Title: Optimal Plot Size Estimation for Field Experiments
Version: 0.1.0
Description: Provides methods for determining optimum plot size and shape in field experiments using Fairfield-Smith's variance law approach. It will evaluate field variability, determine optimum plot size and shape and study fertility trends across the field.
License: GPL (≥ 3)
Encoding: UTF-8
RoxygenNote: 7.3.3
Imports: ggplot2
Suggests: knitr, rmarkdown
VignetteBuilder: knitr
NeedsCompilation: no
Packaged: 2025-09-30 12:33:47 UTC; lenovo
Author: Y.A. Garde ORCID iD [aut, cre, cph], S.G. Patil [aut], M.S. Shitap [aut]
Maintainer: Y.A. Garde <y.garde@yahoo.co.in>
Repository: CRAN
Date/Publication: 2025-10-06 08:30:02 UTC

Compute 3x3 moving averages

Description

Compute 3x3 moving averages

Usage

compute_moving_avg(mat)

Arguments

mat

A numeric matrix (at least 3 rows and 3 columns)

Value

A numeric matrix of 3x3 moving averages


Fertility Classes heatmap with 3 * 3 moving average values —

Description

Fertility Classes heatmap with 3 * 3 moving average values —

Usage

ferti_analysis(mat)

Arguments

mat

A matrix to be converted into a horizontal vector

Value

Heatmap


Fit Fairfield-Smith's variance law to matrix data with ggplot2 plots

Description

This function fits the Fairfield-Smith variance law, computes weighted R^2 on the log-log scale, identifies the optimum plot size and recommended shape, and produces two ggplot2 visualisations (original and log scale).

Usage

fit_variance_law(df_mat, plot_curve = TRUE)

Arguments

df_mat

numeric matrix of data

plot_curve

logical, if TRUE returns ggplot objects

Value

list with results:


Generate valid plot sizes and shapes

Description

Generate valid plot sizes and shapes

Usage

generate_plot_shapes(df_mat)

Arguments

df_mat

numeric matrix of data

Value

data.frame of possible plot sizes and shapes


Compute T values (sum of block totals) for a given h x w plot

Description

Compute T values (sum of block totals) for a given h x w plot

Usage

get_Tvals(df_mat, h, w)

Arguments

df_mat

numeric matrix of data

h

rows in plot

w

cols in plot

Value

numeric vector of block totals


Make a horizontal vector from a matrix

Description

Creates a row-wise vector from a matrix. For every second row, the elements are reversed.

Usage

make_horizontal(mat)

Arguments

mat

A matrix to be converted into a horizontal vector

Value

A numeric vector


Make a vertical vector from a matrix

Description

Creates a column-wise vector from a matrix. For every second column, the elements are reversed.

Usage

make_vertical(mat)

Arguments

mat

A matrix to be converted into a vertical vector

Value

A numeric vector


Compute population variance for given h x w plot

Description

Compute population variance for given h x w plot

Usage

population_variance(df_mat, h, w)

Arguments

df_mat

numeric matrix of data

h

rows in plot

w

cols in plot

Value

numeric variance


Compute first-order serial correlation of a vector

Description

Computes the correlation between consecutive elements of a numeric vector.

Usage

serial_corr(vec)

Arguments

vec

A numeric vector

Value

Numeric value of the serial correlation


computes the first-order serial correlation for both directions.

Description

computes the first-order serial correlation for both directions.

Usage

serial_corrl(df_mat)

Arguments

df_mat

A numeric matrix

Value

A named list with two elements: