of bandwidth
steps used by the kernel density function, and importantly bases the number of steps on the visible

plot window, and not the range of data, which can differ substantially. The nbin argument is related,

but is used to define the level of detail used in the image function, which when plotting numerous
smaller panels, can be useful to reduce unnecessary visual details.

This function also by default produces a raster image plot with useRaster=TRUE, which adjusts
the x- and y-bandwidth to produce visually round density even when the x- and y-ranges are very
different.

Comments:

* asp=1 will define an aspect ratio 1, meaning the x-axis and y-axis units will be the same
physical size in the output device. When this is true, and fillBackground=TRUE the x1im
and ylim values follow logic for plot.default() and plot.window() such that each axis
will include at least the x1im and ylim ranges, with additional range included in order to
maintain the plot aspect ratio.

* When asp, and any of x1imor ylim, are defined, the data will be "cropped" to respective x1im
and ylim values as relevant, after which the plot is drawn with the appropriate plot aspect
ratio. When applyRangeCeiling=TRUE, points outside the fixed x1im and ylim range are
fixed to the edge of the range, after which the plot is drawn with the requested plot aspect
ratio. It is recommended not to define x1im and ylim when also defining asp.

* When add=TRUE the x1im and ylim values are already defined by the plot device. It is recom-
mended not to define x1im and ylim when add=TRUE.

Value

list invisibly, sufficient to reproduce most of the graphical parameters used to create the smooth
scatter plot.

See Also

Other jam plot functions: adjustAxisLabelMargins(), coordPresets(), decideMfrow(), drawLabels(),
getPlotAspect(), groupedAxis(), imageByColors(), imageDefault(), minorLogTicksAxis(),
nullPlot (), plotPolygonDensity(), plotRidges(), shadowText(), shadowText_options(),
showColors(), sqrtAxis(), usrBox()

Examples

doTest=TRUE invisibly returns the test data
x <- plotSmoothScatter(doTest=TRUE);

so it can be plotted again with different settings
colnames(x) <- c("column_1", "column_2")

164 printDebug

plotSmoothScatter(x, colramp="RdBu_r");

printDebug print colorized output to R console

Description

print colorized output to R console
print colorized output to R console, inverted

print colorized output to HTML

Usage

printDebug(

fgText = NULL,

fgDefault = getOption("jam.fgDefault”, c("darkorangel”, "dodgerblue")),
bgText = NULL,

fgTime = getOption(”jam.fgTime", "cyan2"),

timeStamp = getOption(”jam.timeStamp"”, TRUE),

comment = getOption("”jam.comment”, 'htmlOut),
formatNumbers = getOption("”jam.formatNumbers”, TRUE),
trim = getOption("jam.trim", TRUE),

digits = getOption("jam.digits"),

nsmall = getOption(”jam.nsmall”, @L),

justify = "left”,

big.mark = getOption("”jam.big.mark", ","),

small.mark = getOption(”jam.small.mark"”, "."),
zero.print = NULL,
width = NULL,

doColor = getOption(”jam.doColor"),
splitComments = FALSE,

collapse = getOption("”jam.collapse”, ""),
sep = getOption(”jam.sep”, ","),
doReset = NULL,

detectColors = TRUE,

dex = 2,

darkFactor = c(1, 1.5),

sFactor = c(1, 1.5),

lightMode = checkLightMode(),

Crange = getOption("”jam.Crange"),
Lrange = getOption("”jam.Lrange"),
removeNA = FALSE,

replaceNULL = NULL,

adjustRgb = getOption("jam.adjustRgbh"),

printDebug 165

byLine = FALSE,
verbose = FALSE,

indent = "",
keepNA = TRUE,
file = getOption("jam.file", ""),

append = getOption("jam.append”, TRUE),

invert = getOption(”jam.invert"”, FALSE),

htmlOut = getOption(”jam.htmlOut”, FALSE)
)

printDebugI(..., invert = TRUE)

printDebugHtml(..., htmlOut = TRUE, comment = FALSE)

Arguments

character, factor, numeric or compatible atomic vectors to be printed to the
R console. These arguments are recognized as any un-named argument, or any
argument whose name does not match the named arguments below.

fgText one of two formats to define the foreground color for elements in ... being
printed. Each element is colored in order, and when multiple vector values are
contained in one ... element, the color defined in fgText is extended. The
input types recognized:

* NULL when no color is defined, one of two outputs:

1. When all values in ... represent colors, these colors are used to col-
orize the output text. When names() are present they are used as the
text labels in place of the vector value.

2. When not all values in ... represent colors, the default color set is
used: c("darkorangel1”, "dodgerblue").

3. To disable option 1 above, define a specific value for fgText, such as
fgText=c("darkorangel1”, "dodgerblue").

* vector of R compatible colors, recycled to the length of When any
element of ... is a vector with multiple values, the corresponding color
in fgText is shaded slightly lighter and darker, then recycled to the vector
length, so that adjacent values have slightly different color. This behavior
is controlled by default argument splitComments=TRUE.

e list of vectors of R compatible colors, recycled to the length of ...,
then applied to each element in ... in order. When only one color is de-
fined, and multiple values are present in the corresponding 1ist element,
the color is shaded slightly lighter and darker, then recycled to the vector
length, as described above. This behavior is controlled by default argument
splitComments=TRUE. When multiple colors are defined for the 1ist ele-
ment, these values are recycled to the vector length.

* Note: When invert=TRUE the values for fgText and bgText are reversed,
and if the resulting fgText is NULL then its color is defined by setTextContrastColor ()
in order to define a contrasting text color.

fgDefault character defaults to getOption("jam. fgDefault”, c("darkorange1”, "dodgerblue”)),
and is used when colors are not defined by fgText or by the input . . . values.

166

printDebug

bgText vector of R colors, or 1ist of vectors, used to define the background color,
using the same approach described for fgText. Note that NULL or NA defines the
absence of any background color, which is default. When invert=TRUE, which
is default for printDebugI (), the values for fgText and bgText are reversed.

fgTime character R color to colorize the time
timeStamp logical whether to include a time stamp in output
comment logical whether to prefix output with *## ’ as a comment, or character string

used as a prefix.

formatNumbers logical whether to format numbers using format () which controls the number
of digits displayed, and is default. When formatNumbers=FALSE sometimes
numeric values that contain integers may be represented as 14.0000000001.

trim, digits, nsmall, justify, big.mark, small.mark, zero.print, width
arguments passed to format().

doColor logical or NULL indicating whether to colorize output. When doColor is NULL,

if the "crayon” package is available, and if crayon detects color is permitted,
color is enabled.

splitComments logical whether to color each element independently without light-dark alter-
nating pattern. The intensity of the adjustment is controlled by dex passed to

color2gradient().

collapse character collapse string used to separate list items, by default "" so text sepa-
ration is expected in the input data.

sep character separator used to separate vector elements, when a list items contains
a vector.

doReset logical or NULL, indicating whether to apply crayon: :reset() to the delim-

iter sep. When doReset=TRUE the style on the delimiter is forced to reset, using
crayon: :reset(), or to remove pre-existing style with crayon: :strip_style().
When doReset=NULL and sep contains ANSI escape characters, they are left
as-is; when doReset=NULL and sep does not contain ANSI escape characters,
sep becomes crayon: :reset(sep) which forces the style to be reset between
printed values.

detectColors logical whether to detect and potentially try to correct console color capabili-
ties.

dex numeric passed to color2gradient() to split a color into a lighter,darker alter-
nating pattern. Until version 0.0.83.900, this process used gradientWtFactor=1
and was not adjustable. Note that when splitComments=TRUE the input values
in ... are flattened to a single vector, and colors in fgText are applied directly
without adjustment.

darkFactor, sFactor
numeric arguments deprecated.

lightMode logical or NULL, indicating whether the text background color is light, where
lightMode=TRUE indicates the background is white or light enough to require
darker text, imposing a maximum brightness for colors displayed. When NULL
it calls checkLightMode (), which uses:

e getOption(”jam.lightMode") if defined

printDebug

Crange, Lrange

removeNA
replaceNULL

adjustRgb

byLine

verbose

indent

keepNA
file
append

invert

htmlOut

Details

167

 otherwise attempts to detect whether the session is running inside RStudio,
by checking for environmental variable "RSTUDIO", under the assumption
that default RStudio uses a light background, therefore 1ightMode=TRUE.

* if steps above fail, it uses 1ightMode=FALSE.

* to force a specific lightMode for all uses, use options: options(jam.lightMode=TRUE)

or options(jam.lightMode=FALSE).

numeric range of chroma and luminance values between 0 and 100. When
NULL, default values are assigned by setCLranges(). The intent is to re-
strict the range relative to the console background color, also controlled by
lightMode.

logical whether to remove NA values and not print to the console.

character or NULL, optionally replace NULL elements with non-NULL char-
acter value, otherwise NULL elements are ignored.

numeric value adjustment used during the conversion of RGB colors to ANSI
colors, which is inherently lossy. If not defined, it uses the default returned
by setCLranges() which itself uses getOption("”jam.adjustRgb") with de-
fault=0. In order to boost color contrast, an alternate value of -0.1 is suggested.

logical whether to delimit lists by line instead of using collapse to combine
them onto one line.

logical whether to print verbose output

character optional characters used as a prefix to indent output. When numeric
it is rounded to integer, then this many character spaces " " are concatenated
together to define the indent width. Note that the indent text is not colorized.

logical, default TRUE, whether to keep and print NA values.
argument passed to cat () to send output to a file or compatible output of cat ().

logical whether to append output, passed to cat() when file is defined.

logical indicating whether foreground and background colors should be switched,

as is default for printDebugI(). Note when the resulting fgText is NULL, its
color is defined by setTextContrastColor () to define a contrasting text color
relative to the background color in bgText.

logical indicating whether to print HTML span output, using format <span style="color: fg;backgrc

This argument is not yet implemented, more testing is required to determine the
best mechanism to use for things like 'Rmarkdown’ rendering, and R-shiny app
rendering.

This function prints colorized output to the R console, with some rules for colorizing the output to
help visually distinguish items.

The main intent is to use this function to print pretty debug messages, because color helps identify.

By default, output has the following configurable properties:

* each line begins with a comment, controlled by default comment=getOption("”jam.comment",
TRUE) which by default uses "##", but which can be defined to use a different prefix, or FALSE
for no prefix at all.

168 printDebug

* each line includes time and date stamp controlled by timeStamp=getOption(”jam.timeStamp”,
TRUE) which by default includes the current time and date.

* each line formats numeric values, controlled by formatNumbers=getOption("jam.formatNumbers”,
TRUE), which determines whether to apply arguments big.mark and small.mark to make nu-
meric values more readable.

e eachentryin ... is printed with its own foreground color fgText, background color bgText,
with a slight lighter/darker dithering effect to add minor visual distinction for multiple values.

* Values in each vector are concatenated by sep="," by default.

* Each list is concatenated by collapse="" by default.
Additional convenience rules:
 For convenience, when the last ... argument is a character vector of colors, it is assumed

to be fgText.

* When the only entry in . . . is a character vector of R colors, the names are printed using the
color vector for fgText, or if no names exist the colors are printed using the color vector for
fgText.

 For printDebugI() or invert=TRUE, colors typically assigned to fgText are instead assigned
to bgText.

* For very specific color assignments, fgText and/or bgText can be defined as a list of
character vectors of R colors, in which case the 1ist overall is recycled to the length . . . to
be printed, and within each vector of . . . printed the corresponding color vector is recycled to
the length of that vector.

For use inside 'Rmarkdown’ .Rmd documents, current recommendation is to define the R output
with results="asis' like this:

\\"\{r block_name, results='asis'}

some R code here

AT

Then define a global option to turn off the comment prefix in printDebug(): options(”jam.comment"”=FALSE)

For colorized text, it may require "html_output” rendering of the .Rmd 'Rmarkdown’ file, as well
as this option to enable HTML formatting by printDebug(): options(”jam.htmlOut"=TRUE).

This function prints colorized output to the R console, using the same logic as printDebug except
by default the color is inverted so the default fgText colors are applied to the background.

This function prints colorized output in HTML form, using the same logic as printDebug() ex-
cept by default the output is HTML. The intended use is for 'Rmarkdown’ with chunk option
results='asis', which causes the HTML code to be interpreted directly as HTML.

This function internally calls printDebug() which then calls make_html_styles(). The text is
surrounded by HTML formatting.

Value

NULL invisibly, this function is called for the side effect of printing output using cat().
NULL invisibly, this function is called for the side effect of printing output using cat().
NULL invisibly, this function is called for the side effect of printing output using cat().

printDebug 169

See Also

Other jam practical functions: breakDensity(), call_fn_ellipsis(), checkLightMode(), check_pkg_installed(),
colNum2excelName (), color_dither (), exp2signed(), getAxisLabel (), isFALSEV(), isTRUEV(),

jargs(), kable_coloring(), 11df (), log2signed(), middle(), minorLogTicks(), newestFile(),
reload_rmarkdown_cache(), renameColumn(), rmInfinite(), rmNA(), rmNAs(), rmNULL (), setPrompt()

Other jam practical functions: breakDensity (), call_fn_ellipsis(), checkLightMode(), check_pkg_installed(),
colNum2excelName (), color_dither (), exp2signed(), getAxisLabel (), isFALSEV(), isTRUEV(),

jargs(), kable_coloring(), 11df (), log2signed(), middle(), minorLogTicks(), newestFile(),
reload_rmarkdown_cache(), renameColumn(), rmInfinite (), rmNA(), rmNAs(), rmNULL (), setPrompt ()

Other jam practical functions: breakDensity(), call_fn_ellipsis(), checkLightMode(), check_pkg_installed(),
colNum2excelName (), color_dither (), exp2signed(), getAxisLabel (), isFALSEV(), isTRUEV(),

jargs(), kable_coloring(), 11df (), log2signed(), middle(), minorLogTicks(), newestFile(),
reload_rmarkdown_cache(), renameColumn(), rmInfinite(), rmNA(), rmNAs (), rmNULL (), setPrompt()

Examples
printDebug("Testing ", "default ", "printDebug().");
printDebug("List of vectors:"”, c("one"”, "two", "three"));

By default, there is no space between separate elements in

printDebug("List of vectors:", c("one"”, "two", "three"),
c("four”, "five", "six"));

To add a space " " between elements, use collapse

printDebug("List of vectors:", c("one"”, "two", "three"),
c("four”, "five", "six"), collapse=" ");

slightly different style, one entry per line, indented:
printDebug(”List of vectors:", c("one”, "two"”, "three"),
c("four”, "five”, "six"), collapse="\n ");

when a vector entirely contains recognized colors,
the colors are used in the output
printDebug(c("red”, "blue"”, "yellow"));

When the vector contains colors, the names are used as the label
color_vector <- jamba::nameVector(c("red”, "blue"”, "green”,"orange"),

c("group_A", "group_B", "group_C", "group_D"));
printDebug(color_vector);

Remember the sister function that inverses the colors
printDebugI(color_vector);

printDebug(1:10, fgText="blue", dex=2);
printDebug(1:10, bgText="blue", dex=2);
printDebug(1:10, fgText="orange"”, dex=2);

170 provigrep

provigrep provigrep: progressive case-insensitive value-grep

Description

case-insensitive value-grep for a vector of patterns

case-insensitive grep for a vector of patterns

Usage

provigrep(
patterns,
X,
maxValues = NULL,
sortFunc = c,

rev = FALSE,
returnType = c("vector”, "list"),
ignore.case = TRUE,
value = TRUE,
)
proigrep(..., value = FALSE)
Arguments
patterns character vector of regular expression patterns, ultimately passed to base: :grep().
X character vector that is the subject of base: :grep().
maxValues integer or NULL, the maximum matching entries to return per grep pattern.
Note that each grep pattern may match multiple values, and values are only
returned at most once each, so restricting items returned by one grep pattern
may allow an item to be matched by subsequent patterns, see examples. This
argument is most commonly used with maxValues=1 which returns only the first
matching entry per pattern.
sortFunc function or NULL, used to sort entries within each set of matching entries.
Use NULL to avoid sorting entries.
rev logical whether to reverse the order of matching entries. Use TRUE if you
would like entries matching the patterns to be placed last, and entries not match-
ing the grep patterns to be placed first. This technique is effective at placing
"noise names" at the end of a long vector, for example.
returnType character indicating whether to return a vector or list. A list will be in order

of the grep patterns, using empty elements to indicate when no entries matched
each pattern. This output is useful when you would like to know which patterns
matched specific entries.

provigrep 171

ignore.case logical parameter sent to base: : grep(), TRUE runs in case-insensitive mode,
as by default.
value logical indicating whether to return the matched value, or when value=FALSE

the index position is returned.

additional arguments are passed to vigrep().

Details

Purpose is to provide "progressive vigrep()",which is value-returning, case-insensitive grep, starting
with an ordered vector of grep patterns. For example, it returns entries in the order they are matched,
by the progressive use of grep patterns.

It is particularly good when using multiple grep patterns, since grep() does not accept multiple
patterns as input. This function also only returns the unique matches in the order they were matched,
which alleviates the need to run a series of grep() functions and collating their results.

It is mainly to allow for prioritized ordering of matching entries, where one would like certain
matching entries first, followed by another set of matching entries, without duplication. For exam-
ple, one might grep for a few patterns, but want certain pattern hits to be listed first.

Value

character vector with entries in x reordered to match the order of patterns provided, or list
when returnType="1ist" named by patterns in the order provided. When value=FALSE then it
returns integer index values of x.

See Also

Other jam grep functions: grepls(), igrep(), igrepHas(), igrepl(), unigrep(), unvigrep(),
vgrep(), vigrep()

Examples

a rather comical example

set up a test set with labels containing several substrings
set.seed(1);

testTerms <- c("robot”,"tree"”,"dog", "mailbox","pizza”, "noob");
testWords <- pasteByRow(t(combn(testTerms,3)));

now pull out entries matching substrings in order

provigrep(c("pizza"”, "dog", "noob"”, "."), testWords);

more detail about the sort order is shown with returnType="list”
provigrep(c("pizza”, "dog"”, "noob"”, "."), testWords, returnType="list");

rev=TRUE will reverse the order of the list

provigrep(c("pizza"”, "dog", "noob"”, "."), testWords, returnType="list"”, rev=TRUE);
provigrep(c("pizza”, "dog"”, "noob”, "."), testWords, rev=TRUE);

another example showing ordering of duplicated entries
set.seed(1);
X <- pasted(
sample(letters[c(1,2,2,3,3,3,4,4,4,4)1),
sample(1:5));

172 rad2deg

X5
sort by letter
provigrep(letters[1:4], x)

show more detail about how the sort is performed
provigrep(letters[1:4], x, returnType="list")

rev=TRUE will reverse the order of pattern matching
which is most useful when "."” is the last pattern:
provigrep(c(letters[1:3], "."), x, returnType="list")
provigrep(c(letters[1:3], "."), x, returnType="list"”, rev=TRUE)

example demonstrating maxValues
return in list format
provigrep(c(”[ABCD]", "[CDEF]", "[FGHI]"), LETTERS, returnType="list")

maxValues=1

provigrep(c("[ABCD]", "[CDEF]", "[FGHI]"), LETTERS, returnType="list"”, maxValues=1)
provigrep(c("[ABCD]", "[CDEF]", "[FGHI]"), LETTERS, returnType="list"”, maxValues=1, value=FALSE)
proigrep(c("[ABCD]"”, "[CDEF]", "[FGHI]"), LETTERS, maxValues=1)

rad2deg Convert radians to degrees

Description

Convert radians to degrees

Usage
rad2deg(x, ...)

Arguments
X numeric vector, expected to be radian values between zero and pi*2.
other parameters are ignored.
Details

This function simply converts radians which range from zero to pi*2, into degrees which range from
0 to 360.

Value

numeric vector after coverting radians to degrees.

rainbow?2 173

See Also

Other jam numeric functions: deg2rad(), noiseFloor(), normScale(), rowGroupMeans(), rowRmMadOutliers(),

warpAroundZero()

Examples

rad2deg(c(pi*2, pi/2))

rainbow?2 Simple rainbow palette replacement

Description

Simple rainbow palette replacement using variable saturation and vibrance

Usage
rainbow2(n, s = c(0.9, 0.7, 0.88, 0.55), v = c(0.92, 1, 0.85, 0.94), ...)
Arguments
n integer number of colors requested
S,V numeric vector of values to recycle as saturation and vibrance, respectively. The
purpose is to improve visual distinction between adjacent and nearby colors in
the color wheel.
additional arguments are passed to grDevices: :rainbow():
* start,end to control the starting and ending hue [0,1],
* alpha for alpha opacity, default NULL adds no alpha,
* rev to reverse the color order.
Value

character vector of R colors.

See Also

Other jam color functions: alpha2col (), applyCLrange(), col2alpha(), col2hcl(), col2hsl(),
col2hsv(), color2gradient(), fixYellow(), fixYellowHue(), getColorRamp(), hcl2col(),
hsl2col (), hsv2col(), isColor(), kable_coloring(), makeColorDarker(), rgb2col(), setCLranges(),

setTextContrastColor(), showColors(), unalpha(), warpRamp()

174 rbindList
Examples
showColors(list(
“rainbow(24) =grDevices: :rainbow(24),
“rainbow2(24) =rainbow2(24),
“rainbow2 (24, rev=TRUE) =rainbow2(24, rev=TRUE),
“rainbow2(24, start=0.5, end=0.499) =rainbow2(24,
start=0.5, end=0.5-1e-5),
“rainbow2(24, rev=TRUE,\nstart=0.5, end=0.499) =rainbow2(24,
rev=TRUE, start=0.5, end=0.5-1e-5)))
rbindList rbind a list of vectors into matrix or data.frame
Description
rbind a list of vectors into matrix or data.frame
Usage
rbindList(
X,
emptyValue = "",
nullValue = NULL,
keepListNames = TRUE,
newColnames = NULL,
newRownames = NULL,
fixBlanks = TRUE,
returnDF = FALSE,
verbose = FALSE,
)
Arguments
X list of atomic vector, matrix, or data. frame objects.
emptyValue character value to use to represent missing values, whenever a blank cell is
introduced into the resulting matrix
nullvalue optional value used to replace NULL entries in the input list, useful especially
when the data was produced by strsplit() with "". Use nullValue="" to
replace NULL with "" and preserve the original list length. Otherwise when
nullValue=NULL any empty entries will be silently dropped.
keepListNames logical whether to use list names as rownames in the resulting matrix or data.frame.
newColnames NULL or character vector of colnames to use for the resulting matrix or

data.frame.

rbindList 175

newRownames NULL or character vector of rownames to use for the resulting matrix or
data.frame. If supplied, this value overrides the keepListNames=TRUE use of
list names as rownames.

fixBlanks logical whether to use blank values instead of repeating each vector to the
length of the maximum vector length when filling each row of the matrix or
data.frame.

returnDF logical whether to return a data.frame, by default FALSE, a matrix is returned.

verbose logical whether to print verbose output during processing.

Additional arguments are ignored.

Details

The purpose of this function is to emulate do.call(rbind, x) on alist of vectors, while specifically
handling when there are different numbers of entries per vector. The output matrix number of
columns will be the longest vector (or largest number of columns) in the input list x.

Instead of recycling values in each row to fill the target number of columns, this function fills cells
with blank fields, with default argument fixBlanks=TRUE.

In extensive timings tests at the time this function was created, this technique was notably faster than
alternatives. It runs do.call(rbind, x) then subsequently replaces recycled values with blank
entries, in a manner that is notably faster than alternative approaches such as pre-processing the
input data.

Value

matrix unless returnDF=TRUE in which the output is coerced to a data. frame. The rownames by
default are derived from the list names, but the colnames are not derived from the vector names. If
input x contains data. frame or matrix objects, the output will retain those values.

See Also

Other jam list functions: cPaste(), heads(), jam_rapply(), list2df (), mergeAl1XY(), mixedSorts(),
relist_named(), rlengths(), sclass(), sdim(), uniques(), unnestList()

Examples

L <- list(a=LETTERS[1:4], b=letters[1:3]);
rbindList(L);
rbindList(L, returnDF=TRUE);

176

readOpenxlIsx

readOpenxlsx

Import one or more data.frame from ’Excel’ ’xlsx’ format

Description

Import one or more data.frame from *Excel’ "xIsx’ format

Usage
readOpenxlsx(

x1sx,

sheet = NULL,
startRow = 1,
startCol =1,
rows = NULL,
cols = NULL,

check.names =

check_header

FALSE,

= FALSE,

check_header_n = 10,
verbose = FALSE,

Arguments

x1sx

sheet

startRow

startCol

rows

character path to an "Excel’ file in x1sx format, compatible with openx1sx: :read. x1sx().

one of NULL, character, or integer vector, where: sheet=NULL will import ev-
ery sheet; character is a vector of sheet names; and integer is a vector of sheet
index values. The sheet names are determined with openx1sx: : getSheetNames().

integer indicating the row number to start importing each sheet.
* Note startRow can be a vector with length length(sheet), to specify the
startRow for each sheet.
* Note startRow is ignored when rows is defined for the same sheet, to min-
imize confusion about using both togetheer.
integer indicating the first column number to retain after importing each sheet.
* Note startCol can be a vector with length length(sheet), to specify the
startCol for each sheet.
* Note startCol is ignored when cols is defined for the same sheet, to min-
imize confusion about using both togetheer.
integer vector indicating specific rows to import for each sheet.
* To specify different rows for each sheet, supply rows asa list of integer
vectors.

* Note that when rows is defined for a sheet, it will be used and startRow
will be ignored for that same sheet.

readOpenxIsx 177

cols integer vector indicating specific column numbers to import for each sheet.

* To specify different cols for each sheet, supply cols asalist of integer
vectors.

¢ Note that when cols is defined for a sheet, it will be used and startCol
will be ignored for that same sheet.

check.names logical indicating whether to call make.names() on the colnames of each
data.frame.

¢ Note that openxlsx: :read.x1sx() does not honor check.names=FALSE,
so a workaround is applied which loads a single line without column head-
ers, in order to obtain the same data without mangling column headers. If
this process fails, another workaround is to use startRow=2 (one higher
than previous) and colNames=FALSE.

check_header logical indicating whether to test for presence of header rows, which may
be multi-line column headers. When check_header=TRUE, this method simply
tests for the presence of rows that have ncol different than the remaining rows of
data in the given sheet. When header rows are detected, the values are assigned
to column dimnames of the data. frame.

check_header_n integer number of rows to test for header rows, only used when check_header=TRUE.
This step is intended when the top row(s) contain fewer columns with head-
ers, above actual column headers, for example the first row c(”Sample”, "",
"o "Lane", ""), and the second row c("Name”, "Type"”, "Label"”, "Name",
"Type"). In this case the desired output is "Sample_Name”, "Sample_Type","Sample_Label”,"Lane_N

This option default is FALSE due to the number of exceptions seen in real data.

nn

verbose logical indicating whether to print verbose output.

additional arguments are passed to openxlsx::read.x1lsx().

Details
This function is equivalent to openx1sx: :read.x1sx() with a few minor additions:

1. Itreturns a list of data. frame objects, one per sheet.

2. It properly reads the colnames with check.names=FALSE.

By default this function returns every sheet for a given x1sx file.
Some useful details:
* Empty columns are not skipped during loading, which means a worksheet whose data starts
at column 3 will be returned with two empty columns, followed by data from that worksheet.

Similarly, any empty columns in the middle of the data in that worksheet will be included in
the output.

* When both startRow and rows are applied, rows takes priority and will be used instead of
startRows. In fact startRows will be defined startRows <- min(rows) for each relevant
worksheet. However, for each worksheet either argument can be NULL.

Value

list of data. frame objects, one per sheet in x1sx.

178 relist named

See Also

Other jam export functions: applyXlsxCategoricalFormat(), applyXlsxConditionalFormat(),
set_xlsx_colwidths(), set_xlsx_rowheights(), writeOpenxlsx()

Examples

set up a test data.frame
set.seed(123);
1fc <- -3:3 + stats::rnorm(7)/3;
colorSub <- nameVector(
rainbow2(7),
LETTERS[1:71)
df <- data.frame(name=LETTERS[1:7],
int=round(4*(1:7)),
num=(1:7)*4-2 + stats::rnorm(7),
fold=2*abs(1fc)*sign(lfc),
1fc=1fc,
pvalue=10*(-1:-7 + stats::rnorm(7)),
hit=sample(c(-1,0,0,1,1), replace=TRUE, size=7));
df;
write to tempfile for examples
if (check_pkg_installed("openxlsx")) {
out_xlsx <- tempfile(pattern="writeOpenxlsx_", fileext=".x1lsx")
writeOpenxlsx(x=df,
file=out_x1lsx,
sheetName="jamba_test",
append=FALSE) ;
now read it back
df_list <- readOpenxlsx(xlsx=out_xlsx);
df_list[[1]]

relist_named relist a vector which allows re-ordered names

Description
relist a vector which imposes the model object list structure while allowing vector elements and
names to be re-ordered

Usage

relist_named(x, skeleton, ...)

Arguments

X vector to be applied to the skeleton list structure in order.

relist_named 179

skeleton list object representing the desired final list structure, or vector when the in-
put data x should be returned as-is, without change. Specifically, when skeleton
is a vector, the names(x) are maintained without change.

additional arguments are ignored.

Details

This function is a simple update to utils::relist() that allows the order of vectors to change,
alongside the correct names for each element.

More specifically, this function does not replace the updated names with the corresponding names
from the list skeleton, as is the case in default implementation of utils::relist().

This function is called by mixedSorts() which iteratively calls mixedOrder() on each vector
component of the input 1ist, and permits nested lists. The result is a single sorted vector which
is split into the 1ist components, then relist-ed to the original structure. During the process, it is
important to retain vector names in the order defined by mixedOrder ().

Value

list object with the same structure as the skeleton.

See Also

Other jam list functions: cPaste(), heads(), jam_rapply(), list2df (), mergeAl1XY (), mixedSorts(),
rbindList(), rlengths(), sclass(), sdim(), uniques(), unnestList()

Examples

generate nested list
x <- list(A=nameVector(LETTERS[3:11]),
B=list(
E=nameVector (LETTERS[10:7]),
D=nameVector (LETTERS[5:41)),
C=list(
G=nameVector (LETTERS[19:16]),
F=nameVector (LETTERS[15:11]),
H=list(
I=nameVector (LETTERS[22:201]))
)

unlisted vector of items

xu <- unlist(unname(x))

unlisted vector of names

xun <- unname(jam_rapply(x, names));
names(xu) <- xun;

recursive list element lengths

xrn <- jam_rapply(x, length);

define factor in order of list structure
xn <- factor(

180

rep(names(xrn),
xrn),
levels=names(xrn));

re-create the original list
xu_new <- unlist(unname(split(xu,
xnew <- relist_named(xu_new, Xx);
xnew

re-order elements
k <- mixedOrder(xu_new);

xuk <- unlist(unname(split(xulk], xn[k1)))

xk <- relist_named(xuk, x);
xk

the default relist() function does not support this use case

xdefault <- relist(xuk, x);
xdefault

xn)))

reload_rmarkdown_cache

reload_rmarkdown_cache

Reload ’Rmarkdown’ cache

Description

Reload 'Rmarkdown’ cache in the order files were created, into an R environment

Usage

reload_rmarkdown_cache(
dir = ".",
maxnum = 1000,
max_cache_name = NULL,

envir = new.env(),

file_sort = c("globals"”, "objects"”, "ctime”, "mtime"),
preferred_load_types = c("lazylLoad"”, "load"),

dryrun = FALSE,
verbose = TRUE,

Arguments

dir character path to the directory that contains 'Rmarkdown’ cache files. Each

file is recognized by the file extension " . rdx

n

maxnum integer indicating the maximum number of cache files to re-load, in order.

reload_rmarkdown_cache 181

max_cache_name character optional string indicating the name of an 'Rmarkdown’ cache chunk
where this function will stop loading cache data. All cache files after this point
will not be loaded. This option is intended to help recreate the data available to
a particular ’Rmarkdown’ chunk during processing.

envir environment in which data is populated, default new.env() creates a new
environment which is returned invisibly.

file_sort character string indicating how to sort cache files, default uses best available,
in order: "globals" (global index file), "objects" (object index file), "ctime" (cre-
ation time), "mtime" (modification time). The global index is preferred, and
other options are intended for rare scenarios when the global index is not avail-
able. The methods using "mtime” or "ctime” is less accurate, yet may be
sufficient for simple output.
* "globals" uses the "__globals" file in the cache directory.
* "objects" uses the "__objects"” file in the cache directory.
* ctime sorts by file creation time
* mtime sorts by file modification time
preferred_load_types
character string indicating the preferred load mechanism, default uses "lazylLoad"
if *.rdx’/’.rdb’ files are available, otherwise "load” to load *.RData’/’.rda’ files.
The ’lazyLoad’ *.rdx’/.’rdb’ files are created when 'Rmarkdown’ options include
cache=TRUE, cache.lazy=TRUE. The load option is used when cache=TRUE, cache.lazy=FALSE
which is preferred for some analyses involving large data objects.
dryrun logical default FALSE, whether to perform a dry-run, which prints messages
and does not load the data.
verbose logical default TRUE, whether to print verbose output. This argument is not
passed to other functions.

additional arguments are passed to lazylLoad() or load() as relevant to the
method used to re-load the cache object data.

Details

This function is intended to help re-load 'Rmarkdown’ cache files created during the process-
ing/rendering of an 'Rmarkdown’ file.

By default, all cached R objects are loaded into the environment defined by envir, However, it is
recommended that envir is used to define a new environment into which the cached session is
loaded.

cache_env <- new.env()
reload_rmarkdown_cache(cachedir, envir=cache_env)

From then on, the cached data objects can be seen with 1s(cache_env) and retrieved with get ("objectname”,
envir=cache_env).

If supplied with maxnum or max_cache_name then the cache will be loaded only up to this point, and
not beyond. The recommended method to determine the cache is to use dryrun=TRUE to view all
sections, then to choose the integer number, or character name to define the maximum chunk to
load.

182 renameColumn

Value

envir is returned invisibly, with data objects populated into that environment.

See Also

Other jam practical functions: breakDensity (), call_fn_ellipsis(), checkLightMode(), check_pkg_installed(),
colNum2excelName(), color_dither(), exp2signed(), getAxisLabel (), isFALSEV(), isTRUEV(),

jargs(), kable_coloring(), 11df (), log2signed(), middle(), minorLogTicks(), newestFile(),

printDebug(), renameColumn(), rmInfinite(), rmNA(), rmNAs(), rmNULL(), setPrompt()

renameColumn Rename columns in a data.frame, matrix, tibble, or GRanges object

Description

Rename columns in a data.frame, matrix, tibble, or GRanges object

Usage
renameColumn(x, from, to, verbose = FALSE, ...)
Arguments
X data.frame, matrix, tbl, or GRanges equivalent object. It will work on any
object for which colnames() is defined.
from character vector of colnames expected to be in x. Any values that do not match
colnames(x) are ignored.
to character vector with length(to) == length(from) corresponding to the tar-
get name for any colnames that match from.
verbose logical indicating whether to print verbose output.
Additional arguments are ignored.
Details

This function is intended to rename one or more columns in a data.frame, matrix, tibble, or
GRanges related object. It will gracefully ignore columns which do not match, in order to make it
possible to call the function again without problem.

This function will also recognize input objects GRanges, ucscData, and IRanges, which store anno-
tation in DataFrame accessible via S4Vectors: :values(). Note the IRanges package is required,
for its generic function values().

The values supplied in to and from are converted from factor to character to avoid coersion by
R to integer, which was noted in output prior to jamba version 0.0.72.900.

rgb2col 183

Value

data. frame or object equivalent to the input x, with columns from renamed to values in to. For ge-
nomic ranges objects such as GRanges and IRanges, the colnames are updated in S4Vectors: :values(x).

See Also

Other jam practical functions: breakDensity (), call_fn_ellipsis(), checkLightMode(), check_pkg_installed(),
colNum2excelName(), color_dither (), exp2signed(), getAxisLabel (), isFALSEV(), isTRUEV(),

jargs(), kable_coloring(), 11df (), log2signed(), middle(), minorLogTicks(), newestFile(),

printDebug(), reload_rmarkdown_cache(), rmInfinite(), rmNA(), rmNAs(), rmNULL (), setPrompt()

Examples

df <- data.frame(A=1:5, B=6:10, C=11:15);
df';
df2 <- renameColumn(df,
from=c("A","C"),
to=c("a_new", "c_new"));
df2;
df3 <- renameColumn(df2,
f‘rom:c(HAll s IICH s IIBII) s

to=c("a_new", "c_new","b_new"));
df3;
rgb2col Convert RGB color matrix to R color
Description

Convert RGB color matrix to R color

Usage
rgb2col(
red,
green = NULL,
blue = NULL,
alpha = NULL,

names = NULL,
maxColorValue = NULL,
keepNA = TRUE,
verbose = FALSE,

184 rgb2col

Arguments

red numeric vector of red values; or RGB numeric matrix with rownames c("red","green","blue")
in any order, with optional rowname "alpha"; or character strings with comma-
separated rgb values, in format "100,20,10". The latter input is designed to
handle web rgb values.

green numeric vector, or when red is a matrix or comma-delimited character string,
this parameter is ignored.

blue numeric vector, or when red is a matrix or comma-delimited character string,
this parameter is ignored.

alpha numeric vector, or when red is a matrix or comma-delimited character string,
this parameter is ignored. Alpha values are always expected in range [0,1],
even when maxColorValue is higher than 1. When alpha is FALSE, the alpha
transparency is removed. When alpha is TRUE the original alpha transparency
is retained without change. If supplying alpha as a numeric vector, use Inf to
represent TRUE for alpha values to be kept without change, and use -1 or any
negative number to indicate alpha values to remove from the output.

names character, default NULL, with optional names to apply to output colors.

maxColorValue numeric maximum value for colors. If NULL then it defaults to 1 unless there
are values above 1, in which case it defaults to 255.

keepNA logical whether to keep NA values, returning NA for any input where red,
green, and/or blue are NA. If keepNA==FALSE then it substitutes 0 for any NA
values.

verbose logical indicating whether to print verbose output

Additional arguments are ignored.

Details

This function intends to augment the rgb function, which does not handle output from col2rgb.
The goal is to handle multiple color conversions, e.g. rgb2col(grDevices::col2rghb("red")).
This function also maintains alpha transparency when supplied.

The output is named either by names(red), rownames(red), or if supplied, the value of the parameter
names.

Note that alpha is used to define alpha transparency, but has additional control over the output.
* When alpha is FALSE then output colors will not have the alpha transparency, in hex form that
means colors are in format "#RRGGBB" and not "#RRGGBBAA".
* When alpha is TRUE the previous alpha transparency values are used without change.

* When alpha is a numeric vector, numeric values are always expected to be in range [0,1],
where @ is completely transparent, and 1 is completely not transparent. Supplied alpha values
will override those present in red when red is a matrix like that produced from grDevices: :col2rgb(.. .,
alpha=TRUE).
* When alpha is a numeric vector, use -1 or any negative number to indicate the alpha value
should be removed.

* When alpha is a numeric vector, use Inf to indicate the alpha transparency should be retained
without change.

rlengths 185

Therefore, alpha =c(-1, 0, 1, Inf) will apply the following, in order: remove alpha; set alpha to
0; set alpha to 1; set alpha to the same as the input color.

Value

character vector of R colors.

See Also

Other jam color functions: alpha2col (), applyCLrange(), col2alpha(), col2hcl(), col2hsl(),
col2hsv(), color2gradient(), fixYellow(), fixYellowHue(), getColorRamp(), hcl2col(),
hsl2col (), hsv2col(), isColor(), kable_coloring(), makeColorDarker(), rainbow2(), setCLranges(),
setTextContrastColor(), showColors(), unalpha(), warpRamp()

Examples

start with a color vector
red and blue with partial transparency
colorV <- c("#FFQ0Q055", "#00339999");

Show the output of rgb2col
make sure to include alpha=TRUE to maintain alpha transparency
grDevices: :col2rgb(colorV, alpha=TRUE);

confirm we can convert from RGB back to the same colors
rgb2col(grDevices::col2rgb(colorV, alpha=TRUE));

rlengths lengths for recursive lists

Description

lengths for recursive lists

Usage
rlengths(x, doSum = NULL, ...)
Arguments
X list or vector
doSum logical indicating whether to return the overall sum of lengths. When NULL it

will return the aggregate length of each list element in x. When FALSE it will
return the same list structure of x, with the length of each. When TRUE it will
return the total length of all elements in x as one value.

additional parameters are ignored

186 rmlinfinite

Details

This function takes a list as input, and returns the length of each list element after running base: :unlist().

Value

integer value, vector, or list:

e When doSum is NULL (default) it returns an integer vector with length length(x) and
names names (x), whose values are the total number of elements in each item in x after running
base::unlist().

* When doSum=="TRUE", it returns the single integer length of all elements in x.

* When doSum=="FALSE", it returns the full structure of x with the integer length of each
element.

The parameter doSum is intended for internal use, during recursive calls of rlengths() to itself.
When doSum is NULL or TRUE, recursive calls to rlengths() set doSum=TRUE.

See Also

Other jam list functions: cPaste(), heads(), jam_rapply(), list2df (), mergeAl1XY (), mixedSorts(),
rbindList(), relist_named(), sclass(), sdim(), uniques(), unnestList()

Examples

x <- list(
A=list(
Al=nameVector(1:3, letters[1:3]),
A2=list(
Ala=nameVector(4:7, letters[4:7]),
Alb=nameVector(11:14, letters[11:141]))),
B=list(B1=nameVector(1:9, letters[1:9]),
B2=nameVector(20:25, letters[20:25]1)));
default lengths(x) shows length=2 for A and B

lengths(x)
rlengths(x) shows the total length of A and B
rlengths(x)
rmInfinite remove Infinite values
Description

remove Infinite values

Usage

rmInfinite(x, infiniteValue = NULL, ...)

rmNA 187

Arguments
X vector input
infiniteValue NULL to remove Infinite values, or a replacement value
additional parameters are ignored
Details

This function removes any positive or negative infinite numerical values, optionally replacing them
with a given value or NA.

Value

numeric vector with infinite values either removed, or replaced with the supplied value.

See Also

Other jam practical functions: breakDensity (), call_fn_ellipsis(), checkLightMode(), check_pkg_installed(),
colNum2excelName (), color_dither(), exp2signed(), getAxisLabel (), isFALSEV(), isTRUEV(),

jargs(), kable_coloring(), 11df (), log2signed(), middle(), minorLogTicks(), newestFile(),

printDebug(), reload_rmarkdown_cache(), renameColumn(), rmNA(), rmNAs (), rmNULL (), setPrompt()

Examples

rmInfinite(c(1, 5, 4, 10, Inf, 1, -Inf))

rmInfinite(c(1, 5, 4, 10, Inf, 1, -Inf), infiniteValue=1000)

rmNA remove NA values

Description

remove NA values

Usage

rmNA (
X,
naValue = NULL,
rmNULL = FALSE,
nullValue = naValue,
rmInfinite = TRUE,
infiniteValue = NULL,
rmNAnames = FALSE,
verbose = FALSE,

188 rmNA

Arguments

X vector input

naValue NULL or single replacement value for NA entries. If NULL, then NA entries
are removed from the result.

rmNULL logical whether to replace NULL entries with nullValue

nullvalue NULL or single replacement value for NULL entries. If NULL, then NULL
entries are removed from the result.

rmInfinite logical whether to replace Infinite values with infiniteValue

infiniteValue value to use when rmInfinite==TRUE to replace entries which are Inf or -Inf.

rmNAnames logical whether to remove entries which have NA as the name, regardless
whether the entry itself is NA.

verbose logical whether to print verbose output

additional arguments are ignored.

Details

This function removes NA values, by default shortening a vector as a result, but optionally replacing
NA and Infinite values with fixed values.

Value

vector with NA entries either removed, or replaced with naValue, and NULL entries either removed
or replaced by nullValue.

See Also

Other jam practical functions: breakDensity(), call_fn_ellipsis(), checkLightMode(), check_pkg_installed(),
colNum2excelName (), color_dither (), exp2signed(), getAxisLabel (), isFALSEV(), isTRUEV(),

jargs(), kable_coloring(), 11df (), log2signed(), middle(), minorLogTicks (), newestFile(),

printDebug(), reload_rmarkdown_cache(), renameColumn(), rmInfinite(), rmNAs(), rmNULL(),

setPrompt ()

Examples

by default it removes NA, shortening the vector
rmNACc(1, 5, 4, NA, 10, NA))

convenient to replace NA with a fixed value
rmNA(c(1, 5, 4, NA, 10, NA), naValue=0)

m <- matrix(ncol=3, 1:9)
ml1, 2] <- NA;
rmNA(m, naValue=-1)

by default NA and Inf is removed
riNACc(1, 5, 4, NA, 10, NA, Inf, -Inf))

rmNAs

189

NA and Inf can be replaced, note Inf retains the sign
rmNA(c(1, 5, 4, NA, 10, NA, Inf, -Inf), naValue=0, infiniteValue=100)

rmNAs

remove NA values from list elements

Description

remove NA values from list elements

Usage

rmNAs (
X’

naValue = NULL,
rmNULL = FALSE,

nullValue =

naValue,

rmInfinite = TRUE,
infiniteValue = NULL,
rmNAnames = FALSE,
verbose = FALSE,

Arguments

X

naValue

rmNULL
nullvValue

rmInfinite
infiniteValue
rmNAnames

verbose

Details

list of vectors

NULL or single replacement value for NA entries. If NULL, then NA entries
are removed from the result.

logical whether to replace NULL entries with nullValue

NULL or single replacement value for NULL entries. If NULL, then NULL
entries are removed from the result.

logical whether to replace Infinite values with infiniteValue
value to use when rmInfinite==TRUE to replace entries which are Inf or -Inf.

logical whether to remove entries which have NA as the name, regardless
whether the entry itself is NA.

logical whether to print verbose output

additional arguments are ignored.

This function removes NA values from vectors in a 1ist, applying the same logic used in rmNA() to
each vector. It is somewhat optimized, in that it checks for list elements that have NA values before
applying rmNA(). However, it calls rmNA() iteratively on each vector that contains NA in order to
preserve the class (factor, character, numeric, etc.) of each vector.

It also optionally applies convenience functions rmNULL () and rmInfinite() as relevant.

190 rmNULL

Value

list where NA entries were removed or replaced with naValue in each vector. Empty list el-
ements are optionally removed when rmNULL=TRUE, or replaced with nullValue when defined.
When rmInfinite=TRUE then infinite values are either removed, or replaced with infiniteValue
when defined.

See Also

Other jam practical functions: breakDensity(), call_fn_ellipsis(), checkLightMode(), check_pkg_installed(),
colNum2excelName (), color_dither (), exp2signed(), getAxisLabel (), isFALSEV(), isTRUEV(),

jargs(), kable_coloring(), 11df (), log2signed(), middle(), minorLogTicks(), newestFile(),

printDebug(), reload_rmarkdown_cache(), renameColumn(), rmInfinite(), rmNA(), rmNULL(),

setPrompt ()

Examples

testlist <- list(
A=c(1, 4, 5, NA, 11),
B=c("B", NA, "C", "Test"))
rmNAs (testlist)

testlist2 <- list(
A=c(1, 4, 5, NA, 11, Inf),
B=c(11, NA, 19, -Inf))
rmNAs (testlist2, naValue=-100, infiniteValue=1000)

rmNULL remove NULL entries from list

Description

remove NULL entries from list

Usage
rmNULL (x, nullValue = NULL, ...)
Arguments
X list or other object which may contain NULL.
nullValue character optional replacement value, default NULL, which causes the entry

to be removed.

additional arguments are ignored.

rowGroupMeans 191

Details

This function is a simple helper function to remove NULL from a list, optionally replacing it with
another value

Value

list with NULL entries either removed, or replaced with nullValue. This function is typically called
so it removed list elements which are NULL, resulting in a list that contains non-NULL entries.
This function can also be useful when NULL values should be changed to something else, perhaps
a character value "NULL" to be used as a label.

See Also

Other jam practical functions: breakDensity (), call_fn_ellipsis(), checkLightMode(), check_pkg_installed(),
colNum2excelName(), color_dither(), exp2signed(), getAxisLabel (), isFALSEV(), isTRUEV(),

jargs(), kable_coloring(), 11df (), log2signed(), middle(), minorLogTicks(), newestFile(),

printDebug(), reload_rmarkdown_cache(), renameColumn(), rmInfinite(), rmNA(), rmNAs(),

setPrompt ()

Examples

x <- list(A=1:6, B=NULL, C=letters[11:16]);
rmNULL (x)
rmNULL (x, nullValue=NA)

rowGroupMeans Calculate row group means, or other statistics

Description

Calculate row group means, or other statistics, where: rowGroupMeans() calculates row sum-
mary stats; and rowGroupRmOutliers() is a convenience function to call rowGroupMeans(. . .,
rmOutliers=TRUE, returnType="input").

Usage
rowGroupMeans (
X’
groups,
na.rm = TRUE,

useMedian = TRUE,

rmOutliers = FALSE,

crossGroupMad = TRUE,

madFactor = 5,

returnType = c("output”, "input"),
rowStatsFunc = NULL,

192

groupOrder

rowGroupMeans

c("same”", "sort"),

keepNULLlevels = FALSE,
includeAttributes = FALSE,
verbose = FALSE,

)
rowGroupRmOutliers(
X)
groups,
na.rm = TRUE,

rmOutliers = TRUE,
crossGroupMad = TRUE,

madFactor =

5,

returnType = c("input"),

groupOrder

c("same", "sort"),

keepNULLlevels = FALSE,
includeAttributes = FALSE,
verbose = FALSE,

Arguments

X

groups

na.rm

useMedian

rmOutliers

crossGroupMad

madFactor

returnType

numeric data matrix

character or factor vector of group labels, either as a character vector, or a
factor. See the parameter groupOrder for ordering of group labels in the output
data matrix.

logical, default TRUE, passed to the stats func to ignore NA values.

logical, default TRUE, indicating whether the default stat should be "mean" or
"median".

logical, default FALSE, indicating whether to apply outlier detection and re-
moval.

logical indicating whether to calculate row MAD values using the median
across groups for each row. The median is calculated using non-NA and non-
zero row group MAD values. When crossGroupMad=TRUE it also calculates the
non-NA, non-zero median row MAD across all rows, which defines the mini-
mum difference from median applied across all values to be considered an out-
lier.

numeric value indicating the multiple of the MAD value to define outliers. For
example madFactor=5 will take the MAD value for a group multiplied by 5,
SMAD, as a threshold for outliers. So any points more than SMAD distance
from the median per group are outliers.

character, default "output", the return data type:

e "output” returns one summary stat value per group, per row;

rowGroupMeans 193

e "input” is useful when rmOutliers=TRUE in that it returns a matrix with
the same dimensions as the input, except with outlier points replaced with
NA.

rowStatsFunc function, default NULL, which takes a numeric matrix as input, and returns a
numeric vector equal to the number of rows of the input data matrix. When sup-
plied, useMedian is ignored. Examples: base: : rowMeans (), matrixStats: :rowMedians(),
matrixStats::rowMads.

groupOrder character string indicating how character group labels are ordered in the final
data matrix, when returnType="output”. Note that when groups is a factor,
the factor levels are kept in that order. Otherwise, "same"” keeps groups in the
same order they appear in the input matrix; "sort” applies jamba: :mixedSort ()
to the labels.

keepNULLlevels logical, default FALSE, whether to keep factor levels even when there are no
corresponding columns in x. When TRUE and returnType="output” the output
matrix will contain one colname for each factor level, with NA values used to
fill empty factor levels. This mechanism can be helpful to ensure that output
matrices have consistent colnames.

includeAttributes
logical, default FALSE, whether to include attributes with "n” number of
replicates per group, and "nLabel” with replicate label in n=# form.

verbose logical indicating whether to print verbose output.

additional parameters are passed to rowStatsFunc, and if rmOutliers=TRUE to
jamba: :rowRmMadOutliers().

Details

This function by default calculates group mean values per row in a numeric matrix. However, the
stat function can be changed to calculate row medians, row MADs, etc.

An added purpose of this function is optional outlier filtering, via calculation of MAD values and
applying a MAD threshold cutoff. The intention is to identify technical outliers that otherwise ad-
versely affect the calculated group mean or median values. To inspect the data after outlier removal,
use the parameter returnType="1input"” which will return the input data matrix with NA substituted
for outlier points. Outlier detection and removal is performed by jamba: : rowRmMadOutliers().

Value
numeric matrix based upon returnType:

* When returnType="output" the output is a numeric matrix with the same number of columns
as the number of unique groups labels. When groups is a factor and keepNULL1evels=TRUE,
the number of columns will be the number of factor levels, otherwise it will be the number of
factor levels used in groups.

* When returnType="input” the output is a numeric matrix with the same dimensions as the
input data. This output is intended for use with rmOutliers=TRUE which will replace outlier
points with NA values. Therefore, this matrix can be used to see the location of outliers.

The function also returns attributes when includeAttributes=TRUE, although the default is FALSE.
The attributes describe the number of samples per group overall:

194 rowRmMadOQOutliers

attr(out, ''n'"') The attribute "n" is used to describe the number of replicates per group.
attr(out, ''nLabel'') The attribute "nLabel” is a simple text label in the form "n=3".
Note that when rmOutliers=TRUE the number of replicates per group will vary depending upon the

outliers removed. In that case, remember that the reported "n" is always the total possible columns
available prior to outlier removal.

See Also
Other jam numeric functions: deg2rad(), noiseFloor (), normScale(), rad2deg(), rowRmMadOutliers(),
warpAroundZero()

Examples

x <- matrix(ncol=9, stats::rnorm(90));
colnames(x) <- LETTERS[1:9];
use_groups <- rep(letters[1:3], each=3)
rowGroupMeans(x, groups=use_groups)

rowGroupRmOutliers returns the input data after outlier removal
rowGroupRmOutliers(x, groups=use_groups, returnType="input")

rowGroupMeans(..., returnType="input") also returns the input data
rowGroupMeans(x, groups=use_groups, rmOutliers=TRUE, returnType="input")

rowGroupMeans with outlier removal
rowGroupMeans(x, groups=use_groups, rmOutliers=TRUE)

rowRmMadOutliers Remove outlier points per row by MAD factor threshold

Description

Remove outlier points per row by MAD factor threshold

Usage

rowRmMadOutliers(
X)
madFactor = 5,
na.rm = TRUE,
minDiff = 0,
minReps = 3,
includeAttributes = FALSE,
rowMadValues = NULL,
verbose = FALSE,

rowRmMadOutliers

Arguments

X

madFactor

na.rm

minDiff

minReps

195

numeric matrix

numeric value to multiply by each row MAD to define the threshold for outlier
detection.

logical indicating whether to ignore NA values when calculating the MAD
value. It should probably always be TRUE, however setting to FALSE will prevent
any calculations in rows that contain NA values, which could be useful.

numeric value indicating the minimum difference from median to qualify as
an outlier. This value protects against removing outliers which are already ex-
tremely similar. Consider this example:

¢ Three numeric values: c(10.0001, 10.0002, 10.001).
* The third value differs from median by only 0.0008.
* The third value 10.001 is 5x MAD factor away from median.

* minDiff = 0.01 would require the minimum difference from median to be
at least 0.01 to be eligible to be an outlier point.

numeric minimum number of non-NA values per row for outliers to be filtered
on the row. This argument is typically only relevant for rows with n=2 non-NA
values, and when rowMadValues is supplied and may define a threshold less
than half the difference in the two points on the given row. Otherwise, n=2
defines each point at exactly 1x MAD from median, and would therefore never
be considered an outlier.

includeAttributes

rowMadValues

verbose

Details

logical indicating whether to return attributes that describe the threshold and
type of threshold used per row, in addition to the madFactor and minDiff values
defined.

numeric optional set of row MAD values to use, which is mostly helpful when
combining MAD values across multiple samples groups on each row of data,
where the combined MAD values may be more reliable than individual group
MAD values.

logical indicating whether to print verbose output.

additional parameters are ignored.

This function applies outlier detection and removal per row of the input numeric matrix.

e It first calculates MAD per row.

The MAD threshold cutoff is a multiple of the MAD value, defined by madFactor, multiplying

the per-row MAD by the madFactor.

* The absolute difference from median is calculated for each point.

* Outlier points are defined:

1. Points with MAD above the MAD threshold, and
2. Points with difference from median at or above minDiff

196 rowRmMadOQOutliers

The minDiff parameter affects cases such as 3 replicates, where all replicates are well within a
known threshold indicating low variance, but where two replicates might be nearly identical. Con-
sider:

e Three numeric values: c(10.0001, 10.0002, 10.001).
* The third value differs from median by only 0.0008.
* The third value 10.001 is 5x MAD factor away from median.

* minDiff =@.01 would require the minimum difference from median to be at least 0.01 to be
eligible to be an outlier point.

One option to define minDiff from the data is to use: minDiff <- stats: :median(rowMads(x))

In this case, the threshold is defined by the median difference from median across all rows. This
type of threshold will only be reasonable if the variance across all rows is expected to be fairly
similar.

This function is substantially faster when the matrixStats package is installed, but will use the
apply(x, 1, mad) format as a last option.

Assumptions:
1. This function assumes the input data is appropriate for the use of MAD as a summary statistic.
2. Specifically, numeric values per row are expected to be roughly normally distributed.
3. Outlier points are assumed to be present in less than half overall non-NA data.
4

. Outlier points are assumed to be technical outliers, and therefore not the direct result of
the experimental measurements being studied. Technical outliers are often caused by some
instrument measurement, methodological failure, or other upstream protocol failure.

The default threshold of 5x MAD factor is a fairly lenient criteria, above which the data may even
be assumed not to conform to most downstream statistical techniques.

For measurements considered to be more robust, or required to be more robust, the threshold 2x
MAD is applied. This criteria is usually a reasonable expectation of housekeeper gene expression
across replicates within each sample group.

Value

numeric matrix with the same dimensions as the input x matrix. Outliers are replaced with NA.
If includeAttributes=TRUE then attributes will be included:

» outlierDF which is a data.frame with colnames
— rowMedians: numeric median on each row
— rowMadValues: numeric MAD for each row
— rowThresholds: numeric threshold after applying madFactor and minDiff
— rowReps: integer number of non-NA values in the input data
— rowTypes: factor indicating the type of threshold: "madFactor” means the row applied
the normal MAD * madFactor threshold; "minDiff" means the row applied the minDiff
threshold which was the larger threshold.
* minDiff with the numeric value supplied
* madFactor with the numeric MAD factor threshold supplied

* outliersRemoved with the integer total number of new NA values produced by the outlier
removal process.

sclass 197

See Also

Other jam numeric functions: deg2rad(), noiseFloor(), normScale(), rad2deg(), rowGroupMeans(),
warpAroundZero()

Examples

set.seed(123);

x <- matrix(ncol=5, stats::rnorm(25))*5 + 10;
Define some outlier points

x[1:2,3] <- x[1:2,3]%5 + 50;

x[2:3,2] <- x[2:3,2]1*%5 - 100;

rownames(x) <- head(letters, nrow(x));

rowRmMadOutliers(x, madFactor=5);

X2 <- rowRmMadOutliers(x, madFactor=2,
includeAttributes=TRUE);
x2

x3 <- rowRmMadOutliers(x2,
madFactor=2,
rowMadValues=attr(x2, "outlierDF")$rowMadValues,
includeAttributes=TRUE);

x3

sclass return the classes of a list of objects

Description

return the classes of a list of objects

Usage
sclass(x, ...)
Arguments
X an S3 object inheriting from class 1ist, or an S4 object.
additional parameters are ignored.
Details

This function takes a 1ist and returns the classes for each object in the list. In the event an object
class has multiple values, the returned object is a list, otherwise is a vector. If x is an S4 object, then
methods: : slotNames(x) is used, and the class is returned for each S4 slot.

198 sdim

When x is a data. frame, data. table, tibble, or similar DataFrame table-like object, the class of
each column is returned.

For the special case where x is an S4 object with one slotName " .Data", the values in x@.Data are
coerced to a 1ist. One example of this case is with 1imma: :MArrayLM-class.

When x is a matrix, the class of each column is returned for consistency, even though the class of
each column should be identical.

For more more information about a list-like object, including the lengths/dimensions of the ele-
ments, see sdim() or ssdim().

Value
character vector with the class of each list element, or column name, depending upon the input
class(x).

See Also
Other jam list functions: cPaste(), heads(), jam_rapply(), list2df (), mergeAllXY (), mixedSorts(),

rbindList(), relist_named(), rlengths(), sdim(), uniques(), unnestList()

Examples

sclass(list(LETTERS=LETTERS, letters=letters));

sclass(data.frame(B=letters[1:10], C=2:11))

sdim print dimensions of list object elements

Description

sdim() prints the name and dimensions of 1ist object elements, such as a 1ist of data.frame

ssdim() prints the name and dimensions of nested elements of 1ist objects, for example a 1ist of
list objects that each contain other objects.

sdima() prints the name and dimensions of object attributes(x). It is useful for summarizing
the attributes() of an object.

ssdima() prints the name and dimensions of nested elements of 1ist object attributes(), for
example a list of 1ist objects that each contain other objects. It is useful for comparing attributes
across list elements.

This function prints the dimensions of a list of objects, usually a 1ist of data. frame objects, but
extended to handle more complicated lists, including even S4 object methods: : slotNames().

Over time, more object types will be made compatible with this function. Currently, igraph objects
will print the number of nodes and edges, but requires the igraph package to be installed.

sdim 199

Usage

sdim(
X,
includeClass = TRUE,
doFormat = FALSE,

big.mark = ",",
verbose = FALSE,

)

sdima(
X,
includeClass = TRUE,
doFormat = FALSE,

big.mark = ",",
verbose = FALSE,

)

ssdima(
X,
includeClass = TRUE,
doFormat = FALSE,

big.mark = ",",
verbose = FALSE,

)

ssdim(
X,
includeClass = TRUE,
doFormat = FALSE,

big.mark = ",",
verbose = FALSE,

Arguments

X one of several recognized object classes:
* an S3 object inheriting from class "1ist"”, including a nested list of lists or
simple list
* an S3 atomic object, which returns only the length

* a single multi-dimensional object such as data.frame, matrix, array,
tibble, or similar, which returns only its dimensions.

* an S4 object in which case it used methods: : slotNames(x) to traverse the
object structure

200 sdim

* an "environment” object, in which case 1s(envir=x) is used to traverse
the object structure.

* When the object is S4 that inherits "List” from the S4Vectors pack-
age, it will attempt to use the proper subset functions from S4Vectors via
names(x), but that process only works properly if the S4Vectors package
is previously loaded, otherwise it reverts to using methods: : slotNames (x).

includeClass logical indicating whether to print the class of each element in the input x
object. Note that for S4 objects, each element will be the object returned for
each of methods: : slotNames(x).

doFormat logical indicating whether to format the dimensions using format(...,big.mark=","),
which is mainly useful for extremely large dimensions. This parameter should
probably become more broadly useful and respectful for different locales.

big.mark character value used when doFormat=TRUE, used in the call to format(...,big.mark).
verbose logical whether to print verbose output

additional parameters are ignored.

Value

data.frame where each row indicates the dimensions of each element in the input list. When
includeClass is TRUE it will include a column class which indicates the class of each list element.
When the input list contains arrays with more than two dimensions, the first two dimensions are
named "rows” and "columns"” with additional dimensions named "dim3" and so on. Any list
element with fewer than that many dimensions will only have values populated to the relevant
dimensions, for example a character vector will only populate the length.

data. frame which describes the dimensions of the objects in attributes(x).
list of data. frame each of which describes the dimensions of the objects in attributes(x).

list of data.frame, each row indicates the dimensions of each element in the input list. When
includeClass is TRUE it will include a column class which indicates the class of each list element.
When the input 1list contains arrays with more than two dimensions, the first two dimensions are
named "rows” and "columns” with additional dimensions named "dim3" and so on. Any list
element with fewer than that many dimensions will only have values populated to the relevant
dimensions, for example a character vector will only populate the length.

See Also

Other jam list functions: cPaste(), heads(), jam_rapply(), list2df (), mergeAl1XY (), mixedSorts(),
rbindList(), relist_named(), rlengths(), sclass(), uniques(), unnestList()

Examples

L <- list(LETTERS=LETTERS,
letters=letters,
lettersDF=data.frame(LETTERS, letters));
sdim(L)

LL <- list(L=L, A=list(1:10))
sdim(LL)

setCLranges 201

ssdim(LL)

m <- matrix(1:9,
ncol=3,
dimnames=list(
Rows=letters[1:3],
Columns=LETTERS[1:3]1));
sdima(m);
ssdima(m);

setCLranges Get Chroma and Luminance ranges for the given lightMode

Description

Return Crange, Lrange, Cgrey, adjustRgb values for the given lightMode, intended to provide ranges
suitable for contrasting text displayed on a light or dark background.

Usage

setCLranges(

lightMode = NULL,

Crange = getOption("jam.Crange"),

Lrange = getOption(”jam.Lrange"),

Cgrey = getOption("jam.Cgrey", 5),
adjustRgb = getOption("jam.adjustRgbh”, @),
setOptions = c("FALSE"”, "ifnull”, "TRUE"),
verbose = FALSE,

Arguments

lightMode boolean indicating whether the background color is light (TRUE is bright), or
dark (FALSE is dark.) By default it calls checkLightMode() which queries
getOption("lightMode").

Crange numeric range of chroma values, ranging between 0 and 100. By default, getOptions("Crange")
is used, otherwise defaults will be assigned based upon lightMode.

Lrange numeric range of luminance values, ranging between 0 and 100. By default,
getOptions("”Crange") is used, otherwise defaults will be assigned based upon
lightMode.

Cgrey numeric chroma (C) value, which defines grey colors at or below this chroma.

Any colors at or below the grey cutoff will have their C values unchanged. This
mechanism prevents converting black to red, for example. To disable the effect,
set Cgrey=-1.

202 setCLranges

adjustRgb numeric color adjustment factor, used during the conversion of RGB colors to
the ANSI-compatible colors used by the crayon pacakge. The ANSI color range
does not include a full RGB palette, and the conversion is somewhat lossy. By
default, getOptions(”jam.adjustRgb") is used to store a globally re-usable
value.

setOptions character or logical whether to update options() "jam.Crange" and "jam.Lrange",
with the following behavior:
e "ifnull” will update only options() which were previously NULL
* FALSE or "FALSE" does not update options()

e TRUE or "TRUE" will update options() with values determined by this
function.

verbose logical indicating whether to print verbose output.
additional arguments are ignored.

Details

This function is intended mainly for internal use by jamba such as printDebug(), and make_styles(),
which is also mainly intended for console text or other printed text output. The utility of this func-
tion is to store the logic of determining sensible default ranges.

Companion functions:

* applyCLranges() is used to apply the ranges to a vector of R colors.

e checkLightMode() is used to detect whether console output is expected to have a light or
dark background.

Value
list with elements:

Crange Numeric vector of length 2, defining the HCL chroma (C) range.
Lrange Numeric vector of length 2, defining the HCL luminance (L) range.

adjustRgb Numeric vector of length 1, defining the adjustment to apply during RGB-to-ANSI
color conversion.

Cgrey Numeric vector of length 1, defining the HCL chroma (C) value below which colors are
considered greyscale, and are converted to ANSI greyscale colors. HCL chroma ranges from
0 to 100. Set value Cgrey=-1 or Cgrey=FALSE to disable this logic, causing colors to be
matched using all available ANSI color values.

See Also

Other jam color functions: alpha2col (), applyCLrange(), col2alpha(), col2hcl(), col2hsl(),
col2hsv(), color2gradient(), fixYellow(), fixYellowHue(), getColorRamp(), hcl2col(),
hsl2col (), hsv2col(), isColor(), kable_coloring(), makeColorDarker (), rainbow2(), rgb2col(),
setTextContrastColor(), showColors(), unalpha(), warpRamp()

Examples

setCLranges(lightMode=FALSE)

setPrompt 203

setPrompt set R prompt with project name and R version

Description

set R prompt with project name and R version

Usage

setPrompt(
projectName = "unnamed”,
useColor = TRUE,
projectColor = "yellow",
bracketColor = "white"”,
Rcolors = c("white”, "white”, "white"),
PIDcolor = NA,
promptColor = "white",
usePid = TRUE,
resetPrompt = FALSE,
addEscape = NULL,
updateOptions = TRUE,
debug = FALSE,
verbose = FALSE,

)
Arguments
projectName character string, default "unnamed", used as a label to represent the project
work.
useColor logical whether to define a color prompt if the crayon package is installed.

projectColor, bracketColor, Rcolors, PIDcolor, promptColor
character colors used when useColor==TRUE and the crayon package is in-
stalled:
* projectColor colors the project name;
* bracketColor colors the curly brackets around the project;

* Rcolors can be a vector of 3 colors, colorizing "R", the "-" divider, and the
R version;

e PIDcolor colors the PID when usePid=TRUE; and
* promptColor colors the ">" at the end of the prompt.

usePid logical whether to include the process ID in the prompt. Including the PID is
helpful for the rare occasion when a process is hung and needs to be stopped
directly.

resetPrompt logical whether to revert all changes to the prompt back to the default R

prompt, that is, no color and no projectName.

204

setPrompt

addEscape logical or NULL indicating whether to wrap color encoding ANSI inside addi-

tional escape sequences. This change is helpful for linux-based (readline-based)
R consoles, by telling the console not to count ANSI color control characters as
visible characters when determining word wrapping on the console. Note that
RStudio does not work well with this setting. If you find that the word-wrap is
incorrect in the R console, try addEscape=TRUE. Apparently most versions of
RStudio will already adjust (and prevent) colorizing the prompt during editing,
presumably to sidestep the problem of calculating the correct character length.
By default when addEscape is NULL, it checks whether environmental variable
RSTUDIO equals "1" (running inside RStudio) then sets addEscape=FALSE; oth-
erwise it defines addEscape=TRUE. In most cases for commandline prompts,
addEscape=TRUE is helpful and not problematic.

updateOptions logical whether to update the user options() with options(prompt="..."),
default TRUE.

debug logical indicating whether to print the ANSI control character output for the
full prompt, for visual review.

verbose logical whether to print verbose output.

additional parameters are passed to make_styles() which is only relevant with
the argument useColor=TRUE.

Details

This function sets a simple, colorized R prompt with useful information:

* projectName
* R version, major and minor included
e Process ID (PID)

The prompt is defined in options("prompt”).

Where Am 1?:

It is useful for the question: "What version of R?" In rare cases, multiple R versions can be active
at once (!), see the rig package for this exciting capability.

What Am I Doing?:

The core question addressed is : "What am I working on?" The project name is especially useful
when working with multiple active R sessions.

How Do I Stop This Thing?:
It may also be useful for the question "How do I stop this thing", by returning the Process ID to
be used to kill a long-running process without fear of killing the wrong long-running process.

Can It Have Color?:
Then of course, meeting the above requirements, at least make it pretty.

Word-Wrap Gone Awry:

A color-encoded prompt may sometimes interfere with word-wrapping on the R console. A long
line may wrap prematurely before reaching the right edge of the screen. There are two frequent
causes of this issue:

setPrompt 205

1. options("width") is sometimes defined too narrow for the screen. When resizing the con-
sole, this option should be updated, and sometimes this update fails. To fix, either resize the
window briefly again, or define options("width”) manually. (Or debug the reason that this
option is not being updated.)

2. The terminal locale is sometimes mismatched with the terminal, usually caused by a layer
of terminal emulation which is not compatible with ANSI color codes, or ANSI escape codes.

* Some examples: "PuTTY’ on *Windows’, GNU ’screen’, tmux’.

* Check Sys.env("LC_ALL"). The most common results are "C" for generic C-type out-
put, or a Unicode/UTF-8 locale such as "en_US.UTF-8" (CenUS’ is English-USA in this
context). In general, Unicode/UTF-8 is recommended, with benefit that it more read-
ily displays other Unicode characters. However, sometimes the terminal environment
(PuTTY or iTerm) is expecting one locale, but is receiving another. Either switching the
terminal expected locale, or the R console locale, may resolve the mismatch.

R uses ’readline’ for unix-like systems by default, and issues related to using color prompt are
handled at that level.

The ’readline’ library allows escaping ANSI color characters so they do not contribute to the
estimated line width, and these codes are used in setPrompt().

The final workaround is useColor=FALSE, but that would be a sad outcome.

Value

list named "prompt”, suitable to use in options() with the recommended prompt. When updateOptions=FALSE
use: options(setPrompt("projectName"))

See Also

Other jam practical functions: breakDensity (), call_fn_ellipsis(), checkLightMode(), check_pkg_installed(),
colNum2excelName (), color_dither(), exp2signed(), getAxisLabel (), isFALSEV(), isTRUEV(),

jargs(), kable_coloring(), 11df (), log2signed(), middle(), minorLogTicks(), newestFile(),

printDebug(), reload_rmarkdown_cache(), renameColumn(), rmInfinite(), rmNA(), rmNAs(),

rmNULL ()

Examples
setPrompt(”jamba")
setPrompt(”jamba", projectColor="purple");
setPrompt(”jamba"”, usePid=FALSE);

setPrompt(resetPrompt=TRUE);

206

setTextContrastColor

setTextContrastColor Define visible text color

Description

Given a vector or colors, define a contrasting color for text, typically using either white or black.
The useGrey argument defines the offset from pure white and pure black, to use a contrasting grey

shade.

Usage

setTextContrastColor(

color,

hclCutoff
rgbCutoff
colorModel
useGrey = 0
keepAlpha
alphalens
bg = NULL,

Arguments

color

hclCutoff

rgbCutoff

colorModel

useGrey

keepAlpha

alphalens

60,
127,
= C(“hCl“, llrgbll),

FALSE,
0,

character vector with one or more R-compatible colors.

numeric threshold above which a color is judged to be bright, therefore requir-
ing a dark text color. This comparison uses the L value from the col2hcl()
function, which scales colors from 1 to 100.

numeric threshold above which a color is judged to be bright, therefore requiring
a dark text color. The mean r,g,b value is used.

Either "hcl’ or 'rgb’ to indicate how the colors will be judged for overall bright-
ness. The "hcl’ method uses the L value, which more reliably represents overall
visible lightness.

numeric threshold used to define dark and bright text colors, using the R greyscale
gradient from 0 to 100: useGrey=10 implies "grey10" and "grey90" for the
contrasting text colors; useGrey=15 is useful if labels may also overlap white or
black space, since the text will never be fully white or black.

logical indicates whether the input color alpha transparency should be main-
tained in the text color. By default, text alpha is not maintained, and instead is
set to alpha=1, fully opaque.

numeric value used to adjust the effect of alpha transparency, where positive
values emphasize the background color, and negative values emphasize the fore-
ground (transparent) color.

setTextContrastColor 207

bg vector of R colors, used as a background when determining the brightness of
a semi-transparent color. The corresponding brightness value from the bg is
applied via weighted mean to the input color brightness, the result is compared
the the relevant cutoff. By default graphics: :par(”bg") is used to determine
the default plot background color, only when there is an open graphics device,
otherwise calling graphics: :par("bg") would open a graphics device, which
is not desireable. When no graphics device is open, and when bg=NULL, the
default is bg="white".

additional arguments are ignored.

Details

The color is expected to represent a background color, the output is intended to be a color with
enough contrast to read text legibly.

The brightness of the color is detected dependent upon the colorModel: when "hcl” the lumi-
nance L is compared to hclCutoff; when "rgb"” the brightness is the sum of the RGB channels
which is compared to rgbCutoff. In most cases the "hcl” and L will be more accurate.

When color contains transparency, an optional argument bg represents the figure background color,
as if the color is used to draw a color-filled rectangle. In this case, the bg and color are combined
to determine the resulting actual color. This scenario is mostly useful when plotting text labels on a
dark background, such as black background with colored text boxes.

Value

character vector of R colors.

See Also

Other jam color functions: alpha2col (), applyCLrange(), col2alpha(), col2hcl(), col2hsl(),
col2hsv(), color2gradient(), fixYellow(), fixYellowHue(), getColorRamp(), hcl2col(),
hsl2col (), hsv2col(), isColor(), kable_coloring(), makeColorDarker (), rainbow2(), rgb2col(),
setCLranges(), showColors(), unalpha(), warpRamp()

Examples

color <- c("red”,"yellow"”,"lightblue”,"darkorchid1”,"blue4");
setTextContrastColor(color);

showColors() uses setTextContrastColor() for labels
showColors(color)

printDebugI() uses setTextContrastColor() for foreground text
printDebugI(color)

demonstrate the effect of alpha transparency

colorL <- lapply(nameVector(c(1, 0.9, 0.8, 0.6, ©.3)), function(i){
nameVector(alpha2col(color, alpha=i), color);

»

jamba: : showColors(colorL,
groupCellnotes=FALSE,
srtCellnote=seq(from=15, to=-15, length.out=5));

208 set_xIsx_colwidths

graphics::title(ylab="alpha", line=1.5);

change background to dark blue
withr::with_par(list("bg"="navy", "col”"="white", "col.axis"="white"), {
jamba: : showColors(colorL,

groupCellnotes=FALSE,

srtCellnote=seq(from=15, to=-15, length.out=5))
graphics::title(ylab="alpha”, line=1.5);

»

Example using transparency and drawlLabels()

bg <- "blue4”;

col <- fixYellow("palegoldenrod”);

nullPlot(fill=bg, plotAreaTitle="", doMargins=FALSE);

for (alpha in c(@.1, 0.3, 0.5, 0.7, 0.9)) {

labelCol <- setTextContrastColor(
alpha2col("yellow”, alpha),
bg=bg);

drawLabels(x=1 + alpha,
y=2 - alpha,
labelCex=1.5,
txt="Plot Title",
boxColor=alpha2col(col, alpha),
boxBorderColor=labelCol,
labelCol=labelCol);

set_xlsx_colwidths Set column widths in Xisx files

Description

Set column widths in XIsx files

Usage

set_x1sx_colwidths(
xlsxFile,
sheet = 1,
cols = seq_along(widths),
widths = 11,

Arguments

x1lsxFile character filename to a file with ".xlsx" extension, or Workbook object defined
in the openx1sx package. When x1sxFile is a Workbook the output is not saved
to a file.

set_xIsx_colwidths 209

sheet integer sheet number or character sheet name, passed to openx1lsx: :setColWidths()
indicating the worksheet to affect.

cols integer vector indicating the column numbers to affect.

widths numeric vector indicating the width of each column defined by cols.

additional arguments are passed to openxlsx: :setColWidths().

Details

This function is a light wrapper to perform these steps from the very useful openxlsx R package:

* openxlsx: :loadWorkbook ()
e openxlsx::setColWidths()

* openxlsx: :saveWorkbook ()

Value

Workbook object as defined by the openx1sx package is returned invisibly with invisible(). This
Workbook can be used in argument wb to provide a speed boost when saving multiple sheets to the
same file.

See Also

Other jam export functions: applyXlsxCategoricalFormat(), applyXlsxConditionalFormat(),
readOpenxlsx(), set_xlsx_rowheights(), writeOpenxlsx()

Examples

write to tempfile for examples
if (check_pkg_installed("openxlsx")) {
out_xlsx <- tempfile(pattern="writeOpenxlsx_", fileext=".x1lsx")
df <- data.frame(a=LETTERS[1:5], b=1:5);
writeOpenxlsx(x=df,
file=out_xlsx,
sheetName="jamba_test");

By default, cols starts at column 1 and continues to length(widths)
set_xlsx_colwidths(out_x1sx,

sheet="jamba_test"”,

widths=rep(20, ncol(df))

210 set_xIsx_rowheights

set_x1lsx_rowheights Set row heights in Xlsx files

Description

This function is a light wrapper to perform these steps from the very useful openx1lsx R package:

Usage
set_xlsx_rowheights(
xlsxFile,
sheet = 1,
rows = seqg_along(heights) + 1,
heights = 17,
)
Arguments
x1lsxFile character filename to a file with ".xlsx" extension, or Workbook object defined
in the openx1sx package. When x1sxFile is a Workbook the output is not saved
to a file.
sheet integer sheet number or character sheet name, passed to openxlsx: : setRowHeights()
indicating the worksheet to affect.
rows integer vector indicating the row numbers to affect.
heights numeric vector indicating the height of each column defined by rows.
additional arguments are passed to openxlsx: :setRowHeights().
Details

* openxlsx: :loadWorkbook ()
e openxlsx: :setRowHeights()
e openxlsx: :saveWorkbook()

Note that when only the argument heights is defined, the argument rows will point to row 2 and
lower, thus skipping the first (header) row. Define rows specifically in order to affect the header
row as well.

Value

Workbook object as defined by the openx1sx package is returned invisibly with invisible(). This
Workbook can be used in argument wb to provide a speed boost when saving multiple sheets to the
same file.

See Also

Other jam export functions: applyXlsxCategoricalFormat(), applyXlsxConditionalFormat(),
readOpenxlsx(), set_xlsx_colwidths(), writeOpenxlsx()

shadowText

Examples

write to tempfile for examples
if (check_pkg_installed("openxlsx")) {

out_xlsx <- tempfile(pattern="writeOpenxlsx_", fileext=".x1lsx")

df <- data.frame(a=LETTERS[1:5], b=1:5);
writeOpenxlsx(x=df,
file=out_xlsx,
sheetName="jamba_test");

by default, rows will start at row 2, skipping the header

set_xlsx_rowheights(out_x1lsx,
sheet="jamba_test",
heights=rep(17, nrow(df))

)

to include the header row

set_xlsx_rowheights(out_x1lsx,
sheet="jamba_test",
rows=seq_len(nrow(df)+1),
heights=rep(17, nrow(df)+1)

211

shadowText

Draw text with shadow border

Description

Draw text with shadow border

Usage
shadowText (
X’
y = NULL,

labels = NULL,
col = "white",

bg = setTextContrastColor(col),

r = getOption("”jam.shadow.r”, 0.15),
offset = c(0.15, -0.15),

n = getOption(”jam.shadow.n", 8),

outline = getOption(”jam.outline"”, TRUE),

alphaOutline

getOption(”jam.alphaOutline”, 0.4),

shadow = getOption("”jam.shadow"”, FALSE),

shadowColor
alphaShadow
shadowOrder

getOption("”jam.shadowColor”, "black"),
getOption(”jam.alphaShadow”, 0.2),
c("each”, "all"),

212

shadowText

cex = graphics::par(“cex"),
font = graphics::par("font"),

doTest =

Arguments

X’y

labels

FALSE,

numeric coordinates, either as vectors x and y, or x as a two-color matrix recog-
nized by grDevices: :xy.coords().

vector of labels to display at the corresponding Xy coordinates.

col, bg, shadowColor

offset

outline

the label color, and background (outline) color, and shadow color (if shadow=TRUE),

for each element in 1abels. Colors are applied in order, and recycled to 1length(labels)

as needed. By default bg will choose a contrasting color, based upon setTextContrastColor ().
Also by default, the shadow is "black" true to its name, since it is expected to

darken the area around it.

the outline radius, expressed as a fraction of the width of the character "A" as
returned by graphics: :strwidth().

the outline offset position in Xy coordinates, expressed as a fraction of the width

of the character "A" as returned by graphics: :strwidth(), and graphics: :strheight(),
respectively. The offset is only applied when shadow=TRUE to enable the shadow

effect.

numeric steps around the label used to create the outline. A higher number may
be useful for very large font sizes, otherwise 8 is a reasonably good balance
between detail and the number of labels added.

logical whether to enable outline drawing.

alphaOutline, alphaShadow

shadow

shadowOrder

cex
font
doTest

numeric alpha transparency to use for the outline and shadow colors, respec-
tively.
logical whether to enable shadow drawing.

character value indicating when shadows are drawn relative to drawing labels:
"each"” draws each shadow with each label, so that shadows will overlap previ-
ous labels; "all” draws all shadows first then all labels, so labels will always
appear above all shadows. See examples.

numeric scalar applied to font size, default graphics: :par(”cex").
character applied to font family, default graphics: :par(”"font").

logical whether to create a visual example of output. Note that it calls usrBox
to color the plot area, and the background can be overridden with something like
fill="navy".

other parameters are passed to text. Note that certain parameters are not vec-
torized in that function, such as srt which requires only a fixed value. To rotate
each label independently, multiple calls to text or shadowText must be made.
Other parameters like adj only accept up to two values, and those two values
affect all label positioning.

shadowText_options 213

Details

Draws text with the same syntax as graphics: : text() except that this function adds a contrasting
color border around the text, which helps visibility when the background color is either not known,
or is not expected to be a fixed contrasting color.

The function draws the label n times with the chosed background color, then the label itself atop the
background text. It does not typically have a noticeable effect on rendering time, but it may impact
downstream uses in vector file formats like 'SVG’ and "PDF’, where text is stored as proper text
and font objects. Take care when editing text that the underlying shadow text is also edited in sync.

The parameter doTest=TRUE will display a visual example. The background color can be modified
with fill="navy" for example.

Value

invisible 1ist of components used to call graphics: : text(), including: x, y, allColors, allLabels,
cex, font.

See Also

Other jam plot functions: adjustAxisLabelMargins(), coordPresets(), decideMfrow(), drawLabels(),
getPlotAspect(), groupedAxis(), imageByColors(), imageDefault(), minorLogTicksAxis(),
nullPlot (), plotPolygonDensity(), plotRidges(), plotSmoothScatter(), shadowText_options(),
showColors(), sqrtAxis(), usrBox()

Examples

shadowText (doTest=TRUE);
shadowText (doTest=TRUE, fill="navy");
shadowText (doTest=TRUE, fill="red4");

example showing labels with overlapping shadows
withr::with_par(list("mfrow”"=c(1, 2)), {
nullPlot(doBoxes=FALSE);
graphics::title(main="shadowOrder="'each'");
shadowText(x=c(1.5, 1.65), y=c(1.5, 1.55),

labels=c("one”, "two"), cex=c(2, 4), shadowOrder="each")
nullPlot(doBoxes=FALSE);
graphics::title(main="shadowOrder="'all"'");
shadowText(x=c(1.5, 1.65), y=c(1.5, 1.55),

labels=c("one"”, "two"), cex=c(2, 4), shadowOrder="all")

b

shadowText_options Get and set options for shadowText

Description

Get and set options for shadowText

214

Usage

shadowText_options

shadowText_options(
r = getOption(”jam.shadow.r", 0.15),
n = getOption(”jam.shadow.n", 8),

outline =

alphaOutline

getOption(”jam.outline", TRUE),
= getOption("”jam.alphaOutline”, 0.4),

shadow = getOption(”jam.shadow"”, FALSE),
shadowColor = getOption("”jam.shadowColor”, "black"),

alphaShadow

rex =1,
alpha_ex =

getOption(”jam.alphaShadow”, 0.2),

preset = c("none”, "default”, "bold"”, "bold white"”, "bold black”, "both”, "shadow”,
"bold shadow”, "bold white shadow”, "bold black shadow”, "bold both"),

verbose =

Arguments

r
n
outline

alphaOutline

shadow

shadowColor

alphaShadow

r_ex

alpha_ex

preset

FALSE,

numeric radius used for outline or shadow
numeric number of shadow steps to render around each text label

logical indicating whether to render shadowText as an outline (default), or
when outline=FALSE it renders a drop shadow offset using of fset which by
default is slightly down and to the right of the text labels.

numeric value for alpha transparency used for label outlines when out1ine=TRUE,
with values expected between 0 (fully transparent) and 1 (not transparent).

logical indicating whether to render shadowText as a shadow, or not (default).

character R color which defines the color used for the outline or shadow for
each text label.

numeric value for alpha transparency used for label shadows when shadow=TRUE,
with values expected between 0 (fully transparent) and 1 (not transparent).

numeric expansion factor used to adjust the radius r. The value for r is defined
based upon the arguments provided, then is multiplied by the r_ex expansion
factor. The result is stored in option "jam.shadow.r".

numeric expansion factor used to adjust the alpha transparency of both alphaOutline
and alphaShadow. Values will be maintained no lower than 0 and no higher than

1. The values for alphaOutline and alphaShadow are defined based upon the
arguments provided, then are multiplied by the alpha_ex expansion factor. The
result is clipped to range 0,1 using jamba: :noiseFloor (). The resulting values

are stored in options "jam.alphaOutline" and "jam.alphaShadow", respectively.

character string which defines a preset with associated settings. Any value
other than "none” will cause all other options to use the preset settings.
* "none”: no preset settings are applied

e "default"”: reverts all options to the original default values, which pro-
duces an outline, and not a drop shadow. The color will use shadowColor

shadowText_options 215

which allows using all other settings from this preset, except with custom
color.

* "pbold": makes output produce visibly more distinct outline, with no drop
shadow. The color will use shadowColor which allows using all other set-
tings from this preset, except with custom color.

* "boldwhite": same as "bold" except default text color is white
* "pbold black”: same as "bold" except default text color is black
* "both": applies "default" and enables drop shadow

* "shadow": uses suggested default values to produce a drop shadow, and not
an outline. The color will use shadowColor which allows using all other
settings from this preset, except with custom color.

* "bold shadow": same as "shadow" except the shadow is more distinct. The
color will use shadowColor which allows using all other settings from this
preset, except with custom color.

e "bold white shadow”: same as "bold shadow" with white shadow
e "bold black shadow"”: same as "bold shadow" with black shadow

* "bold both”: same as "bold" except also enables bold shadow
verbose logical indicating whether to print verbose output

additional arguments are ignored.

Details

This function is intended to be a convenient method to get and set options to be used with jamba: : shadowText ().
This function stores the resulting values in options() for use by shadowText().

Value

list with the following options for shadowText():

* jam.shadow.r

* jam.shadow.n

* jam.outline

* jam.alphaOutline
* jam.shadow

* jam.shadowColor

* jam.alphaShadow

See Also

Other jam plot functions: adjustAxisLabelMargins(), coordPresets(), decideMfrow(), drawLabels(),
getPlotAspect(), groupedAxis(), imageByColors(), imageDefault(), minorLogTicksAxis(),
nullPlot(), plotPolygonDensity(), plotRidges(), plotSmoothScatter(), shadowText(),
showColors(), sqrtAxis(), usrBox()

216

Examples

nullPlot(doBoxes=FALSE, xlim=c(-1, 4), ylim=c(-1, 4), asp=1);
usrBox(fill="grey")

cex <- 1.2

graphics::axis(1);graphics::axis(2, las=2)
shadowText_options(preset="default"”)
shadowText(x=0, y=3, "default”, cex=cex)
shadowText_options(preset="bold")
shadowText(x=0, y=2, "bold”, cex=cex)
shadowText_options(preset="bold white")

shadowText(x=0, y=1, col="black”, "bold white", cex=cex)

shadowText_options(preset="bold black")

shadowText(x=0, y=0, col="white"”, "bold black", cex=cex)

shadowText_options(preset="shadow")
shadowText(x=3, y=3, "shadow"”, cex=cex)
shadowText_options(preset="bold shadow")
shadowText(x=3, y=2, "bold shadow"”, cex=cex)
shadowText_options(preset="bold white shadow")

shadowText(x=3, y=1, col="black”, "bold white shadow", cex=cex)

shadowText_options(preset="bold black shadow")

shadowText (x=3, y=0, col="white"”, "bold black shadow”, cex=cex)

shadowText_options(preset="both")
shadowText(x=1.5, y=3, col="white"”, "both", cex=cex)

shadowText(x=1.5, y=2.5, col="black”, "both"”, cex=cex)

shadowText_options(preset="bold both")

shadowText(x=1.5, y=2, col="white"”, "bold both”, cex=cex)
shadowText(x=1.5, y=1, col="black”, "bold both", cex=cex)
shadowText(x=1.5, y=0.5, col="blue3”, "bold both”, cex=cex, font=2)
shadowText(x=1.5, y=0, col="indianred1"”, "bold both”, cex=cex, font=2)

shadowText_options(preset="default")

showColors

showColors

Show colors from a vector or list

Description

Show colors from a vector or list

Usage

showColors(
X7

labelCells = NULL,
transpose = FALSE,

srtCellnote =

adjustMargins = TRUE,

makeUnique = FALSE,

doPlot = TRUE,

showColors 217

Arguments

X one of these input types:

e character vector of colors
» function to produce colors, for example circlize: :colorRamp2()
* list with any combination of character or function

labelCells logical whether to label colors atop the color itself. If NULL (default) it will
only display labels with 40 or fewer items on either axis.

transpose logical whether to transpose the colors to display top-to-bottom, instead of
left-to-right.

srtCellnote numeric angle to rotate text when labelCells=TRUE. When set to NULL, la-
bels are vertical srtCellnote=90 when transpose=FALSE and horizontal srtCell-
note=0 when transpose=TRUE.

adjustMargins logical indicating whether to call adjustAxisLabelMargins() to adjust the
x- and y-axis label margins to accomodate the label size.

n.n n.n

* Note when an axis is hidden by using xaxt="n" or xaxt="n", the respective
margin will not be adjusted.
e The arguments in ... take precedence over graphics: :par(), when de-
ciding whether to adjust margins. However if xaxt="s" and graphics: :par("xaxt"="n")
the margin will be adjusted but not displayed. In this way the axes can be
adjusted without displaying the labels, so the labels can be rendered later if
needed.

makeUnique logical indicating whether to display only the first unique color. When x is
supplied as a list this operation will display the first unique color for each
list element. Also, when x is a 1ist, just to be fancy, makeUnique is recycled
to length(x) so certain list elements can display unique values, while others
display all values.

doPlot logical indicating whether to produce a visual plot. Note this function returns
the color matrix invisibly.

additional parameters are passed to imageByColors().

Details

This function simply displays colors for review, using imageByColors() to display colors and
labels across the plot space.

When supplied a 1ist, each row in imageByColors() represents an entry in the 1list. Nothing
fancy.
Value

invisible color matrix used by imageByColors(). When the input x is empty, or cannot be con-
verted to colors when x contains a function, the output returns NULL.

218 showColors

See Also

Other jam plot functions: adjustAxisLabelMargins(), coordPresets(), decideMfrow(), drawLabels(),
getPlotAspect(), groupedAxis(), imageByColors(), imageDefault(), minorLogTicksAxis(),
nullPlot(), plotPolygonDensity(), plotRidges(), plotSmoothScatter(), shadowText(),
shadowText_options(), sqrtAxis(), usrBox()

Other jam color functions: alpha2col (), applyCLrange(), col2alpha(), col2hcl(), col2hsl(),
col2hsv(), color2gradient(), fixYellow(), fixYellowHue(), getColorRamp(), hcl2col(),
hsl2col(), hsv2col(), isColor(), kable_coloring(), makeColorDarker (), rainbow2(), rgb2col(),
setCLranges(), setTextContrastColor(), unalpha(), warpRamp()

Examples

x <- color2gradient(list(Reds=c("red"), Blues=c("blue”)), n=c(4,7));
showColors(x);

showColors(getColorRamp("firebrick3"))

if (requireNamespace("RColorBrewer”, quietly=TRUE)) {
RColorBrewer_namelist <- rownames(RColorBrewer: :brewer.pal.info);
y <- lapply(nameVector(RColorBrewer_namelist), function(i){
n <- RColorBrewer::brewer.pal.info[i, "maxcolors"]
j <- RColorBrewer::brewer.pal(n, i);
nameVector(j, seq_along(j));
b

showColors(y, cexCellnote=0.6, cex.axis=0.7, main="Brewer Colors");

if (requireNamespace("viridisLite"”, quietly=TRUE)) {
given one function name it will display discrete colors
showColors(viridisLite::viridis)
a list of functions will show each function output
showColors(list(viridis=viridislLite::viridis,
inferno=viridisLite::inferno))

grab the full viridis color map
z <- rgb2col(viridisLite::viridis.map[,c("R","G","B")1);
split the colors into a list
viridis_names <- c(A="magma",
B="inferno",
C="plasma",
D="viridis",
E="cividis",

F="rocket”,

G="mako",

H="turbo")
y <- split(z,

n n

paste@(viridisLite::viridis.map$opt, ": ",
viridis_names[viridisLite::viridis.map$opt]));
showColors(y, labelCells=TRUE, xaxt="n", main="viridis.map colors"”);

}

demonstrate makeUnique=TRUE

sizeAsNum 219

j1 <- getColorRamp("rainbow”, n=7);
names(j1) <- seg_along(j1);
j2 <- rep(j1, each=3);

names(j2) <- makeNames(names(j2), suffix="_rep");
j2
showColors(list(
j1=31,
j2=j2,
33=32),
makeUnique=c(FALSE, FALSE, TRUE))
sizeAsNum convert size to numeric value
Description
convert size to numeric value
Usage
sizeAsNum(x, kiloSize = 1024, verbose = FALSE, ...)
Arguments
X character vector. When x is numeric, it is returned as-is; otherwise x is coerced
to character with as.character () and will throw an error if it fails.
kiloSize numeric number of base units when converting from one base unit, to one "kilo"
base unit. For file sizes, this value is 1024, but for other purposes this value may
be 1000, like one thousand units is "1k units”.
verbose logical indicating whether to print verbose output. The output includes a
data.frame summarizing the input, and the unit matched, and the final value.
If verbose==2 it will return this data. frame for review.
additional arguments are ignored.
Details

This function is intended to provide the inverse of asSize() by converting an abbreviated size into
a full numeric value.

It makes one simplifying assumption, that the first character in the unit is enough to determine the
unit. This assumption also means the units are currently case-sensitive, for example Mega requires
upper-case "M", because "milli” which is not supported, requires "m".

Unit abbreviations recognized:
* k - kilo - size is defined by kiloSize
* M- Mega - size is defined by kiloSize * 2

220 smoothScatterJam

* G- Giga - size is defined by kiloSize * 3
* T - Tera - size is defined by kiloSize * 4
* P - Peta - size is defined by kiloSize * 5

Everything else is considered to have no abbreviated units, thus the numeric value is returned as-is.

Note that the round trip asSize() followed by sizeAsNum() will not produce identical values,
because the intermediate value is rounded by digits in asSize().
Value

numeric vector representing the numeric value represented by an abbreviated size.

See Also

Other jam string functions: asSize(), breaksByVector(), fillBlanks(), formatInt(), gsubOrdered(),
gsubs (), makeNames (), nameVector (), nameVectorN(), padInteger (), padString(), pasteByRow(),
pasteByRowOrdered(), tcount(), ucfirst()

Examples

x <- asSize(c(1, 10,2010,22000,52200), unitType="")
X

#> "7 g "ok” n1K" 51K

sizeAsNum(x)

sizeAsNum(x, kiloSize=1000)

smoothScatterJam Smooth scatter plot, Jam style

Description

Produce smooth scatter plot, a helper function called by plotSmoothScatter().

Usage

smoothScatterJam(
X,
y = NULL,
nbin = 256,
bandwidth,
colramp = grDevices: :colorRampPalette(c("white"”, "lightblue”, "blue"”, "orange"

"orangered2")),

nrpoints = 100,
pch = ".",
cex =1,
col "black”,

smoothScatterJam

221

transformation = function(x) x*@.25,
postPlotHook = graphics: :box,

xlab = NULL,
ylab = NULL,
xlim,
ylim,
add = FALSE,

xaxs = graphics::par("xaxs"),

yaxs

graphics: :par("yaxs"),

xaxt = graphics::par("xaxt"),

yaxt

graphics::par("yaxt"),

useRaster = NULL,

Arguments

X

y
nbin

bandwidth

colramp

nrpoints

pch
cex
col

transformation

postPlotHook

x1lab
ylab

xlim

numeric vector, or data matrix with two or more columns.
numeric vector, or if data is supplied via x as a matrix, y is NULL.

integer number of bins to use when converting the kernel density result (which
uses bandwidthN above) into a usable image. For example, nbin=123 is the de-
fault used by graphics: : smoothScatter (), however the plotSmoothScatter ()
function default is higher (256).

numeric vector used to define the y- and x-axis bandwidths, respectively, passed
to KernSmooth: :bkde2D (), which calculates the underlying 2-dimensional ker-
nel density. The plotSmoothScatter () function was motivated by never want-
ing to define this number directly, instead auto-calculation suitable values.

function that takes one numeric argument and returns that integer number of
colors, by default 256.

integer number of outlier datapoints to display, as defined by graphics: : smoothScatter(),
however the default here is nrpoints=0 to avoid additional clutter in the output,

and because the default argument bandwidthN usually indicates all individual

points.

integer point shape used when nrpoints>0.
numeric point size expansion factor used when nrpoints>0.
character R color used when nrpoints>0.

function which converts point density to a number, typically related to square
root or cube root transformation.

function or NULL, NULL default. When function is supplied, it is called after
producing the image. By default it is simply used to draw a box around the
image, but could be used to layer additional information atop the image plot, for
example contours, labels, etc.

character x-axis label
character y-axis label

numeric x-axis range for the plot

222

ylim
add

Xaxs

yaxs

xaxt

yaxt

useRaster

Details

smoothScatterJam

numeric y-axis range for the plot
logical whether to add to an existing active R plot, or create a new plot window.

character value compatible with graphics: :par(”xaxs"), mainly useful for
suppressing the x-axis, in order to produce a custom x-axis range, most useful
to restrict the axis range expansion done by R by default.

character value compatible with graphics: :par("yaxs"), mainly useful for
suppressing the y-axis, in order to produce a custom y-axis range, most useful
to restrict the axis range expansion done by R by default.

character value compatible with graphics: :par(”xaxt"), mainly useful for
suppressing the x-axis, in order to produce a custom x-axis by other mecha-
nisms, e.g. log-scaled x-axis tick marks.

character value compatible with graphics: :par("yaxt"), mainly useful for
suppressing the y-axis, in order to produce a custom y-axis by other mecha-
nisms, e.g. log-scaled y-axis tick marks.

NULL or logical indicating whether to invoke graphics::rasterImage() to
produce a raster image. If NULL, it determines whether to produce a raster
image within the imageDefault() function, which checks the options using
getOption("preferRaster”, FALSE) to determine among other things, whether
the user prefers raster images, and if the grDevices: :dev.capabilities()
supports raster.

additional arguments are passed to imageDefault () and optionally to plotPlotHook ()

when supplied.

For general purposes, use plotSmoothScatter () as areplacement for graphics: : smoothScatter(),
which produces better default settings for pixel size and density bandwidth.

This function is only necessary in order to override the graphics: :smoothScatter() function
which calls graphics::image.default (). Instead, this function calls imageDefault() which is
required in order to utilize custom raster image scaling, particularly important when the x- and
y-axis ranges are not similar, e.g. where the x-axis spans 10 units, but the y-axis spans 10,000 units.

Value

list of elements sufficient to call graphics: :image(), also by default this function is called for
the byproduct of creating a figure.

See Also

graphics: :smoothScatter()

Other jam internal functions: handleArgsText(), jamCalcDensity(), make_html_styles(),

make_styles()

SqrtAxis

Examples

223

x1 <= rnorm(1000);

yl <= (x1 + 5)* 4

+ rnorm(1000);

smoothScatterJam(x=x1, y=y1, bandwidth=c(0.05, 0.3))

sqrtAxis

Determine square root axis tick mark positions

Description

Determine square root axis tick mark positions, including positive and negative range values.

Usage

sqrtAxis(
side = 1,
x = NULL,
pretty.n =

10,

u5.bias = 1,

big.mark =",
plot = TRUE,

las = 2,
cex.axis =

Arguments

side

pretty.n

u5.bias

big.mark

plot

las, cex.axis

0.6,

integer value indicating the axis position, as used by graphics::axis(),
1=bottom, 2=left, 3=top, 4=right. Note that when x is supplied, the numeric
range is defined using values in x and not the axis side.

optional numeric vector representing the numeric range to be labeled. When
supplied, the numeric range of x is used and not the axis side.

numeric value indicating the number of desired tick marks, passed to pretty().

numeric value passed to pretty() to influence the frequency of intermediate
tick marks.

character value passed to format () which helps visually distinguish numbers
larger than 1000.

logical indicating whether to plot the axis tick marks and labels.

numeric values passed to graphics: :axis() when drawing the axis. The cus-
tom default 1as=2 plots labels rotated perpendicular to the axis.

additional parameters are passed to pretty(), and to graphics: :axis() when
plot=TRUE.

224 tcount

Details

This function calculates positions for tick marks for data that has been transformed with sqrt(),
specifically a directional transformation like sqrt(abs(x)) * sign(x).

If x is supplied, it is used to define the numeric range, otherwise the observed range is taken based
upon side. If neither x nor side is supplied, or if the numeric range is empty or zero width, it
returns NULL.

The main goal of this function is to provide reasonably placed tick marks using integer values.

Value

invisible numeric vector with axis positions, named by normal space numeric labels. The primary
use is to add numeric axis tick marks and labels.

See Also

Other jam plot functions: adjustAxisLabelMargins(), coordPresets(), decideMfrow(), drawLabels(),
getPlotAspect(), groupedAxis(), imageByColors(), imageDefault(), minorLogTicksAxis(),
nullPlot(), plotPolygonDensity(), plotRidges(), plotSmoothScatter(), shadowText(),
shadowText_options(), showColors(), usrBox()

Examples

plot(-3:3%x10, -3:3%10, xaxt="n")

x <- sqrtAxis(1)

abline(v=x, col="grey"”, lty="dotted")
abline(h=pretty(par("usr”)[3:4]), col="grey", lty="dotted")

slightly different label placement with u5.bias=0
plot(-3:3%x10, -3:3%10, xaxt="n")

x <- sqrtAxis(1, u5.bias=0)

abline(v=x, col="grey"”, lty="dotted")
abline(h=pretty(par("usr”)[3:4]), col="grey", lty="dotted")

tcount frequency of entries, ordered by frequency

Description

frequency of entries, ordered by frequency

Usage

tcount(
X,
minCount = NULL,
doSort = TRUE,

tcount 225

maxCount = NULL,
nameSortFunc = sort,

)
Arguments
X character, numeric, factor vector input to use when calculating frequencies.
minCount optional integer minimum frequency, any results with fewer counts observed
will be omitted from results.
doSort logical whether to sort results decreasing by frequency.
maxCount optional integer maximum frequency for returned results.

nameSortFunc function used to sort results after sorting by frequency. For example, one might
use mixedSort(). If nameSortFunc=NULL then no name sort will be applied.

additional parameters are ignored.

Details

This function mimics output from table () with two key differences. It sorts the results by decreas-
ing frequency, and optionally filters results for a minimum frequency. It is effective when checking
for duplicate values, and ordering them by the number of occurrences.

This function is useful when working with large vectors of gene identifiers, where it is not always
obvious whether genes are replicated in a particular technological assay. Transcript microarrays for
example, can contain many replicated genes, but often only a handful of genes are highly replicated,
while the rest are present only once or twice on the array.

Value

integer vector of counts, named by the unique input values in x.

See Also

Other jam string functions: asSize(), breaksByVector(), fillBlanks(), formatInt(), gsubOrdered(),
gsubs (), makeNames (), nameVector (), nameVectorN(), padInteger (), padString(), pasteByRow(),
pasteByRowOrdered(), sizeAsNum(), ucfirst()

Examples

testVector <- rep(c(”one”, "two", "three"”, "four"), c(1:4));
tcount(testVector);
tcount(testVector, minCount=2);

226 ucfirst

ucfirst Uppercase the first letter in each word

Description

Uppercase the first letter in each word

Usage

ucfirst(x, lowercaseAll = FALSE, firstWordOnly = FALSE, ...)
Arguments

X character vector.

lowercaseAll logical indicating whether to force all letters to lowercase before applying up-
percase to the first letter.

firstWordOnly logical indicating whether to apply the uppercase only to the first word in each
string. Note that it still applies the logic to every entry in the input vector x.

additional arguments are ignored.

Details

This function is a simple mimic of the Perl function ucfirst which converts the first letter in
each word to uppercase. When lowercaseAl1=TRUE it also forces all other letters to lowercase,
otherwise mixedCase words will retain capital letters in the middle of words.

Value

character vector where letters are converted to uppercase.

See Also

Other jam string functions: asSize(), breaksByVector (), fillBlanks(), formatInt(), gsubOrdered(),
gsubs (), makeNames (), nameVector (), nameVectorN(), padInteger (), padString(), pasteByRow(),
pasteByRowOrdered(), sizeAsNum(), tcount ()

Examples

ucfirst("TESTING_ALL_UPPERCASE_INPUT")
ucfirst("TESTING_ALL_UPPERCASE_INPUT"”, TRUE)
ucfirst("TESTING_ALL_UPPERCASE_INPUT", TRUE, TRUE)

ucfirst(”testing mixedCase upperAndLower case input"”)
ucfirst(”testing mixedCase upperAndLower case input”, TRUE)
ucfirst("testing mixedCase upperAndLower case input”, TRUE, TRUE)

unalpha 227

unalpha Remove alpha transparency from colors

Description

Remove alpha transparency from colors

Usage
unalpha(x, keepNA = FALSE, ...)
Arguments
X character vector of R colors
keepNA logical indicating whether NA values should be kept and therefore returned
as NA. When keepNA=FALSE (default for backward compatibility) NA values are
converted to "#FFFFFF" as done by grDevices: :col2rgb().
additional arguments are ignored.
Details

This function simply removes the alpha transparency from R colors, returned in hex format, for
example "#FFQQQOFF " becomes "#FF0000", or "blue” becomes "#0000FF".

It also silently converts R color names to hex format, where applicable.

Value

character vector of R colors in hex format.

See Also

Other jam color functions: alpha2col (), applyCLrange(), col2alpha(), col2hcl(), col2hsl(),
col2hsv(), color2gradient(), fixYellow(), fixYellowHue(), getColorRamp(), hcl2col(),

hsl2col (), hsv2col(), isColor(), kable_coloring(), makeColorDarker (), rainbow2(), rgb2col(),

setCLranges(), setTextContrastColor(), showColors(), warpRamp()

Examples

unalpha(c("#FFFF@oDD", "red", NA, "#@0QQOFF", "transparent”))

unalpha(c("#FFFF@ODD", "red"”, NA, "#@0QQQFF", "transparent”), keepNA=TRUE)

228 unigrep

unigrep case-insensitive grep, returning unmatched indices

Description

case-insensitive grep, returning unmatched indices

Usage
unigrep(..., ignore.case = TRUE, invert = TRUE)
Arguments
...,1lgnore.case, invert
parameters sent to base: :grep()
Details

This function is a simple wrapper around base: : grep() which runs in case-insensitive mode, and
returns unmatched entries. It is mainly used to save keystrokes, but is consistently named alongside
vgrep and vigrep, and quite helpful for writing concise code.

Value

vector of non-matching indices

See Also

Other jam grep functions: grepls(), igrep(), igrepHas(), igrepl(), provigrep(), unvigrep(),
vgrep(), vigrep()

Examples

V <- paste@(LETTERS[1:5], LETTERS[4:81);
unigrep("D", V);
igrep("D", V);

uniques

229

uniques

apply unique to each element of a list

Description

Apply unique to each element of a list, usually a list of vectors

Usage
uniques(
X’
keepNames = TRUE,
incomparables = FALSE,

useBioc = TRUE,

useSimpleBioc

= FALSE,

xclass = NULL,

Arguments

X
keepNames

incomparables

useBioc

useSimpleBioc

xclass

Details

input list of vectors
boolean indicating whether to keep the list element names in the returned results.

see unique () for details, this value is only sent to S4Vectors: :unique() when
the Bioconductor package S4Vectors is installed, and is ignored otherwise for
efficiency.

logical, default TRUE, indicating whether this function should try to use S4Vectors: :unique()
when the Bioconductor package S4Vectors is installed, otherwise it will use a
somewhat less efficient bulk operation.

logical, default FALSE, whether to use a legacy mechanism with S4Vectors
and is maintained for edge cases where it might be faster.

character optional vector of classes, used to invoke optimized logic when the
class is known upfront.

additional arguments are ignored.

This function will attempt to use S4Vectors::unique() which is substantially faster than any
apply family function, especially for very long lists. However, when S4Vectors is not installed,
it applies uniqueness to the unlisted vector of values, which is also substantially faster than the
apply family functions for long lists, but which may still be less efficient than the C implementation
provided by S4Vectors.

Value

list with unique values in each list element.

230 unnestList

See Also

Other jam list functions: cPaste(), heads(), jam_rapply(), list2df (), mergeAl1XY (), mixedSorts(),
rbindList(), relist_named(), rlengths(), sclass(), sdim(), unnestList()

Examples

L1 <- list(CA=nameVector(LETTERS[c(1:4,2,7,4,6)1),
B=letters[c(7:11,9,3)1,
C2=NULL,
D=nameVector (LETTERS[4]));

L1;

uniques(L1);

uniques(L1, useBioc=FALSE);

unnestlList Un-nest a nested list into a simple list

Description

Un-nest a nested list into a simple list

Usage

unnestList(
X)
addNames = FALSE,
unnamedBase = "x",
parentName = NULL,
sep = ".",
makeNamesFunc = makeNames,
stopClasses = c("dendrogram”, "data.frame"”, "matrix”, "package_version”, "tbl",
"data.table"),

extraStopClasses = getOption(”jam.stopClasses”),

)
Arguments
X list potentially containing nested lists.
addNames logical indicating whether to add names to the list elements when names are
not already present. When addNames=TRUE and no names are present unnamedBase
is used to define names.
unnamedBase character value used as a base for naming any un-named lists, using the format

makeNamesFunc(rep(unnamedBase, n)).

parentName character with optional prefix, used as parent name, default is NULL.

unnestList 231

sep character delimiter used between nested list names.

makeNamesFunc function that takes a character vector and returns non-duplicated character vec-
tor of equal length. By default it uses jamba: : makeNames ().

stopClasses vector of classes that should not be un-nested, useful in case some classes
inherit list properties.
extraStopClasses
vector of additional values for stopClasses, created mostly to show that options("”jam.stopClasses”
can be used to define stopClasses, for example when this function is called but
where arguments cannot be conveniently passed through the calling function.

additional arguments are ignored.

Details

This function inspects a list, and unlists each entry resulting in a simple list of non-list entries as
a result. Sometimes when concatenating lists together, one list gets added as a list-of-lists. This
function resolves that problem by providing one flat list.

Value

list that has been flattened so that it contains no list elements. Note that it may contain some
list-like objects such as data. frame, defined by stopClasses.

See Also

Other jam list functions: cPaste(), heads(), jam_rapply(), list2df (), mergeAl1XY (), mixedSorts(),
rbindList(), relist_named(), rlengths(), sclass(), sdim(), uniques()

Examples

L <- list(A=letters[1:10],
B=1ist(C=LETTERS[3:9], D=letters[4:11]),
E=1ist(F=1ist(G=LETTERS[3:9], D=letters[4:111)));
L.

)

inspect the data using str()
str(L);

unnestList(L);

optionally change the delimiter
unnestList(L, sep="1|");

example with nested lists of data.frame objects
df1 <- data.frame(a=1:2, b=letters[3:4]);
DFL <- list(A=df1,
B=1ist(C=df1, D=df1),
E=list(F=list(G=df1, D=df1)));
str(DFL);
unnestList(DFL);
str(unnestList(DFL));

232 unvigrep

packageVersion() returns class "package_version”

where is.list(packageVersion("”base")) is TRUE,

but it cannot ever be subsetted as a list with x[[1]],

and thus it breaks this function

identical(is.list(packageVersion("base”)), is.list(packageVersion("base”))[[11]1)

non

unnestList(lapply(nameVector(c("base”,"graphics")), packageVersion))

unvigrep case-insensitive grep, returning unmatched values

Description

case-insensitive grep, returning unmatched values

Usage
unvigrep(..., ignore.case = TRUE, value = TRUE, invert = TRUE)
Arguments
..., 1lgnore.case, value, invert
parameters sent to base: :grep()
Details

This function is a simple wrapper around base: : grep() which runs in case-insensitive mode, and
returns unmatched values. It is mainly used to save keystrokes, but is consistently named alongside
vgrep and vigrep, and quite helpful for writing concise code. It is particularly useful for removing
unwanted entries from a long vector, for example removing accession numbers from a long vector
of gene symbols in order to review gene annotations.

Value

vector of non-matching indices

See Also

Other jam grep functions: grepls(), igrep(), igrepHas(), igrepl(), provigrep(), unigrep(),
vgrep(), vigrep()

Examples

V <- paste@(LETTERS[1:5], LETTERS[4:81);
unigrep("D", V);
igrep("D", V);

usrBox 233

usrBox Draw colored box indicating R plot space

Description

Draw colored box indicating the active R plot space

Usage
usrBox(
fill = "#FFFF9966",
label = NULL,

parUsr = graphics::par("usr"”),
debug = FALSE,

Arguments
fill character R color used to fill the background of the plot
label character text optionally used to label the center of the plot space, default NULL
parUsr numeric vector length 4, indicating the R plot space, consistent with graphics: :par("usr").
It can thus be used to define a different area, though using the rect function di-
rectly seems more appropriate.
debug logical whether to print the parUsr value being used.
additional arguments are ignored.
Details

This function simply draws a box indicating the active plot space, and by default it shades the box
light yellow with transparency. It can be useful to indicate the active plot area while allowing pre-
drawn plot elements to be shown, or can be useful precursor to provide a colored background for
the plot.

The plot space is defined using graphics: :par("usr”) and therefore requires an active R device
is already opened.

Value
no output, this function is called for the byproduct of adding a box in the usr plot space of an R
graphics device.

See Also

Other jam plot functions: adjustAxisLabelMargins(), coordPresets(), decideMfrow(), drawLabels(),
getPlotAspect(), groupedAxis(), imageByColors(), imageDefault(), minorLogTicksAxis(),
nullPlot(), plotPolygonDensity(), plotRidges(), plotSmoothScatter(), shadowText(),
shadowText_options(), showColors(), sqrtAxis()

234 vgrep

Examples

usrBox() requires that a plot device is already open
nullPlot(doBoxes=FALSE);
usrBox();

vgrep grep, returning values

Description

grep, returning values

Usage
vgrep(..., value = TRUE, ignore.case = FALSE)
Arguments
...,value, ignore.case
parameters sent to base: :grep()
Details

This function is a simple wrapper around base: : grep() which returns matching values. It is par-
ticularly helpful when grabbing values from a vector, but where the case (uppercase or lowercase)
is known.

Value

vector of matching values

See Also

Other jam grep functions: grepls(), igrep(), igrepHas(), igrepl(), provigrep(), unigrep(),
unvigrep(), vigrep()

Examples

V <- paste@(LETTERS[1:5], LETTERS[4:81);
vgrep("D", V);
vgrep("d", V);
vigrep("d", V);

vigrep 235

vigrep case-insensitive grep, returning values

Description

case-insensitive grep, returning values

Usage
vigrep(..., value = TRUE, ignore.case = TRUE)
Arguments
...,value, ignore.case
parameters sent to base: :grep()
Details

This function is a simple wrapper around base: : grep() which runs in case-insensitive mode, and
returns matching values. It is particularly helpful when grabbing values from a vector.
Value

vector of matching values

See Also
Other jam grep functions: grepls(), igrep(), igrepHas(), igrepl(), provigrep(), unigrep(),
unvigrep(), vgrep()

Examples

V <- paste@(LETTERS[1:5], LETTERS[4:8]);
vigrep("d", V);

warpAroundZero Warp a vector of numeric values relative to zero

Description

Warp a vector of numeric values relative to zero

Usage

warpAroundZero(x, lens = 5, baseline = @, xCeiling = NULL, ...)

236 warpAroundZero

Arguments
X numeric vector
lens numeric value which defines the lens factor, where lens > @ will compress val-
ues near zero, and lens < @ will expand values near zero and compress values
near the maximum value. If 1ens == @ the numeric values are not changed.
baseline numeric value describing the baseline, for example when the central value is
non-zero. The baseline is subtracted from x, the warp is applied, then the base-
line is added to the result.
xCeiling numeric maximum value used for the color warp range, useful for consistency.
When xCeiling is not supplied, the maximum difference from baseline is
used. When xCeiling is defined, and baseline is non-zero, the effective value
used is (xCeiling - baseline).
additional arguments are ignored.
Details

This function warps numeric values using a log curve transformation, such that values are either
more compressed near zero, or more compressed near the maximum values. For example, a vector
of integers from -10 to 10 would be warped so the intervals near zero were smaller than 1, and
intervals farthest from zero are greater than 1.

The main driver for this function was the desire to compress divergent color scales used in heatmaps,
in order to enhance smaller magnitude numeric values. Existing color ramps map the color gradient
in a linear manner relative to the numeric range, which can cause extreme values to dominate the
color scale. Further, a linear application of colors is not always appropriate.

Value

numeric vector after applying the warp function.

See Also

Other jam numeric functions: deg2rad(), noiseFloor(), normScale(), rad2deg(), rowGroupMeans(),
rowRmMadOutliers()

Examples

x <= ¢(-10:10);
xPlus10@ <- warpAroundZero(x, lens=10);
xMinus1@ <- warpAroundZero(x, lens=-10);

plot(x=x, y=xPlus1@, type="b", pch=20, col="dodgerblue”,
main="Comparison of lens=+10 to lens=-10");
graphics: :points(x=x, y=xMinusl1@, type="b", pch=18, col="orangered");
graphics::abline(h=0, v=0, col="grey", lty="dashed", a=0, b=1);
graphics::legend("topleft”,
legend=c("lens=+10", "lens=-10"),

col=c("dodgerblue”, "orangered"),
pch=c(20,18),

warpRamp 237

lty="solid",
bg="white");

example showing the effect of a baseline=5
xPlus10b5 <- warpAroundZero(x, lens=10, baseline=5);
XMinus10b5 <- warpAroundZero(x, lens=-10, baseline=5);
plot(x=x, y=xPlus1@b5, type="b", pch=20, col="dodgerblue”,
main="Comparison of lens=+10 to lens=-10",
ylim=c(-10,15),
sub="baseline=+5");
graphics: :points(x=x, y=xMinus1@b5, type="b", pch=18, col="orangered");
graphics::abline(h=5, v=5, col="grey", lty="dashed”, a=0, b=1);
graphics: :legend("topleft”,
legend=c("lens=+10", "lens=-10"),
col=c("dodgerblue”, "orangered"),
pch=c(20,18),
1ty="solid",
bg="white");

warpRamp Warp colors in a color ramp

Description

Warp colors in a color ramp

Usage

warpRamp (
ramp,
lens = 5,
divergent = TRUE,
expandFactor = 10,
plot = FALSE,
verbose = FALSE,

)
Arguments
ramp character vector of R colors
lens numeric lens factor, centered at zero, where positive values cause colors to
change more rapidly near zero, and negative values cause colors to change less
rapidly near zero and more rapidly near the extreme.
divergent logical indicating whether the ramp represents divergent colors, which are as-

sumed to be symmetric above and below zero. Otherwise, colors are assumed to
begin at zero.

238 writeOpenxIsx

expandFactor numeric factor used to expand the color ramp prior to selecting the nearest
warped numeric value as the result of warpAroundZero(). This value should
not need to be changed unless the lens is extremely high (>100).

plot logical indicating whether to plot the input and output color ramps using showColors().
verbose logical indicating whether to print verbose output.

additional parameters are passed to showColors().

Details

This function takes a vector of colors in a color ramp (color gradient) and warps the gradient using
a lens factor. The effect causes the color gradient to change faster or slower, dependent upon the
lens factor.

The main intent is for heatmap color ramps, where the color gradient changes are not consistent
with meaningful numeric differences being shown in the heatmap. In short, this function enhances
colors.

Value

character vector of R colors, with the same length as the input vector ramp.

See Also

Other jam color functions: alpha2col (), applyCLrange(), col2alpha(), col2hcl(), col2hsl1(),
col2hsv(), color2gradient(), fixYellow(), fixYellowHue(), getColorRamp(), hcl2col(),
hsl2col (), hsv2col(), isColor(), kable_coloring(), makeColorDarker(), rainbow2(), rgh2col(),
setCLranges(), setTextContrastColor(), showColors(), unalpha()

Examples

BuRd <- rev(RColorBrewer::brewer.pal(11, "RdBu"));
BuRdPlus5 <- warpRamp(BuRd, lens=2, plot=TRUE);
BuRdMinus5 <- warpRamp(BuRd, lens=-2, plot=TRUE);

Reds <- RColorBrewer::brewer.pal(9, "Reds");
RedsL <- lapply(nameVector(c(-10,-5,-2,0,2,5,10)), function(lens){
warpRamp(Reds, lens=lens, divergent=FALSE)

DR
showColors(RedsL);

writeOpenxlsx Export a data.frame to ’Excel’ ’xlsx’ format

Description

Export a data.frame to "Excel’ ’xIsx’ format

writeOpenxIsx

Usage

writeOpenxlsx(

X,

file = NULL,

wb = NULL,

sheetName = "Sheet1”,

startRow = 1,

startCol = 1,

append = FALSE,

headerColors = c("lightskybluel”, "lightskyblue2"),

columnColors = c("aliceblue”, "azure2"),
highlightHeaderColors = c("tanl1”, "tan2"),
highlightColors = c("moccasin”, "navajowhite"),

borderColor = "gray75",

borderPosition = "BottomRight”,
highlightColumns = NULL,

numColumns = NULL,

fcColumns = NULL,

1fcColumns = NULL,

hitColumns = NULL,

intColumns = NULL,

pvalueColumns = NULL,

numFormat = "#,##0.00",

fcFormat = "#,##0.0",

1fcFormat = "#,##0.0",

hitFormat = "#,##0.0",

intFormat ", ##0"

pvalueFormat = "[>0.01]0.00#;0.00E+00",
numRule = c(1, 10, 20),

fcRule = c(-6, 0, 6),

1fcRule = c(-3, 0, 3),

hitRule = c(-1.5, @, 1.5),

intRule = c(0, 100, 10000),

pvalueRule = c(0, 0.01, 0.05),

numStyle = c("#F2FQF7", "#B4B1D4", "#938EC2"),
fcStyle = c("#4F81BD", "#EEECE1”, "#C0504D"),
1fcStyle = c("#4F81BD", "#EEECE1", "#C0504D"),
hitStyle = c("#4F81BD", "#EEECE1", "#C@504D"),
intStyle = c("#EEECE1", "#FDA560", "#F77F30"),
pvalueStyle = c("#F77F30", "#FDC99B", "#EEECE1"),
doConditional = TRUE,

doCategorical = TRUE,

colorSub = NULL,

freezePaneColumn = 0,

freezePaneRow = 2,

doFilter = TRUE,

fontName = "Arial”,

fontSize = 12,

239

240

minWidth =
maxWidth =
autoWidth
colWidths
wrapCells
wrapHeaders
headerRowMu
keepRowname
verbose = F

Arguments

X
file

wb

sheetName

startRow, star

append

headerColors,
borderColor, b

writeOpenxIsx

getOption("openxlsx.minWidth", 8),
getOption("openxlsx.maxWidth", 40),
TRUE,

NULL,

FALSE,

= TRUE,

ltiplier = 5,

s = FALSE,
ALSE,

data. frame to be saved to an "Excel’ ’xIsx’ file.

character valid path to save an ’Excel’ xIsx’ file. If the file exists, and append=TRUE
the new data will be added to the existing file withthe defined sheetName.

* Note when file=NULL the output is not saved to a file, instead the Workbook
object is returned by this function. The Workbook object can be passed as
argument wb in order to add multiple sheets to the same Workbook prior
to saving them together. This operation is intended to provide a substantial
improvement in speed.

Workbook object as defined in R package openxlsx. When this argument is
defined, data is not imported from file, and instead the workbook data is used
from wb. This option is intended to improve speed of writing several sheets to
the same output file, by preventing the slow read/write steps each time a new
sheet is added.

character value less with a valid ’Excel’ ’xIsx” worksheet name. At this time
(version 0.0.29.900) the sheetName is restricted to 31 characters, with no pun-
tuation except "-" and "_".

tCol
integer indicating the row and column number to start with the top,left cell
written to the worksheet, default are 1.

logical default FALSE, whether to append to file (TRUE), or to write over an
existing file. The append=TRUE is useful when adding a worksheet to an existing

file.
columnColors, highlightHeaderColors, highlightColors,

orderPosition
default values for the Excel’ worksheet background and border colors. As of
version 0.0.29.900, colors must use valid *Excel’ color names.

highlightColumns, numColumns, fcColumns, 1fcColumns, hitColumns,

intColumns, pv

numFormat, fcF

alueColumns
integer vector referring the column number in the input data.frame x to de-
fine as each column type, as relevant.
ormat, 1fcFormat, hitFormat, intFormat, pvalueFormat
character string with valid "Excel’ cell formatting, for example "#, ##0.00"
defines a column to use comma-delimited numbers above one thousand, and dis-
play two decimal places in all numeric cells. See [https://support.microsoft.com]

writeOpenxIsx 241

topic "Excel Create and apply a custom number format." or "Excel Number
format codes” for more details. Some examples below:

o "# ##0" : display only integer values, using comma as delimiter for every
thousands place. The number 2142. 12 would be represented: "2,142"

o "###0.0" : display numeric values rounded to the @.1 place, using no
comma delimiter for values above one thousand. The number 2142.12
would be represented: "2142.1"

e "[>0.01]0.00%#;0.00E+00Q" : this rule is a conditional format, values above
0.01 are represented as numbers rounded to the thousandths position 0. 001;
values below 0. @1 are represented with scientific notation with three digits.
The number @. 1256 would be represented: "@.126" The number @.001256
would be represented: "1.26E-03"

"[Red]#, ###.00_); [Blue] (#, #i##.00) ;[Black]@.00_)" : this format
applies to positive values, negative values, and zero, in order delimited by
semicolons. Positive values are colored red. The string "_)" adds whites-
pace (defined by "_") equale to the width of the character ") " to the end of
positive values. Negative values are surrounded by parentheses " ()" and
are colored blue. Values equal to zero are represented with two trailing dig-
its, and whitespace ("_") equal to width ")". The whitespace at the end
of positive values and zero are used to align all values at the same decimal
position.

numRule, fcRule, 1fcRule, hitRule, intRule, pvalueRule
numeric vector length=3 indicating the breakpoints for "Excel’ to apply con-
ditional color formatting, using the corresponding style. Note that all condi-
tional formatting applied by this function uses the "3-Color Scale”, therefore
there should be three values, and three corresponding colors in the correspond-
ing Style arguments.

numStyle, fcStyle, 1fcStyle, intStyle, hitStyle, pvalueStyle
character vector length=3 containing three valid R colors. Note that alpha
transparency will be removed prior to use in ’Excel’, as required. Note that
all conditional formatting applied by this function uses the "3-Color Scale”,
therefore there should be three colors, which match three values in the corre-
sponding Rule arguments.

doConditional logical indicating whether to apply conditional formatting of cells, with this
function only the background cell color (and contrasting text color) is affected.

doCategorical logical indicating whether to apply categorical color formatting, of only the
background cell colors and contrasting text color. This argument requires colorSub
be defined.

colorSub character vector of R colors, whose names refer to cell values in the input x
data.frame.

freezePaneColumn, freezePaneRow
integer value of the row or column before which the "Excel” "freeze panes" is
applied. Note that these values are adjusted relative by startRow and startCol
in the ’Excel” worksheet, so that the values are applied relative to the data. frame
argument X.

doFilter logical indicating whether to enable column filtering by default.

242 writeOpenxIsx

fontName character default font configuration, containing a valid *’Excel’ font name.

fontSize numeric default font size in ’Excel” point units.

minWidth, maxWidth, autoWidth
numeric minimum, maximum size for each ’Excel’ cell, in character units as
defined by ’Excel’, used when autoWidth=TRUE to restrict cell widths to this
range. Note that the argument colWidths is generally preferred, if the numeric
widths can be reasonable calculated or anticipated upfront. When autoWidth=FALSE
"Excel’ typically auto-sizes cells to the width of the largest value in each column,
which may not be ideal when values are extremely large.

colWidths numeric width of each column in x, recycled to the total number of columns
required. Note that when keepRownames=TRUE, the first column will contain
rownames (x), therefore the length of colWidths in that case will be ncol(x) +
1.

wrapCells logical default FALSE, indicating whether to enable word-wrap within cells.

wrapHeaders logical indicating whether to enable word wrap for column headers, which is
helpful when autoWidth=TRUE since it fixed the cell width while allowing the
column header to be seen.

headerRowMultiplier
numeric value to define the row height of the first header row in "Excel’. This
value is defined as a multiple of subsequent rows, and should usually represent
the maximum number of lines after word-wrapping, as relevant. This argument
is helpful when wrapHeaders=TRUE and autoWidth=TRUE.

keepRownames logical indicating whether to include rownames(x) in its own column in "Ex-
cel’.
verbose logical indicating whether to print verbose output.

additional arguments are passed to applyX1lsxConditionalFormat () and applyXlsxCategoricalForm:
as relevant.

Details

This function is a minor but useful customization of the openx1sx: : saveWorkbook () and associ-
ated functions, intended to provide some pre-configured formatting of known column types, typi-
cally relevant to statistical values, and in some cases, gene or transcript expression values.

There are numerous configurable options when saving an "Excel” worksheet, most of the defaults
in this function are intended not to require changes, but are listed as formal function arguments to
make each option visibly obvious.

If colorSub is supplied as a named vector of colors, then by default text values will be colorized
accordingly, which can be especially helpful when including data with categorical text values.

This function pre-configures formatting options for the following column data types, each of which
has conditional color-formatting, defined numeric ranges, and color scales.

int integer values, where numeric values are formatted without visible decimal places, and the

big.mark="," standard is used to help visually distinguish large integers. The color scale is
by default c(0, 100, 10000).

num numeric values, with fixed number of visible decimal places, which helps visibly align values
along each row.

writeOpenxIsx 243

hit numeric type, a subset of "int" intended when data is flagged with something like a "+1" or "-1"
to indicate a statistical increase or decrease.

pvalue P-value, where numeric values range from 1 down near zero, and values are formatted
consistently with scientific notation.

fc numeric fold change, whose values are expected to range from 1 and higher, and -1 and lower.
Decimal places are by default configured to show one decimal place, to simplify the ’Excel’
visual summary.

Ifc numeric log fold change, whose values are expected to be centered at zero. Decimal places are
by default configured to show one decimal place, to simplify the ’Excel’ visual summary.

highlight character and undefined columns to be highlighted with a brighter background color, and
bold text.

For each column data type, a color scale and default numeric range is defined, which allows condi-
tional formatting of cells based upon expected ranges of values.

A screenshot of the file produced by the example is shown below.

Value

Workbook object as defined by the openx1sx package is returned invisibly with invisible(). This
Workbook can be used in argument wb to provide a speed boost when saving multiple sheets to the
same file.

See Also

Other jam export functions: applyXlsxCategoricalFormat(), applyXlsxConditionalFormat(),
readOpenxlsx(), set_xlsx_colwidths(), set_x1lsx_rowheights()

Examples

set up a test data.frame
set.seed(123);
1fc <- -3:3 + stats::rnorm(7)/3;
colorSub <- nameVector(
rainbow2(7),
LETTERS[1:71)
df <- data.frame(name=LETTERS[1:7],
int=round(4*(1:7)),
num=(1:7)*4-2 + stats::rnorm(7),
fold=2*abs(1fc)*sign(lfc),
1fc=1fc,
pvalue=10*(-1:-7 + stats::rnorm(7)),
hit=sample(c(-1,0,0,1,1), replace=TRUE, size=7));
df;
write to tempfile for examples
if (check_pkg_installed("openxlsx")) {
out_xlsx <- tempfile(pattern="writeOpenxlsx_", fileext=".x1lsx")

244 writeOpenxIsx

writeOpenxlsx(x=df,
file=out_x1sx,
sheetName="jamba_test",
colorSub=colorSub,
intColumns=2,
numColumns=3,
fcColumns=4,
1fcColumns=5,
pvalueColumns=6,
hitColumn=7,
freezePaneRow=2,
freezePaneColumn=2,
append=FALSE) ;

now read it back

df_list <- readOpenxlsx(xlsx=out_xlsx);

sdim(df_list)

Index

* jam color functions

alpha2col, 6
applyCLrange, 7
col2alpha, 27
col2hcl, 28
col2hsl, 29
col2hsv, 30
color2gradient, 32
fixYellow, 53
fixYellowHue, 54
getColorRamp, 58
hcl2col, 72
hsl2col, 79
hsv2col, 80
isColor, 90
kable_coloring, 97
makeColorDarker, 104
rainbow2, 173
rgb2col, 183
setCLranges, 201
setTextContrastColor, 206
showColors, 216
unalpha, 227
warpRamp, 237

* jam date functions

asDate, 15
dateToDays0ld, 44
getDate, 62

* jam export functions

applyXlsxCategoricalFormat, 9
applyXlsxConditionalFormat, 11
readOpenxlsx, 176
set_x1sx_colwidths, 208
set_xlsx_rowheights, 210
writeOpenxlsx, 238

+ jam grep functions

grepls, 64
igrep, 81
igrepHas, 82

igrepl, 83
provigrep, 170
unigrep, 228
unvigrep, 232
vgrep, 234
vigrep, 235

+ jam heatmap functions
cell_fun_label, 22

heatmap_column_order, 75

heatmap_row_order, 77

* jam internal functions
handleArgsText, 70
jamCalcDensity, 93
make_html_styles, 108
make_styles, 110
smoothScatterJam, 220

+ jam list functions
cPaste, 40
heads, 74
jam_rapply, 94
list2df, 100
mergeAllXY, 112
mixedSorts, 132
rbindList, 174
relist_named, 178
rlengths, 185
sclass, 197
sdim, 198
uniques, 229
unnestList, 230

* jam numeric functions
deg2rad, 46
noiseFloor, 141
normScale, 143
rad2deg, 172
rowGroupMeans, 191
rowRmMadOutliers, 194
warpAroundZero, 235

* jam plot functions

245

246

adjustAxisLabelMargins, 4
coordPresets, 37
decideMfrow, 45
drawLabels, 47
getPlotAspect, 63
groupedAxis, 65
imageByColors, 84
imageDefault, 87
minorLogTicksAxis, 118
nullPlot, 144
plotPolygonDensity, 152
plotRidges, 157
plotSmoothScatter, 159
shadowText, 211
shadowText_options, 213
showColors, 216
sqrtAxis, 223
usrBox, 233

* jam practical functions
breakDensity, 17
call_fn_ellipsis, 21
check_pkg_installed, 25
checkLightMode, 24
colNum2excelName, 31
color_dither, 35
exp2signed, 51
getAxislLabel, 57
isFALSEV, 91
isTRUEV, 92
jargs, 95
kable_coloring, 97
11df, 101
log2signed, 103
middle, 114
minorLogTicks, 115
newestFile, 140
printDebug, 164
reload_rmarkdown_cache, 180
renameColumn, 182
rmInfinite, 186
rmNA, 187
rmNAs, 189
rmNULL, 190
setPrompt, 203

* jam sort functions
mixedOrder, 123
mixedSort, 126
mixedSortDF, 129

INDEX

mixedSorts, 132
mmixedOrder, 135

* jam string functions
asSize, 16
breaksByVector, 19
fillBlanks, 52
formatInt, 55
gsubOrdered, 67
gsubs, 69
makeNames, 106
nameVector, 137
nameVectorN, 138
padInteger, 147
padString, 148
pasteByRow, 149
pasteByRowOrdered, 150
sizeAsNum, 219
tcount, 224
ucfirst, 226

adjustAxisLabelMargins, 4, 38, 46, 50, 63,
67,87,90, 122, 146, 156, 159, 163,
213,215,218, 224, 233

alpha2col, 6, 9, 27, 29, 31, 34, 54, 55,61, 73,
80, 81,91, 99, 105, 173, 185, 202,
207,218, 227,238

applyCLrange, 7,7, 27, 29, 31, 34, 54, 55, 61,
73,80, 81,91, 99, 105, 173, 185,
202,207,218, 227,238

applyXlsxCategoricalFormat, 9, 14, 178,
209, 210, 243

applyXlsxConditionalFormat, 11, 11, 178,
209, 210, 243

asDate, 15, 44, 62

asSize, 16, 20, 53, 56, 68, 70, 107, 138, 139,
147, 148, 150, 152, 220, 225, 226

breakDensity, 17, 22, 25, 27, 32, 36, 52, 58,
92,97,99,102, 103, 114, 117, 141,
169, 182, 183, 187, 188, 190, 191,
205

breaksByVector, 17, 19, 53, 56, 68, 70, 107,
138, 139, 147, 148, 150, 152, 220,
225, 226

call_fn_ellipsis, 18,21, 25, 27, 32, 36, 52,
58,92,97,99,102, 103,114, 117,
141, 169, 182, 183, 187, 188, 190,
191, 205

INDEX

cell_fun_label, 22, 76, 78

check_pkg_installed, 18, 22, 25, 25, 32, 36,
52,58,92,97,99, 102, 103, 114,
117,141, 169, 182, 183, 187, 188,
190, 191, 205

checkLightMode, 18, 22, 24, 27, 32, 36, 52,
58,92,97,99,102, 103,114, 117,
141, 169, 182, 183, 187, 188, 190
191, 205

col2alpha, 7, 9, 27, 29, 31, 34, 54, 55, 61, 73,
80, 81,91, 99, 105, 173, 185, 202,
207,218, 227, 238

col2hcl, 7,9, 27,28, 29, 31, 34, 54, 55, 61,
73,80, 81,91, 99, 105, 173, 185,
202, 207,218, 227, 238

col2hsl, 7,9, 27, 29,29, 31, 34, 54, 55, 61,
73,80, 81,91, 99, 105, 173, 185,
202, 207, 218, 227, 238

col2hsv, 7,9, 27,29, 30, 34, 54, 55,61, 73,
80, 81,91, 99, 105, 173, 185, 202,
207, 218, 227, 238

col2rgb, 6, 184

colNum2excelName, 18, 22, 25, 27, 31, 36, 52,
58,92,97,99,102, 103,114, 117,
141, 169, 182, 183, 187, 188, 190
191, 205

color2gradient, 7, 9, 27, 29, 31, 32, 54, 55,
61,73,80, 81,91,99, 105, 173, 185,
202, 207, 218, 227, 238

color_dither, 18, 22, 25, 27, 32, 35, 52, 58,
92,97,99,102, 103,114,117, 141,
169, 182, 183, 187, 188, 190, 191,
205

coordPresets, 5, 37, 46, 50, 63, 67, 87, 90,
122, 146, 156, 159, 163,213, 215,
218,224, 233

cPaste, 40, 75,94, 101, 112, 134, 175, 179,
186, 198, 200, 230, 231

cPasteS (cPaste), 40

cPasteSU (cPaste), 40

cPasteU (cPaste), 40

cPasteUnique (cPaste), 40

dateToDays01d, 15, 44, 62

decideMfrow, 5, 38, 45, 50, 63, 67, 87, 90,
122, 146, 156, 159, 163,213, 215,
218,224,233

deg2rad, 46, 142, 144, 173, 194, 197, 236

difftime, 15

247

drawLabels, 5, 38, 46, 47, 63, 67, 87, 90, 122,
146, 156, 159, 163, 213,215, 218,
224,233

exp2signed, 18, 22, 25, 27, 32, 36, 51, 58, 92,
97,99, 102, 103, 114, 117, 141, 169,
182, 183, 187, 188, 190, 191, 205

fillBlanks, 17, 20, 52, 56, 68, 70, 107, 138,
139, 147, 148, 150, 152, 220, 225,
226

fixYellow, 7, 9, 27, 29, 31, 34, 53, 55, 61, 73,
80, 81,91, 99, 105, 173, 185, 202,
207,218, 227,238

fixYellowHue, 7, 9, 27, 29, 31, 34, 54, 54, 61,
73,80, 81,91, 99, 105, 173, 185,
202,207,218, 227,238

formatlnt, 17, 20, 53, 55, 68, 70, 107, 138,
139, 147, 148, 150, 152, 220, 225,
226

getAxisLabel, 18, 22, 25, 27, 32, 36, 52, 57,
92,97,99,102, 103,114,117, 141,
169, 182, 183, 187, 188, 190, 191,
205

getColorRamp, 7, 9, 27, 29, 31, 34, 54, 55, 58,
73,80, 81,91, 99, 105, 173, 185,
202, 207, 218, 227, 238

getDate, 15, 44, 62

getPlotAspect, 5, 38, 46, 50, 63, 67, 87, 90,
122, 146, 156, 159, 163,213, 215,
218,224,233

grepls, 64, 82, 83,171, 228, 232, 234, 235

groupedAxis, 5, 38, 46, 50, 63, 65, 87, 90,
122, 146, 156, 159, 163,213, 215,
218,224,233

gsubOrdered, 17, 20, 53, 56, 67, 70, 107, 138,
139, 147, 148, 150, 152, 220, 225,
226

gsubs, 17, 20, 53, 56, 68, 69, 107, 138, 139,
147, 148, 150, 152, 220, 225, 226

handleArgsText, 70, 93, 109, 112, 222

hcl2col, 7,9, 27, 29, 31, 34, 54, 55, 61, 72,
80, 81,91, 99, 105, 173, 185, 202,
207,218, 227,238

heads, 43,74,94, 101, 112, 134, 175, 179
186, 198, 200, 230, 231

heatmap_column_order, 24,75, 78

248

heatmap_row_order, 24, 76, 77

hsl2col, 7,9, 27,29, 31, 34, 54, 55, 61, 73,
79,81,91,99, 105, 173, 185, 202,
207,218, 227, 238

hsv2col, 7, 9, 27, 29, 31, 34, 54, 55,61, 73,
80, 80, 91, 99, 105, 173, 185, 202,
207,218, 227,238

igrep, 65,81, 83, 171, 228, 232, 234, 235

igrepHas, 65, 82, 82, 83, 171, 228, 232, 234
235

igrepl, 65, 82, 83,83, 171,228, 232, 234, 235

image, 86, 90

imageByColors, 5, 38, 46, 50, 63, 67, 84, 90,
122, 146, 156, 159, 163,213, 215,
218, 224, 233

imageDefault, 5, 38, 46, 50, 63, 67, 85-87,
87,122, 146, 156, 159, 163, 213,
215,218, 224,233

isColor, 7,9, 27,29, 31, 34, 54, 55,61, 73,
80, 81,90, 99, 105, 173, 185, 202,
207,218, 227, 238

isFALSEV, 18, 22, 25, 27, 32, 36, 52, 58, 91,
92,97,99,102, 103, 114, 117, 141,
169, 182, 183, 187, 188, 190, 191,
205

isTRUEV, 18, 22, 25, 27, 32, 36, 52, 58, 92, 92,
97,99, 102, 103,114,117, 141, 169,
182, 183, 187, 188, 190, 191, 205

jam_rapply, 43,75,94, 101, 112, 134, 175,
179, 186, 198, 200, 230, 231

jamCalcDensity, 72,93, 109, 112, 222

jargs, 18, 22, 25,27, 32, 36, 52, 58, 92, 95,
99,102, 103,114,117, 141, 169,
182, 183, 187, 188, 190, 191, 205

kable_coloring, 7,9, 18, 22, 25,27, 29, 31,
32,34, 36, 52, 54, 55, 58, 61, 73, 80,
81,91, 92,97,97, 102, 103, 105,
114,117,141, 169, 173, 182, 183,
185, 187, 188, 190, 191, 202, 205,
207,218, 227, 238

lapply, 137, 139

list2df, 43, 75, 94, 100, 112, 134, 175, 179,
186, 198, 200, 230, 231

11df, 18, 22, 25, 27, 32, 36, 52, 58, 92, 97, 99,
101, 103, 114, 117, 141, 169, 182,
183, 187, 188, 190, 191, 205

INDEX

log2signed, 18, 22, 25, 27, 32, 36, 52, 58, 92,
97,99, 102,103, 114,117, 141, 169,
182, 183, 187, 188, 190, 191, 205

logFoldAxis (minorLogTicksAxis), 118

make . names, 107
make.unique, 107
make_html_styles, 72, 93, 108, 112, 222
make_styles, 72, 93, 109, 110, 222
makeColorDarker, 7, 9, 27, 29, 31, 34, 54, 55,
61,73,80, 81,91,99,104, 173, 185,
202, 207, 218, 227, 238
makeNames, 17, 20, 53, 56, 68, 70, 106,
137-139, 147, 148, 150, 152, 220,
225, 226
mergeAllXY, 43, 75,94, 101, 112, 134, 175,
179, 186, 198, 200, 230, 231
middle, 18, 22, 25, 27, 32, 36, 52, 58, 92, 97,
99,102, 103,114, 117, 141, 169,
182, 183, 187, 188, 190, 191, 205
minorLogTicks, I8, 22, 25, 27, 32, 36, 52, 58,
92,97,99, 102, 103, 114, 115, 141,
169, 182, 183,187, 188, 190, 191,
205
minorLogTicksAxis, 5, 38, 46, 50, 63, 67, 87,
90, 118, 146, 156, 159, 163, 213,
215,218, 224,233
mixedOrder, 123, 127, 128, 130, 133, 134, 136
mixedOrder(), 42
mixedSort, 125, 126, 130, 134, 136
mixedSortDF, 125, 128, 129, 134, 136
mixedSorts, 43, 75,94, 101, 112, 125, 128,
130,132, 136, 175, 179, 186, 198,
200, 230, 231
mmixedOrder, 125, 128, 130, 134, 135

nameVector, 17, 20, 53, 56, 68, 70, 107, 137,
139, 147, 148, 150, 152, 220, 225,
226
nameVectorN, 17, 20, 53, 56, 68, 70, 107, 138,
138, 147, 148, 150, 152, 220, 225,
226
newestFile, I8, 22, 25, 27, 32, 36, 52, 58, 92,
97,99, 102, 103, 114, 117, 140, 169,
182, 183,187, 188, 190, 191, 205
noiseFloor, 47,141, 144, 173, 194, 197, 236
normScale, 47, 142, 143, 173, 194, 197, 236
nullPlot, 5, 38, 46, 50, 63, 67, 87, 90, 122,
144, 156, 159, 163, 213, 215, 218,

INDEX

224,233

padInteger, 17, 20, 53, 56, 68, 70, 107, 138,
139, 147, 148, 150, 152, 220, 225,
226

padString, 17, 20, 53, 56, 68, 70, 107, 138
139, 147,148, 150, 152, 220, 225,
226

par, 85

pasteByRow, 17, 20, 53, 56, 68, 70, 107, 138,
139, 147, 148, 149, 152, 220, 225
226

pasteByRowOrdered, 17, 20, 53, 56, 68, 70,
107, 138, 139, 147, 148, 150, 150,
220, 225, 226

plotPolygonDensity, 5, 38, 46, 50, 63, 67,
87,90, 122, 146, 152, 159, 163, 213,
215,218, 224,233

plotRidges, 5, 38, 46, 50, 63, 67, 87, 90, 122,
146, 156, 157, 163, 213, 215, 218,
224,233

plotSmoothScatter, 5, 38, 46, 50, 63, 67, 87,
90, 122, 146, 156, 159, 159, 213,
215,218,224, 233

polarLUV, 28, 29

printDebug, 18, 22, 25, 27, 32, 36, 52, 58, 92,
97,99, 102, 103,114,117, 141, 164,
182, 183, 187, 188, 190, 191, 205

printDebugHtml (printDebug), 164

printDebugl (printDebug), 164

proigrep (provigrep), 170

provigrep, 13, 65, 82, 83, 170, 228, 232, 234,
235

pvalueAxis (minorLogTicksAxis), 118

rad2deg, 47, 142, 144,172, 194, 197, 236
rainbow2, 7,9, 27, 29, 31, 34, 54, 55,61, 73
80, 81,91, 99, 105, 173, 185, 202,
207, 218, 227, 238
rbindList, 43,75, 94,101, 112, 134, 174,
179, 186, 198, 200, 230, 231
readOpenxlsx, 11, 14, 176, 209, 210, 243
rect, 233
relist_named, 43, 75, 94, 101, 112, 134, 175,
178, 186, 198, 200, 230, 231
reload_rmarkdown_cache, 18, 22, 25, 27, 32,
36, 52, 58, 92, 97,99, 102, 103, 114,
117,141, 169, 180, 183, 187, 188,
190, 191, 205

249

renameColumn, 18, 22, 25, 27, 32, 36, 52, 58,
92,97,99, 102, 103,114, 117, 141,
169, 182,182, 187, 188, 190, 191,
205

RGB, 28, 29

rgb, 184

rgb2col, 7,9, 27, 29, 31, 34, 54, 55,61, 73,
80, 81,91, 99, 105, 173, 183, 202,
207,218, 227,238

rlengths, 43, 75,94, 101, 112, 134, 175, 179,
185, 198, 200, 230, 231

rmInfinite, I8, 22, 25,27, 32, 36, 52, 58, 92,
97,99, 102, 103,114,117, 141, 169,
182, 183, 186, 188, 190, 191, 205

rmNA, 18, 22, 25, 27, 32, 36, 52, 58, 92, 97, 99,
102, 103,114,117, 141, 169, 182,
183, 187,187, 190, 191, 205

rmNAs, 18, 22, 25, 27, 32, 36, 52, 58, 92, 97,
99,102, 103,114,117, 141, 169,
182, 183,187, 188, 189, 191, 205

rmNULL, 18, 22, 25, 27, 32, 36, 52, 58, 92, 97,
99,102, 103,114,117, 141, 169,
182, 183, 187, 188, 190, 190, 205

rowGroupMeans, 47, 142, 144, 173, 191, 197,
236

rowGroupRmOutliers (rowGroupMeans), 191

rowRmMadOutliers, 47, 142, 144, 173, 194,
194, 236

sclass, 43,75,94,101, 112,134, 175, 179,
186, 197, 200, 230, 231

sdim, 43,75,94, 101,112,134, 175,179, 186,
198, 198, 230, 231

sdima (sdim), 198

set_xlsx_colwidths, /1, 14, 178, 208, 210,
243

set_xlsx_rowheights, 11, 14, 178, 209, 210,
243

setCLranges, 7,9, 27, 29, 31, 34, 54, 55, 61,
73,80, 81,91, 99, 105, 173, 185,
201, 207, 218, 227, 238

setNames, /137

setPrompt, 18, 22, 25, 27, 32, 36, 52, 58, 92,
97,99, 102, 103,114,117, 141, 169,
182, 183, 187, 188, 190, 191, 203

setTextContrastColor, 7,9, 27, 29, 31, 34,
54, 55,61,73, 80, 81, 85,91, 99,
105, 173, 185, 202, 206, 218, 227,
238

250

shadowText, 5, 38, 46, 50, 63, 67, 87, 90, 122,
146, 156, 159, 163,211,212, 215,
218,224, 233

shadowText_options, 5, 38, 46, 50, 63, 67,
87,90, 122, 146, 156, 159, 163, 213,
213,218, 224, 233

showColors, 5, 7, 9, 27, 29, 31, 34, 38, 46, 50,
54, 55,61,63,67,73,80, 81,87, 90,
91,99, 105, 122, 146, 156, 159, 163,
173, 185, 202, 207, 213, 215, 216,
224, 227,233,238

sizeAsNum, 17, 20, 53, 56, 68, 70, 107, 138
139, 147, 148, 150, 152, 219, 225
226

smoothScatterJam, 72, 93, 109, 112, 220

sqrtAxis, 5, 38, 46, 50, 63, 67, 87, 90, 122,
146, 156, 159, 163, 213, 215, 218,
223,233

ssdim (sdim), 198

ssdima (sdim), 198

tcount, 17, 20, 53, 56, 68, 70, 107, 138, 139,
147, 148, 150, 152, 220, 224, 226
text, 272

ucfirst, 17,20, 53, 56, 68, 70, 107, 138, 139,
147, 148, 150, 152, 220, 225, 226

unalpha, 7, 9, 27, 29, 31, 34, 54, 55, 61, 73,
80, 81,91, 99, 105, 173, 185, 202,
207,218,227, 238

unigrep, 65, 82, 83, 171,228, 232, 234, 235

unique(), 229

uniques, 43,75,94, 101,112, 134, 175, 179
186, 198, 200, 229, 231

unnestlList, 43,75,94, 101,112,134, 175,
179, 186, 198, 200, 230, 230

unvigrep, 65, 82, 83,171, 228, 232, 234, 235

usrBox, 5, 38, 46, 50, 63, 67, 87, 90, 122, 146,
156, 159, 163,212, 213,215, 218,
224,233

vgrep, 65, 81-83, 171, 228, 232, 234, 235
vigrep, 65, 81-83, 171, 228, 232, 234, 235

warpAroundZero, 47, 142, 144, 173, 194, 197,
235

warpRamp, 7, 9, 27, 29, 31, 34, 54, 55,61, 73,
80, 81,91,99, 105,173, 185, 202,
207,218, 227,237

writeOpenxlsx, 11, 14, 178, 209, 210, 238

INDEX

	adjustAxisLabelMargins
	alpha2col
	applyCLrange
	applyXlsxCategoricalFormat
	applyXlsxConditionalFormat
	asDate
	asSize
	breakDensity
	breaksByVector
	call_fn_ellipsis
	cell_fun_label
	checkLightMode
	check_pkg_installed
	col2alpha
	col2hcl
	col2hsl
	col2hsv
	colNum2excelName
	color2gradient
	color_dither
	coordPresets
	cPaste
	dateToDaysOld
	decideMfrow
	deg2rad
	drawLabels
	exp2signed
	fillBlanks
	fixYellow
	fixYellowHue
	formatInt
	getAxisLabel
	getColorRamp
	getDate
	getPlotAspect
	grepls
	groupedAxis
	gsubOrdered
	gsubs
	handleArgsText
	hcl2col
	heads
	heatmap_column_order
	heatmap_row_order
	hsl2col
	hsv2col
	igrep
	igrepHas
	igrepl
	imageByColors
	imageDefault
	isColor
	isFALSEV
	isTRUEV
	jamCalcDensity
	jam_rapply
	jargs
	kable_coloring
	list2df
	lldf
	log2signed
	makeColorDarker
	makeNames
	make_html_styles
	make_styles
	mergeAllXY
	middle
	minorLogTicks
	minorLogTicksAxis
	mixedOrder
	mixedSort
	mixedSortDF
	mixedSorts
	mmixedOrder
	nameVector
	nameVectorN
	newestFile
	noiseFloor
	normScale
	nullPlot
	padInteger
	padString
	pasteByRow
	pasteByRowOrdered
	plotPolygonDensity
	plotRidges
	plotSmoothScatter
	printDebug
	provigrep
	rad2deg
	rainbow2
	rbindList
	readOpenxlsx
	relist_named
	reload_rmarkdown_cache
	renameColumn
	rgb2col
	rlengths
	rmInfinite
	rmNA
	rmNAs
	rmNULL
	rowGroupMeans
	rowRmMadOutliers
	sclass
	sdim
	setCLranges
	setPrompt
	setTextContrastColor
	set_xlsx_colwidths
	set_xlsx_rowheights
	shadowText
	shadowText_options
	showColors
	sizeAsNum
	smoothScatterJam
	sqrtAxis
	tcount
	ucfirst
	unalpha
	unigrep
	uniques
	unnestList
	unvigrep
	usrBox
	vgrep
	vigrep
	warpAroundZero
	warpRamp
	writeOpenxlsx
	Index

