Package ‘scclust’

August 1, 2024
Type Package

Title Size-Constrained Clustering
Version 0.2.5
Date 2024-07-31

Description Provides wrappers for 'scclust', a C library for computationally efficient
size-constrained clustering with near-optimal performance.
See <https://github.com/fsavje/scclust> for more information.

Depends R (>= 3.4.0), distances

Suggests testthat

NeedsCompilation yes

License GPL (>=3)

LicenseNote The scclust package includes the scclust C library
(distributed under the LGPLv2.1 license).

URL https://github.com/fsavje/scclust-R

BugReports https://github.com/fsavje/scclust-R/issues
Encoding UTF-8
RoxygenNote 7.2.3

Author Fredrik Savje [aut, cre],
Michael Higgins [aut],
Jasjeet Sekhon [aut]

Maintainer Fredrik Savje <rpackages@fredriksavje.com>
Repository CRAN
Date/Publication 2024-07-31 22:40:02 UTC

Contents

scclust-package . . . . ... e
check_clustering . . . . . . . . . . e
cluster_count . . . . . .. e


https://github.com/fsavje/scclust
https://github.com/fsavje/scclust-R
https://github.com/fsavje/scclust-R/issues

2 scclust-package

get_clustering_stats . . . . . . . . ... e e e e e e 5
hierarchical_clustering . . . . . . . . . . . . . e 7
1S.scClust . . . L L e e 9
SCCIUSE . . . . e e e 10
sc_clustering . . . . .. .. 11
Index 17
scclust-package scclust: Size-Constrained Clustering
Description

The scclust package is an R wrapper for the scclust library. The package provides functions
to construct near-optimal size-constrained clusterings. Subject to user-specified constraints on the
size and composition of the clusters, scclust constructs a clustering so that within-cluster pair-wise
distances are minimized.

Details

The main clustering function is sc_clustering. Statistics about clusters can be derived with the
get_clustering_stats function. To check if a clustering satisfies some set of constraints, use
check_clustering. Use scclust to construct a scclust object from an existing clustering.

Clusters can also be constructed with hierarchical_clustering. However, this function does
not support type constraints and does not provide optimality guarantees. Its main use is to refine
clusterings constructed with the sc_clustering function.

scclust was made with large data sets in mind, and it can cluster tens of millions of data points
within minutes on an ordinary desktop computer.

See the package’s website for more information: https://github.com/fsavje/scclust-R.
More information about the scclust library is found here: https://github.com/fsavje/scclust.

Bug reports and suggestions are greatly appreciated. They are best reported here: https://
github.com/fsavje/scclust-R/issues.

References

Higgins, Michael J., Fredrik Sévje and Jasjeet S. Sekhon (2016), ‘Improving massive experiments
with threshold blocking’, Proceedings of the National Academy of Sciences, 113:27, 7369-7376.

Séavje, Fredrik and Michael J. Higgins and Jasjeet S. Sekhon (2017), ‘Generalized Full Matching’,
arXiv 1703.03882. https://arxiv.org/abs/1703.03882


https://github.com/fsavje/scclust-R
https://github.com/fsavje/scclust
https://github.com/fsavje/scclust-R/issues
https://github.com/fsavje/scclust-R/issues
https://arxiv.org/abs/1703.03882

check_clustering 3

check_clustering Check clustering constraints

Description

check_clustering checks whether a clustering satisfies constraints on the size and composition of
the clusters.

Usage

check_clustering(
clustering,
size_constraint = NULL,
type_labels = NULL,
type_constraints = NULL,
primary_data_points = NULL

Arguments

clustering a scclust object containing a non-empty clustering.
size_constraint

an integer with the required minimum cluster size. If NULL, only the type con-
straints will be checked.

type_labels a vector containing the type of each data point. May be NULL when type_constraints
is NULL.

type_constraints
a named integer vector containing type-specific size constraints. If NULL, only
the overall constraint will be checked.

primary_data_points
a vector specifying primary data points, either by point indices or with a logical
vector of length equal to the number of points. check_clustering checks so all

primary data points are assigned to a cluster. NULL indicates that no such check
should be done.

Value
Returns TRUE if clustering satisfies the constraints, and FALSE if it does not. Throws an error if
clustering is an invalid instance of the scclust class.

See Also

See sc_clustering for details on how to specify the type_labels and type_constraints pa-
rameters.



4 cluster_count

Examples

# Example scclust clustering
my_scclust <- scclust(c("A", "A", "B", "C", "B",
nen o omer, MAM MBM "BMY)

# Check so each cluster contains at least two data points
check_clustering(my_scclust, 2)
# > TRUE

# Check so each cluster contains at least four data points
check_clustering(my_scclust, 4)
# > FALSE

# Data point types
my_types <_ f‘actor(c(ﬂxll’ Ilyll, ”y"’ "Z”, “Z”,
mgn gy

’

# Check so each cluster contains at least one point of each type
check_clustering(my_scclust,

NULL,

my_types,

c("x" =1, "y" =1, "z" = 1))
# > TRUE

nyn

# Check so each cluster contains one data point of both "x" and "z"
# and at least three points in total
check_clustering(my_scclust,
3,
my_types,
c("x" =1, "z" =1))
# > TRUE

non

# Check so each cluster contains five data points of type "y
check_clustering(my_scclust,

NULL,

my_types,

c("y" =5))
# > FALSE

cluster_count Count the number of clusters




get_clustering_stats 5

Description

cluster_count returns the number of clusters in a clustering.

Usage

cluster_count(clustering)

Arguments

clustering a scclust object containing a non-empty clustering.

Value

Returns an integer with the number of clusters in clustering.

Examples

# Example scclust clustering
my_scclust <- scclust(c("A", "A", "B", "C", "B",
nen o omgn mAn mgn ngny)

cluster_count(my_scclust)
# >3

get_clustering_stats  Get clustering statistics

Description

get_clustering_stats calculates statistics of a clustering.

Usage

get_clustering_stats(distances, clustering)

Arguments

distances adistances object describing the distances between the data points in clustering.

clustering a scclust object containing a non-empty clustering.



Details

The function reports the following measures:

get_clustering_stats

num_data_points total number of data points
num_assigned number of points assigned to a cluster
num_clusters number of clusters

min_cluster_size size of the smallest cluster
max_cluster_size size of the largest cluster
avg_cluster_size average cluster size

sum_dists sum of all within-cluster distances
min_dist smallest within-cluster distance
max_dist largest within-cluster distance
avg_min_dist average of the clusters’ smallest distances
avg_max_dist average of the clusters’ largest distances
avg_dist_weighted average of the clusters’ average distances weighed by cluster size

avg_dist_unweighted average of the clusters’ average distances (unweighed)

Let d(i, j) denote the distance between data points ¢ and j. Let ¢ be a cluster containing the indices

of points assigned to the cluster. Let

D(c) = {d(i,j):i,j € cNi > j}

be a function returning all within-cluster distances in ¢. Let C be a set containing all clusters.

sum_dists is defined as:

Z sum(D(c))

ceC
min_dist is defined as:

?éiél min(D(c))
max_dist is defined as:

max max(D(c))

avg_min_dist is defined as:

Z min(D(c))
ceC |C‘
avg_max_dist is defined as:

max(D(c
> (D(c))

ceC |C‘
Let: (D( ))
AP = =50

be the average within-cluster distance in cluster c.



hierarchical_clustering

avg_dist_weighted is defined as:

c|AD(c
> |c|AD(c)

numegssigned
ceC @ 9

where num,ssigned is the number of assigned data points (see above).

avg_dist_unweighted is defined as:

AD(e)
2 C]

ceC

Value

Returns a list of class clustering_stats containing the statistics.

Examples

my_data_points <- data.frame(x

1l

g}
~
(S

NN
o w
S
N

my_distances <- distances(my_data_points)

my_scclust <- scclust(c("A", "A", "B", "C", "B",
”C", "C”, HAII’ IIBH’ IIBII))

get_clustering_stats(my_distances, my_scclust)

# > Value

# > num_data_points 10.0000000
# > num_assigned 10.0000000
# > num_clusters 3.0000000
# > min_cluster_size 3.0000000
# > max_cluster_size 4.0000000
# > avg_cluster_size 3.3333333
# > sum_dists 18.2013097
# > min_dist 0.5000000
# > max_dist 3.0066593
# > avg_min_dist 0.8366584
# > avg_max_dist 2.4148611
# > avg_dist_weighted 1.5575594
# > avg_dist_unweighted 1.5847484

hierarchical_clustering
Hierarchical size-constrained clustering




8 hierarchical_clustering

Description

hierarchical_clustering serves two purposes. Its primary use is to refine existing clusters sub-
ject to clustering constraints. That is, given a (non-optimal) clustering satisfying some constraints,
the function splits clusters so to decrease within-cluster distances without violating the constraints.
The function can also be used to derive size-constrained clusterings from scratch. In both cases, it
uses a hierarchical clustering algorithm.

Usage

hierarchical_clustering(
distances,
size_constraint,
batch_assign = TRUE,
existing_clustering = NULL

Arguments

distances a distances object with distances between the data points.
size_constraint
an integer with the required minimum cluster size.

batch_assign a logical indicating whether data points should be assigned in batches when
spliting clusters (see below for details).
existing_clustering

a scclust object containing a non-empty clustering to refine. If NULL, the func-
tion derives a clustering from scratch.

Details

While hierarchical_clustering can be used to derive size-constrained clusters from scratch,
its main purpose is to be used together with sc_clustering. The clusters produced by the main
clustering function are guaranteed to be close to optimal (in particular, within a constant factor of
the optimal solution). However, it is occasionally possible to refine the clustering. In particular,
sc_clustering tends produce large clusters in regions of the metric space with many data points.
In some cases, it is beneficial to divide these clusters into smaller groups. hierarchical_clustering
splits these larger clusters so that all within-cluster distances weakly decrease while respecting the
overall the size constraint.

hierarchical_clustering implements a divisive hierarchical clustering algorithm that respect
size constraints. Starting from any clustering satisfying the size constraints (which may be a single
cluster containing all data points), the function searches for clusters that can be broken into two
or more new clusters without violating the constraints. When such a cluster is found, it breaks the
cluster into two new clusters. It continues in this fashion until all remaining clusters are unbreakable.

Breakable clusters are broken in three stages. First, it tries to find two data points as far as possible
from each other. The two points are called centers, and they are the starting points for the new
clusters. The remaining data points in the old cluster will be assigned to one of the centers. In the
second stage, each center picks the closest data points so that the new two clusters exactly satisfy
the size constraint. In the last stage, data points that still are in the old cluster are assigned to the



is.scclust 9

cluster containing the closest center. The final stage is done either for each point one-by-one or in
batches (see below). When all data points are assigned to a cluster, the old cluster is removed and
the two new are added to the clustering. If one or both of the new clusters are breakable, they will
go through the same procedure again.

In some applications, it is desirable to avoid clusters that contain a number of data points that are
not multiples of size_constraint. After the second stage described in the previous paragraph,
both partial clusters are exact multiples of the size constraint. By assigning remaining data points in
the third stage in batches of size_constraint, the function ensures, to the greatest extent possible,
that the size of the final clusters are multiples of the size constraint.

Value

Returns a scclust object with the derived clustering.

See Also

sc_clustering is the main clustering function in the package.

Examples

# Make example data

my_data <- data.frame(x1 = rnorm(10000),
x2 = rnorm(10000),
x3 rnorm(10000))

# Construct distance metric
my_dist <- distances(my_data)

# Make clustering with “sc_clustering”
my_clustering <- sc_clustering(my_dist, 3)

# Refine clustering with “hierarchical_clustering”

my_refined_clustering <- hierarchical_clustering(my_dist,
size_constraint = 3,
existing_clustering = my_clustering)

# Make clustering from scratch with “hierarchical_clustering”
my_other_clustering <- hierarchical_clustering(my_dist, 3)

is.scclust Check scclust object

Description

is.scclust checks whether the provided object is a valid instance of the scclust class.

Usage

is.scclust(x)



10 scclust

Arguments

X object to check.

Details

is.scclust does not check whether the clustering itself is sensible or whether the clustering satis-
fies some set of constraints. See check_clustering for that functionality.

Value

Returns TRUE if x is a valid scclust object, otherwise FALSE.

scclust Constructor for scclust objects

Description

The scclust function constructs a scclust object from existing cluster labels.

Usage

scclust(cluster_labels, unassigned_labels = NULL, ids = NULL)

Arguments

cluster_labels a vector containing each data point’s cluster label.

unassigned_labels
labels that denote unassigned data points. If NULL, NA values in cluster_labels
are used to denote unassigned points.

ids IDs of the data points. Should be a vector of the same length as cluster_labels
or NULL. If NULL, the IDs are set to 1:1ength(cluster_labels).

Details

scclust does not derive clusters from sets of data points; see sc_clustering and hierarchical_clustering
for that functionality.

Value

Returns a scclust object with the clustering described by the provided labels.



sc_clustering 11

Examples

# 10 data points in 3 clusters
my_scclustl <- scclust(c("A", "A", "B", "C", "B",
IICH’ HCH’ HAH, IIB"’ IIBH))

# 8 data points in 3 clusters, 2 points unassigned
my_scclust2 <- scclust(c(1, 1, 2, 3, 2,
NA, 3, 1, NA, 2))

# Custom labels indicating unassiged points
my_scclust3 <- scclust(c("A", "A", "B", "C", "NONE",
ner M. UNONE”, "B”, "B"),
unassigned_labels = "NONE")

# Two different labels indicating unassiged points
my_scclust4 <- scclust(c("A", "A", "B", "C", "NONE",
newmgm mgn "BM. "BMY
unassigned_labels = c(”"NONE", "@"))

# Custom data point IDs
my_labels5 <- scclust(c("A", "A", "B", "C", "B",
MCII’ “C”, IIAII’ IIBII’ IIBM),
ids = letters[1:10])

sc_clustering Size-constrained clustering

Description

sc_clustering constructs near-optimal size-constrained clusterings. Subject to user-specified con-
straints on the size and composition of the clusters, a clustering is constructed so that within-cluster
pair-wise distances are minimized. The function does not restrict the number of clusters.

Usage

sc_clustering(
distances,
size_constraint = NULL,
type_labels = NULL,
type_constraints = NULL,
seed_method = "inwards_updating”,
primary_data_points = NULL,
primary_unassigned_method = "closest_seed"”,
secondary_unassigned_method = "ignore",
seed_radius = NULL,
primary_radius = "seed_radius”,
secondary_radius = "estimated_radius”,
batch_size = 100L



12 sc_clustering

Arguments

distances a distances object with distances between the data points.
size_constraint
an integer with the required minimum cluster size.

type_labels a vector containing the type of each data point. May be NULL when type_constraints
is NULL.

type_constraints
a named integer vector containing type-specific size constraints. If NULL, only
the overall constraint given by size_constraint will be imposed on the clus-
tering.

seed_method a character scalar indicating how seeds should be selected.

primary_data_points
a vector specifying primary data points, either with point indices or with a log-
ical vector of length equal to the number of points. NULL indicates that all data
points are "primary".

primary_unassigned_method
a character scalar indicating how unassigned (primary) points should be as-
signed to clusters.

secondary_unassigned_method
a character scalar indicating how unassigned secondary points should be as-
signed to clusters.

seed_radius a positive numeric scalar restricting the maximum length of an edge in the graph
used to construct the clustering. NULL indicates no restriction. This parameter
(together with primary_radius and secondary_radius) can be used to control
the maximum distance between points assigned to the same cluster (see below
for details).

primary_radius a positive numeric scalar, a character scalar or NULL restricting the match dis-
tance for unassigned primary points. If numeric, the value is used to restrict the
distances. If character, it must be one of "no_radius", "seed_radius" or "esti-
mated_radius" (see below for details). NULL indicates no radius restriction.

secondary_radius
a positive numeric scalar, a character scalar or NULL restricting the match dis-
tance for unassigned secondary points. If numeric, the value is used to restrict
the distances. If character, it must be one of "no_radius", "seed_radius" or "es-
timated_radius" (see below for details). NULL indicates no radius restriction.

batch_size an integer scalar specifying batch size when seed_method is set to "batches".

Details

sc_clustering constructs a clustering so to minimize within-cluster dissimilarities while ensuring
that constraints on the size and composition of the clusters are satisfied. It is possible to impose
an overall size constraint so that each cluster must contain at least a certain number of points in
total. It is also possible to impose constraints on the composition of the clusters so that each cluster
must contain a certain number of points of different types. For example, in a sample with "red"
and "blue" data points, one can constrain the clustering so that each cluster must contain at least 10
points in total of which at least 3 must be "red" and at least 2 must be "blue".



sc_clustering 13

The function implements an algorithm that first summaries the distances between data points in
a sparse graph and then constructs the clustering based on the graph. This admits fast execution
while ensuring near-optimal performance. In particular, the maximum within-cluster distance is
garantueed to be at most four times the maximum distance in the optimal clustering. The average
performance is much closer to optimal than the worst case bound.

In more detail, the clustering algorithm has four steps:

1. Construct sparse graph encoding clustering constraints.
2. Select a set of vertices in the graph to act as "seeds".
3. Construct initial clusters from the seeds’ neighborhoods in the graph.

4. Assign remaining data points to clusters.

Each data point is represented by a vertex in the sparse graph, and arcs are weighted by the distance
between the data points they connect. The graph is constructed so that each vertex’s neighborhood
satisfies the clustering constraints supplied by the user. For example, if the clusters must contain at
least five points, each closed neighborhood in the graph will contain five vertices. sc_clustering
constructs the graph that minimize the arc weights subject to the neighborhood constraints; this
ensures near-optimal performance. The function selects "seeds" that have non-overlapping neigh-
borhood in the graph. By constructing clusters as supersets of the neighborhoods, it ensures that the
clustering will satisfy the constraints imposed by the user.

The seed_method option governs how the seeds are chosen. Any set of seeds yields a near-optimal
clustering, but, heuristically, performance can be improved by picking the seeds more carefully.
In most cases, smaller clusters are desirable since they tend to minimize within-cluster distances.
As the number of data points is fixed, we minimize the cluster size by maximizing the number of
clusters (and, thus, the number of seeds). When seed_method is set to "lexical", seeds are chosen
in lexical order. This admits a fast solution, but the function might pick points that are central in the
graph. Central points tend to exclude many other points from being seeds and, thus, lead to larger
clusters.

The "exclusion_order" and "exclusion_updating" options calculate for each vertex how many other
vertices are excluded if the vertex is picked as a seed. By picking seeds that exclude few other
vertices, the function avoids central points and increases the number of seeds. "exclusion_updating"
updates the count after each picked seed so that already excluded vertices are not counted twice;
"exclusion_order" derives the count once. The former option is, thus, better-performing but slower.

Deriving the exclusion count when using the "exclusion_order" and "exclusion_updating" options
is an expensive operation, and it might not be feasible to do so in large samples. This is particu-
larly problematic when the data points have equidistant nearest neighbors, which tends to happen
when the dataset contains only discrete variables. It also happens when the dataset contains many
identical data points. The exclusion count operation may in these cases take several orders of mag-
nitude longer to run than the rest of the operations combined. To ensure sane behavior for the
default options, the exclusion count is not used by default. If the dataset contains at least one
continuous variable, it is generally safe to call sc_clustering with either "exclusion_order" or
"exclusion_updating", and this will often improve performance over the default.

The "inwards_order" and "inwards_updating" options count the number of inwards-pointing arcs
in the graph, which approximates the exclusion count. "inwards_updating" updates the count after
each picked seed, while "inwards_order" derives the count once. The inwards counting options
work well with nearly all types of data, and "inwards_updating" is the default.



14

sc_clustering

The "batches" option is identical to "lexical" but it derives the graph in batches. This limits the use
of memory to a value proportional to batch_size irrespectively of the size of the dataset. This can
be useful when imposing large size constraints, which consume a lot of memory in large datasets.
The "batches" option is still experimental and can currently only be used when one does not impose
type constraints.

Once the function has selected seeds so that no additional points can be selected without creating
overlap in the graph, it constructs the initial clusters. A unique cluster label is assigned to each
seed, and all points in the seed’s neighborhood is assigned the same label. Some data points might
not be in a neighborhood of a seed and will, therefore, not be assigned to a cluster after the initial
clusters have been formed. primary_unassigned_method specifies how the unassigned points are
assigned. With the "ignore" option, the points are left unassigned. With the "any_neighbor", the
function re-uses the sparse graph and assigns the unassigned points to any adjacent cluster in the
graph. The "closest_assigned" option assigns the points to the clusters that contain their closest
assigned vertex, and the "closest_seed" option assigns to the cluster that contain the closest seed.
All these options ensure that the clustering is near-optimal.

Occasionally, some data points are allowed to be left unassigned. Consider the following prediction
problem as an example. We have a set of data points with a known outcome value ("training points")
and another set of points for which the outcome is unknown ("prediction points"). We want to use
the training points to predict the outcome for the prediction points. By clustering the data, we
can use the cluster mean of the training points to predict the values of the prediction points in
the same cluster. To make this viable, we need to ensure that each cluster contains at least one
training point (the cluster mean would otherwise be undefined). We can impose this constraint
using the type_labels and type_constraints options. We also need to make sure that each
prediction point is assigned to a cluster. We do, however, not need that all training points are
assigned a cluster; some training points might not provide useful information (e.g., if they are
very dissimilar to all prediction points). In this case, by specifying only the prediction points in
primary_data_points, we ensure that all those points are assigned to clusters. The points not
specified in primary_data_points (i.e., the training points) will be assigned to clustering only
insofar that it is needed to satisfy the clustering constraints. This can lead to large improvements in
the clustering if the types of points are unevenly distributed in the metric space. Points not specified
in primary_data_points are called "secondary".

Generally, one does not want to discard all unassigned secondary points — some of them will, occa-

sionally, be close to a cluster and contain useful information. Similar to primary_unassigned_method,

we can use the secondary_unassigned_method to specify how the leftover secondary points
should be assigned. The three possible options are "ignore", "closest_assigned" and "closest_seed".
In nearly all cases, it is beneficial to impose a radius constraint when assigning secondary points

(see below for details).

sc_clustering tries to minimize within-cluster distances subject to that all (primary) data points
are assigned to clusters. In some cases, it might be beneficial to leave some points unassigned to
avoid clusters with very dissimilar points. The function has options that can be used to indirectly
constrain the maximum within-cluster distance. Specifically, by restricting the maximum distance
in the four steps of the function, we can bound the maximum within-cluster distance. The bound
is, however, a blunt tool. A too small bound might lead to that only a few data points are assigned
to clusters. If a bound is needed, it is recommended to use a very liberal bound. This will avoid the
very dissimilar clusters, but let the function optimize the remaining cluster assignments.

The seed_radius option limits the maximum distance between adjacent vertices in the sparse
graph. If the distance to a neighbor in a point’s neighborhood is greater than seed_radius, the



sc_clustering 15

neighborhood will be deleted and the point is not allowed be a seed (it can, however, still be in
other points’ neighborhoods). The primary_radius option limits the maximum distance when a
primary point is assigned to in the fourth step. When primary_radius is set to a positive nu-
meric value, this will be used to as the radius restriction. "no_radius" and NULL indicate no re-
striction. "seed_radius" indicates that the same restriction as seed_radius should be used, and
"estimated_radius" sets the restriction to the estimated average distance between the seeds and their
neighbors. When primary_unassigned_method is set to "any_neighbor", primary_radius must
be set to "seed_radius".

The way the radius constraints restrict the maximum within-cluster distance depends on the primary_unassigned_method
option. When primary_unassigned_method is "ignore", the maximum distance is bounded by 2

* seed_radius. When primary_unassigned_method is "any_neighbor", it is bounded by 4 *

seed_radius. When primary_unassigned_method is "closest_assigned", it is bounded by 2 *

seed_radius + 2 * primary_radius. When primary_unassigned_method is "closest_seed", it is

bounded by the maximum of 2 * seed_radius and 2 * primary_radius.

The secondary_radius option restricts how secondary points are assigned, but is otherwise iden-
tical to the primary_radius option.

Value

Returns a scclust object with the derived clustering.

References

Higgins, Michael J., Fredrik Sédvje and Jasjeet S. Sekhon (2016), ‘Improving massive experiments
with threshold blocking’, Proceedings of the National Academy of Sciences, 113:27, 7369-7376.

Séavje, Fredrik and Michael J. Higgins and Jasjeet S. Sekhon (2017), ‘Generalized Full Matching’,
arXiv 1703.03882. https://arxiv.org/abs/1703.03882

See Also

hierarchical_clustering can be used to refine the clustering constructed by sc_clustering.

Examples

# Make example data
my_data <- data.frame(id = 1:50000,
type = factor(rbinom(50000, 3, 0.3),
labels = c("A", "B", "C", "D")),
x1 = rnorm(50000),
x2 = rnorm(50000),
x3 = rnorm(50000))

# Construct distance metric
my_dist <- distances(my_data,
id_variable = "id",
dist_variables = c("x1", "x2", "x3"))

# Make clustering with at least 3 data points in each cluster
my_clustering <- sc_clustering(my_dist, 3)


https://arxiv.org/abs/1703.03882

16

# Check so clustering satisfies constraints
check_clustering(my_clustering, 3)
# > TRUE

# Get statistics about the clustering
get_clustering_stats(my_dist, my_clustering)
# > num_data_points 5.000000e+04

#> ...

# Make clustering with at least one point of each type in each cluster
my_clustering <- sc_clustering(my_dist,
type_labels = my_data$type,
type_constraints = c("A” =1, "B" =1,
"C =1, "D = 1))

# Check so clustering satisfies constraints
check_clustering(my_clustering,
type_labels = my_data$type,
type_constraints = c("A" =1, "B" =1,
e =1, "D" = 1))
# > TRUE

# Make clustering with at least 8 points in total of which at least
# one must be "A", two must be "B" and five can be any type
my_clustering <- sc_clustering(my_dist,
size_constraint = 8,
type_labels = my_data$type,
type_constraints = c("A" =1, "B" = 2))

sc_clustering



Index

* cluster
hierarchical_clustering, 7
sc_clustering, 11

check_clustering, 2, 3, 10
cluster_count, 4

distances, 5,8, 12
get_clustering_stats, 2,5
hierarchical_clustering, 2,7, 10, 15
is.scclust, 9
sc_clustering, 2, 3,8-10, 11

scclust, 2, 3, 5, 8-10, 10, 15
scclust-package, 2

17



	scclust-package
	check_clustering
	cluster_count
	get_clustering_stats
	hierarchical_clustering
	is.scclust
	scclust
	sc_clustering
	Index

