Package ‘mldr.resampling’

August 22, 2023
Title Resampling Algorithms for Multi-Label Datasets
Version 0.2.3

Description Collection of the state of the art multi-
label resampling algorithms. The objective of these algorithms is to achieve balance in multi-
label datasets.

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.2.3

Imports data.table, e1071, mldr, pbapply, vecsets
Suggests parallel

NeedsCompilation no

Author Miguel Angel Dévila [cre],
Francisco Charte [aut] (<https://orcid.org/0000-0002-3083-8942>),
Maria José Del Jesus [aut] (<https://orcid.org/0000-0002-7891-3059>),
Antonio Rivera [aut] (<https://orcid.org/0000-0002-1062-3127>)

Maintainer Miguel Angel Dévila <madre@e8@red.ujaen.es>
Repository CRAN
Date/Publication 2023-08-22 12:20:02 UTC

R topics documented:

adjustedHammingDisto
calculateDistances
calculateTableVDM e
executeAlgorithm L
generatelnstanceMLSOL oL
getAllNeighbors L
getAllNeighbors2 L
getAllReverseNeighbors L
getC . L e
getNN . . e
getNUMCOTES e e e

https://orcid.org/0000-0002-3083-8942
https://orcid.org/0000-0002-7891-3059
https://orcid.org/0000-0002-1062-3127

2 adjustedHammingDist
LS L e e 9
getU . o e e 9
etV e e 10
CetW L e e 11
IItTypes o e e 11
LPROS . . 12
LPRUS . . 12
MLEeNN . . . 13
MLRKNNOS 14
MLROS . . e 15
MLRUS . . e 15
MLSMOTE 16
MLSOL . . . e 17
MLTL . . 18
MLUL . . . 18
newSample 19
REMEDIAL 20
resampleo L 20
SetNUMCOIes e e 22
setParallel L. 22
vdm ..o 23
Index 24
adjustedHammingDist Auxiliary function used by MLeNN. Computes the Hamming Distance
between two instances
Description
Auxiliary function used by MLeNN. Computes the Hamming Distance between two instances
Usage
adjustedHammingDist(x, y, D)
Arguments
X Index of sample 1
y Index of sample 2
mld mldr object in which the instances are located
Value

The Hamming Distance between the instances

calculateDistances 3

calculateDistances Auxiliary function used to calculate the distances between an instance
and the ones with a specific active label. Euclidean distance is calcu-
lated for numeric attributes, and VDM for non numeric ones.

Description

Auxiliary function used to calculate the distances between an instance and the ones with a specific
active label. Euclidean distance is calculated for numeric attributes, and VDM for non numeric
ones.

Usage

calculateDistances(sample, rest, label, D, tableVDM = NULL)

Arguments
sample Index of the sample whose distances to other samples we want to know
rest Indexes of the samples to which we will calculate the distance
label Label that must be active
D mld mldr object with the multilabel dataset to preprocess
tableVDM Dataframe object containing previous calculations for faster processing. If it is
empty, the algorithm will be slower
Value

A list with the distance to the rest of samples

calculateTableVDM Auxiliary function used to calculate an auxiliary table to make VDM
calculation faster

Description

Auxiliary function used to calculate an auxiliary table to make VDM calculation faster

Usage

calculateTableVDM(D)
Arguments

D mld mldr object with the multilabel dataset to preprocess
Value

A dataframe with tables, useful for VDM calculation

executeAlgorithm

executeAlgorithm

Auxiliary function used by resample. It executes an algorithm, given
as a string, and stores the resulting MLD in a arff file

Description

Auxiliary function used by resample. It executes an algorithm, given as a string, and stores the
resulting MLD in a arff file

Usage
executeAlgorithm(
D,
a,
P,
K,
TH,
strategy,
outputDirectory,
neighbors,
neighbors2,
tableVDM
)
Arguments
D mld mldr object with the multilabel dataset to preprocess
a String with the name of the algorithm to be applied.
P Percentage in which the original dataset is increased/decreased (if required by
the algorithm)
k Number of neighbors taken into account for each instance (if required by the
algorithm)
TH Threshold for the Hamming Distance in order to consider an instance different
to another one (if required by the algorithm)
strategy Strategy for choosing the synthetic labels (if required by the algorithm). Possible
values: "union", "intersection" and "ranking" (default)
outputDirectory
Route with the directory where the generated ARFF file will be stored
neighbors Structure with all instances and neighbors in the dataset, useful in MLSOL and
MLUL
neighbors2 Structure with some instances and neighbors in the dataset, useful in MLeNN
and MLTL
tableVDM Dataframe object containing previous calculations for faster processing. If it is

empty, the algorithm will be slower

generatelnstanceMLSOL 5

Value

Time (in seconds) taken to execute the algorithm (NULL if no algorithm was executed)

generatelnstanceMLSOL Auxiliary function used by MLSOL. Creates a synthetic sample based
on two other samples, taking into account their types

Description
Auxiliary function used by MLSOL. Creates a synthetic sample based on two other samples, taking
into account their types

Usage

generateInstanceMLSOL (seedInstance, refNeigh, t, D)

Arguments

seedInstance Index of the sample we are using as "template”

refNeigh Index of the reference neighbor

t types of the instances

D mld mldr object with the multilabel dataset to preprocess
Value

A synthetic sample derived from the one passed as a parameter and its neighbors

getAllNeighbors Auxiliary function used by MLSOL and MLUL. Computes the kNN of
every instance in a dataset

Description

Auxiliary function used by MLSOL and MLUL. Computes the kNN of every instance in a dataset

Usage
getAllNeighbors(D, d, tableVDM = NULL)

Arguments
D mld mldr object with the multilabel dataset to preprocess
d Vector with the instances of the dataset which have one or more label active
(ideally, all of them)
tableVDM Dataframe object containing previous calculations for faster processing. If it is

empty, the algorithm will be slower

6 getAllReverseNeighbors

Value

A list of vectors with the indexes of the neighbors for each instance

getAllNeighbors?2 Auxiliary function used by MLeNN and MLTL. Gets the kNN of every
instance in a dataset, when compared to some of the rest

Description

Auxiliary function used by MLeNN and MLTL. Gets the kNN of every instance in a dataset, when
compared to some of the rest

Usage
getAllNeighbors2(neighbors, d, k)

Arguments
neighbors Structure with all the neighbors in the dataset, regardless of which ones to be
compared
d Vector with the instances of the dataset which are going to be compared
k Number of neighbors to be retrieved
Value

A list of vectors with the indexes of the neighbors for each instance

getAllReverseNeighbors
Auxiliary function used by MLUL. For each instance in the dataset,
given the neighbors structure, we compute its reverse nearest neigh-
bors

Description

Auxiliary function used by MLUL. For each instance in the dataset, given the neighbors structure,
we compute its reverse nearest neighbors

Usage

getAllReverseNeighbors(d, neighbors, k)

getC 7

Arguments
d Vector with the instances of the dataset which have one or more label active
(ideally, all of them)
neighbors Structure with the neighbors of every instance in the dataset
k Number of neighbors to be considered
Value

A list of vectors with the indexes of the reverse nearest neighbors of every instance in the dataset

getC Auxiliary function used by MLSOL and MLUL. For each instance in
the dataset, we compute, for each label, the proportion of neighbors
having an opposite class with respect to the proper instance

Description
Auxiliary function used by MLSOL and MLUL. For each instance in the dataset, we compute, for
each label, the proportion of neighbors having an opposite class with respect to the proper instance
Usage

getC(D, d, neighbors, k)

Arguments
D mld mldr object with the multilabel dataset to preprocess
d Vector with the instances of the dataset which have one or more label active
(ideally, all of them)
neighbors Structure with the neighbors of every instance in the dataset
k Number of neighbors taken into account for each instance
Value

A structure with the proportion of neighbors having an opposite class with respect to an instance
and label

8 getNumCores

getNN Auxiliary function used to compute the neighbors of an instance

Description

Auxiliary function used to compute the neighbors of an instance

Usage
getNN(sample, rest, label, D, tableVDM = NULL)

Arguments
sample Index of the sample whose neighbors we want to know
rest Indexes of the samples among which we will search
label Label that must be active, in order to calculate the distances
D mld mldr object with the multilabel dataset to preprocess
tableVDM Dataframe object containing previous calculations for faster processing. If it is
empty, the algorithm will be slower
Value

A vector with the indexes inside rest of the neighbors

getNumCores Get the number of cores available for parallel computing

Description

Get the number of cores available for parallel computing

Usage

getNumCores()

Value

The number of cores available for parallel computing

Examples

getNumCores ()

getS 9

getS Auxiliary function used by MLSOL and MLUL. For non outlier in-
stances, it aggregates the values of C, taking into account the global
class imbalance

Description

Auxiliary function used by MLSOL and MLUL. For non outlier instances, it aggregates the values
of C, taking into account the global class imbalance

Usage

getS(D, d, C, minoritary)

Arguments
D mld mldr object with the multilabel dataset to preprocess
d Vector with the instances of the dataset which have one or more label active
(ideally, all of them)
C Structure with the proportion of neighbors having an opposite class with respect
to an instance and label
minoritary Vector with the minoritary class of each label (normally, 1)
Value

A structure with the proportion of neighbors having an opposite class with respect to an instance
and label, normalized by the global class imbalance

getU Auxiliary function used by MLUL. It computes the influence of each
instance with respect to its reverse neighbors

Description

Auxiliary function used by MLUL. It computes the influence of each instance with respect to its
reverse neighbors

Usage

getU(D, d, rNeighbors, S)

10 getV

Arguments
D mld mldr object with the multilabel dataset to preprocess
d Vector with the instances of the dataset which have one or more label active
(ideally, all of them)
rNeighbors Structure with the reverse nearest neighbors of each instance of the dataset
S Structure with the proportion of neighbors having an opposite class with respect
to an instance and label, normalized by the global class imbalance
Value

A list of values of influence for each instance with respect to its reverse neighbors

getV Auxiliary function used by MLUL. It calculates, for each instance, how
important it is in the dataset

Description

Auxiliary function used by MLUL. It calculates, for each instance, how important it is in the dataset

Usage

getV(w, u)

Arguments

w List of weights for each instance

u List of influences in reverse neighbors for each instance

Value

A list with the values of importance of each instance in the dataset

getW 11

getW Auxiliary function used by MLSOL and MLUL. For non outlier in-
stances, it aggregates the values of S for each label

Description

Auxiliary function used by MLSOL and MLUL. For non outlier instances, it aggregates the values
of S for each label

Usage
getW(S)
Arguments
S Structure with the proportion of neighbors having an opposite class with respect
to an instance and label, normalized by the global class imbalance
Value

A vector of weights to be considered when oversampling for each instance

initTypes Auxiliary function used by MLSOL. Categorizes each pair instance-
label of the dataset with a type

Description

Auxiliary function used by MLSOL. Categorizes each pair instance-label of the dataset with a type

Usage

initTypes(C, neighbors, k, minoritary, D, d)

Arguments
C List of vectors with one value for each pair instance-label
neighbors Structure with the k nearest neighbors of each instance of the dataset
k Number of neighbors to be considered for each instance
minoritary Vector with the minoritary value of each label (normally, 1)
D mld mldr object with the multilabel dataset to preprocess
d Vector with the instances of the dataset which have one or more label active
(ideally, all of them)
Value

A synthetic sample derived from the one passed as a parameter and its neighbors

12 LPRUS

LPROS Randomly clones instances with minoritary labelsets

Description

This function implements the LP-ROS algorithm. It is a preprocessing algorithm for imbalanced
multilabel datasets, whose aim is to identify instances with minoritary labels, and randomly clone
them.

Usage
LPROS(D, P)

Arguments

D mld mldr object with the multilabel dataset to preprocess

P Percentage in which the original dataset is increased

Value

A mld object containing the preprocessed multilabel dataset

Source

Charte, F., Rivera, A. J., del Jesus, M. J., & Herrera, F. (2015). Addressing imbalance in multilabel
classification: Measures and random resampling algorithms. Neurocomputing, 163, 3-16.

Examples

library(mldr)
LPROS(birds, 25)

LPRUS Randomly deletes instances with majoritary labelsets

Description

This function implements the LP-RUS algorithm. It is a preprocessing algorithm for imbalanced
multilabel datasets, whose aim is to identify instances with majoritary labelsets, and randomly
delete them from the original dataset.

Usage
LPRUS(D, P)

MLeNN 13

Arguments
D mld mldr object with the multilabel dataset to preprocess
P Percentage in which the original dataset is increased
Value

A mld object containing the preprocessed multilabel dataset

Source

Charte, F., Rivera, A. J., del Jesus, M. J., & Herrera, F. (2015). Addressing imbalance in multilabel
classification: Measures and random resampling algorithms. Neurocomputing, 163, 3-16.

Examples

library(mldr)
LPRUS(birds, 25)

MLeNN Multilabel edited Nearest Neighbor (MLeNN)

Description

This function implements the MLeNN algorithm. It is a preprocessing algorithm for imbalanced
multilabel datasets, whose aim is to identify instances with majoritary labels, and remove its neihg-
bors which are too different to them, in terms of active labels.

Usage
MLeNN(D, TH = 0.5, k = 3, neighbors = NULL, tableVDM = NULL)

Arguments
D mld mldr object with the multilabel dataset to preprocess
TH threshold for the Hamming Distance in order to consider an instance different to
another one. Defaults to 0.5.
k number of nearest neighbours to check for each instance. Defaults to 3.
neighbors Structure with instances and neighbors. If it is empty, it will be calculated by
the function
tableVDM Dataframe object containing previous calculations for faster processing. If it is
empty, the algorithm will be slower
Value

An mldr object containing the preprocessed multilabel dataset

14 MLRKNNOS

Source

Francisco Charte, Antonio J. Rivera, Maria J. del Jesus, and Francisco Herrera. MLeNN: A First

Approach to Heuristic Multilabel Undersampling. Intelligent Data Engineering and Automated
Learning — IDEAL 2014. ISBN 978-3-319-10840-7.

MLRKNNOS Reverse-nearest neighborhood based oversampling for imbalanced,
multi-label datasets

Description
This function implements an algorithm that uses the concept of reverse nearest neighbors, in order

to create new instances for each label. Then, several radial SVMs, one for each label, are trained in
order to predict each label of the synthetic instances.

Usage

MLRKNNOS(D, k, tableVDM = NULL)

Arguments
D mld mldr object with the multilabel dataset to preprocess
k Number of neighbors to be considered when creating a synthetic instance
tableVDM Dataframe object containing previous calculations for faster processing. If it is
empty, the algorithm will be slower
Value

A mld object containing the preprocessed multilabel dataset

Source

Sadhukhan, P., & Palit, S. (2019). Reverse-nearest neighborhood based oversampling for imbal-
anced, multi-label datasets. Pattern Recognition Letters, 125, 813-820

MLROS 15

MLROS Randomly clones instances with minoritary labels

Description

This function implements the ML-ROS algorithm. It is a preprocessing algorithm for imbalanced
multilabel datasets, whose aim is to identify instances with minoritary labels, and randomly clone
them.

Usage
MLROS(D, P)

Arguments

D mld mldr object with the multilabel dataset to preprocess

P Percentage in which the original dataset is increased

Value

A mld object containing the preprocessed multilabel dataset

Source

Charte, F., Rivera, A. J., del Jesus, M. J., & Herrera, F. (2015). Addressing imbalance in multilabel
classification: Measures and random resampling algorithms. Neurocomputing, 163, 3-16.

Examples

library(mldr)
library(mldr.resampling)
MLROS(birds, 25)

MLRUS Randomly deletes instances with majoritary labels

Description

This function implements the ML-RUS algorithm. It is a preprocessing algorithm for imbalanced
multilabel datasets, whose aim is to identify instances with majoritary labels, and randomly delete
them from the original dataset.

Usage
MLRUS(D, P)

16 MLSMOTE

Arguments
D mld mldr object with the multilabel dataset to preprocess
P Percentage in which the original dataset is increased
Value

A mld object containing the preprocessed multilabel dataset

Source

Charte, F., Rivera, A. J., del Jesus, M. J., & Herrera, F. (2015). Addressing imbalance in multilabel
classification: Measures and random resampling algorithms. Neurocomputing, 163, 3-16.

Examples

library(mldr)
MLRUS(birds, 25)

MLSMOTE Synthetic oversampling of multilabel instances (MLSMOTE)

Description

This function implements the MLSMOTE algorithm. It is a preprocessing algorithm for imbalanced
multilabel datasets, whose aim is to identify instances with minoritary labels, and generate synthetic
instances based on their neighbor instances.

Usage

MLSMOTE(D, k, strategy = "ranking”, tableVDM = NULL)

Arguments
D mld mldr object with the multilabel dataset to preprocess
k Number of neighbors to be considered when creating a synthetic instance
strategy Strategy for choosing the synthetic labels. Possible values: "union", "intersec-
tion" and "ranking" (default)
tableVDM Dataframe object containing previous calculations for faster processing. If it is
empty, the algorithm will be slower
Value

A mld object containing the preprocessed multilabel dataset

MLSOL 17

Source

Charte, F., Rivera, A. J., del Jesus, M. J., & Herrera, F. (2015). MLSMOTE: Approaching imbal-
anced multilabel learning through synthetic instance generation. Knowledge-Based Systems, 89,
385-397.

MLSOL Multi-label oversampling based on local label imbalance (MLSOL)

Description

This function implements the MLSOL algorithm. It is a preprocessing algorithm for imbalanced
multilabel datasets, which applies oversampling on difficult regions of the instance space, in order
to help classifiers distinguish labels.

Usage

MLSOL(D, P, k, neighbors = NULL, tableVDM = NULL)

Arguments
D mld mldr object with the multilabel dataset to preprocess
P Percentage in which the original dataset is increased
k Number of neighbors to be considered when computing the neighbors of an
instance
neighbors Structure with all instances and neighbors in the dataset. If it is empty, it will be
calculated by the function
tableVDM Dataframe object containing previous calculations for faster processing. If it is
empty, the algorithm will be slower
Value

A mld object containing the preprocessed multilabel dataset

Source

Liu, B., Blekas, K., & Tsoumakas, G. (2022). Multi-label sampling based on local label imbalance.
Pattern Recognition, 122, 108294.

18 MLUL

MLTL Multilabel approach for the Tomek Link undersampling algorithm
(MLTL)

Description

This function implements the MLTL algorithm. It is a preprocessing algorithm for imbalanced
multilabel datasets, whose aim is to identify tomek links (majoritary instances with a very different
neighbor), and remove them. It’s like MLeNN, with the number of neighbors being 1.

Usage
MLTL(D, TH, neighbors = NULL, tableVDM = NULL)

Arguments
D mld mldr object with the multilabel dataset to preprocess
TH threshold for the Hamming Distance in order to consider an instance different to
another one.
neighbors Structure with instances and neighbors. If it is empty, it will be calculated by
the function
tableVDM Dataframe object containing previous calculations for faster processing. If it is
empty, the algorithm will be slower
Value

An mldr object containing the preprocessed multilabel dataset

Source

Pereira, R. M., Costa, Y. M., & Silla Jr, C. N. (2020). MLTL: A multi-label approach for the Tomek
Link undersampling algorithm. Neurocomputing, 383, 95-105.

MLUL Multi-label undersampling based on local label imbalance (MLUL)

Description

This function implements the MLUL algorithm. It is a preprocessing algorithm for imbalanced
multilabel datasets, which applies undersampling, removing difficult instances according to their
neighbors.

Usage
MLUL(D, P, k, neighbors = NULL, tableVDM = NULL)

newSample 19

Arguments
D mld mldr object with the multilabel dataset to preprocess
P Percentage in which the original dataset is decreased
k Number of neighbors to be considered when computing the neighbors of an
instance
neighbors Structure with all instances and neighbors in the dataset. If it is empty, it will be
calculated by the function
tableVDM Dataframe object containing previous calculations for faster processing. If it is
empty, the algorithm will be slower
Value

A mld object containing the preprocessed multilabel dataset

Source

Liu, B., Blekas, K., & Tsoumakas, G. (2022). Multi-label sampling based on local label imbalance.
Pattern Recognition, 122, 108294.

newSample Auxiliary function used by MLSMOTE. Creates a synthetic sample
based on values of attributes and labels of its neighbors

Description
Auxiliary function used by MLSMOTE. Creates a synthetic sample based on values of attributes
and labels of its neighbors

Usage

newSample(seedInstance, refNeigh, neighbors, strategy, D)

Arguments

seedInstance Sample we are using as "template”

refNeigh Reference neighbor
neighbors Neighbors to take into account
strategy Strategy for choosing the synthetic labels: union, intersection or ranking
D mld mldr object with the multilabel dataset to preprocess
Value

A synthetic sample derived from the one passed as a parameter and its neighbors

20 resample

REMEDIAL Decouples highly imbalanced labels

Description

This function implements the REMEDIAL algorithm. It is a preprocessing algorithm for imbal-
anced multilabel datasets, whose aim is to decouple frequent and rare classes appearing in the same
instance. For doing so, it aggregates new instances to the dataset and edit the labels present in them.

Usage

REMEDIAL (mld)

Arguments

mld mldr object with the multilabel dataset to preprocess

Value

An mldr object containing the preprocessed multilabel dataset

Source

F. Charte, A. J. Rivera, M. J. del Jesus, F. Herrera. "Resampling Multilabel Datasets by Decoupling
Highly Imbalanced Labels". Proc. 2015 International Conference on Hybrid Artificial Intelligent
Systems (HAIS 2015), pp. 489-501, Bilbao, Spain, 2015. Implementation from the original mldr
package

Examples
library(mldr)
REMEDIAL (birds)
resample Interface function of the package. It executes one or several algo-
rithms, given as strings, and stores the resulting MLDs in arff files
Description

Interface function of the package. It executes one or several algorithms, given as strings, and stores
the resulting MLDs in arff files

resample 21

Usage
resample(
D,
algorithms,
P = 25,
k =3,
TH = 2.5,
strategy = "ranking",
params,
outputDirectory = tempdir()
)
Arguments
D mld mldr object with the multilabel dataset to preprocess
algorithms String, or string vector, with the name(s) of the algorithm(s) to be applied.
P Percentage in which the original dataset is increased/decreased, if required by
the algorithm(s). Defaults to 25
k Number of neighbors taken into account for each instance, if required by the
algorithm(s). Defaults to 3
TH Threshold for the Hamming Distance in order to consider an instance different
to another one, if required by the algorithm(s). Defaults to 0.5
strategy Strategy for choosing the synthetic labels, if required by the algorithm. Defaults
to ranking
params Dataframe with 4 columns: name of the algorithm, P, k and TH, in that order, to
execute several algorithms with different values for their parameters
outputDirectory
Route with the directory where generated ARFF files will be stored. Defaults to
a temporary directory
Value

Dataframe with times (in seconds) taken in to execute each algorithm

Examples

library(mldr)

library(mldr.resampling)

resample(birds, "LPROS", P=25)
resample(birds, c("LPROS", "LPRUS"), P=30)

22 setParallel

setNumCores Set the number of cores available for parallel computing

Description

Set the number of cores available for parallel computing

Usage

setNumCores(n)

Arguments

n The new value for the number of cores

Value

No return value, called in order to change the number of cores

Examples

setNumCores(8)

setParallel Enable/Disable parallel computing

Description

Enable/Disable parallel computing

Usage

setParallel (beParallel)

Arguments
beParallel A boolean indicating if parallel computing is to be enabled (TRUE) or disabled
(FALSE)
Value

No return value, called in order to enable parallel computing

Examples

setParallel (TRUE)

vdm 23

vdm Auxiliary function used to calculate the Value Difference Metric
(VDM) between two instances considering their non numeric at-
tributes

Description

Auxiliary function used to calculate the Value Difference Metric (VDM) between two instances
considering their non numeric attributes

Usage

vdm(D, sample, y, label, tableVDM = NULL)

Arguments
D mld mldr object with the multilabel dataset to preprocess
sample Index of the first sample
y Index of the second sample
label Label that will be considered in calculations
tableVDM Dataframe object containing previous calculations for faster processing. If it is
empty, the algorithm will be slower
Value

A value for the distance

Index

adjustedHammingDist, 2

calculateDistances, 3
calculateTableVDM, 3

executeAlgorithm, 4

generateInstanceMLSOL, 5
getAllNeighbors, 5
getAllNeighbors2, 6
getAllReverseNeighbors, 6
getC, 7

getNN, 8

getNumCores, 8

getS, 9

gety, 9

getV, 10

getW, 11

initTypes, 11

LPROS, 12
LPRUS, 12

MLeNN, 13
MLRKNNOS, 14
MLROS, 15
MLRUS, 15
MLSMOTE, 16
MLSOL, 17
MLTL, 18
MLUL, 18

newSample, 19

REMEDIAL, 20
resample, 20

setNumCores, 22
setParallel, 22

vdm, 23

24

	adjustedHammingDist
	calculateDistances
	calculateTableVDM
	executeAlgorithm
	generateInstanceMLSOL
	getAllNeighbors
	getAllNeighbors2
	getAllReverseNeighbors
	getC
	getNN
	getNumCores
	getS
	getU
	getV
	getW
	initTypes
	LPROS
	LPRUS
	MLeNN
	MLRkNNOS
	MLROS
	MLRUS
	MLSMOTE
	MLSOL
	MLTL
	MLUL
	newSample
	REMEDIAL
	resample
	setNumCores
	setParallel
	vdm
	Index

