
sensobol: an R package to compute variance-based

sensitivity indices

Arnald Puy
Ecology and Evolutionary Biology,

Princeton University

Samuele Lo Piano
School of the Built Environment

University of Reading

Andrea Saltelli
Open Evidence Research

Universitat Oberta de Catalunya

Simon A. Levin
Ecology and Evolutionary Biology,

Princeton University

Abstract

The R package sensobol provides several functions to conduct variance-based uncer-
tainty and sensitivity analysis, from the estimation of sensitivity indices to the visual
representation of the results. It implements several state-of-the-art first and total-order
estimators and allows the computation of up to third-order effects, as well as of the ap-
proximation error, in a swift and user-friendly way. Its flexibility makes it also appropriate
for models with either a scalar or a multivariate output. We illustrate its functionality by
conducting a variance-based sensitivity analysis of three classic models: the Sobol’ (1998)
G function, the logistic population growth model of Verhulst (1845), and the spruce bud-
worm and forest model of Ludwig, Jones, and Holling (1976).

Keywords: R, Uncertainty, Sensitivity Analysis, Modeling.

1. Introduction

It has been argued that any form of knowledge based on mathematical modeling is conditional
on a set, perhaps a hierarchy, of either stated or unspoken assumptions (Kay 2012; Saltelli,
Bammer, Bruno, Charters, Di Fiore, Didier, Nelson Espeland, Kay, Lo Piano, Mayo, Pielke
Jr, Portaluri, Porter, Puy, Rafols, Ravetz, Reinert, Sarewitz, Stark, Stirling, van der Sluijs,
and Vineis 2020). Such assumptions range from the choice of the data and of the methods
to the framing of the problem, including normative elements that identify the nature and
the relevance of the problem itself. This conditional uncertainty is a property of the model
and not of the reality that the model has the ambition to depict. Yet it affects the model
output and hence any model-based inference aiming at guiding policies in the “real world”.
Identifying and understanding this conditional uncertainty is especially paramount when the
model output serves to inform a political decision, and boils down to answering two classes
of questions:

• How uncertain is the the inference? Is this uncertainty compatible with the taking of
a decision based on the model otcomes? Given the uncertainty, are the policy options

2 sensobol: variance-based sensitivity indices

distinguishable in their outcome?

• Which factor is dominating this uncertainty? Is this uncertainty reducible, e.g., with
more data or deeper research? Are there a few dominating factors or is the uncertainty
originating from several factors? Do the factors act singularly or in combination with
one another?

The second class of questions is the realm of global sensitivity analysis, which aims to offer a
diagnosis as to the composition of the uncertainty affecting the model output, and hence the
model based inference (Saltelli, Andres, and Homma 1993; Homma and Saltelli 1996a; Saltelli,
Ratto, Andres, Campolongo, Cariboni, Gatelli, Saisana, and Tarantola 2008). In helping to
appreciate the extent and the nature of the problems linked to the use of a given model in a
practical setting, global sensitivity analysis can be considered as a tool for the hermeneutics
of mathematical modeling.

Global sensitivity analysis is well represented in international guidelines for impact assessment
(Azzini, Listorti, Mara, and Rosati 2020a; Gilbertson 2018), as well as in many disciplinary
journals (Jakeman, Letcher, and Norton 2006; Puy, Lo Piano, and Saltelli 2020c). However,
the uptake of state-of-the-art global sensitivity analysis tools is still in its infancy. Most studies
continue to prioritize local sensitivity or one-at-a-time analyses, which explore how the model
output changes when one factor is varied and the rest is kept fixed at their nominal values
(Saltelli, Aleksankina, Becker, Fennell, Ferretti, Holst, Li, and Wu 2019). This approach
underexplores the input space and can not appraise interactions between factors, which are
ubiquitous in many models. Some reasons behind the scarce use of global sensitivity analysis
methods are lack of technical skills or resources available, unawareness of global sensitivity
methods or simply reluctance due to their “destructive honesty”: if applied properly, the
uncertainty uncovered by a global sensitivity analysis might be so wide as to render the
model largely impractical for policy-making (Leamer 2010; Saltelli et al. 2019).

This notwithstanding, there seems to be a progressive increase in the use of global sensitivity
methods from 2005 onwards (Ferretti, Saltelli, and Tarantola 2016), as well as a higher ac-
knowledgment of them being the ultimate acid test for the quality of any mathematical model.
Recently, global sensitivity analysis has been identified as one of the most well-equipped scien-
tific toolkits to tackle “deep uncertainty” (Steinmann, Wang, van Voorn, and Kwakkel 2020),
and a multidisciplinary team of scholars lists it as one of the five cornerstones of responsible
mathematical modeling (Saltelli et al. 2020).

1.1. Sensitivity analysis packages in R and beyond

The sparse uptake of global sensitivity methods contrasts with the many packages available in
different languages. In Python there is the SALib package (Herman and Usher 2017), which
includes the Sobol’, Morris and the Fourier Amplitude Sensitivity Test (FAST) methods.
In MATLAB, the UQLab offers the Morris method, the Borgonovo (2007) indices, Sobol’
indices (with the Sobol’ and Janon estimators) and the Kucherenko indices (Marelli and
Sudret 2014). The SAFE package (Pianosi, Sarrazin, and Wagener 2015), developed originally
for MATLAB / Octave but with scripts available for R and Python, includes variance-based
analysis, elementary effects and the PAWN method (Pianosi and Wagener 2015).

To our knowledge, there are three packages on CRAN that implement global sensitivity anal-
ysis in R (R Core Team 2020): the multisensi package (Bidot, Lamboni, and Monod 2018),

Arnald Puy, Samuele Lo Piano, Andrea Saltelli, Simon A. Levin 3

specifically designed for models with a multivariate output; the fast package (Reusser D.
2015), which implements FAST (removed from CRAN on 29-08-2020); and the sensitivity
package (Iooss, Janon, Pujol, with contributions from Baptiste Broto, Boumhaout, Veiga,
Delage, Amri, Fruth, Gilquin, Guillaume, Le Gratiet, Lemaitre, Marrel, Meynaoui, Nelson,
Monari, Oomen, Rakovec, Ramos, Roustant, Song, Staum, Sueur, Touati, and Weber 2020),
the most comprehensive collection of functions in R for screening, global sensitivity analysis
and robustness analysis.

sensobol differs from these R packages by the following characteristics:

1. It offers a state-of-the-art compilation of variance-based sensitivity estimators. Variance-
based sensitivity analysis is regarded as the gold standard of global sensitivity methods.
In its current version, sensobol comprises four first-order and eight total-order variance-
based estimators, from the classic formulae of Sobol’ (1993) or Jansen (1999) to the more
recent contributions by Glen and Isaacs (2012), Razavi and Gupta (2016b,a) (VARS-
TO) or Azzini, Mara, and Rosati (2020b).

2. It is very flexible and user-friendly. There is only one function to compute Sobol’-
based sensitivity indices, sobol_indices(). Any first and total-order estimator can
be simultaneously feed into the function provided that the user correctly specifies the
sampling design (see Section 2.1). This contrasts with the sensitivity package (Iooss
et al. 2020), which keeps estimators compartmentalized in different functions and hence
prevents the user from combining them the way it better suits their needs. Furthermore,
the compatibility of sobol_indices() with the data.table syntax makes the calculation
of sensitivity indices for scalar outputs as easy as for multivariate outputs (see Section
3.3) (Dowle and Srinivasan 2019).

3. It permits the computation of up to third-order effects. Appraising high-order effects
is paramount when models are non-additive (see Section 2). Although the total-order
index already informs on whether a parameter is involved in interactions, sometimes
a more precise account of the nature of this interaction is needed. sensobol opens
the possibility to probe into these interactions through the computation of second and
third-order effects regardless of the selected estimator.

4. It offers publication-ready figures of the model output and sensitivity-related analysis.
sensobol relies on ggplot2 (Wickham 2016) and the grammar of graphics to yield high-
quality plots which can be easily modified by the user.

5. It is more efficient than current implementations of variance-based estimators in R.
Our benchmark of sensobol and sensitivity functions suggest that the former may be
approximately two times faster than the latter (See Annex, section 6.1).

The paper is organized as follows: in Section 2 we briefly describe variance-based sensitivity
analysis. In Section 3 we walk through three examples of models with different characteristics
and increasing complexity to show all the functionalities of sensobol. Finally, we summarize
the main contributions of the package in Section 4.

2. Variance-based sensitivity analysis

Variance-based sensitivity indices use the variance to describe the model output uncertainty.
Given a model of the form y = f(x), x = x1, x2, . . . , xi, . . . , xk ∈ Rk, where y is a scalar

4 sensobol: variance-based sensitivity indices

output and x1, ..., xk are k uncertain parameters described by probability distributions, the
analyst might be interested in assessing how sensitive y is to changes in xi. One way of
tackling this question is to check how much the variance in y decreases after fixing xi to its
“true” value x∗i , i.e., V (y|xi = x∗i). But the true value of xi is unknown, so instead of fixing it
to an arbitrary number, we take the mean of the variance of y after fixing xi to all its possible
values over its uncertainty range, while all other parameters are left to vary. This can be
expressed as Exi [Vx∼i(y|xi)], where x∼i denotes all parameters-but-xi and E(.) and V (.) are
the mean and the variance operator respectively. Exi [Vx∼i(y|xi)] ≤ V (y), and in fact,

V (y) = Vxi [Ex∼i(y|xi)] + Exi [Vx∼i(y|xi)] , (1)

where Vxi [Ex∼i(y|xi)] is known as the first-order effect of xi and Exi [Vx∼i(y|xi)] is the residual.
When a parameter is important in conditioning V (y), Vxi [Ex∼i(y|xi)] is high.

To illustrate this property, let’s imagine we run a three-dimensional model, plot the model
output y against the range of values in xi, divide the latter in n bins and compute the mean
y in each bin. This is represented in Figure 1, with the red dots showing the mean in each
bin. The parameter whose mean y values vary the most has the highest direct influence in
the model output; in this case, this is clearly x1. This procedure applied over very small bins
is actually Vxi [Ex∼i(y|xi)] and is the conditional variance of xi on V (y), Vi (Saltelli et al.
2008). When x1, x2, . . . , xk are independent parameters, V (y) can be decomposed as the sum
of all partial variances up to the k-th order, as

Figure 1: Scatterplot of y against xi, i = 1, 2, 3. The red dots show the mean y value in
each bin (we have set the number of bins arbitrarely at 30), and N = 210. The model is
the polynomial function shown in Becker and Saltelli (2015), where y = 3x2

1 + 2x1x2 − 2x3,
xi ∼ U(0, 1).

V (y) =
∑

i=1

Vi +
∑

i

∑

i<j

Vij + ...+ V1,2,...,k , (2)

where

Vi = Vxi
[
Ex∼i(y|xi)

]
Vij = Vxi,xj

[
Ex∼i,j (y|xi, xj)

]
. . . .

− Vxi
[
Ex∼i(y|xi)

]

− Vxj
[
Ex∼j (y|xj)

] (3)

Arnald Puy, Samuele Lo Piano, Andrea Saltelli, Simon A. Levin 5

Note that Equation 2 is akin to Sobol’ (1993)’s functional decomposition scheme:

f(x) = f0 +
∑

i

fi(xi) +
∑

i

∑

i<j

fij(xi, xj) + . . .+ f1,2,...,k(x1, x2, . . . , xk) , (4)

where

f0 = E(y) fi = Ex∼i − f0 fij = Ex∼ij − fi − fj − f0 . . . , (5)

and therefore

Vi = V [fi(xi)] Vij = V [fij(xi, xj)] (6)

Sobol’ (1993) indices are then calculated as

Si =
Vi
V (y)

Sij =
Vij
V (y)

. . . , (7)

where Si is the first-order effect of xi, Sij is the second-order effect of (xi, xj) (formed by the
first order effect of xi, xj and their interaction), etc. Si (Sij) can thus be expressed as the
fractional reduction in the variance of y which will be obtained if xi (xi, xj) could be fixed. In
variance-based sensitivity analysis, Si is used to rank parameters given their contribution to
the model output uncertainty, a setting known as “factor prioritization’ ’ (Saltelli et al. 2008).

If we divide all terms in Equation 2 by V (y), we get

k∑

i=1

Si +
∑

i

∑

i<j

Sij + ...+ S1,2,...,k = 1. (8)

When
∑k

i=1 Si = 1, the model is additive, i.e., the variance of y can be fully decomposed
as the sum of first-order effects, meaning that there are no interaction between parameters.
However, this is rarely the case in real-life models, and first-order indices are usually not
enough to account for all the model output variance.

This is better demonstrated with the example displayed in Figure 2: x2 and x3 do not have
a first-order effect on y as Vxi [Ex∼i(y|xi)] ≈ 0. However, and unlike x2, x3 does influence
y given the shape of the scatterplot, so it can not be an inconsequential parameter. Indeed,
x3 influences y through high-order effects, i.e., by interacting with some other parameter(s).
In this specific case, it is clear that x3 must interact with x1 given that x2 is non-influential.
This notwithstanding, such appraisal of interactions can rarely be made through the visual
inspection of scatterplots alone, and often requires computing higher-order terms in Equation
8.

Since there are 2k− 1 terms in Equation 8, a model with 10 parameters will have 1023 terms,
making a full variance decomposition very arduous: just the computation of second-order
terms for this model would require estimating 45 indices.

To circumvent this issue, Homma and Saltelli (1996b) proposed to compute the total-order
index Ti, which measures the first-order effect of xi jointly with its interactions with all the

6 sensobol: variance-based sensitivity indices

other parameters. In other words, Ti includes all terms in Equation 2 with the index i, and
is computed as follows:

Ti = 1− Vx∼i

[
Exi(y|x∼i)

]

V (y)
=
Ex∼i

[
Vxi(y|x∼i)

]

V (y)
, (9)

For a three-dimensional model, the total-order index of x1 will thus be computed as T1 =
S1 +S1,2 +S1,3 +S1,2,3. Since Ti = 0 indicates that xi does not convey any uncertainty to the
model output, the total-order index has been used to screen influential from non-influential
parameters, a setting known as “factor fixing’ ’ (Saltelli et al. 2008).

Figure 2: Scatterplot of y against xi, i = 1, 2, 3. The red dots show the mean y value in
each bin (we have set the number of bins arbitrarely at 30), and N = 210. The model is the
Ishigami and Homma (1990) function.

2.1. Sampling design and sensitivity estimators

The computation of variance-based sensitivity indices requires two elements: 1) a sampling
design, i.e., a strategy to arrange the sample points into the multidimensional space of the
input factors, and 2) an estimator, i.e., a formula to compute the sensitivity measures (Lo
Piano, Ferretti, Puy, Albrecht, and Saltelli 2021). Both elements are inextricably intertwined:
the reliance on a given sampling design determines which estimators can be used, and the
other way around.

The package sensobol currently offers support for five first-order and eight total-order sensi-

tivity estimators, which rely on specific combinations of A, B, A
(i)
B or B

(i)
A matrices (Tables

1–2). Estimator 9 in Table 2 is known as VARS-TO and requires a different sampling design
based on star-centers and cross-sections (Razavi and Gupta 2016a,b). We provide further in-
formation about VARS-TO in the Annex, section 6.2. All these estimators are sample-based
and hence sensobol does not include emulators or surrogate models.

How are these matrices formed, and why are they required? Let Q be a (N, 2k) matrix
constructed using either random or quasi-random number generators, such as the Sobol’
(1967, 1976) sequence or a Latin Hypercube Sampling design (McKay, Beckman, and Conover
1979)). The A and the B matrices include respectively the leftmost and rightmost k columns

of the Q matrix. As for the A
(i)
B (B

(i)
A) matrices, they are formed by all columns from the A

(B) matrix except the i-th, which comes from B (A) (Equation 10, Figure 3).

Arnald Puy, Samuele Lo Piano, Andrea Saltelli, Simon A. Levin 7

Nº Estimator first Author

1
1
N

∑N
v=1 f(A)vf(B

(i)
A)v−f20

V (y) "sobol" Sobol’ (1993)

2
1
N

∑N
v=1 f(B)v

[
f(A

(i)
B)v−f(A)v

]

V (y) "saltelli" Saltelli, Annoni,
Azzini, Campo-
longo, Ratto, and
Tarantola (2010)

3
V (y)− 1

2N

∑N
v=1

[
f(B)v−f(A

(i)
B)v

]2

V (y) "jansen" Jansen (1999)

4
2
∑N

v=1(f(B
(i)
A)v−f(B)v)(f(A)v−f(A

(i)
B)v)

∑N
v=1

[
(f(A)v−f(B)v)2+(f(B

(i)
A)v−f(A

(i)
B)v)2

] "azzini" Azzini et al.
(2020b)

Table 1: First-order estimators included in sensobol (v1.0.1).

In these matrices each column is a model input and each row a sampling point. Any sampling
point in either A or B can be indicated as xvi, where v and i respectively index the row (from
1 to N) and the column (from 1 to k).

First and total-order effects are then calculated by averaging several elementary effects com-
puted rowwise: for Si, we need pairs of points where all factors but xi have different values

(i.e., Av, (B
(i)
A)v; or Bv, (A

(i)
B)v), and for Ti pairs of points where all factors except xi have

the same values (i.e., Av, (A
(i)
B)v; or Bv, (B

(i)
A)v). The elementary effect for Si thus requires

moving from Av to (B
(i)
A)v (or from Bv to (A

(i)
B)v), therefore taking a step along x∼i, whereby

the elementary effect for Ti involves moving from Av to (A
(i)
B)v (or from Bv to (B

(i)
A)v), hence

moving along xi (Saltelli et al. 2010).

The function sobol_matrices() allows to create these sampling designs using either Sobol’
(1967, 1976) Quasi-Random Numbers (type = "QRN"), Latin Hypercube Sampling (type =

"LHS") or Random numbers (type = "R"). In Figure 3 we show how these sampling methods
differ in two dimensions. Comparatively, quasi-random numbers fill the input space quicker
and more evenly, leaving smaller unexplored volumes. However, random numbers might
provide more accurate sensitivity indices when the model under examination has important
high-order terms (Kucherenko, Feil, Shah, and Mauntz 2011). In addition, Latin Hyper-
cube Sampling might outperform quasi-random numbers for some specific function typologies
(Kucherenko, Delpuech, Iooss, and Tarantola 2015). In general, quasi-random numbers are
assumed to be the safest bet when selecting a sampling algorithm for a function of unknown
behavior, and are the default setting in sensobol.

8 sensobol: variance-based sensitivity indices

Nº Estimator total Author

1
1

2N

∑N
v=1

[
f(A)v−f(A

(i)
B)v

]2

V (y) "jansen" Jansen (1999)

2
1
N

∑N
v=1 f(A)v

[
f(A)v−f(A

(i)
B)v

]

V (y) "sobol" Sobol’ (2001)

3
V (y)− 1

N

∑N
v=1 f(Av)f(A

(i)
B)v+f20

V (y) "homma" Homma and
Saltelli (1996b)

4 1−
1
N

∑N
v=1 f(B)vf(B

(i)
A)v−f20

1
N

∑N
v=1 f(A)2v−f20

saltelli Saltelli et al.
(2008)

5 1−
1
N

∑N
v=1 f(A)vf(A

(i)
B)v−f20

1
N

∑N
v=1

f(Av)2+f(A
(i)
B

)2v
2

−f20
"janon" Janon, Klein,

Lagnoux, Nodet,
and Prieur (2014)
Monod, Naud, and
Makowski (2006)

6 1−


 1
N−1

∑N
v=1

[f(A)v−〈f(A)v〉]
[
f(A

(i)
B)v−

〈
f(A

(i)
B)v

〉]

√
V [f(A)v]V

[
f(A

(i)
B)v

]


 "glen" Glen and Isaacs

(2012)

7
∑N

v=1[f(B)v−f(B
(i)
A)v]2+[f(A)v−f(A

(i)
B)v]2

∑N
v=1[f(A)v−f(B)v]2+[f(B

(i)
A)v−f(A

(i)
B)v]2

"azzini" Azzini et al.
(2020b)

8
Ex∗∼i

[γx∗∼i(hi)]+Ex∗∼i[Cx∗∼i(hi)]
V (y)

See Annex,
section 6.2

Razavi and Gupta
(2016b,a).

Table 2: Total-order estimators included in sensobol (v1.0.1).

Figure 4: Sampling methods. Each dot is a sampling point. N = 210.

Once the sampling design is set, the computation of Sobol’ indices is done with the function
sobol_indices(). The arguments first, total and matrices are set by default at first =

"saltelli", total = "jansen" and matrices = c("A", "B", "AB") following best prac-
tices in sensitivity analysis (Saltelli et al. 2010; Puy et al. 2020a). However, any combination

Arnald Puy, Samuele Lo Piano, Andrea Saltelli, Simon A. Levin 9

Q =

0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

0.75 0.25 0.75 0.25 0.75 0.25 0.75 0.25

0.25 0.75 0.25 0.75 0.25 0.75 0.25 0.75

0.38 0.38 0.62 0.12 0.88 0.88 0.12 0.62

0.88 0.88 0.12 0.62 0.38 0.38 0.62 0.12







 A  B

A
(1)
B =

0.50 0.50 0.50 0.50

0.75 0.25 0.75 0.25

0.25 0.75 0.25 0.75

0.88 0.38 0.62 0.12

0.38 0.88 0.12 0.62







A
(2)
B =

0.50 0.50 0.50 0.50

0.75 0.25 0.75 0.25

0.25 0.75 0.25 0.75

0.38 0.88 0.62 0.12

0.88 0.38 0.12 0.62







...

B
(1)
A =

0.50 0.50 0.50 0.50

0.75 0.25 0.75 0.25

0.25 0.75 0.25 0.75

0.38 0.88 0.12 0.62

0.88 0.38 0.62 0.12







B
(2)
A =

0.50 0.50 0.50 0.50

0.75 0.25 0.75 0.25

0.25 0.75 0.25 0.75

0.88 0.38 0.12 0.62

0.38 0.88 0.62 0.12







...

(10)

Figure 3: Example of the creation of an A and a B matrix, as well as A
(i)
B and B

(i)
A matrices.

The Q matrix has been created with Sobol’ (1967, 1976) Quasi-Random Numbers, k = 4 and
N = 5. The figure is based on Puy et al. (2020a).

between all first and total-order estimators listed in Tables 1–2 is possible with the appro-

10 sensobol: variance-based sensitivity indices

priate sampling design (Table 3). If the analyst selects estimators whose combination do not
match the specific designs listed in Table 3, sobol_indices() will generate an error and urge
to revise the specifications. This would be the case, for instance, if the analyst sets first =

"sobol", total = "glen" and matrices = "c("A", "AB", "BA").

first total matrices Nº model runs

"saltelli"

"jansen"

"jansen"

"sobol"

"homma"

"janon"

"glen"

c("A", "B", "AB") N(k + 2)

"sobol" "saltelli" c("A", "B", "BA") N(k + 2)

"azzini"

"jansen"

"sobol"

"homma"

"janon"

"glen"

"azzini"

"saltelli"

c("A", "B", "AB", "BA") 2N(k + 1)

"saltelli"

"jansen"

"sobol"

"azzini"

"azzini" c("A", "B", "AB", "BA") 2N(k + 1)

Table 3: Available combinations of first and total-order estimators in sensobol (v1.0.1).

3. Usage

In this section we illustrate the functionality of sensobol through three different examples of
increasing complexity. Let us first load the required packages:

R> library("sensobol")

R> library("data.table")

R> library("ggplot2")

3.1. Example 1: The Sobol’ G function

In sensitivity analysis, the accuracy of sensitivity estimators is usually checked against test
functions for which the variance and the sensitivity indices can be expressed analytically.
sensobol includes five of these test functions: Ishigami and Homma (1990)’s, Sobol’ (1998)’s
(known as G function), Bratley, Fox, and Niederreiter (1992)’s, Bratley and Fox (1988)’s and
Oakley and O’Hagan (2004)’s, as well as Becker (2020)’s metafunction (Table 4).

Arnald Puy, Samuele Lo Piano, Andrea Saltelli, Simon A. Levin 11

In this first example we illustrate the functionality of sensobol with the Sobol’ G function,
one of the most used benchmark functions in sensitivity analysis (Lo Piano et al. 2021; Puy,
Lo Piano, and Saltelli 2020b; Saltelli et al. 2010). In its current implementation, the Sobol’
G is an eight-dimension function with S1 > S2 > S3 > S4 and (S5, . . . , S8) ≈ 0 (Table
4, Nº 2). With this parametrization the Sobol’ G function is a Type A function according
to Kucherenko et al. (2011)’s taxonomy (a function with few important factors and minor
interactions), with Type B and Type C functions designing those with equally important
parameters but with few and large interactions respectively.

We first define the settings of the uncertainty and sensitivity analysis: we set the sample size
N of the base sample matrix and the number of uncertain parameters k, and create a vector
with the parameters’ name. Since we will bootstrap the indices to get confidence intervals,
we also set the number of bootstrap replicas R and define the bootstrap confidence interval
method, which in this case will be the normal method. Finally, we set the confidence intervals
at 0.95:

Nº Test function Author

1
y = sin(x1) + a sin(x2)2 + bx4

3 sin(x1),
where a = 2, b = 1 and (x1, x2, x3) ∼ U(−π,+π)

Ishigami and
Homma (1990)

2
y =

∏k
i=1

|4xi−2|+ai
1+ai

,

where k = 8, xi ∼ U(0, 1) and a = (0, 1, 4.5, 9, 99, 99, 99, 99)
Sobol’ (1998)

3
y =

∑k
i=1(−1)i

∏i
j=1 xj ,

where xi ∼ U(0, 1)
Bratley et al.
(1992)

4
y =

∏k
i=1 |4xi − 2|,

where xi ∼ U(0, 1)
Bratley and Fox
(1988)

5
y = aT1 x + aT2 sin(x) + aT3 cos(x) + xTMx,
where x = x1, x2, . . . , xk, k = 15, and values

for aTi , i = 1, 2, 3 and M are defined by the authors
Oakley and
O’Hagan (2004)

6

y =
k∑

i=1

αif
ui(xi) +

k2∑

i=1

βif
uVi,1 (xVi,1)f

uVi,2 (xVi,2)

+

k3∑

i=1

γif
uWi,1 (xWi,1)f

uWi,2 (xWi,2)f
uWi,3 (xWi,3)

See Becker (2020)
and Puy et al.
(2020a) for details.

Table 4: Test functions included in sensobol (v1.0.0).

R> N <- 2 ^ 10

R> k <- 8

R> params <- paste("$x_", 1:k, "$", sep = "")

R> R <- 10^3

R> type <- "norm"

R> conf <- 0.95

12 sensobol: variance-based sensitivity indices

The next step is to create the sample matrix. In this specific case we will use an A, B, A
(i)
B

design and Sobol’ quasi-random numbers to compute first and total-order indices. These are
default settings in sobol_matrices(). In our call to the function we only need to define the
sample size and the parameters:

R> mat <- sobol_matrices(N = N, params = params)

Once the sample matrix is defined we can run our model. Note that in mat each column is a
model input and each row a sample point, so the model has to be coded as to run rowwise.
This is already the case of the Sobol’ G function included in sensobol:

R> y <- sobol_Fun(mat)

The package also allows the user to swiftly visualize the model output uncertainty by plotting
an histogram of the model output obtained from the A matrix:

R> plot_uncertainty(Y = y, N = N) + labs(y = "Counts", x = "y")

0

20

40

60

0 1 2 3

y

C
ou

n
ts

Figure 5: Empirical distribution of the Sobol’ G model output.

Before computing Sobol’ indices, it is recommended to explore how the model output maps
onto the model input space. sensobol includes two functions to that aim, plot_scatter()
and plot_multiscatter(). The first displays the model output y against xi while showing
the mean y value (i.e., as in Figures 1–2), and allows the user to identify patterns denoting
sensitivity (Pianosi, Beven, Freer, Hall, Rougier, Stephenson, and Wagener 2016).

R> plot_scatter(data = mat, N = N, Y = y, params = params)

Arnald Puy, Samuele Lo Piano, Andrea Saltelli, Simon A. Levin 13

Figure 6: Scatter plots of model inputs against the model output for the Sobol’ G function.

The scatter plots in Figure 6 evidence that x1, x2 and x3 have more “shape” than the rest
and thus have a higher influence on y than (x4, . . . , x8). However, scatter plots do not always
permit to detect which parameters have a joint effect on the model output. To gain a first
insight on these interactions, the function plot_multiscatter() plots xi against xj and maps
the resulting coordinate to its respective model output value. Interactions are then visible by
the emergence of colored patterns.

By default, plot_multiscatter() plots all possible combinations of xi and xj , which equal
k!

2!(k−2)! = 6 possible combinations in this specific case. In high-dimensional models with
several inputs this might lead to overplotting. To avoid this drawback, the user can subset
the parameters they wish to focus on following the results obtained with plot_scatter(): if
xi does not show “shape” in the scatterplots of xi against y, then it may be excluded from
plot_multiscatter().

Below we plot all possible combinations of pairs of inputs between x1−x4, which are influential
according to Figure 6:

R> plot_multiscatter(data = mat, N = N, Y = y, params = paste("$x_", 1:4, "$",

+ sep = ""))

14 sensobol: variance-based sensitivity indices

Figure 7: Scatterplot matrix of pairs of model inputs for the Sobol’ G function. The topmost
and bottommost label facets refer to the x and the y axis respectively.

The results suggest that x1 might interact with x2 given the colored pattern of the (x1, x2)
facet: the highest values of the model output are concentrated in the corners of the (x1, x2)
input space and thus result from combinations of high/low x1 values with high/low x2 values.
In case the analyst is interested in assessing the exact weight of this high-order interaction,
the computation of second-order indices would be required.

The last step is the computation of Sobol’ indices. In this specific case, we set boot = TRUE

to bootstrap the Sobol’ indices and get confidence intervals:

R> ind <- sobol_indices(Y = y, N = N, params = params, boot = TRUE, R = R,

+ type = type, conf = conf)

The output of sobol_indices() is an S3 object of class sensobol, with the results stored
in the component results. To improve the visualization of the object, we set the number of
digits in each numerical column to 3:

R> cols <- colnames(ind$results)[1:5]

Arnald Puy, Samuele Lo Piano, Andrea Saltelli, Simon A. Levin 15

R> ind$results[, (cols):= round(.SD, 3), .SDcols = (cols)]

R> ind

First-order estimator: saltelli | Total-order estimator: jansen

Total number of model runs: 10240

Sum of first order indices: 0.9419303

original bias std.error low.ci high.ci sensitivity parameters

1: 0.724 0.005 0.069 0.584 0.854 Si x_1

2: 0.184 -0.002 0.039 0.110 0.261 Si x_2

3: 0.025 0.000 0.015 -0.005 0.054 Si x_3

4: 0.010 0.000 0.008 -0.007 0.025 Si x_4

5: 0.000 0.000 0.001 -0.001 0.002 Si x_5

6: 0.000 0.000 0.001 -0.002 0.002 Si x_6

7: 0.000 0.000 0.001 -0.001 0.002 Si x_7

8: 0.000 0.000 0.001 -0.002 0.002 Si x_8

9: 0.799 0.001 0.036 0.728 0.868 Ti x_1

10: 0.243 0.000 0.013 0.217 0.269 Ti x_2

11: 0.035 0.000 0.002 0.030 0.039 Ti x_3

12: 0.011 0.000 0.001 0.009 0.012 Ti x_4

13: 0.000 0.000 0.000 0.000 0.000 Ti x_5

14: 0.000 0.000 0.000 0.000 0.000 Ti x_6

15: 0.000 0.000 0.000 0.000 0.000 Ti x_7

16: 0.000 0.000 0.000 0.000 0.000 Ti x_8

The output informs of the first and total-order estimators used in the calculation, the total
number of model runs and the sum of the first-order indices: if (

∑k
i=1 Si) < 1, the model is

non-additive.

When boot = TRUE, the output of sobol_indices() displays the bootstrap statistics in the
five leftmost columns (the observed statistic, the bias, the standard error and the low and
high confidence intervals), and two extra columns linking each statistic to a sensitivity index
(sensitivity) and a parameter (parameters). If boot = FALSE, sobol_indices() com-
putes a point estimate of the indices and the output includes only the columns original,
sensitivity and parameters.

The results indicate that x1 is responsible for 72% of the uncertainty in y, followed by x2

(18%). x3 and x4 have a very minor first-order effect, while the rest are non-influential. Note
that the observed statistics suggest the presence of non-additivities: T1 and T2 (0.79 and 0.24)
are respectively higher than S1 and S2 (0.72 and 0.18). As we have seen in Figure 7, x1 and
x2 have a non-additive effect in y.

We can also compute the Sobol’ indices of a dummy parameter, i.e., a parameter that has
no influence on the model output, to estimate the numerical approximation error. This
will be used later on to identify parameters whose contribution to the output variance is
less than the approximation error, and therefore can not be considered influential. Like
sobol_indices(), the function sobol_dummy() allows to obtain point estimates (the default)
or bootstrap estimates. In this example we use the latter option:

16 sensobol: variance-based sensitivity indices

R> ind.dummy <- sobol_dummy(Y = y, N = N, params = params, boot = TRUE, R = R)

The last stage is to plot the Sobol’ indices and their confidence intervals, as well as the Sobol’
indices of a dummy parameter, with the function plot_sobol():

R> plot(ind, dummy = ind.dummy)

Figure 8: Sobol’ indices of the Sobol’ G function.

The error bars of S1 and S2 overlap with those of T1 and T2 respectively. In the case of the
Sobol’ G function we know that T1 > S1 and T2 > S2 because the analytic variance is known,
but for models where this is not the case such overlap might hamper the identification of
non-additivities. Under these circumstances, narrower confidence intervals can be obtained
by increasing the sample size N and re-running the analysis from the creation of the sample
matrix onwards.

The horizontal, blue / red dashed lines respectively mark the upper limit of the Ti and Si
indices of the dummy parameter. This helps in identifying which parameters condition the
model output given the sample size constraints of the analysis: only parameters whose lower
confidence intervals are not below the Si and Ti indices of the dummy parameter can be
considered truly influential, in this case x1 and x2. Note that although T3 6= 0, the Ti index
of the dummy parameter is higher than T3 and therefore T3 can not be distinguished from
the approximation error.

3.2. Example 2: A logistic population growth model

In this section we show how sensobol can be implemented to conduct a global uncertainty and
sensitivity analysis of a dynamic model. We will use the following logistic population growth
model:

dN

dt
= rN(1− N

K
) (11)

Malthusian models of population growth (i.e., exponential growth) can not forever describe
the growth of a population because resources, including space, are limited and competitive

Arnald Puy, Samuele Lo Piano, Andrea Saltelli, Simon A. Levin 17

pressures ultimately impose limits on growth. Most ways to incorporate that limit to growth
in models share similar dynamics, and the most intuitive and widely used is the form proposed
by Verhulst in Equation 11, which was popularized in Ecology by Pearl and Reed (1920). In
this model, the population N at time t is dependent on the growth rate r, the number of
individuals N and the carrying capacity K, defined as the maximum number of individuals
that a given environment can sustain. When N approaches K, the population growth slows
down until the number of individuals converges to a constant (Figure 9).

Figure 9: Dynamics of the logistic population growth model for N0 = 3, r = 0.6 and K = 100.

Before moving forward to conduct a global sensitivity analysis of Equation 11, we set the
sample size N of the base sample matrix at 213 and create a vector with the name of the
parameters. For this specific example we will use the Azzini et al. (2020b) estimators, which

require a sampling design based on A, B, A
(i)
B , B

(i)
A matrices. We will compute up to second-

order effects, bootstrap the indices 103 times and compute the 95% confidence intervals using
the percentile method.

R> N <- 2 ^ 13

R> params <- c("r", "K", "N_0")

R> matrices <- c("A", "B", "AB", "BA")

R> first <- total <- "azzini"

R> order <- "second"

R> R <- 10 ^ 3

R> type <- "percent"

R> conf <- 0.95

In the next two code snippets we code Equation 11 and wrap it up in a mapply() call to make
it run rowwise:

R> population_growth <- function (r, K, X0) {

+ X <- X0

+ for (i in 0:20) {

+ X <- X + r * X * (1 - X / K)

18 sensobol: variance-based sensitivity indices

+ }

+ return (X)

+ }

R> population_growth_run <- function (dt) {

+ return(mapply(population_growth, dt[, 1], dt[, 2], dt[, 3]))

+ }

We now construct the sample matrix. This time we set type = "LHS" to use a Latin Hyper-
cube Sampling Design:

R> mat <- sobol_matrices(matrices = matrices, N = N, params = params,

+ order = order, type = "LHS")

Let’s assume that, after surveying the literature and conducting fieldwork, we have agreed
that the uncertainty in the model inputs can be fairly approximated with the distributions
presented in Table 5. We thus transform each model input in mat to its specific probability
distribution using the appropriate inverse quantile transformation:

Table 5: Summary of the parameters and their distributions (Chalom and Inacio Knegt Lopez
2017).

Parameter Description Distribution

r Population growth rate N (1.7, 0.3)
K Maximum carrying capacity N (40, 1)
N0 Initial population size U(10, 50)

R> mat[, "r"] <- qnorm(mat[, "r"], 1.7, 0.3)

R> mat[, "K"] <- qnorm(mat[, "K"], 40, 1)

R> mat[, "N_0"] <- qunif(mat[, "N_0"], 10, 50)

The sample matrix in mat is now ready, and we can run the model:

R> y <- population_growth_run(mat)

And display the model output uncertainty:

R> plot_uncertainty(Y = y, N = N) + labs(y = "Counts", x = "y")

Arnald Puy, Samuele Lo Piano, Andrea Saltelli, Simon A. Levin 19

Figure 10: Empirical distribution of the logistic population growth model output.

The results suggest that after 20 time steps the number of individuals will most likely con-
centrate around 40. Note however the right and left tails of the distribution, indicating that
a few simulations also yielded significantly lower and higher population values. These tails
result from some specific combinations of parameter values and are indicative of interaction
effects, which will be explored later on.

We can also compute some statistics to get a better grasp of the output distribution, such as
quantiles:

R> quantile(y, probs = c(0.01, 0.025, 0.5, 0.975, 0.99, 1))

1% 2.5% 50% 97.5% 99% 100%

27.80714 30.66101 40.00111 46.64511 47.91589 53.41604

With plot_scatter() we can map the model inputs onto the model output. Instead of
plotting one dot per simulation, in this example we use hexagon bins by setting method

= "bin" and internally calling ggplot2::geom_hex(). With this specification we divide the
plane into regular hexagons, count the number of hexagons and map the number of simulations
to the hexagon bin. method = "bin" is therefore a useful resource to avoid overplotting with
plot_scatter() when the sample size of the base sample matrix (N) is high, as in this case
(N = 213):

R> plot_scatter(data = mat, N = N, Y = y, params = params, method = "bin")

20 sensobol: variance-based sensitivity indices

r K N0

0.5 1.0 1.5 2.0 2.5 36 38 40 42 44 10 20 30 40 50

20

30

40

50

Value

y
200 400 600

count

Figure 11: Scatterplot of model inputs against the model output for the population growth
model.

Zones with a higher density of dots are highlighted by lighter blue colors. Note also the
bifurcation of the model output at r ≈ 2. This behavior is the result of the discretization
of the logistic (May and Oster 1976). At r > 2, a cycle of length 2 emerges, followed as
r is increased further by an infinite sequence of period-doubling bifurcations approaching a
critical value after which chaotic behavior and strange attractors result.

We can also avoid overplotting in plot_multiscatter() by randomly sampling and displaying
only n simulations. This is controlled by the argument smpl, which is NULL by default. Here
we set smpl at 211 and plot only 1/4th of the simulations.

R> plot_multiscatter(data = mat, N = N, Y = y, params = params, smpl = 2^11)

Arnald Puy, Samuele Lo Piano, Andrea Saltelli, Simon A. Levin 21

Figure 12: Scatterplot matrix of pairs of model inputs for the population growth model.

The results suggest that there may be interactions between (r,K) and (r,N0): note the
yellow-green colours concentrated on the right side of the (r,K) plot as well as on the top
right and bottom right sides of the (r,N0) plot. In the case of the pair (K,N0), no clear
pattern emerges.

These interactions, as well as the first-order effects of N0, r,K, can be quantified with a call
to sobol_indices():

R> ind <- sobol_indices(matrices = matrices, Y = y, N = N, params = params,

+ first = first, total = total, order = order, boot = TRUE, R = R,

+ parallel = "no", type = type, conf = conf)

We round the number of digits of the numeric columns to 3 to better inspect the results, and
print ind:

R> cols <- colnames(ind$results)[1:5]

R> ind$results[, (cols):= round(.SD, 3), .SDcols = (cols)]

R> ind

First-order estimator: azzini | Total-order estimator: azzini

Total number of model runs: 114688

Sum of first order indices: 0.2569059

original bias std.error low.ci high.ci sensitivity parameters

1: 0.028 -0.001 0.019 -0.010 0.067 Si r

2: 0.114 0.000 0.004 0.107 0.122 Si K

3: 0.115 0.000 0.011 0.093 0.136 Si N_0

22 sensobol: variance-based sensitivity indices

4: 0.760 0.000 0.011 0.737 0.781 Ti r

5: 0.185 0.000 0.010 0.164 0.206 Ti K

6: 0.861 0.001 0.020 0.825 0.900 Ti N_0

7: -0.004 0.000 0.010 -0.024 0.015 Sij r.K

8: 0.673 0.001 0.022 0.627 0.718 Sij r.N_0

9: 0.012 0.000 0.007 -0.002 0.025 Sij K.N_0

Since in this example we have set order = "second", the output also displays the second-
order effects (Sij) of the pairs (r,K), (r,N0) and (K,N0). Note that Sr,N0 conveys ∼ 67% of
the uncertainty in y, and that Sr + SK + SN0 = 2.8 + 11.4 + 11.5 ≈ 25%, meaning that first-
order effects are responsible for only circa 1/4 th of the model output variance. The model
behaviour is largely driven by a coupled effect which would have passed unnoticed should
we had relied on a local sensitivity analysis approach, i.e., if we had moved one parameter
at-a-time.

In any case, K and N0 have the higher first-order effect in the model output. If the aim
is to reduce the uncertainty in the prediction (i.e., to better assess the potential impact
of a species on a territory), these results suggest to focus the efforts on better quantifying
the initial population N0, and/or on conducting further research on what is the maximum
carrying capacity K of the environment for this particular species. Priority should be given
to N0 given its strong interaction with r.

In order to get an estimation of the approximation error we compute the Sobol’ indices also
for the dummy parameter:

R> ind.dummy <- sobol_dummy(Y = y, N = N, params = params, boot = TRUE, R = R)

And plot the output:

R> plot(ind, dummy = ind.dummy)

Figure 13: First and total-order Sobol’ indices of the population growth model.

Arnald Puy, Samuele Lo Piano, Andrea Saltelli, Simon A. Levin 23

Note the importance of interactions, reflected in TN0 � SN0 and Tr � Sr. It is also important
to highlight that TK is below the Ti index of the dummy parameter (the dashed, horizontal
blue line at c. 0.5). This makes TK indistinguishable from the approximation error. The same
applies to Sr, whose 95% confidence interval overlaps with the Si of the dummy parameter
(the dashed, red line).

Finally, we can also plot second-order indices by setting order = "second" in a plot() call:

R> plot(ind, order = "second")

Figure 14: Second-order Sobol’ indices.

Only Sr,N0 is displayed because plot() only returns second-order indices for which the lower
confidence interval does not overlap with zero.

3.3. Example 3: The spruce budworm and forest model

The last example illustrates the flexibility of sensobol against systems of differential equations.
Under these circumstances, the analyst might be interested in exploring the sensitivity of each
model output or state variable to the uncertain inputs at different points in time, i.e., at the
transient phase and/or at equilibrium. sensobol integrates with the deSolve and the data.table
packages to achieve this goal in an easy and user-friendly manner (Soetaert, Petzoldt, and
Setzer 2010; Dowle and Srinivasan 2019).

We rely here on the spruce budworm and forest model of Ludwig et al. (1976). Spruce
budworm is a devastating pest of Canadian and high-latitude US balsam fir and spruce forests.
A half-century ago, research teams led by Crawford Holling developed detailed models of the
interaction between the budworm and their target species, models capable of reproducing
the boom-and-bust dynamics and spatial patterns exhibited in real forests. Donald Ludwig
pointed out that these models were overparameterized and that much simpler models could
capture the essential dynamics in a more robust manner.

The basic idea of the model is that the dynamics of the system play out on multiple time
scales. In particular, budworm population dynamics respond to forest quality on a fast time
scale, leading to changes in forest quality on a slower time scale. In turn, the slow dynamics
change the topological profile of the fast-time scale dynamics, introducing hysteretic oscilla-
tions reminiscent of relaxation oscillations. The simplest version of the budworm model in
(Ludwig et al. 1976, Equations 3, 10, 11) can be non-dimensionalized easily, making transpar-
ent the reduction in dimension on the fast-time scale. In place of those, however, we consider

24 sensobol: variance-based sensitivity indices

the more complicated version given by Equations 20-22 in that paper, yielding the explicit
form

dB

dt
= rBB

(
1− B

KS

T 2
E + E2

E2

)
− β B2

(αS)2 +B2

dS

dt
= rSS

(
1− SKE

EKS

)

dE

dt
= rEE

(
1− E

KE

)
− P B

S

E2

T 2
E + E2

, (12)

where B, S and E are the budworm density, the average size of the trees and the energy
reserve of the trees respectively (Figure 15). Equation 12 allows a full characterization of the
parameter space with empirical data (Table 6).

Table 6: Summary of the parameters and their distribution. DU stands for discrete uniform
(Ludwig et al. 1976, Table 1).

Parameter Description Distribution

rB Intrinsic budworm growth rate U(1.52, 1.6)
K Maximum budworm density U(100, 355)
β Maximum budworm predated U(20000, 43200)
α 1

2 maximum density for predation U(1, 2)
rS Intrinsic branch growth rate U(0.095, 0.15)
KS Maximum branch density U(24000, 25440)
KE Maximum E level U(1, 1.2)
rE Intrinsic E growth rate U(0.92, 1)
P Consumption rate of E U(0.0015, 0.00195)
TE E proportion U(0.7, 0.9)

Like in the previous examples, we first define the sample size of the base sample matrix N , a
vector with the name of the parameters, the order of the sensitivity indices investigated, the
number of bootstrap replicas R and the type of confidence intervals. Furthermore, we create
a time sequence timeOutput specifying the times at which we will extract the model output
to conduct the sensitivity analysis (25, 50, 75, 100, 125, 150). These time slices have been
selected to get an insight into all the stages of the model (i.e., growth, equilibirum) (Figure
15).

R> N <- 2 ^ 9

R> params <- c("r_b", "K", "beta", "alpha", "r_s", "K_s", "K_e", "r_e", "P",

+ "T_e")

R> order <- "first"

R> R <- 10 ^ 3

R> type <- "norm"

R> conf <- 0.95

R> timeOutput <- seq(25, 150, 25)

Arnald Puy, Samuele Lo Piano, Andrea Saltelli, Simon A. Levin 25

Since the model in Equation 12 is a system of differential equations, we can easily code it
following the guidelines set by the deSolve package (Soetaert et al. 2010):

R> budworm_fun <- function(t, state, parameters) {

+ with(as.list(c(state, parameters)), {

+ dB <- r_b * B * (1 - B / (K * S) * (T_e^2 + E^2) / E^2) - beta *

+ B^2/((alpha ^ S)^2 + B^2)

+ dS <- r_s * S * (1 - (S * K_e) / (E * K_s))

+ dE <- r_e * E * (1 - E / K_e) - P * (B / S) * E^2/(T_e^2 + E^2)

+ list(c(dB, dS, dE))

+ })

+ }

We can then create the sample matrix as in the previous examples:

R> mat <- sobol_matrices(N = N, params = params, order = order)

And transform each column to the probability distributions specified in Table 6:

R> mat[, "r_b"] <- qunif(mat[, "r_b"], 1.52, 1.6)

R> mat[, "K"] <- qunif(mat[, "K"], 100, 355)

R> mat[, "beta"] <- qunif(mat[, "beta"], 20000, 43200)

R> mat[, "alpha"] <- qunif(mat[, "alpha"], 1, 2)

R> mat[, "r_s"] <- qunif(mat[, "r_s"], 0.095, 0.15)

R> mat[, "K_s"] <- qunif(mat[, "K_s"], 24000, 25440)

R> mat[, "K_e"] <- qunif(mat[, "K_e"], 1, 1.2)

R> mat[, "r_e"] <- qunif(mat[, "r_e"], 0.92, 1)

R> mat[, "P"] <- qunif(mat[, "P"], 0.0015, 0.00195)

R> mat[, "T_e"] <- qunif(mat[, "T_e"], 0.7, 0.9)

Figure 15: Dynamics of the spruce budworm and forest model. The vertical, dashed lines
mark the times at which we will conduct the sensitivity analysis. Initial state values: B =
1, S = 0.07, E = 1. The parameter values are the mean values of the distributions shown in
Table 6.

26 sensobol: variance-based sensitivity indices

Since we wish to appraise how the uncertainties in the model inputs affect the three state
variables through time, we need to run budworm_fun() rowwise over mat up to each of the
times specified in timeOutput, and retrieve the correspondent model output. In order to
speed up the computation, it might be convenient to arrange a parallel setting. To that aim,
we load the packages foreach (Microsoft and Weston 2020b), parallel (R Core Team 2020),
and doParallel (Microsoft and Weston 2020a).

R> library("foreach")

R> library("parallel")

R> library("doParallel")

In the next code snippet we design a nested loop to conduct the computations. Note that
the function budworm_fun() is called through sensobol’s sobol_ode(), a wrapper around
deSolve’s ode function which allows to retrieve only the model output at time t. In the
nested loop, sobol_ode() runs budworm_fun() up to the j-th element of timeOutput with
the value of the parameters as defined in the i-th row of mat. Once it has ran over all the
rows of mat it starts over again, and computes the model output up to the j + 1 time with
the parameters as defined in the i-th row. Since j = 25, 50, 75, 100, 125, 150, the model will
run a total of six times over all the rows in mat.

Before executing the nested loop, we order the computer to use 75% of the cores available in
order to take advantage of parallel computing.

R> n.cores <- makeCluster(floor(detectCores() * 0.75))

R> registerDoParallel(n.cores)

R> y <- foreach(j = timeOutput, .combine = "rbind") %:%

+ foreach(i = 1:nrow(mat), .combine = "rbind",

+ .packages = "sensobol") %dopar%

+ {

+ sobol_ode(d = mat[i,], times = seq(0, j, 1),

+ state = c(B = 0.1, S = 007, E = 1), func = budworm_fun)

+ }

R> stopCluster(n.cores)

Now we can rearrange the data for the sensitivity analysis. We first create a column to link
the model output with each time in timeOutput:

R> full.dt <- data.table(cbind(y, times = rep(timeOutput, each = nrow(mat))))

R> print(full.dt)

B S E times

1: 16164.60 131.65941 0.9505648 25

2: 16502.68 182.76395 1.0475317 25

3: 14454.00 94.79514 0.8514826 25

4: 20518.10 215.36948 0.9395692 25

5: 19044.85 111.68735 0.8902224 25

Arnald Puy, Samuele Lo Piano, Andrea Saltelli, Simon A. Levin 27

36860: 2124030.97 21470.17732 0.8937556 150

36861: 3439376.26 21032.03802 0.9330312 150

36862: 1475659.57 22284.33814 1.0787991 150

36863: 2656465.49 21815.62825 0.9380807 150

36864: 2275279.86 21485.64371 0.9975085 150

And transform the resulting data.table from wide to long format:

R> indices.dt <- melt(full.dt, measure.vars = c("B", "S", "E"))

R> print(indices.dt)

times variable value

1: 25 B 1.616460e+04

2: 25 B 1.650268e+04

3: 25 B 1.445400e+04

4: 25 B 2.051810e+04

5: 25 B 1.904485e+04

110588: 150 E 8.937556e-01

110589: 150 E 9.330312e-01

110590: 150 E 1.078799e+00

110591: 150 E 9.380807e-01

110592: 150 E 9.975085e-01

With this transformation and the compatibility of sensobol with the data.table package (Dowle
and Srinivasan 2019), we can easily compute variance-based sensitivity indices at each selected
time step for each state variable. We first activate 75% of the CPUs to bootstrap the Sobol’
indices in parallel, and then compute the Sobol’ indices grouping by times and variable:

R> ncpus <- floor(detectCores() * 0.75)

R>

R> indices <- indices.dt[, sobol_indices(Y = value, N = N, params = params,

+ order = order, boot = TRUE,

+ first = "jansen", R = R,

+ parallel = "multicore",

+ ncpus = ncpus)$results,

+ .(variable, times)]

We can then compute the Sobol’ indices of the dummy parameter:

R> indices.dummy <- indices.dt[, sobol_dummy(Y = value, N = N, params = params),

+ .(variable, times)]

Finally, with some lines of code we can get to visualize the evolution of Si and Ti indices
through time for each state variable and uncertain model input:

28 sensobol: variance-based sensitivity indices

R> ggplot(indices, aes(times, original, fill = sensitivity,

+ color = sensitivity,

+ group = sensitivity)) +

+ geom_line() +

+ geom_ribbon(aes(ymin = indices[sensitivity %in% c("Si", "Ti")]$low.ci,

+ ymax = indices[sensitivity %in% c("Si", "Ti")]$high.ci,

+ color = sensitivity),

+ alpha = 0.1, linetype = 0) +

+ geom_hline(data = indices.dummy[, parameters:= NULL][sensitivity == "Ti"],

+ aes(yintercept = original, color = sensitivity, group = times),

+ lty = 2, size = 0.1) +

+ guides(linetype = FALSE, color = FALSE) +

+ facet_grid(parameters ~ variable) +

+ scale_y_continuous(breaks = scales::pretty_breaks(n = 3)) +

+ labs(x = expression(italic(t)),

+ y = "Sobol' indices") +

+ theme_AP() +

+ theme(legend.position = "top")

Arnald Puy, Samuele Lo Piano, Andrea Saltelli, Simon A. Levin 29

Figure 16: Evolution of Sobol’ indices through time in the spruce budworm and forest model.
The dashed, horizontal blue line shows the Ti of the dummy parameter.

The main results in Figure 16 can be summarized as follows:

1. The spruce budworm and forest model is largely additive up to t ≈ 80 as interactions
are very small and only affect the behavior of B (Sα < Tα, SK < TK , Srs < Trs). From
t > 80, the model seems to be fully additive on all three state variables (Si ≈ Ti).

30 sensobol: variance-based sensitivity indices

2. Given the uncertainty ranges defined in Table 6, only four parameters out of 10 are
influential in conveying uncertainty to B, S and E: α, K, KE and rS :

(a) The uncertainty in B is determined by α, K and rS at 0 < t < 100 and by K at
t > 100.

(b) The uncertainty in S is fully driven by rS up to t ≈ 80 and by K at t > 120.

(c) The uncertainty in E is influenced by α, KE and K at 0 < t < 40 and by KE and
K at t > 40.

The rest are non-influential and can be fixed at any value without modifying the model
output. We should stress here that what is considered “influential” in a variance decom-
position framework does not necesarily need to concur with the definition of “influential”
from a systems dynamics perspective. The influence of a parameter in a variance de-
composition framework is determined both by the functional form of the model and the
probability distribution selected to describe the uncertainty of the parameters in the
model input space.

4. Conclusions

Mathematical models are widely used to gain insights into complex processes, to predict the
outcome of a variable of interest or the explore “what if” scenarios. In order to increase their
transparency and ensure the quality of model-based inferences, it is paramount to scrutinize
these model with a global sensitivity analysis. sensobol aims at furthering the uptake of global
sensitivity analysis methods by the modeling community with a convenient, easy-to-use set
of functions to compute variance-based analysis, the yardstick of global sensitivity methods.
sensobol allows the user to combine several first and total-order estimators, to estimate up to
third-order effects and to visualize the results in publication-ready plots. Due to its integration
with data.table and deSolve, sensobol can easily compute variance-based indices for models
with a scalar or multivariate model output, as well as for systems of differential equations.

sensobol will keep on developing as the search for more efficient variance-based estimators
is an active field of research. We encourage the users to provide feedback and suggestions
on how can the package be improved. The most recent updates can be followed on https:

//github.com/arnaldpuy/sensobol.

5. Acknowledgements

This work has been funded by the European Commission (Marie Sk lodowska-Curie Global
Fellowship, grant number 792178 to AP).

6. Annex

6.1. Benchmark of sensobol and sensitivity functions

Arnald Puy, Samuele Lo Piano, Andrea Saltelli, Simon A. Levin 31

We compare the execution time of sensobol and sensitivity, from the design of the sample
matrix to the computation of the model output and the Sobol’ indices. To ensure that the
results are not critically conditioned by a particular benchmark design, we draw on Becker
(2020) and Puy et al. (2020a) and compare the efficiency of sensobol and sensitivity on
several randomly defined sensitivity settings. These settings are created by treating the base
sample size N , the model dimensionality k and the functional test of the model as random
parameters: N and k are described with the probability distributions shown in Table 7, and
the test function is Becker (2020)’s metafunction (Table 4, Nº 6), which randomly combines
p univariate functions in a multivariate function of dimension k. Becker’s metafunction can
be called in sensobol with metafunction(), and its current implementation includes cubic,
discontinuous, exponential, inverse, linear, no-effect, non-monotonic, periodic, quadratic and
trigonometric functions. We direct the reader to Becker (2020) and Puy et al. (2020a) for
further information.

Table 7: Summary of the benchmark parameters N and k. DU stands for discrete uniform

Parameter Description Distribution

N Base sample size of the sample matrix DU(10, 100)
k Model dimensionality DU(3, 100)

We benchmark sensobol and sensitivity as follows:

• We create a (211, 2) sample matrix using random numbers, where the first column is
labeled N and the second column k.

• We describe N and k with the probability distributions in Table 7.
• For v = 1, 2, . . . , 211 rows, we conducte two parallel sensitivity analysis using the func-

tions and guidelines of sensitivity and sensobol respectively, with the base sample matrix
as defined by Nv and kv. The metafunction runs separately in both sensitivity analyses,
and we bootstrap the sensitivity indices 100 times.

• We time the computation for both sensobol and sensitivity in each row.

The results suggest that sensobol may be a median of two times faster than sensitivity.
We provide the code below:

Load required packages:

R> library("microbenchmark")

Define the settings of the analysis:

R> N <- 2 ^ 11

R> parameters <- c("N", "k")

R> R <- 10 ^ 2

Create the sample matrix:

R> dt <- sensobol::sobol_matrices(matrices = "A", N = N, params = parameters)

R> dt[, 1] <- floor(qunif(dt[, 1], 10, 10 ^ 2 + 1))

R> dt[, 2] <- floor(qunif(dt[, 2], 3, 100))

32 sensobol: variance-based sensitivity indices

Run benchmark in parallel:

R> n.cores <- makeCluster(floor(detectCores() * 0.75))

R> registerDoParallel(n.cores)

R> ##

R> y <- foreach(i = 1:nrow(dt),

+ .packages = c("sensobol", "sensitivity")) %dopar%

+ {

+ params <- paste("x", 1:dt[i, "k"], sep = "")

+ N <- dt[i, "N"]

+ out <- microbenchmark::microbenchmark(

+ "sensobol" = {

+ params <- paste("X", 1:length(params), sep = "")

+ mat <- sensobol::sobol_matrices(N = N, params = params, type = "R")

+ y <- sensobol::metafunction(mat)

+ ind <- sensobol::sobol_indices(Y = y, N = N, params = params,

+ first = "jansen", total = "jansen",

+ boot = TRUE, R = R)$results},

+ "sensitivity" = {

+ X1 <- data.frame(matrix(runif(length(params) * N), nrow = N))

+ X2 <- data.frame(matrix(runif(length(params) * N), nrow = N))

+ x <- sensitivity::soboljansen(model = sensobol::metafunction,

+ X1, X2, nboot = R)

+ },

+ times = 1)

+ }

R> ##

R> stopCluster(n.cores)

Arrange the data and transform from nanoseconds to milliseconds:

R> out <- rbindlist(y)[, time := time / 1e+06]

Plot the results:

Figure 17: Benchmark of the sensitivity and sensobol packages. The comparison has been
done with the Jansen estimators.

Arnald Puy, Samuele Lo Piano, Andrea Saltelli, Simon A. Levin 33

And compute the median:

R> out[, median(time), expr]

expr V1

1: sensobol 119.9879

2: sensitivity 254.8925

6.2. Variogram Analysis of Response Surfaces (VARS-TO)

Given its reliance on variance and co-variance matrices, sensobol also offers support to com-
pute the Variogram Analysis of Response Surfaces Total-Order index (VARS-TO) (Razavi
and Gupta 2016b,a). VARS uses variograms and co-variograms to characterize the spatial
structure and variability of a given model output across the input space, and allows to dif-
ferentiate sensitivities as a function of scale h: if xA and xB are two points separated by a
distance h, and y(xA) and y(xB) is the corresponding model output y, the variogram γ(.) is
calculated as

γ(xA − xB) =
1

2
V [y(xA)− y(xB)] , (13)

and the covariogram C(.) as

C(xA − xB) = COV [y(xA), y(xB)] . (14)

Since

V [y(xA)− y(xB)] = V [y(xA)] + V [y(xB)]− 2COV [y(xA), y(xB)] , (15)

and V [y(xA)] = V [y(xB)], then

γ(xA − xB) = V [y(x)]− C(xA,xB) . (16)

If we want to compute the variogram for factor xi, then

γ(hi) =
1

2
E(y(x1, ..., xi+1 + hi, ..., xn)− y(x1, ..., xi, ..., xn))2 . (17)

Note that the difference in parentheses in Equation 17 involves taking a step along the xi
direction, and is analogous to computing the total-order index Ti (see Section 2.1). The
equivalent of Equation 16 for the model input xi would therefore be

γx∗
∼i

(hi) = V (y|x∗∼i)− Cx∗
∼i

(hi) , (18)

where x∗∼i is a fixed point in the space of non-xi. To compute Ti in the framework of VARS
(labelled as VARS-TO by Razavi and Gupta (2016b)), the mean value across the factors’
space should be taken on both sides of Equation 18, e.g.,

Ex∗
∼i

[
γ∗x∼i

(hi)
]

= Ex∗
∼i

[V (y|x∗∼i)]− Ex∗
∼i

[
C∗x∼i

(hi)
]
, (19)

34 sensobol: variance-based sensitivity indices

which can also be written as

Ex∗
∼i

[
γ∗x∼i

(hi)
]

= V (y)Ti − Ex∗
∼i

[
C∗x∼i

(hi)
]
, (20)

and therefore

Ti = VARS-TO =
E∗x∼i

[
γ∗x∼i

(hi)
]

+ E∗x∼i

[
C∗x∼i

(hi)
]

V (y)
. (21)

The computation of VARS does not require A,B, A
(i)
B . . . matrices, but a sampling design

based on stars. Such stars are created as follows: firstly, Nstar points across the factor space
need to be selected by the analyst using random or quasi-random numbers. These are the star
centres and their location can be denoted as sv = sv1 , ..., svi , ..., svk , where v = 1, 2, ..., Nstar.
Then, for each star centre, a cross section of equally spaced points ∆h apart needs to be
generated for each of the k factors, including and passing through the star centre. The cross
section is produced by fixing sv∼i and varying si. Finally, for each factor all pairs of points
with h values of ∆h, 2∆h, 3∆h and so on should be extracted. The total computational cost
of this design is Nt = Nstar

[
k(1

∆h − 1) + 1
]
.

In order to use VARS in sensobol, the analyst should follow the same steps as in the previous
examples. Firstly, she should define the setting of the analysis, i.e., the number of star centers
and distance h, and create a vector with the name of the parameters:

R> star.centers <- 100

R> h <- 0.1

R> params <- paste("X", 1:8, sep = "")

Then, the function vars_matrices() creates the sample matrix needed to compute VARS-
TO:

R> mat <- vars_matrices(star.centers = star.centers, h = h, params = params)

We can then run the model rowwise, in this case the Sobol’ (1998) G function (Table 4):

R> y <- sobol_Fun(mat)

And compute VARS-TO with the vars_to() function:

R> ind <- vars_to(Y = y, star.centers = star.centers, params = params, h = h)

R> ind

Number of star centers: 100 | h: 0.1

Total number of model runs: 7300

Ti parameters

1: 0.8213028904 X1

Arnald Puy, Samuele Lo Piano, Andrea Saltelli, Simon A. Levin 35

2: 0.2526291054 X2

3: 0.0346579957 X3

4: 0.0104013502 X4

5: 0.0001079858 X5

6: 0.0001034112 X6

7: 0.0001076416 X7

8: 0.0001055614 X8

The current implementation of vars_to() does not allow to bootstrap the indices. This is
planned for future sensobol releases.

References

Azzini I, Listorti G, Mara TA, Rosati R (2020a). Uncertainty and Sensitivity Analysis for
Policy Decision Making. An Introductory Guide. Joint Research Centre, European Com-
mission, Luxembourg. ISBN 9789276247524. doi:10.2760/922129.

Azzini I, Mara T, Rosati R (2020b). “Monte Carlo Estimators of First-and Total-Orders
Sobol’ Indices.” 2006.08232, URL http://arxiv.org/abs/2006.08232.

Becker W (2020). “Metafunctions for Benchmarking in Sensitivity Analysis.” Reliability
Engineering and System Safety, 204, 107189. ISSN 09518320. doi:10.1016/j.ress.

2020.107189.

Becker W, Saltelli A (2015). “Design for sensitivity analysis.” In A Dean, M Morris, J Stufken,
D Bingham (eds.), Handbook of Design and Analysis of Experiments, pp. 627–674. CRC
Press, Taylor & Francis, Boca Ratón. ISBN 9780429096341. doi:10.1201/b18619.

Bidot C, Lamboni M, Monod H (2018). multisensi: Multivariate Sensitivity Analysis. R
package version 2.1.1. URL https://CRAN.R-project.org/package=multisensi.

Borgonovo E (2007). “A New Uncertainty Importance Measure.” Reliability Engineering and
System Safety, 92(6), 771–784. ISSN 09518320. doi:10.1016/j.ress.2006.04.015.

Bratley P, Fox BL (1988). “ALGORITHM 659: Implementing Sobol’s Quasirandom Sequence
generator.” ACM Transactions on Mathematical Software (TOMS), 14(1), 88–100.

Bratley P, Fox BL, Niederreiter H (1992). “Implementation And Tests of Low-Discrepancy
Sequences.” ACM Transactions on Modeling and Computer Simulation (TOMACS), 2(3),
195–213.

Chalom A, Inacio Knegt Lopez P (2017). pse: Parameter Space Exploration with Latin
Hypercubes. R package version 0.4.7. URL https://CRAN.R-project.org/package=pse.

Dowle M, Srinivasan A (2019). data.table: Extension of ”data.frame”. R package version
1.13.2. URL https://cran.r-project.org/package=data.table.

Ferretti F, Saltelli A, Tarantola S (2016). “Trends in Sensitivity Analysis Practice in the
Last Decade.” Science of the Total Environment, 568, 666–670. ISSN 18791026. doi:

10.1016/j.scitotenv.2016.02.133.

36 sensobol: variance-based sensitivity indices

Gilbertson A (2018). “An Approach for Using Probabilistic Risk Assessment in Risk-Informed
Decisions on Plant-Specific Changes to the Licensing Basis. Regulatory Guide 1.174, revi-
sion 3.” Technical report, US Nuclear Regulatory Commission.

Glen G, Isaacs K (2012). “Estimating Sobol’ Sensitivity Indices Using Correlations.” Environ-
mental Modelling and Software, 37, 157–166. ISSN 13648152. doi:10.1016/j.envsoft.

2012.03.014.

Herman J, Usher W (2017). “SALib: An Open-Source Python Library for Sensitivity Analysis.”
The Journal of Open Source Software, 2(9), 97. ISSN 2475-9066. doi:10.21105/joss.

00097.

Homma T, Saltelli A (1996a). “Importance Measures in Global Sensitivity Analysis of Non-
linear Models.” Reliability Engineering & System Safety, 52(1), 1–17. ISSN 09518320.
doi:10.1016/0951-8320(96)00002-6.

Homma T, Saltelli A (1996b). “Importance Measures in Global Sensitivity Analysis of Non-
linear Models.” Reliability Engineering & System Safety, 52, 1–17. ISSN 09518320. doi:

10.1016/0951-8320(96)00002-6.

Iooss B, Janon A, Pujol G, with contributions from Baptiste Broto, Boumhaout K, Veiga SD,
Delage T, Amri RE, Fruth J, Gilquin L, Guillaume J, Le Gratiet L, Lemaitre P, Marrel A,
Meynaoui A, Nelson BL, Monari F, Oomen R, Rakovec O, Ramos B, Roustant O, Song E,
Staum J, Sueur R, Touati T, Weber F (2020). sensitivity: Global Sensitivity Analysis of
Model Outputs. R package version 1.22.1. URL https://cran.r-project.org/package=

sensitivity.

Ishigami T, Homma T (1990). “An Importance Quantification Technique in Uncertainty
Analysis for Computer Models.” Proceedings. First International Symposium on Uncer-
tainty Modeling and Analysis, 12, 398–403.

Jakeman A, Letcher R, Norton J (2006). “Ten Iterative Steps in Development and Evaluation
of Environmental Models.” Environmental Modelling & Software, 21(5), 602–614. ISSN
13648152. doi:10.1016/j.envsoft.2006.01.004.

Janon A, Klein T, Lagnoux A, Nodet M, Prieur C (2014). “Asymptotic Normality and
Efficiency of Two Sobol Index Estimators.” ESAIM: Probability and Statistics, 18(3), 342–
364. ISSN 1292-8100. doi:10.1051/ps/2013040.

Jansen M (1999). “Analysis of Variance Designs for Model Output.” Computer Physics Com-
munications, 117(1-2), 35–43. ISSN 00104655. doi:10.1016/S0010-4655(98)00154-4.

Kay JA (2012). “Knowing When We Don’t Know.” Technical report, Institute for Fiscal
Studies. URL https://www.ifs.org.uk/publications/6016.

Kucherenko S, Delpuech B, Iooss B, Tarantola S (2015). “Application of the Control Variate
Technique to Estimation of Total Sensitivity Indices.” Reliability Engineering and System
Safety, 134(July), 251–259. ISSN 09518320. doi:10.1016/j.ress.2014.07.008.

Kucherenko S, Feil B, Shah N, Mauntz W (2011). “The Identification of Model Effective
Dimensions Using Global Sensitivity Analysis.” Reliability Engineering & System Safety,
96(4), 440–449. ISSN 09518320. doi:10.1016/j.ress.2010.11.003.

Arnald Puy, Samuele Lo Piano, Andrea Saltelli, Simon A. Levin 37

Leamer EE (2010). “Tantalus on the Road to Asymptopia.” Journal of Economic Perspectives,
24(2), 31–46. ISSN 08953309. doi:10.1257/jep.24.2.31.

Lo Piano S, Ferretti F, Puy A, Albrecht D, Saltelli A (2021). “Variance-Based Sensitiv-
ity Analysis: The Quest for Better Estimators and Designs Between Explorativity and
Economy.” Reliability Engineering & System Safety, 206(October 2020), 107300. doi:

10.1016/j.ress.2020.107300.

Ludwig D, Jones DD, Holling CS (1976). “Qualitative Analysis of Insect Outbreak Systems:
the Spruce Budworm and Forest.” The Journal of Animal Ecology, 47(1), 315. ISSN
00218790. doi:10.2307/3939.

Marelli S, Sudret B (2014). “UQLab: A Framework for Uncertainty Quantification in MAT-
LAB.” In The 2nd International Conference on Vulnerability and Risk Analysis and Man-
agement (ICVRAM 2014), Bourinet 2009, pp. 2554–2563. University of Liverpool, United
Kingdomm July 13-16, Liverpool.

May RM, Oster GF (1976). “Bifurcations and Dynamic Complexity in Simple Ecological
Models.” The American Naturalist, 110(974), 573–599.

McKay MD, Beckman RJ, Conover WJ (1979). “Comparison of Three Methods For Selecting
Values of Input Variables in The Analysis of Output From a Computer Code.” Technomet-
rics, 21(2), 239–245. ISSN 15372723. doi:10.1080/00401706.1979.10489755.

Microsoft, Weston S (2020a). doParallel: Foreach Parallel Adaptor for the parallel Package.
R package version 1.0.16. URL https://CRAN.R-project.org/package=doParallel.

Microsoft, Weston S (2020b). foreach: Provides Foreach Looping Construct. R package
version 1.5.1. URL https://CRAN.R-project.org/package=foreach.

Monod H, Naud C, Makowski D (2006). Uncertainty and Sensitivity Analysis for Crop Models.
Elsevier. ISBN 0-444-52135-6. URL http://reseau-mexico.fr/sites/reseau-mexico.

fr/files/06{_}zebook{_}CH-03.pdf.

Oakley J, O’Hagan A (2004). “Probabilistic Sensitivity Analysis of Complex Models: a
Bayesian Approach.” Journal of the Royal Statistical Society B, 66(3), 751–769. ISSN
13697412. doi:10.1111/j.1467-9868.2004.05304.x.

Pearl R, Reed LJ (1920). “On the Rate of Growth of the Population of the United States
Since 1790 and Its Mathematical Representation.” Proceedings of the National Academy of
Sciences, 6(6), 275–288. ISSN 0027-8424. doi:10.1073/pnas.6.6.275.

Pianosi F, Beven K, Freer J, Hall JW, Rougier J, Stephenson DB, Wagener T (2016). “Sen-
sitivity Analysis of Environmental Models: A Systematic Review with Practical Work-
flow.” Environmental Modelling and Software, 79, 214–232. ISSN 13648152. doi:

10.1016/j.envsoft.2016.02.008. j.envsoft.2016.02.008.

Pianosi F, Sarrazin F, Wagener T (2015). “A MATLAB Toolbox for Global Sensitivity
Analysis.” Environmental Modelling and Software, 70, 80–85. ISSN 13648152. doi:

10.1016/j.envsoft.2015.04.009.

38 sensobol: variance-based sensitivity indices

Pianosi F, Wagener T (2015). “A Simple and Efficient Method for Global Sensitivity Analysis
Based on Cumulative Distribution Functions.” Environmental Modelling and Software, 67,
1–11. ISSN 13648152. doi:10.1016/j.envsoft.2015.01.004.

Puy A, Becker W, Piano SL, Saltelli A (2020a). “The Battle of Total-Order Sensitivity
Estimators.” International Journal for Uncertainty Quantification. 2009.01147, URL
http://arxiv.org/abs/2009.01147.

Puy A, Lo Piano S, Saltelli A (2020b). “A Sensitivity Analysis of the PAWN Sensitivity
Index.” Environmental Modelling and Software, 127, 104679. ISSN 13648152. doi:10.

1016/j.envsoft.2020.104679. 1904.04488.

Puy A, Lo Piano S, Saltelli A (2020c). “Current Models Underestimate Future Irrigated Ar-
eas.” Geophysical Research Letters, 47(8). ISSN 0094-8276. doi:10.1029/2020GL087360.

R Core Team (2020). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing. URL https://www.R-project.org/.

Razavi S, Gupta HV (2016a). “A New Framework for Comprehensive, Robust, and Efficient
Global Sensitivity Analysis: 1. Theory.” Water Resources Research, 52(1), 423–439. ISSN
0043-1397. doi:10.1002/2015WR017559.

Razavi S, Gupta HV (2016b). “A New Framework for Comprehensive, Robust, and Efficient
Global Sensitivity Analysis: 2. Application.” Water Resources Research, 52(1), 440–455.
ISSN 0043-1397. doi:10.1002/2015WR017558. 2014WR016527.

Reusser D (2015). “Fast: Implementation of the Fourier Amplitude Sensitivity Test (fast).”
URL https://github.com/cran/fast.

Saltelli A, Aleksankina K, Becker W, Fennell P, Ferretti F, Holst N, Li S, Wu Q (2019). “Why
So Many Published Sensitivity Analyses Are False: A Systematic Review of Sensitivity
Analysis Practices.” Environmental Modelling and Software, 114(January), 29–39. ISSN
13648152. doi:10.1016/j.envsoft.2019.01.012. 1711.11359.

Saltelli A, Andres TH, Homma T (1993). “Sensitivity Analysis of Model Output. An Inves-
tigation of New Techniques.” Computational Statistics and Data Analysis, 15(2), 211–238.
ISSN 01679473. doi:10.1016/0167-9473(93)90193-W.

Saltelli A, Annoni P, Azzini I, Campolongo F, Ratto M, Tarantola S (2010). “Variance-Based
Sensitivity Analysis of Model Output. Design and Estimator for the Total Sensitivity Index.”
Computer Physics Communications, 181(2), 259–270. ISSN 00104655. doi:10.1016/j.

cpc.2009.09.018.

Saltelli A, Bammer G, Bruno I, Charters E, Di Fiore M, Didier E, Nelson Espeland W, Kay
J, Lo Piano S, Mayo D, Pielke Jr R, Portaluri T, Porter TM, Puy A, Rafols I, Ravetz JR,
Reinert E, Sarewitz D, Stark PB, Stirling A, van der Sluijs J, Vineis P (2020). “Five Ways
to Ensure that Models Serve Society: A Manifesto.” Nature, 582(7813), 482–484. ISSN
0028-0836. doi:10.1038/d41586-020-01812-9.

Saltelli A, Ratto M, Andres T, Campolongo F, Cariboni J, Gatelli D, Saisana M, Tarantola
S (2008). Global Sensitivity Analysis. The Primer. John Wiley & Sons, Ltd, Chichester,
UK. ISBN 9780470725184. doi:10.1002/9780470725184.

Arnald Puy, Samuele Lo Piano, Andrea Saltelli, Simon A. Levin 39

Sobol’ IM (1967). “On the Distribution of Points in a Cube and the Approximate Evaluation
of Integrals.” USSR Computational Mathematics and Mathematical Physics, 7(4), 86–112.
ISSN 00415553. doi:10.1016/0041-5553(67)90144-9.

Sobol’ IM (1976). “Uniformly Distributed Sequences With an Additional Uniform Prop-
erty.” USSR Computational Mathematics and Mathematical Physics, 16(5), 236–242. ISSN
00415553. doi:10.1016/0041-5553(76)90154-3.

Sobol’ IM (1993). “Sensitivity Analysis For Nonlinear Mathematical Models.” Mathematical
Modeling and Computational Experiment, 1(3), 407–414. ISSN 0234-0879.

Sobol’ IM (1998). “On Quasi-Monte Carlo Integrations.” Mathematics and Computers in
Simulation, 47(2-5), 103–112. ISSN 03784754. doi:10.1016/S0378-4754(98)00096-2.

Sobol’ IM (2001). “Global Sensitivity Indices for Nonlinear Mathematical Models and Their
Monte Carlo Estimates.” Mathematics and Computers in Simulation, 55(1-3), 271–280.
ISSN 03784754. doi:10.1016/S0378-4754(00)00270-6.

Soetaert K, Petzoldt T, Setzer RW (2010). “Solving Differential Equations in R: Package
deSolve.” Journal of Statistical Software, 33(9), 1–25. ISSN 15487660. doi:10.18637/

jss.v033.i09.

Steinmann P, Wang JR, van Voorn GAK, Kwakkel JH (2020). “Don’t Try to Predict COVID-
19. If You Must, Use Deep Uncertainty Methods.” Review of Artificial Societies and Social
Simulation, (April 17). URL https://rofasss.org/2020/04/17/deep-uncertainty/.

Verhulst PF (1845). “Recherches Mathématiques Sur la Loi d’Accroissement de la Population.”
Nouveaux Mémoires de l’Académie Royale des Sciences et Belles-Lettres de Bruxelles, 18(8).

Wickham H (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag, New
York. URL https://ggplot2.tidyverse.org.

Affiliation:

Arnald Puy
Ecology and Evolutionary Biology,
Princeton University
M31 Guyot Hall
New Jersey 08544, USA
E-mail: apuy@princeton.edu
URL: http://www.arnaldpuy.com

Samuele Lo Piano
School of the Built Environment
University of Reading
JJ Thompson Building, Whiteknights Campus
Reading RG6 6AF, United Kingdom

40 sensobol: variance-based sensitivity indices

Andrea Saltelli
Open Evidence Research
Universitat Oberta de Catalunya
Carrer Almogàvers 165
Barcelona 08018, Spain

Simon A. Levin
Ecology and Evolutionary Biology,
Princeton University
203 Eno Hall
New Jersey 08544, USA

