Package ‘ngram’

December 10, 2023
Type Package
Title Fast n-Gram '"Tokenization'
Version 3.2.3

Description An n-gram is a sequence of n ~“words" taken, in order, from a
body of text. This is a collection of utilities for creating,
displaying, summarizing, and ““babbling" n-grams. The
'tokenization' and ““babbling" are handled by very efficient C
code, which can even be built as its own standalone library.
The babbler is a simple Markov chain. The package also offers
a vignette with complete example 'workflows' and information about
the utilities offered in the package.

License BSD 2-clause License + file LICENSE
Depends R (>=3.0.0)

Imports methods

LazyLoad yes

NeedsCompilation yes

ByteCompile yes

Maintainer Drew Schmidt <wrathematics@gmail.com>
URL https://github.com/wrathematics/ngram

BugReports https://github.com/wrathematics/ngram/issues
RoxygenNote 7.1.2

Author Drew Schmidt [aut, cre],
Christian Heckendorf [aut]

Repository CRAN
Date/Publication 2023-12-10 19:00:02 UTC

R topics documented:

ngram-package . . . . ... L
babble . . . . . ..


https://github.com/wrathematics/ngram
https://github.com/wrathematics/ngram/issues

2 babble
CONCABNAIE . . . . v v v v e ettt e e e e e e e e e e e e e 3
getseed ... .. e e 4
GEUETS . o v v o i e e e e e e e e e e e e e e e e e 5
multiread . . . . .. L. e e e e e e e e e 6
0724 )00 7
ngram-class . . . ... 8
NErAM-PIiNt . . . . . . . o oottt e e e e e e e e e e e e 9
phrasetable . . . . . . . . L e e e e 10
PIEPIOCESS & v v v v v o e e e e e e e e e e e e e e e e e e e e e e 10
TCOTPUS  + o v v v v e e e e e e e e e e e e e e e e e e e 11
SPLItter . . . . . L e e e e e 12
SIING.SUMMATY . . . . o o v vt ottt it e e e e e e e e e e 13
Tokenize-AsWeka . . . . . . . . . . e e 14
WOrdcount . . . . . ... e e 15

Index 16

ngram-package ngram: Fast n-Gram Tokenization
Description

An n-gram is a sequence of n "words" taken from a body of text. This package offers utilities for
creating, displaying, summarizing, and "babbling" n-grams. The tokenization and "babbling" are
handled by very efficient C code, which can even be build as its own standalone library. The babbler
is a simple Markov chain.

Details

The ngram package is distributed under the permissive 2-clause BSD license. If you find the code
here useful, please let us know and/or cite the package, whatever is appropriate.

The package has its own PRNG; we use an implementation of MT1997 for all non-deterministic
choices.

babble ngram Babbler

Description

The babbler uses its own internal PRNG (i.e., not R’s), so seeds cannot be managed as with R’s
seeds. The generator is an implementation of MT19937.

At this time, we note that the seed may not guarantee the same results across machines. Cur-
rently only Solaris produces different values from mainstream platforms (Windows, Mac, Linux,
FreeBSD), but potentially others could as well.



concatenate

Usage

babble(ng, genlen = 150, seed = getseed())

## S4 method for signature 'ngram'
babble(ng, genlen = 150, seed = getseed())

Arguments

ng
genlen

seed

Details

An ngram object.
Generated length, i.e., the number of words to babble.

Seed for the random number generator.

A markov chain babbler.

See Also

ngram, getseed

Examples

library(ngram)

str = "ABACABB”"

ng = ngram(str)

babble(ng, genlen=5, seed=1234)

concatenate

Concatenate

Description

A quick utility for concatenating strings together. This is handy because if you want to generate
the n-grams for several different texts, you must first put them into a single string unless the text is
composed of sentences that should not be joined.

Usage
concatenate(..., collapse = " ", rm.space = FALSE)
Arguments
Input text(s).
collapse A character to separate the input strings if a vector of strings is supplied; other-
wise this does nothing.
rm.space logical; determines if spaces should be removed from the final string.



4 getseed

Value

A string.

See Also

preprocess

Examples

library(ngram)

words = c("a”, "b", "c")
wordcount (words)

str = concatenate(words)
wordcount(str)

getseed getseed

Description

A seed generator for use with the ngram package.

Usage

getseed()

Details

Uses a 96-bit hash of the current process id, time, and a random uniform value from R’s random
generator.

See Also

babble



getters 5

getters ngram Getters

Description

Some simple "getters" for ngram objects. Necessary since the internal representation is not a native
R object.

Usage
ng_order(ng, decreasing = FALSE)

## S4 method for signature 'ngram'
ng_order(ng, decreasing = FALSE)

get.ngrams(ng)

## S4 method for signature 'ngram'
get.ngrams(ng)

get.string(ng)

## S4 method for signature 'ngram'
get.string(ng)

get.nextwords(ng)

## S4 method for signature 'ngram'
get.nextwords(ng)

Arguments

ng An ngram object.

decreasing Should the sorted order be in descending order?
Details

ngram.order returns an R vector with the original corpus order of the ngrams.
get.ngrams() returns an R vector of all n-grams.
get.nextwords() does nothing at the moment; it will be implemented in future releases.

getnstring() recovers the input string as an R string.

See Also

ngram-class, ngram



6 multiread
Examples
library(ngram)
str = "ABACABB"
ng = ngram(str)
get.ngrams(ng)[ng_order(ng)]
multiread Multiread
Description
Read in a collection of text files.
Usage
multiread(
path = ".",
extension = "txt",
recursive = FALSE,
ignore.case = FALSE,
prune.empty = TRUE,
pathnames = TRUE
)
Arguments
path The base file path to search.
extension An extension or the "*" wildcard (for everything). For example, to read in files
ending .txt, you could specify extension="txt". For the purposes of this
function, each of *. txt, *txt, .txt, and txt are treated the same.
recursive Logical; should the search include all subdirectories?
ignore.case Logical; should case be ignored in the extension? For example, if TRUE, then . r
and .R files are treated the same.
prune.empty Logical; should empty files be removed from the returned list?
pathnames Logical; should the full path be included in the names of the returned list.
Details

The extension argument is not a general regular expression pattern, but a simplified pattern. For
example, the pattern *. txt is really equivalent to *[.Jtxt$ as a regular expression. If you need

more complicated patterns, you should directly use the dir () function.

Value

A named list of strings, where the names are the file names.



ngram 7

Examples
## Not run:
path = system.file(package="ngram")

### Read all files in the base path
multiread(path, extension="x"

### Read all .r/.R files recursively (warning: lots of text)

non

multiread(path, extension="r", recursive=TRUE, ignore.case=TRUE)

## End(Not run)

ngram n-gram Tokenization

Description

The ngram() function is the main workhorse of this package. It takes an input string and converts
it into the internal n-gram representation.

Usage

ngram(str, n = 2, sep =" ")
Arguments

str The input text.

n The ’n’ as in n-gram’.

sep A set of separator characters for the "words". See details for information about

how this works; it works a little differently from sep arguments in R functions.

Details

On evaluation, a copy of the input string is produced and stored as an external pointer. This is
necessary because the internal list representation just points to the first char of each word in the
input string. So if you (or R’s gc) deletes the input string, basically all hell breaks loose.

The sep parameter splits at any of the characters in the string. So sep=", " splits at a comma or a
space.

Value

An ngram class object.

See Also

ngram-class, getters, phrasetable, babble



8 ngram-class

Examples

library(ngram)

str = "ABACABB"
ngram(str, n=2)

str = "A,B,A,C A B B"
### Split at a space
print(ngram(str), output="full")
### Split at a comma

print(ngram(str, sep=","), output="full")
### Split at a space or a comma
print(ngram(str, sep=", "), output="full")
ngram-class Class ngram
Description

An n-gram is an ordered sequence of n "words" taken from a body of "text". The terms "words"
and "text" can easily be interpreted literally, or with a more loose interpretation.

Details
For example, consider the sequence "A B A C A B B". If we examine the 2-grams (or bigrams) of
this sequence, they are
AB,BA,AC,CA,AB,BB
or without repetition:
AB,BA,AC,CA,BB

That is, we take the input string and group the "words" 2 at a time (because n=2). Notice that the
number of n-grams and the number of words are not obviously related; counting repetition, the
number of n-grams is equal to

nwords - n+1
Bounds ignoring repetition are highly dependent on the input. A correct but useless bound is
\#ngrams = nwords - (\#repeats-1) - (n-1)

An ngram object is an S4 class container that stores some basic summary information (e.g., n), and
several external pointers. For information on how to construct an ngram object, see ngram.

Slots

str_ptr A pointer to a copy of the original input string.
strlen The length of the string.

n The eponymous 'n’ as in n-gram’.



ngram-print 9

ngl_ptr A pointer to the processed list of n-grams.

ngsize The length of the ngram list, or in other words, the number of unique n-grams in the input
string.

sl_ptr A pointer to the list of words from the input string.

See Also

ngram

ngram-print ngram printing

Description

Print methods.

Usage

## S4 method for signature 'ngram'
print(x, output = "summary")

## S4 method for signature 'ngram'

show(object)
Arguments
X, object An ngram object.
output a character string; determines what exactly is printed. Options are "summary",
"truncated", and "full".
Details

If output=="summary", then just a simple representation of the n-gram object will be printed; for
example, "An ngram object with 5 2-grams".

If output=="truncated”, then the n-grams will be printed up to a maximum of 5 total.

If output=="full"” then all n-grams will be printed.

See Also

ngram, babble



10 preprocess

phrasetable Get Phrasetable

Description

Get a table

Usage

get.phrasetable(ng)

Arguments

ng An ngram object.

See Also

ngram-class

Examples

library(ngram)

str = "ABACABB"
ng = ngram(str)
get.phrasetable(ng)

preprocess Basic Text Preprocessor

Description

A simple text preprocessor for use with the ngram() function.

Usage
preprocess(
X,
case = "lower",

remove.punct = FALSE,
remove.numbers = FALSE,
fix.spacing = TRUE



rcorpus 11

Arguments
X Input text.
case Option to change the case of the text. Value should be "upper"”, "lower", or

NULL (no change).
remove.punct  Logical; should punctuation be removed?
remove.numbers Logical; should numbers be removed?

fix.spacing Logical; should multi/trailing spaces be collapsed/removed.

Details

The input text x must already be in the correct form for ngram(), i.e., a single string (character
vector of length 1).

The case argument can take 3 possible values: NULL, in which case nothing is done, or lower or
upper, wherein the case of the input text will be made lower/upper case, repesctively.
Value

concat () returns

Examples
library(ngram)
x = "Watch out for snakes! 111"

preprocess(x)
preprocess(x, remove.punct=TRUE, remove.numbers=TRUE)

rcorpus Random Corpus

Description

Generate a corpus of random "words".

Usage

rcorpus(nwords = 50, alphabet = letters, minwordlen = 1, maxwordlen = 6)

Arguments
nwords Number of words to generate.
alphabet The pool of "letters" that word generation coes from. By default, it is the lower-

case roman alphabet.
minwordlen, maxwordlen
The min/max length of words in the generated corpus.



12 splitter

Value

A string.

Examples

rcorpus(10)

splitter Character Splitter

Description

A utility function for use with n-gram modeling. This function splits a string based on various
options.

Usage

splitter(
string,
split.char = FALSE,
split.space = TRUE,

non

spacesep = "_",
split.punct = FALSE
)
Arguments
string An input string.
split.char Logical; should a split occur after every character?
split.space Logical; determines if spaces should be preserved as characters in the n-gram
tokenization. The character(s) used for spaces are determined by the spacesep
argument. characters.
spacesep The character(s) to represent a space in the case that split.space=TRUE. Should
not just be a space(s).
split.punct Logical; determines if splits should occur at punctuation.
Details

Note that choosing split.char=TRUE necessarily implies split.punct=TRUE as well — but not
necessarily that split.space=TRUE.

Value

A string.



string.summary

Examples
x = "watch out! a snake!”
splitter(x, split.char=TRUE)

splitter(x, split.space=TRUE, spacesep="_")
splitter(x, split.punct=TRUE)

13

string.summary Text Summary

Description

Text Summary

Usage

string.summary(string, wordlen_max = 10, senlen_max = 10, syllen_max = 10)

Arguments

string An input string.

wordlen_max, senlen_max, syllen_max
The maximum lengths of words/sentences/syllables to consider.

Value

A list of class string_summary.

Examples
x="abacabb"

string.summary(x)



14 Tokenize-AsWeka

Tokenize-AsWeka Weka-like n-gram Tokenization

Description

An n-gram tokenizer with identical output to the NGramTokenizer function from the RWeka pack-

age.
Usage

ngram_asweka(str, min = 2, max = 2, sep =" ")
Arguments

str The input text.

min, max The minimum and maximum ’n’ as in "n-gram’.

sep A set of separator characters for the "words". See details for information about

how this works; it works a little differently from sep arguments in R functions.

Details

This n-gram tokenizer behaves similarly in both input and return to the tokenizer in RWeka. Unlike
the tokenizer ngram(), the return is not a special class of external pointers; it is a vector, and
therefore can be serialized via save() or saveRDS().

Value

A vector of n-grams listed in decreasing blocks of n, in order within a block. The output matches
that of RWeka’s n-gram tokenizer.

See Also

ngram

Examples

library(ngram)

str = "ABACABB"
ngram_asweka(str, min=2, max=4)



wordcount 15

wordcount wordcount

Description

wordcount () counts words. Currently a "word" is a clustering of characters separated from another
clustering of charactersby at least 1 space. That is the law.

Usage
wordcount(x, sep = " ", count_fun = sum)
## S3 method for class 'character'
wordcount(x, sep = " ", count_fun = sum)
## S3 method for class 'ngram'
wordcount(x, sep = " ", count_fun = sum)
Arguments
X A string or vector of strings, or an ngram object.
sep The characters used to separate words.
count_fun The function to use for aggregation if x has length greater than 1. Useful ones

include sum and identity.

Value

A count.

See Also

preprocess

Examples

library(ngram)

WOrdS = C(”a”, Mblr’ HCII)
words
wordcount (words)

str = concatenate(words, collapse="")
str
wordcount(str)



Index

* Amusement
babble, 2

+ Package
ngram-package, 2

* Preprocessing
concatenate, 3
preprocess, 10
splitter, 12

* Summarize
string.summary, 13
wordcount, 15

+ Tokenization
getters, 5
ngram, 7
ngram-class, 8
phrasetable, 10
Tokenize-AsWeka, 14

x Utility
getseed, 4
multiread, 6
rcorpus, 11

babble, 2,4, 7,9
babble,ngram-method (babble), 2

concatenate, 3

get.nextwords (getters), 5
get.nextwords,ngram-method (getters), 5
get.ngrams (getters), 5
get.ngrams,ngram-method (getters), 5
get.phrasetable (phrasetable), 10
get.string (getters), 5
get.string,ngram-method (getters), 5
getseed, 3, 4

getters, 5,7

multiread, 6

ng_order (getters), 5
ng_order,ngram-method (getters), 5

16

ngram, 3,5,7,8, 9, 14
ngram-class, 8

ngram-package, 2

ngram-print, 9

ngram_asweka (Tokenize-AsWeka), 14

phrasetable, 7, 10
preprocess, 4, 10, 15
print,ngram-method (ngram-print), 9

rcorpus, 11
show, ngram-method (ngram-print), 9
splitter, 12

string.summary, 13

tokenize (ngram), 7
Tokenize-AsWeka, 14

wordcount, 15



	ngram-package
	babble
	concatenate
	getseed
	getters
	multiread
	ngram
	ngram-class
	ngram-print
	phrasetable
	preprocess
	rcorpus
	splitter
	string.summary
	Tokenize-AsWeka
	wordcount
	Index

