Package 'spmoran'

October 13, 2024

Type Package

Title Fast Spatial and Spatio-Temporal Regression using Moran Eigenvectors

Version 0.3.1

Date 2024-10-12

Maintainer Daisuke Murakami <dmuraka@ism.ac.jp>

Description A collection of functions for estimating spatial and spatio-temporal regression models. Moran eigenvectors are used as spatial basis functions to efficiently approximate spatially dependent Gaussian processes (i.e., random effects eigenvector spatial filtering; see Murakami and Griffith 2015 <doi:10.1007/s10109-015-0213-7>). The implemented models include linear regression with residual spatial dependence, spatially/spatio-temporally varying coefficient models (Murakami et al., 2017, 2024; <doi:10.1016/j.spasta.2016.12.001>,<doi:10.48550/arXiv.2410.07229>), spatially filtered unconditional quantile regression (Murakami and Seya, 2019 <doi:10.1002/env.2556>), Gaussian and non-Gaussian spatial mixed models through compositionally-warping (Murakami et al. 2021, <doi:10.1016/j.spasta.2021.100520>).

License GPL (>= 2)

Encoding UTF-8

Imports sf, fields, vegan, Matrix, doParallel, foreach, ggplot2, spdep, rARPACK, RColorBrewer, splines, FNN, methods

Suggests R.rsp,

VignetteBuilder R.rsp

URL https://github.com/dmuraka/spmoran

NeedsCompilation no

Author Daisuke Murakami [aut, cre]

Repository CRAN

Date/Publication 2024-10-12 23:40:02 UTC

2 addlearn_local

Contents

addle	earn_local	Additional ples	learning o	of local process	es and prediction	n for large sam	-
Index							45
	weigen						42
	resf_vc						
	resf_qr						34
	resf						30
	predict0						28
	plot_s						
	plot_qr						
	plot_n						
	nongauss_y						
	meigen_f						
	meigen0						
	lslm meigen						
	lsem						
	esf						
	coef_marginal_vc .						
	coef_marginal						
	besf_vc						
	besf						
	addlearn_local						2

Description

This function performs an additional learning of local variations in spatially varying coefficients (SVC). While the SVC model implemented in $resf_vc$ or $besf_vc$ can be less accurate for large samples (e.g., n > 5,000) due to a degeneracy/over-smoothing problem, this additional learning mitigates this problem by synthesizing/averaging the model with local SVC models. The resulting spatial prediction implemented in this function is expected to be more accurate than the resf_vc function.

Note that this function is not yet supported for spatio-temporal models with !is.null(meig\$coords_z).

Usage

addlearn_local 3

Arguments

mod	Outpot from resf_vc or besf_vc function
meig0	Moran eigenvectors at prediction sites. Output from meigen0
x0	Matrix of explanatory variables at prediction sites whose coefficients are allowed to vary across geographical space ($N_0 \times K$). Default is NULL
xconst0	Matrix of explanatory variables at prediction sites whose coefficients are assumed constant (or NVC) across space (N_0 x K_const). Default is NULL
xgroup0	Matrix of group indeces at prediction sites that may be group IDs (integers) or group names ($N_0 \times K_g$). Default is NULL
cl_num	Number of local sub-models being aggregated/averaged. If NULL, the number is determined so that the number of samples per sub-model equals approximately 600. Default is NULL
cl	Vector of cluster ID for each sample (N x 1). If specified, the local sub-models are given by this ID. If NULL, k-means clustering based on spatial coordinates is performed to obtain spatial clusters each of which contain approximately 600 samples. Default is NULL
parallel	If TRUE, the model is estimated through parallel computation. The default is FALSE if mod is an resf_vc object while TRUE if mod is an besf_vc object
ncores	Number of cores used for the parallel computation. If ncores = NULL and parallel = TRUE, the number of available cores - 2 is used. Default is NULL

Value

b_vc	Matrix of estimated spatially varying coefficients (SVCs) on x (N x K)
bse_vc	Matrix of standard errors for the SVCs on x (N x k)
z_vc	Matrix of z-values for the SVCs on x (N x K)
p_vc	Matrix of p-values for the SVCs on x (N x K)
С	Matrix with columns for the estimated coefficients on xconst, their standard errors, z-values, and p-values ($K_c \times 4$)
b_g	List of K_g matrices with columns for the estimated group effects, their standard deviations, and t-values
S	List of 2 elements summarizing variance parameters characterizing SVCs of each local sub-model. The first element contains standard deviations of each SVCs while the second elementcontains their Moran's I values that are scaled to take a value between 0 (no spatial dependence) and 1 (strongest positive spatial dependence). Based on Griffith (2003), the scaled Moran'I value is interpretable as follows: 0.25-0.50:weak; 0.50-0.70:moderate; 0.70-0.90:strong; 0.90-1.00:marked
s_global	The same variance parameters for the globa sub-model
s_g	Vector of standard deviations of the group effects
е	Error statistics. It includes residual standard error (resid_SE), adjusted conditional R2 (adjR2(cond)), restricted log-likelihood (rlogLik), Akaike information criterion (AIC), and Bayesian information criterion (BIC)

4 addlearn_local

pred	Matrix of predicted values for y (pred) and their standard errors (pred_se) (N x 2)
resid	Vector of residuals (N x 1)
cl	Vector of cluster ID being used (N x 1)
pred0	Matrix of predicted values for y (pred) and their standard errors (pred_se) at prediction sites $(N_0 \ x \ 2)$
b_vc0	Matrix of estimated spatially varying coefficients (SVCs) at prediction sites $(N_0 x K)$
bse_vc0	Matrix of standard errors for the SVCs at prediction sites (N_0 x k)
z_vc0	Matrix of z-values for the SVCs at prediction sites (N x K)
p_vc0	Matrix of p-values for the SVCs at prediction sites (N x K)
other	List of other outputs, which are internally used

Author(s)

Daisuke Murakami

References

Murakami, D., Sugasawa, S., T., Seya, H., and Griffith, D.A. (2024) Sub-model aggregation-based scalable eigenvector spatial filtering: application to spatially varying coefficient modeling. Geographical Analysis, DOI: 10.1111/gean.12393.

See Also

```
resf_vc, besf_vc
```

```
require(spdep)
data(house)
        <- data.frame(house@coords,house@data)</pre>
dat
        <- dat0[dat0$yrbuilt>=1980,]
###### purpose 1: improve SVC modeling accuracy ######
###### (i.e., addressing the over-smoothing problem) #
У
        <- log(dat[,"price"])
        <- dat[,c("age","rooms")]
xconst <- dat[,c("lotsize","s1994","s1995","s1996","s1997","s1998")]</pre>
coords <- dat[ ,c("long","lat")]</pre>
        <- meigen_f( coords )
meig
## Not run
# res0 <- resf_vc(y = y,x = x, xconst = xconst, meig = meig)</pre>
       <- addlearn_local(res0) # It adjusts SVCs to model local patterns
# res
###### parallel version for very large samples (e.g., n >100,000)
# bes0 <- besf_vc(y = y,x = x, xconst = xconst, coords=coords)</pre>
```

besf 5

```
<- addlearn_local( bes0 )
# bes
###### purpose 2: improve predictive accuracy #######
#samp
         <- sample( dim( dat )[ 1 ], 2500)
#d
         <- dat[ samp, ]
                             ## Data at observed sites
        <- log(d[,"price"])
#y
         <- d[,c("age","rooms")]
#x
#xconst <- d[,c("lotsize","s1994","s1995","s1996","s1997","s1998")]</pre>
#coords <- d[ ,c("long","lat")]</pre>
#d0
         <- dat[-samp, ]
                             ## Data at observed sites
#y0
         <- log(d0[,"price"])
         <- d0[,c("age","rooms")]
#x0
#xconst0 <- d0[,c("lotsize","s1994","s1995","s1996","s1997","s1998")]</pre>
#coords0 <- d0[ ,c("long","lat")]</pre>
#meig
         <- meigen_f( coords )
         <- resf_vc(y = y,x = x, xconst = xconst, meig = meig)</pre>
         <- meigen0( meig=meig, coords0=coords0 )</pre>
#meig0
         <- addlearn_local(res0, meig0=meig0, x0=x0, xconst0=xconst0) #
#res
         <- res$pred0
                             ## Predictive values
#pred
```

besf

Spatial regression with RE-ESF for very large samples

Description

Parallel and memory-free implementation of RE-ESF-based spatial regression for very large samples. This model estimates residual spatial dependence, constant coefficients, and non-spatially varying coefficients (NVC; coefficients varying with respect to explanatory variable value).

Usage

Arguments

```
y Vector of explained variables (N x 1)

x Matrix of explanatory variables (N x K)

nvc If TRUE, NVCs are assumed on x. Otherwise, constant coefficients are assumed. Default is FALSE
```

6 besf

nvc_sel If TRUE, type of coefficients (NVC or constant) is selected through a BIC (default) or AIC minimization. If FALSE, NVCs are assumed across x. Alternatively, nvc sel can be given by column number(s) of x. For example, if nvc sel = 2, the coefficient on the second explanatory variable in x is NVC and the other coefficients are constants. The Default is TRUE coords Matrix of spatial point coordinates (N x 2) Optional. ID specifying groups modeling spatially dependent process (N x 1). s_id If it is specified, group-level spatial process is estimated. It is useful. e.g., for multilevel modeling (s_id is given by the group ID) and panel data modeling (s_id is given by individual location id). Default is NULL Type of kernel to model spatial dependence. The currently available options are covmode1 "exp" for the exponential kernel, "gau" for the Gaussian kernel, and "sph" for the spherical kernel enum Number of Moran eigenvectors to be used for spatial process modeling (scalar). Default is 200 method Estimation method. Restricted maximum likelihood method ("reml") and maximum likelihood method ("ml") are available. Default is "reml" penalty Penalty to select type of coefficients (NVC or constant) to stablize the estimates. The current options are "bic" for the Baysian information criterion-type penalty (N x log(K)) and "aic" for the Akaike information criterion (2K) (see Muller et al., 2013). Default is "bic" Number of basis functions used to model NVC. An intercept and nvc_num natnvc_num ural spline basis functions are used to model each NVC. Default is 5 maxiter Maximum number of iterations. Default is 30 Block/badge size. bsize x bsize elements are iteratively processed during the bsize parallelized computation. Default is 4000 ncores Number of cores used for the parallel computation. If ncores = NULL, the number of available cores - 2 is detected and used. Default is NULL

Value

b	Matrix with columns for the estimated coefficients on x, their standard errors,
	z-values, and p-values (K x 4). Effective if nvc =FALSE

c_vc Matrix of estimated NVCs on x (N x K). Effective if nvc =TRUE

cse_vc Matrix of standard errors for the NVCs on x (N x K). Effective if nvc =TRUE

ct_vc Matrix of t-values for the NVCs on x (N x K). Effective if nvc =TRUE

cp_vc Matrix of p-values for the NVCs on x (N x K). Effective if nvc =TRUE

Vector of estimated variance parameters (2 x 1). The first and the second elements denote the standard deviation and the Moran's I value of the estimated spatially dependent component, respectively. The Moran's I value is scaled to take a value between 0 (no spatial dependence) and 1 (the maximum possible spatial dependence). Based on Griffith (2003), the scaled Moran'I value is interpretable as follows: 0.25-0.50:weak; 0.50-0.70:moderate; 0.70-0.90:strong; 0.90-1.00:marked

besf 7

е	Vector whose elements are residual standard error (resid_SE), adjusted conditional R2 (adjR2(cond)), restricted log-likelihood (rlogLik), Akaike information criterion (AIC), and Bayesian information criterion (BIC). When method = "ml", restricted log-likelihood (rlogLik) is replaced with log-likelihood (logLik)
VC	List indicating whether NVC are removed or not during the BIC/AIC minimization. 1 indicates not removed whreas 0 indicates removed
r	Vector of estimated random coefficients on Moran's eigenvectors (L x 1)
sf	Vector of estimated spatial dependent component (N x 1)
pred	Vector of predicted values (N x 1)
resid	Vector of residuals (N x 1)
other	List of other outputs, which are internally used

Author(s)

Daisuke Murakami

References

Griffith, D. A. (2003). Spatial autocorrelation and spatial filtering: gaining understanding through theory and scientific visualization. Springer Science & Business Media.

Murakami, D. and Griffith, D.A. (2015) Random effects specifications in eigenvector spatial filtering: a simulation study. Journal of Geographical Systems, 17 (4), 311-331.

Murakami, D. and Griffith, D.A. (2019) A memory-free spatial additive mixed modeling for big spatial data. Japan Journal of Statistics and Data Science. DOI:10.1007/s42081-019-00063-x.

See Also

resf

```
######## (all the coefficients are NVCs)
#res3 <- besf(y = y, x = x, coords=coords, nvc = TRUE, nvc_sel=FALSE)
```

besf_vc	Spatially and non-spatially varying coefficient (SNVC) modeling for very large samples

Description

Parallel and memory-free implementation of SNVC modeling for very large samples. The model estimates residual spatial dependence, constant coefficients, spatially varying coefficients (SVCs), non-spatially varying coefficients (NVC; coefficients varying with respect to explanatory variable value), and SNVC (= SVC + NVC). Type of coefficients can be selected through BIC/AIC minimization. By default, it estimates a SVC model. SNVCs can be mapped just like SVCs. Unlike SVC models, SNVC model is robust against spurious correlation (multicollinearity), so, stable (see Murakami and Griffith, 2020). This function is not yet supported for spatio-temporal modeling.

Note: The SVC model can be less accurate for large samples due to a degeneracy/over-smoothing problem (see Murakami et al., 2023). The addlearn_local is useful to mitigate this problem (See the coding example below).

Usage

Arguments

у	Vector of explained variables (N x 1)
X	Matrix of explanatory variables with spatially varying coefficients (SVC) (N x $$ K)
xconst	Matrix of explanatory variables with constant coefficients (N x K_c). Default is NULL
coords	Matrix of spatial point coordinates (N x 2)
s_id	Optional. ID specifying groups modeling spatially dependent process (N x 1). If it is specified, group-level spatial process is estimated. It is useful for multilevel modeling (s_id is given by the group ID) and panel data modeling (s_id is given by individual location id). Default is NULL
x_nvc	If TRUE, SNVCs are assumed on x. Otherwise, SVCs are assumed. Default is FALSE
xconst_nvc	If TRUE, NVCs are assumed on xconst. Otherwise, constant coefficients are assumed. Default is FALSE

x_sel If TRUE, type of coefficient (SVC or constant) on x is selected through a BIC (default) or AIC minimization. If FALSE, SVCs are assumed across x. Alternatively, x sel can be given by column number(s) of x. For example, if x sel = 2, the coefficient on the second explanatory variable in x is SVC and the other coefficients are constants. The Default is TRUE If TRUE, type of coefficient (NVC or constant) on x is selected through the x_nvc_sel BIC (default) or AIC minimization. If FALSE, NVCs are assumed across x. Alternatively, x_nvc_sel can be given by column number(s) of x. For example, if x nvc sel = 2, the coefficient on the second explanatory variable in x is NVC and the other coefficients are constants. The Default is TRUE xconst_nvc_sel If TRUE, type of coefficient (NVC or constant) on xconst is selected through the BIC (default) or AIC minimization. If FALSE, NVCs are assumed across xconst. Alternatively, xconst_nvc_sel can be given by column number(s) of xconst. For example, if xconst nvc sel = 2, the coefficient on the second explanatory variable in xconst is NVC and the other coefficients are constants. The Default is TRUE nvc_num Number of basis functions used to model NVC. An intercept and nvc num natural spline basis functions are used to model each NVC. Default is 5 method Estimation method. Restricted maximum likelihood method ("reml") and maximum likelihood method ("ml") are available. Default is "reml" Penalty to select type of coefficients (SNVC, SVC, NVC, or constant) to stapenalty blize the estimates. The current options are "bic" for the Baysian information criterion-type penalty (N x log(K)) and "aic" for the Akaike information criterion (2K) (see Muller et al., 2013). Default is "bic" maxiter Maximum number of iterations. Default is 30 tol The tolerance for matrix inversion. Some errors regarding singular fit can be

avoided by reducing the value, but the output can be unstable. Default is 1e-30

covmode1 Type of kernel to model spatial dependence. The currently available options are

"exp" for the exponential kernel, "gau" for the Gaussian kernel, and "sph" for the spherical kernel

enum Number of Moran eigenvectors to be used for spatial process modeling (scalar).

Default is 200

Block/badge size. bsize x bsize elements are iteratively processed during the bsize

parallelized computation. Default is 4000

Number of cores used for the parallel computation. If ncores = NULL, the ncores

number of available cores - 2 is detected and used. Default is NULL

Value

b_vc	Matrix of estimated SNVC (= SVC + NVC) on x (N x K)
bse_vc	Matrix of standard errors for the SNVCs on x (N x k)
z_vc	Matrix of z-values for the SNVCs on x (N x K)
p_vc	Matrix of p-values for the SNVCs on x (N x K)

B_vc_s	List summarizing estimated SVCs (in SNVC) on x . The four elements are the SVCs (N x K), the standard errors (N x K), z-values (N x K), and p-values (N x K), respectively
B_vc_n	List summarizing estimated NVCs (in SNVC) on x . The four elements are the NVCs (N x K), the standard errors (N x K), z-values (N x K), and p-values (N x K), respectively
С	Matrix with columns for the estimated coefficients on xconst, their standard errors, z-values, and p-values (K_c x 4). Effective if xconst_nvc = FALSE
C_VC	Matrix of estimated NVCs on xconst (N x K_c). Effective if xconst_nvc = TRUE
cse_vc	Matrix of standard errors for the NVCs on xconst (N x K_c). Effective if xconst_nvc = TRUE
cz_vc	Matrix of z-values for the NVCs on xconst (N x K_c). Effective if xconst_nvc = TRUE
cp_vc	Matrix of p-values for the NVCs on xconst (N x K_c). Effective if xconst_nvc = TRUE
S	List of variance parameters in the SNVC (SVC + NVC) on x. The first element is a 2 x K matrix summarizing variance parameters for SVC. The (1, k)-th element is the standard deviation of the k-th SVC, while the (2, k)-th element is the Moran's I value that is scaled to take a value between 0 (no spatial dependence) and 1 (strongest spatial dependence). Based on Griffith (2003), the scaled Moran'I value is interpretable as follows: 0.25-0.50:weak; 0.50-0.70:moderate; 0.70-0.90:strong; 0.90-1.00:marked. The second element of s is the vector of standard deviations of the NVCs
s_c	Vector of standard deviations of the NVCs on xconst
vc	List indicating whether SVC/NVC are removed or not during the BIC/AIC minimization. 1 indicates not removed (replaced with constant) whreas 0 indicates removed
е	Vector whose elements are residual standard error (resid_SE), adjusted conditional R2 (adjR2(cond)), restricted log-likelihood (rlogLik), Akaike information criterion (AIC), and Bayesian information criterion (BIC). When method = "ml", restricted log-likelihood (rlogLik) is replaced with log-likelihood (logLik)
pred	Vector of predicted values (N x 1)
resid	Vector of residuals (N x 1)
other	List of other outputs, which are internally used

Author(s)

Daisuke Murakami

References

Muller, S., Scealy, J.L., and Welsh, A.H. (2013) Model selection in linear mixed models. Statistical Science, 28 (2), 136-167.

Murakami, D., Yoshida, T., Seya, H., Griffith, D.A., and Yamagata, Y. (2017) A Moran coefficient-based mixed effects approach to investigate spatially varying relationships. Spatial Statistics, 19, 68-89.

Murakami, D., and Griffith, D.A. (2019). Spatially varying coefficient modeling for large datasets: Eliminating N from spatial regressions. Spatial Statistics, 30, 39-64.

Murakami, D. and Griffith, D.A. (2019) A memory-free spatial additive mixed modeling for big spatial data. Japan Journal of Statistics and Data Science. DOI:10.1007/s42081-019-00063-x.

Murakami, D., and Griffith, D.A. (2020) Balancing spatial and non-spatial variations in varying coefficient modeling: a remedy for spurious correlation. ArXiv.

See Also

```
resf_vc, addlearn_local
```

```
require(spdep)
data(boston)
       <- boston.c[, "CMEDV"]</pre>
       <- boston.c[,c("CRIM", "AGE")]</pre>
xconst <- boston.c[,c("ZN","DIS","RAD","NOX", "TAX","RM", "PTRATIO", "B")]</pre>
xgroup <- boston.c[,"TOWN"]</pre>
coords <- boston.c[,c("LON", "LAT")]</pre>
####### (SVC on x; Constant coefficients on xconst)
        <- besf_vc(y=y,x=x,xconst=xconst,coords=coords, x_sel = FALSE )</pre>
#res
#res
#plot_s(res,0) # Spatially varying intercept
#plot_s(res,1) # 1st SVC
#plot_s(res,2) # 2nd SVC
####### For large samples (n > 5,000), the following additional learning
####### mitigates an degeneracy/over-smoothing problem in SVCs
        <- addlearn_local(res)
#res1
#res1
#plot_s(res1,0) # Spatially varying intercept
#plot_s(res1,1) # 1st SVC
#plot_s(res1,2) # 2nd SVC
######## (SVC or constant coefficients on x; Constant coefficients on xconst)
      <- besf_vc(y=y,x=x,xconst=xconst,coords=coords )</pre>
####### - Group-level SVC or constant coefficients on x
####### - Constant coefficients on xconst
      <- besf_vc(y=y,x=x,xconst=xconst,coords=coords, s_id=xgroup)</pre>
####### - SNVC, SVC, NVC, or constant coefficients on x
####### - Constant coefficients on xconst
#res4 <- besf_vc(y=y,x=x,xconst=xconst,coords=coords, x_nvc =TRUE)</pre>
```

12 coef_marginal

coef_marginal

Marginal effects evaluation

Description

This function evaluates the marginal effects from x (dy/dx) based on the estimation result of resf. This funtion is for non-Gaussian models transforming y using nongauss_y.

Usage

```
coef_marginal( mod )
```

Arguments

mod

Output from resf

Value

b

Marginal effects from x (dy/dx)

See Also

resf

coef_marginal_vc 13

coef_marginal_vc	Marginal effects evaluation from models with varying coefficients	

Description

This function evaluates the marginal effects from x (dy/dx) based on the estimation result of resf_vc. This funtion is for non-Gaussian models transforming y using nongauss_y.

Usage

```
coef_marginal_vc( mod )
```

Arguments

1	O 4 4 C	
mod	Output from	rest_vc

Value

b_vc	Matrix of the marginal effects of x (dy/dx) (N x K)
B_vc_n	Matrix of the sub-marginal effects of x explained by the spatially varying coefficients (N x K)
B_vc_s	Matrix of the sub-marginal effects explained by the non-spatially varying coefficients (N $x\ K)$
С	Matrix of the marginal effects of xconst (N x K_const)
other	List of other outputs, which are internally used

See Also

```
resf_vc
```

esf	Spatial regression with eigenvector spatial filtering	

Description

This function estimates the linear eigenvector spatial filtering (ESF) model. The eigenvectors are selected by a forward stepwise method.

Usage

```
esf( y, x = NULL, vif = NULL, meig, fn = "r2" )
```

14 esf

Arguments

у	Vector of explained variables (N x 1)
X	Matrix of explanatory variables (N x K). Default is NULL
vif	Maximum acceptable value of the variance inflation factor (VIF) (scalar). For example, if vif = 10, eigenvectors are selected so that the maximum VIF value among explanatory variables and eigenvectors is equal to or less than 10. Default is NULL
meig	Moran eigenvectors and eigenvalues. Output from meigen or meigen_f
fn	Objective function for the stepwise eigenvector selection. The adjusted R2 ("r2"), AIC ("aic"), or BIC ("bic") are available. Alternatively, all the eigenvectors in meig are used without the stepwise selection if fn = "all". This is acceptable for large samples (see Murakami and Griffith, 2019). Default is "r2"

Value

b	Matrix with columns for the estimated coefficients on x, their standard errors, t-values, and p-values (K x 4)
S	Vector of statistics for the estimated spatial component (2 x 1). The first element is the standard deviation and the second element is the Moran's I value of the estimated spatially dependent component. The Moran's I value is scaled to take a value between 0 (no spatial dependence) and 1 (the maximum possible spatial dependence). Based on Griffith (2003), the scaled Moran'I value is interpretable as follows: 0.25-0.50:weak; 0.50-0.70:moderate; 0.70-0.90:strong; 0.90-1.00:marked
r	Matrix with columns for the estimated coefficients on Moran's eigenvectors, their standard errors, t-values, and p-values (L x 4)
vif	Vector of variance inflation factors of the explanatory variables (N x 1)
е	Vector whose elements are residual standard error (resid_SE), adjusted R2 (adjR2), log-likelihood (logLik), AIC, and BIC
sf	Vector of estimated spatial dependent component (E γ) (N x 1)
pred	Vector of predicted values (N x 1)
resid	Vector of residuals (N x 1)
other	List of other outputs, which are internally used

Author(s)

Daisuke Murakami

References

Griffith, D. A. (2003). Spatial autocorrelation and spatial filtering: gaining understanding through theory and scientific visualization. Springer Science & Business Media.

Tiefelsdorf, M., and Griffith, D. A. (2007). Semiparametric filtering of spatial autocorrelation: the eigenvector approach. Environment and Planning A, 39 (5), 1193-1221.

Murakami, D. and Griffith, D.A. (2019) Eigenvector spatial filtering for large data sets: fixed and random effects approaches. Geographical Analysis, 51 (1), 23-49.

Isem 15

See Also

resf

Examples

```
require(spdep)
data(boston)
y <- boston.c[, "CMEDV" ]</pre>
x <- boston.c[,c("CRIM","ZN","INDUS", "CHAS", "NOX","RM", "AGE")]
coords <- boston.c[,c("LON", "LAT")]</pre>
#######Distance-based ESF
meig <- meigen(coords=coords)</pre>
esfD <- esf(y=y,x=x,meig=meig, vif=5)</pre>
esfD
#######Fast approximation
meig_f<- meigen_f(coords=coords)</pre>
esfD <- esf(y=y,x=x,meig=meig_f, vif=10, fn="all")</pre>
esfD
####################Not run
#######Topoligy-based ESF (it is commonly used in regional science)
#cknn <- knearneigh(coordinates(coords), k=4) #4-nearest neighbors</pre>
#cmat <- nb2mat(knn2nb(cknn), style="B")</pre>
#meig <- meigen(cmat=cmat, threshold=0.25)</pre>
#esfT <- esf(y=y,x=x,meig=meig)</pre>
#esfT
```

lsem

Low rank spatial error model (LSEM) estimation

Description

This function estimates the low rank spatial error model.

Usage

```
lsem( y, x, weig, method = "reml" )
```

Arguments

У	Vector of explained variables (N x 1)
Χ	Matrix of explanatory variables (N x K)
weig	eigenvectors and eigenvalues of a spatial weight matrix. Output from weigen
method	Estimation method. Restricted maximum likelihood method ("reml") and max-
	imum likelihood method ("ml") are available. Default is "reml"

16 Isem

Value

b	Matrix with columns for the estimated coefficients on x, their standard errors, t-values, and p-values (K x 4)
s	Vector of estimated variance parameters (2×1) . The first and the second elements denote the estimated rho parameter (sp_lambda) quantfying the scale of spatial dependent process, and the standard error of the process (sp_SE), respectively.
e	Vector whose elements are residual standard error (resid_SE), adjusted conditional R2 (adjR2(cond)), restricted log-likelihood (rlogLik), Akaike information criterion (AIC), and Bayesian information criterion (BIC). When method = "ml", restricted log-likelihood (rlogLik) is replaced with log-likelihood (logLik)
r	Vector of estimated random coefficients on the spatial eigenvectors (L x 1)
pred	Vector of predicted values (N x 1)
resid	Vector of residuals (N x 1)
other	List of other outputs, which are internally used

Author(s)

Daisuke Murakami

References

Murakami, D., Seya, H. and Griffith, D.A. (2018) Low rank spatial econometric models. Arxiv.

See Also

```
meigen, meigen_f
```

lslm 17

Low rank spatial lag model (LSLM) estimation
Low rank spatial lag model (LSLM) estimatio

Description

This function estimates the low rank spatial lag model.

Usage

```
lslm(y, x, weig, method = "reml", boot = FALSE, iter = 200)
```

Arguments

У	Vector of explained variables (N x 1)
X	Matrix of explanatory variables (N x K)
weig	eigenvectors and eigenvalues of a spatial weight matrix. Output from weigen
method	Estimation method. Restricted maximum likelihood method ("reml") and maximum likelihood method ("ml") are available. Default is "reml"
boot	If it is TRUE, confidence intervals for the spatial dependence parameters (s), the mean direct effects (de), and the mean indirect effects (ie), are estimated through a parametric bootstrapping. Default is FALSE
iter	The number of bootstrap replicates. Default is 200
alue	

Value

other

b	Matrix with columns for the estimated coefficients on x , their standard errors, t-values, and p-values (K x 4)
S	Vector of estimated shrinkage parameters (2 x 1). The first and the second elements denote the estimated rho parameter (sp_rho) quantfying the scale of spatial dependence, and the standard error of the spatial dependent component (sp_SE), respectively. If boot = TRUE, their 95 percent confidence intervals and the resulting p-values are also provided
e	Vector whose elements are residual standard error (resid_SE), adjusted conditional R2 (adjR2(cond)), restricted log-likelihood (rlogLik), Akaike information criterion (AIC), and Bayesian information criterion (BIC). When method = "ml", restricted log-likelihood (rlogLik) is replaced with log-likelihood (logLik)
de	Matrix with columns for the estimated mean direct effects on x . If boot = TRUE, their 95 percent confidence intervals and the resulting p-values are also provided
ie	Matrix with columns for the estimated mean indirect effects on x. If boot = TRUE, their 95 percent confidence intervals and the resulting p-values are also provided
r	Vector of estimated random coefficients on the spatial eigenvectors (L x 1)
pred	Vector of predicted values (N x 1)
resid	Vector of residuals (N x 1)

List of other outputs, which are internally used

18 meigen

Author(s)

Daisuke Murakami

References

Murakami, D., Seya, H. and Griffith, D.A. (2018) Low rank spatial econometric models. Arxiv.

See Also

```
weigen, 1sem
```

Examples

meigen

Extraction of Moran eigenvectors

Description

This function extracts spatial and temporal eigenvectors (i.e., basis functions describing spatial and temporal patterns).

Usage

Arguments

coords	Matrix of spatial coordinates (N x 2). If cmat is specified, it is ignored
model	Type of kernel to model spatial dependence. The currently available options are "exp" for the exponential kernel, "gau" for the Gaussian kernel, and "sph" for the spherical kernel. Default is "exp"
enum	Optional. The maximum mumber of spatial eigenvectors to be extracted (scalar)

meigen 19

s_id	Optional. Location/zone ID for modeling inter-group spatial effects. If specified, Moran eigenvectors are extracted by groups. It is useful e.g. for multilevel modeling (s_id is the groups) and panel data modeling (s_id is given by individual location id). Default is NULL
threshold	Optional. Threshold for the eigenvalues. Suppose that lambda_1 is the maximum eigenvalue, this function extracts eigenvectors whose corresponding eigenvalue is equal or greater than (threshold x lambda_1). threshold must be a value between 0 and 1. Default is zero (see Details)
cmat	Optional. A user-specified spatial connectivity matrix $(N \times N)$. It must be provided when the user wants to use a spatial connectivity matrix other than the default matrices
coords_z	Optional. One- or two-column matrix whose t-th column represents t-th temporal coordinate (N x 1 or N x 2).
enum_z	Optional. The maximum mumber of temporal eigenvectors to be extracted (scalar)
interact	Optional. If TRUE, space-time eigenvectors (space x time) are considered in addition to spatial eigenvectors and temporal eigenvectors
interact_max_dim	

Details

(scalar)

This function extracts spatial eigenvectors from MCM, where M = I - 11'/N is a centering operator. By default, C is a N x N connectivity matrix whose (i, j)-th element equals $\exp(-d(i,j)/h)$, where d(i,j) is the spatial Euclidean distance between the sample sites i and j. h is the maximum length

Optional. The maximum mumber of the space-time eigenvectors to be extracted

of the minimum spanning tree connecting sample sites (see Dray et al., 2006). If cmat is provided, this function performs the same calculation after C is replaced with cmat.

The temporal eigenvectors are extracted in the same way where the spatial distance d(i,j) is replaced with temporal difference. If two temporal coordinates are given, their eigenvectors are evaluated respectively.

If threshold = 0.00 (default), all the eigenvectors corresponding to positive eigenvalues explaining positive spatial/temporal dependence are extracted. threshold = 0.00 or 0.25 are standard assumptions (see Griffith, 2003; Murakami and Griffith, 2015).

Value

sf	Matrix of the spatial eigenvectors (N x L)
ev	Vector of the spatial eigenvalues (L x 1), scaled to have the maximum value of 1
sf_z	List. t-th element is the matrix of the t-th temporal eigenvectors (N x L_t)
ev_z	List. t-th element is the vector of the t-th temporal eigenvalues ($L_t \times 1$), scaled to have the maximum value of 1
other	List of other outcomes, which are internally used

Author(s)

Daisuke Murakami

20 meigen0

References

Dray, S., Legendre, P., and Peres-Neto, P.R. (2006) Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecological Modelling, 196 (3), 483-493.

Griffith, D.A. (2003) Spatial autocorrelation and spatial filtering: gaining understanding through theory and scientific visualization. Springer Science & Business Media.

Murakami, D. and Griffith, D.A. (2015) Random effects specifications in eigenvector spatial filtering: a simulation study. Journal of Geographical Systems, 17 (4), 311-331.

Murakami, D., Shirota, S., Kajita, S., and Kajita, S. (2024) Fast spatio-temporally varying coefficient modeling with reluctant interaction selection. ArXiv.

See Also

meigen_f for fast eigen-decomposition

meigen0	Nystrom extension of Moran eigenvectors	

Description

This function estimates Moran eigenvectors at unobserved sites using the Nystrom extension.

Usage

```
meigen0( meig, coords0, coords_z0 = NULL, s_id0 = NULL )
```

Arguments

meig	Moran eigenvectors and eigenvalues. Output from meigen or meigen_f
coords0	Matrix of spatial point coordinates of prediction sites (N_0 x 2)
coords_z0	Optional. One- or two-column matrix whose t-th column represents the t-th temporal coordinate of prediction times ($N_0 \times 1$ or $N_0 \times 2$).
s_id0	Optional. ID specifying groups modeling spatial effects (N_0 x 1). If specified, Moran eigenvectors are extracted by groups. It is useful e.g. for multilevel modeling (s_id is the groups) and panel data modeling (s_id is given by individual location id). Default is NULL

Value

sf	Matrix of the first L eigenvectors at unobserved sites (N_0 x L)
ev	Vector of the first L eigenvalues (L x 1)
sf_z	List. t-th element is the matrix of the t-th temporal eigenvectors (N x L_t)
ev_z	List. t-th element is the vector of the t-th temporal eigenvalues (L_t x 1)
other	List of other outputs, which are internally used

meigen_f 21

Author(s)

Daisuke Murakami

References

Drineas, P. and Mahoney, M.W. (2005) On the Nystrom method for approximating a gram matrix for improved kernel-based learning. Journal of Machine Learning Research, 6 (2005), 2153-2175.

See Also

```
meigen, meigen_f
```

meigen_f

Fast approximation of Moran eigenvectors

Description

This function approximates spatial and temporal eigenvectors (i.e., basis functions describing spatial and temporal patterns) computationally efficiently.

Usage

Arguments

coords	Matrix of spatial coordinates (N x 2)
model	Type of kernel to model spatial dependence. The currently available options are "exp" for the exponential kernel, "gau" for the Gaussian kernel, and "sph" for the spherical kernel. Default is "exp"
enum	Number of eigenvectors and eigenvalues to be extracted (scalar). Default is 200
s_id	Optional. Location/zone ID for modeling inter-group spatial effects. If specified, Moran eigenvectors are extracted by groups. It is useful e.g. for multilevel modeling (s_id is the groups) and panel data modeling (s_id is given by individual location id). Default is NULL
threshold	Optional. Threshold for the eigenvalues. Suppose that lambda_1 is the maximum eigenvalue, this function extracts eigenvectors whose corresponding eigenvalue is equal or greater than (threshold x lambda_1). threshold must be a value between 0 and 1. Default is zero
coords_z	Optional. One- or two-column matrix of temporal coordinates (N x 1 or N x 2).
enum_z	Optional. The maximum mumber of temporal eigenvectors to be extracted (scalar)

22 meigen_f

Optional. If TRUE, space-time eigenvectors (space x time) are considered in addition to spatial eigenvectors and temporal eigenvectors

interact_max_dim

Optional. The maximum mumber of the space-time eigenvectors to be extracted (scalar)

Details

This function extracts approximated spatial eigenvectors from MCM. M = I - 11'/N is a centering operator, and C is a spatial connectivity matrix whose (i, j)-th element is given by $\exp(-d(i,j)/h)$, where d(i,j) is the Euclidean distance between the sample sites i and j, and h is a range parameter given by the maximum length of the minimum spanning tree connecting sample sites (see Dray et al., 2006). Following a simulation result in Murakami and Griffith (2019), this function approximates the 200 eigenvectors corresponding to the 200 largest eigenvalues by default (i.e., enum = 200). If enum is given by a smaller value like 100, the computation time will be shorter, but with greater approximation error.

The temporal eigenvectors are extracted in the same way where the spatial distance d(i,j) is replaced with temporal difference. If two temporal coordinates are given, their eigenvectors are evaluated respectively.

Value

sf	Matrix of the spatial eigenvectors (N x L)
ev	Vector of the spatial eigenvalues (L x 1), scaled to have the maximum value of 1
sf_z	List. t-th element is the matrix of the t-th temporal eigenvectors (N x L_t)
ev_z	List. t-th element is the vector of the t-th temporal eigenvalues (L_t x 1), scaled to have the maximum value of 1
other	List of other outcomes, which are internally used

Author(s)

Daisuke Murakami

References

Dray, S., Legendre, P., and Peres-Neto, P.R. (2006) Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecological Modelling, 196 (3), 483-493.

Murakami, D. and Griffith, D.A. (2019) Eigenvector spatial filtering for large data sets: fixed and random effects approaches. Geographical Analysis, 51 (1), 23-49.

Murakami, D., Shirota, S., Kajita, S., and Kajita, S. (2024) Fast spatio-temporally varying coefficient modeling with reluctant interaction selection. ArXiv.

See Also

meigen

nongauss_y 23

nongauss_y	Parameter setup for modeling non-Gaussian continuous data and count data
	count data

Description

Parameter setup for modeling non-Gaussian continuous data and count data. The SAL transformation (see details) is used to model a wide variety of non-Gaussian data without explicitly assuming data distribution (see Murakami et al., 2021 for further detail). In addition, Box-Cox transformation is used for non-negative continuous variables while another transformation approximating overdispersed Poisson distribution is used for count variables. The output from this function is used as an input of the resf and resf_vc functions. For further details about its implementation and case study examples, see Murakami (2021).

Usage

```
nongauss_y( y_type = "continuous", y_nonneg = FALSE, tr_num = 0 )
```

Arguments

y_type	Type of explained variables y. "continuous" for continuous variables and "count" for count variables
y_nonneg	Effective if y_type = "continuous". TRUE if y cannot take negative value. If y_nonneg = TRUE and tr_num = 0, the Box-Cox transformation is applied to y. If y_nonneg = TRUE and tr_num > 0, the Box-Cox transformation is applied first to roughly Gaussianize y. Then, the SAL transformation is iterated tr_num times to improve the modeling accuracy. Default is FALSE
tr_num	Number of the SAL transformations (SinhArcsinh and Affine, where the use of "L" stems from the "Linear") applied to Gaussianize y. Default is 0

Details

If tr_num >0, the SAL transformation is iterated tr_num times to Gaussianize y. The SAL transformation is defined as SAL(y)=a+b*sinh(c*arcsinh(y)-d) where a,b,c,d are parameters. Based on Rios and Tobar (2019), the iteration of the SAL transformation approximates a wide variety of non-Gaussian distributions without explicitly assuming data distribution. The resf and resf_vc functions return tr_par, which is a list whose k-th element includes the a,b,c,d parameters used for the k-th SAL transformation.

In addition, for non-negative y (y_nonneg = TRUE), the Box-Cox transformation is applied prior to the iterative SAL transformation. tr_num and y_nonneg can be selected by comparing the BIC (or AIC) values across models. This compositionally-warped spatial regression approach is detailed in Murakami et al. (2021).

For count data (y_type = "count"), an overdispersed Poisson distribution (Gaussian approximation) is assumed. If tr_num > 0, the distribution is adjusted to fit the data (y) through the iterative SAL transformations. y_nonneg is ignored if y_type = "count".

24 nongauss_y

Value

nongauss

List of parameters for modeling non-Gaussian data

References

Rios, G. and Tobar, F. (2019) Compositionally-warped Gaussian processes. Neural Networks, 118, 235-246.

Murakami, D. (2021) Transformation-based generalized spatial regression using the spmoran package: Case study examples, ArXiv.

Murakami, D., Kajita, M., Kajita, S. and Matsui, T. (2021) Compositionally-warped additive mixed modeling for a wide variety of non-Gaussian data. Spatial Statistics, 43, 100520.

Murakami, D., & Matsui, T. (2021). Improved log-Gaussian approximation for over-dispersed Poisson regression: application to spatial analysis of COVID-19. ArXiv, 2104.13588.

See Also

```
resf, resf_vc
```

```
###### Regression for non-negative data (BC trans.)
ng1 <-nongauss_y( y_nonneg = TRUE )</pre>
ng1
###### General non-Gaussian regression for continuous data (two SAL trans.)
ng2 <-nongauss_y( tr_num = 2 )</pre>
ng2
###### General non-Gaussian regression for non-negative continuous data
ng3 <-nongauss_y( y_nonneg = TRUE, tr_num = 5 )</pre>
ng3
###### Over-dispersed Poisson regression for count data
ng4 <-nongauss_y( y_type = "count" )</pre>
ng4
###### A general non-Gaussian regression for count data
ng5
    <-nongauss_y( y_type = "count", tr_num = 5 )</pre>
ng5
#################### Fitting example
require(spdep);require(Matrix)
data(boston)
      <- boston.c[, "CMEDV" ]</pre>
      <- boston.c[,c("CRIM","ZN","INDUS", "CHAS", "NOX","RM", "AGE",</pre>
                      "DIS" ,"RAD", "TAX", "PTRATIO", "B", "LSTAT")]
xgroup<- boston.c[,"TOWN"]</pre>
coords<- boston.c[,c("LON","LAT")]</pre>
meig <- meigen(coords=coords)</pre>
res \leftarrow resf(y = y, x = x, meig = meig,nongauss=ng2)
```

plot_n 25

```
res # Estimation results

plot(res$pdf,type="1") # Estimated probability density function
res$skew_kurt # Skew and kurtosis of the estimated PDF
res$pred_quantile[1:2,]# predicted value by quantile
coef_marginal(res) # Estimated marginal effects (dy/dx)
```

plot_n

Plot non-spatially varying coefficients (NVCs)

Description

This function plots non-spatially varying coefficients (NVCs; coefficients varying with respect to explanatory variable value) and their 95 percent confidence intervals

Usage

Arguments

mod	Outpot from resf, besf, resf_vc, or besf_vc function
xnum	The NVC on the xnum-th explanatory variable is plotted. Default is 1
xtype	Effective for resf_vc and besf_vc. If "x", the num-th NVC in the spatially and non-spatially varying coefficients on x is plotted. If "xconst", the num-th NVC on xconst is plotted. Default is "x"
cex.lab	The size of the x and y axis labels
cex.axis	The size of the tick label numbers
lwd	The width of the line drawing the coefficient estimates
ylim	The limints of the y-axis
nmax	If sample size exceeds nmax, nmax samples are randomly selected and plotted. Default is 20,000

See Also

```
resf, besf, resf_vc, besf_vc
```

26 plot_qr

plot_qr	Plot quantile regression coefficients estimated from SF-UQR

Description

This function plots regression coefficients estimated from the spatial filter unconditional quantile regression (SF-UQR) model.

Usage

```
plot_qr( mod, pnum = 1, par = "b", cex.main = 20, cex.lab = 18, cex.axis = 15, lwd = 1.5 )
```

Arguments

mod	Outpot from the resf_qr function
pnum	A number specifying the parameter being plotted. If par = "b", the coefficients on the pnum-th explanatory variable are plotted (intercepts are plotted if pnum = 1). If par = "s" and pnum = 1, the estimated standard errors for the reidual spatial process are plotted. If par = "s" and pnum = 2, the Moran's I values of the residual spatial process are plotted. The Moran's I value is scaled to take a value between 0 (no spatial dependence) and 1 (the maximum possible spatial dependence). Based on Griffith (2003), the scaled Moran'I value is interpretable as follows: 0.25-0.50:weak; 0.50-0.70:moderate; 0.70-0.90:strong; 0.90-1.00:marked
par	If it is "b", regression coefficients are plotted. If it is "s", shrinkage (variance) parameters for the residual spatial process are plotted. Default is "b"
cex.main	Graphical parameter specifying the size of the main title
cex.lab	Graphical parameter specifying the size of the x and y axis labels
cex.axis	Graphical parameter specifying the size of the tick label numbers
lwd	Graphical parameters specifying the width of the line drawing the coefficient estimates

Note

See par for the graphical parameters

See Also

resf_qr

plot_s 27

plot_s

Mapping spatially and spatio-temporally varying coefficients

Description

This function plots spatially varying coefficients (SVC) and spatio-temporally varying coefficients (STVC) with/without coefficient varying with respect to the value of the explanatory variable (NVC). Namely, the full varying coefficient equals STVC + NVC.

Usage

Arguments

mod	Outpot from resf, besf, resf_vc, besf_vc, or addlearn_local function
xnum	For resf_vc, besf_vc, and addlearn_local, xnum-th SVC/STVC is plotted. If num = 0, varying intercept is plotted. For resf and besf, estimated spatially dependent residual process is plotted irrespective of the xnum value. Default is 0
btype	Effective if $x_nvc = TRUE$ in $resf_vc$ and $besf_vc$. If "all" (default), the estiamted varying coefficients (S(T)VC + NVC) are plotted as they are. If "svc", S(T)VC is plotted. If "nvc", NVC is plotted.
xtype	If "x" (default), coefficients on x is plotted. If "xconst", those on xconst is plotted
pmax	The maximum p-value for the varying coefficients to be displayed. For example, if pmax = 0.05 , the only coefficients that are statistically significant at the 5 percent level are plotted. If NULL, all the coefficients are plotted. Default is NULL
ncol	Number of colors in the color palette. Default is 8
col	Color palette used for the mapping. If NULL, the blue-pink-yellow color scheme is used. Palettes in the RColorBrewer package are available. Default is NULL
inv	If TRUE, the color palett is inverted. Default is FALSE
brks	If "regular", color is changed at regular intervals. If "quantile", color is changed for each quantile
cex	Size of the dots representing sample sites
pch	A number indicating the symbol to use
nmax	If sample size exceeds nmax, nmax samples are randomly selected and plotted. Default is $20,\!000$
coords_z1_lim	Value range for coords_z[,1] in the <code>meigen/meigen_f</code> function (vector). If is has two elements, the samples whose coords_z[,1] values are in between these values are plotted. If it is a scalar, samples satisfying coords_z[,1]==coords_z1_lim is plotted
coords_z2_lim	Value range for coords_z[,2] (vector).

28 predict0

See Also

```
resf, besf, resf_vc, besf_vc, addlearn_local
```

predict0	Spatial and spatio-temporal predictions	

Description

It is a function for spatial/spatio-temporal pprediction using the model estimated from esf, resf, or resf_vc function.

Usage

```
predict0( mod, meig0, x0 = NULL, xconst0 = NULL, xgroup0 = NULL, offset0 = NULL,
weight0 = NULL, compute_se=FALSE, compute_quantile = FALSE )
```

Arguments

mod	Output from esf resf		
, or resf_vc	, or resf_vc		
meig0	Moran eigenvectors at prediction sites. Output from meigen0		
×0	Matrix of explanatory variables at prediction sites $(N_0 \times K)$. Each column of x0 must correspond to those in x in the input model (mod). Default is NULL		
xconst0	Effective for resf_vc. Matrix of explanatory variables at prediction sites whose coefficients are assumed constant across space (N_0 x K_const). Each column of xconst0 must correspond to those in xconst in the input model. Default is NULL		
xgroup0	Matrix/vector of group IDs at prediction sites that may be integer or name by group $(N_0 \times K_g)$. Default is NULL		
offset0	Vector of offset variables at prediction sites ($N_0 \times 1$). Effective if y is count (see nongauss_y). Default is NULL		
weight0	Vector of weights for prediction sites ($N_0 \times 1$). Required if compute_se = TRUE or compute_quantile = TRUE, and weight in the input model is not NULL		
compute_se	If TRUE, predictive standard error is evaulated. It is currently supported only for continuous variables. If nongauss is specified in the input model (mod), standard error for the transformed y is evaluated. Default is FALSE		
compute_quantile			
	If TRUE, Matrix of the quantiles for the predicted values (N x 15) is evaulated.		

It is currently supported only for continuous variables. Default is FALSE

predict0 29

Value

Matrix with the first column for the predicted values (pred). The second and third columns are the predicted trend component (xb) and the residual spaperocess (sf_residual). If xgroup0 is specified, the fourth column is the prediction group effects (group). If tr_num > 0 or tr_nonneg ==TRUE (i.e., y is tr_normed) in mod, there is another column of the predicted values in the tr_formed/normalized scale (pred_trans). In addition, if compute_quantile =TR predictive standard error (pred_se) is evaluated and added as another column	atial cted ans- ans- UE,
pred_quantile Effective if compute_quantile = TRUE. Matrix of the quantiles for the predictive values (N \times 15). It is useful for evaluating uncertainty in the predictive value	
b_vc Matrix of estimated spatially (spatio-temporally) varying coefficients (S(T)V on $x0$ (N_0 x K)	'Cs)
bse_vc Matrix of estimated standard errors for the S(T)VCs (N_0 x K)	
t_vc Matrix of estimated t-values for the S(T)VCs (N_0 x K)	
p_vc Matrix of estimated p-values for the $S(T)VCs$ (N_0 x K)	
c_vc Matrix of estimated non-spatially varying coefficients (NVCs) on x0 (N x Effective if nvc =TRUE in resf	K).
cse_vc Matrix of standard errors for the NVCs on x0 (N x K).Effective if nvc =TF in resf	RUE
ct_vc Matrix of t-values for the NVCs on x0 (N x K). Effective if nvc =TRUE in r	esf
cp_vc Matrix of p-values for the NVCs on x0 (N x K). Effective if nvc =TRUE in r	esf

See Also

meigen0

```
require(spdep)
data(boston)
samp
        <- sample( dim( boston.c )[ 1 ], 300)
        <- boston.c[ samp, ]</pre>
                                   ## Data at observed sites
         <- d[, "CMEDV"]
         <- d[,c("ZN", "LSTAT")]
xconst <- d[,c("CRIM", "NOX", "AGE", "DIS", "RAD", "TAX", "PTRATIO", "B", "RM")]
coords <- d[,c("LON", "LAT")]</pre>
d0
                                  ## Data at unobserved sites
         <- boston.c[-samp, ]
y0
         <- d0[, "CMEDV"]
         <- d0[,c("ZN", "LSTAT")]
xconst0 <- d0[,c("CRIM", "NOX", "AGE", "DIS", "RAD", "TAX", "PTRATIO", "B", "RM")]
coords0 <- d0[,c("LON", "LAT")]</pre>
meig
        <- meigen( coords = coords )
meig0 <- meigen0( meig = meig, coords0 = coords0 )</pre>
```

resf

spatial and spatio-temporal regression models

Description

This model estimates regression coefficients, coefficients varying depending on x (non-spatially varying coefficients; NVC), and group effects, considering residual spatial/spatio-temporal dependence. The random-effects eigenvector spatial filtering, which is an approximate Gaussian process approach, is used for modeling the residual dependence. If nonugauss is specified, non-Gaussian explained variables are Gaussianized using a compositional warping function (see nongauss_y). This augument allows the resf function to be applied to non-Gaussian explained variables, including count data.

Usage

```
resf( y, x = NULL, xgroup = NULL, weight = NULL, offset = NULL,
    nvc = FALSE, nvc_sel = TRUE, nvc_num = 5, meig,
    method = "reml", penalty = "bic", nongauss = NULL )
```

Arguments

У	Vector of explained variables (N x 1)
Х	Matrix of explanatory variables (N x K). Default is NULL
xgroup	Matrix of group IDs. The IDs may be group numbers or group names (N x K_g). Default is NULL
weight	Vector of weights for samples (N x 1). If non-NULL, the adjusted R-squared value is evaluated for weighted explained variables. Default is NULL
offset	Vector of offset variables (N x 1). Available if y is count ($y_type = "count"$ is specified in the nongauss_y function). Default is NULL

nvc	If TRUE, a non-linear function of x (NVC; a spline function) is used as a varying coefficient. If FALSE, constant coefficients are assumed. Default is FALSE
nvc_sel	If TRUE, type of each coefficient (NVC or constant) is selected through a BIC minimization. If FALSE, NVCs are assumed across x. Alternatively, nvc_sel can be given by column number(s) of x. For example, if nvc_sel = 2, the coefficient on the second explanatory variable is NVC and the other coefficients are constants. Default is TRUE
nvc_num	Number of natural spline basis functions to be used to model NVC. Default is 5
meig	Moran eigenvectors and eigenvalues. Output from meigen or meigen_f
method	Estimation method. Restricted maximum likelihood method ("reml") and maximum likelihood method ("ml") are available. Default is "reml"
penalty	Penalty to select type of coefficients (NVC or constant) to stablize the estimates. The current options are "bic" for the Baysian information criterion-type penalty $(N \times log(K))$ and "aic" for the Akaike information criterion (2K). Default is "bic"
nongauss	Parameter setup for modeling non-Gaussian continuous data or count data. Output from nongauss_y

Details

For modeling non-Gaussian data including count data, see nongauss_y.

Value

b	Matrix with columns for the estimated constant coefficients on x, their standard errors, t-values, and p-values (K x 4)
b_g	List of K_g matrices with columns for the estimated group effects, their standard errors, and t-values
c_vc	Matrix of estimated NVCs on x (N x K). Effective if $nvc = TRUE$
cse_vc	Matrix of standard errors for the NVCs on x (N x K). Effective if $nvc = TRUE$
ct_vc	Matrix of t-values for the NVCs on x (N x K). Effective if $nvc = TRUE$
cp_vc	Matrix of p-values for the NVCs on x (N x K). Effective if $nvc = TRUE$
S	Vector of estimated variance parameters (2 x 1). The first and the second elements are the standard deviation and the Moran's I value of the estimated spatially (and temporally) dependent process, respectively. The Moran's I value is scaled to take a value between 0 (no spatial dependence) and 1 (the maximum possible spatial dependence). Based on Griffith (2003), the scaled Moran'I value is interpretable as follows: 0.25-0.50:weak; 0.50-0.70:moderate; 0.70-0.90:strong; 0.90-1.00:marked
s_c	Vector of standard deviations of the NVCs on xconst
s_g	Vector of estimated standard deviations of the group effects
е	Error statistics. When y_type="continuous", it includes residual standard error (resid_SE), adjusted conditional R2 (adjR2(cond)), restricted log-likelihood (rlogLik), Akaike information criterion (AIC), and Bayesian information criterion (BIC). rlogLik is replaced with log-likelihood (logLik) if method = "ml".

resid_SE is replaced with the residual standard error for the transformed y (resid_SE_trans) if nongauss is specified. When y_type="count", the error statistics contains root mean squared error (RMSE), Gaussian likelihood approximating the model, AIC and BIC based on the likelihood, and the proportion of the null deviance explained by the model (deviance explained (%)). deviance explained, which is also used in the mgcv package, corresponds to the adjusted R2 in case of the linear regression

vc List indicating whether NVC are removed or not during the BIC minimization.

1 indicates not removed whreas 0 indicates removed

Vector of estimated random coefficients on the Moran's eigenvectors (L x 1)

sf Vector of estimated spatial dependent component (N x 1)

pred Matrix of predicted values for y (pred) and their standard errors (pred_se) (N x

2). If y is transformed by specifying nongauss_y, the predicted values in the transformed/normalized scale are added as another column named pred trans

pred_quantile Matrix of the quantiles for the predicted values (N x 15). It is useful to evaluate

uncertainty in the predictive value

tr_par List of the parameter estimates for the tr_num SAL transformations. The k-th

element of the list includes the four parameters for the k-th SAL transformation

(see nongauss_y)

tr_bpar The estimated parameter in the Box-Cox transformation

tr_y Vector of the transformed explaied variables

resid Vector of residuals (N x 1)

pdf Matrix whose first column consists of evenly spaced values within the value

range of y and the second column consists of the estimated value of the probability density function for y if y_type in nongauss_y is "continuous" and probability mass function (PMF) if y_type = "count". If offset is specified (and y_type

= "count"), the PMF given median offset value is evaluated

skew_kurt Skewness and kurtosis of the estimated probability density/mass function of y

other List of other outputs, which are internally used

Author(s)

Daisuke Murakami

References

Murakami, D. and Griffith, D.A. (2015) Random effects specifications in eigenvector spatial filtering: a simulation study. Journal of Geographical Systems, 17 (4), 311-331.

Murakami, D., and Griffith, D.A. (2020) Balancing spatial and non-spatial variations in varying coefficient modeling: a remedy for spurious correlation. Geographical Analysis, DOI: 10.1111/gean.12310.

Murakami, D., Kajita, M., Kajita, S. and Matsui, T. (2021) Compositionally-warped additive mixed modeling for a wide variety of non-Gaussian data. Spatial Statistics, 43, 100520.

Murakami, D., Shirota, S., Kajita, S., and Kajita, S. (2024) Fast spatio-temporally varying coefficient modeling with reluctant interaction selection. ArXiv.

See Also

```
meigen, meigen_f, coef_marginal, besf
```

```
######### Spatial regression modeling ###########
require(spdep);require(Matrix)
data(boston)
     <- boston.c[, "CMEDV" ]
     <- boston.c[,c("CRIM","ZN","INDUS", "CHAS", "NOX","RM", "AGE",</pre>
Х
                  "DIS", "RAD", "TAX", "PTRATIO", "B", "LSTAT")]
xgroup<- boston.c[,"TOWN"]</pre>
coords<- boston.c[,c("LON","LAT")]</pre>
meig <- meigen(coords=coords)</pre>
# meig<- meigen_f(coords=coords) ## for large samples</pre>
res
    \leftarrow resf(y = y, x = x, meig = meig)
res
            ## spatially dependent component (intercept)
plot_s(res)
#### Group-wise random intercepts
\#res2 \leftarrow resf(y = y, x = x, meig = meig, xgroup = xgroup)
#### Group-level spatial dependence (s_id) + random intercepts (xgroup)
#meig_g<- meigen(coords=coords, s_id = xgroup)</pre>
#res3 <- resf(y = y, x = x, meig = meig_g, xgroup = xgroup)</pre>
#### Coefficients varying depending on x
\#res4 < -resf(y = y, x = x, meig = meig, nvc = TRUE)
#res4
#plot_s(res4) # spatially dependent component (intercept)
#plot_s(res4,5) # spatial plot of the 5-th NVC
#plot_s(res4,6) # spatial plot of the 6-th NVC
#plot_s(res4,13)# spatial plot of the 13-th NVC
#plot_n(res4,5) # 1D plot of the 5-th NVC
#plot_n(res4,6) # 1D plot of the 6-th NVC
#plot_n(res4,13)# 1D plot of the 13-th NVC
##### Non-Gaussian regression #####################
#### Model for non-Gaussian continuous data
# - Probability distribution is estimated from data
```

34 resf_qr

```
<- nongauss_y( tr_num = 2 )# 2 SAL transformations to Gaussianize y</pre>
#ng5
#res5
       <resf(y = y, x = x, meig = meig, nongauss = ng5)
#res5
                 ## tr_num may be selected by comparing BIC
#plot(res5$pdf,type="1") # Estimated probability density function
#res5$skew_kurt
                      # Skew and kurtosis of the estimated PDF
#res5$pred_quantile[1:2,]# predicted value by quantile
#coef_marginal(res5)
                    # Estimated marginal effects (dy/dx)
#### Model for non-Gaussian and non-negative continuous data
# - Probability distribution is estimated from data
       <- nongauss_y( tr_num = 2, y_nonneg = TRUE )</pre>
      \leftarrow resf(y = y, x = x, meig = meig, nongauss = ng6)
#coef_marginal(res6)
#### Overdispersed Poisson model for count data
# - y: count data
       <- nongauss_y( y_type = "count" )</pre>
#ng7
       <- resf(y = y, x = x, meig = meig, nongauss = ng7)
#res7
#### General model for count data
# - y: count data
# - Probability distribution is estimated from data
       <- nongauss_y( y_type = "count", tr_num = 2 )</pre>
#ng8
#res8
       <- resf(y = y, x = x, meig = meig, nongauss = ng8)
# See \url{https://github.com/dmuraka/spmoran}
#require(spData)
#data(house)
#dat0
       <- st_as_sf(house)
#dat
        <- data.frame(st_coordinates(dat0), dat0)
       <- log(dat[,"price"])
#y
       <- dat[,c("lotsize","TLA", "rooms","beds")]
#x
#byear <- house$yrbuilt</pre>
#syear <- as.numeric(as.character(house$syear))#factor -> numeric
#coords_z<- cbind(byear,syear)</pre>
#meig <- meigen_f(coords=coords, coords_z=cbind(byear,syear),interact=TRUE)</pre>
#res9
        <- resf(y=y,x=x,meig=meig )
#res9
```

resf_qr 35

resf_q	r
--------	---

Spatial filter unconditional quantile regression

Description

This function estimates the spatial filter unconditional quantile regression (SF-UQR) model.

Usage

Arguments

 5411101103	
У	Vector of explained variables (N x 1)
x	Matrix of explanatory variables (N x K). Default is NULL
meig	Moran eigenvectors and eigenvalues. Output from meigen or meigen_f
tau	The quantile(s) to be modeled. It must be a number (or a vector of numbers) strictly between 0 and 1. By default, $tau = c(0.1, 0.2,, 0.9)$
boot	If it is TRUE, confidence intervals of regression coefficients are estimated by a semiparametric bootstrapping. Default is TRUE
iter	The number of bootstrap replications. Default is 200
parallel	If TRUE, the bootstrapping for estimating confidence intervals is parallelized. Default is FALSE
ncores	Number of cores used for the parallel computation. If ncores=NULL, which is the default, the number of available cores - 2 is detected and used

Value

b	Matrix of estimated regression coefficients (K x Q), where Q is the number of quantiles (i.e., the length of tau)
r	Matrix of estimated random coefficients on Moran eigenvectors (L x Q)
S	Vector of estimated variance parameters (2 x 1). The first and the second elements denote the standard deviation and the Moran's I value of the estimated spatially dependent component, respectively. The Moran's I value is scaled to take a value between 0 (no spatial dependence) and 1 (the maximum possible spatial dependence). Based on Griffith (2003), the scaled Moran'I value is interpretable as follows: 0.25-0.50:weak; 0.50-0.70:moderate; 0.70-0.90:strong; 0.90-1.00:marked
е	Vector whose elements are residual standard error (resid_SE) and adjusted quasi conditional R2 (quasi_adjR2(cond))
В	Q matrices (K x 4) summarizing bootstrapped estimates for the regression coefficients. Columns of these matrices consist of the estimated coefficients, the

It is returned if boot = TRUE

lower and upper bounds for the 95 percent confidencial intervals, and p-values.

36 resf_qr

S	Q matrices (2 x 3) summarizing bootstrapped estimates for the variance parameters. Columns of these matrices consist of the estimated parameters, the lower and upper bounds for the 95 percent confidencial intervals. It is returned if boot $= \text{TRUE}$
В0	List of Q matrices (K x iter) summarizing bootstrapped coefficients. The q-th matrix consists of the coefficients on the q-th quantile. Effective if boot = $TRUE$
S0	List of Q matrices (2 x iter) summarizing bootstrapped variance parameters. The q-th matrix consists of the parameters on the q-th quantile. Effective if boot = $TRUE$

Author(s)

Daisuke Murakami

References

Murakami, D. and Seya, H. (2017) Spatially filtered unconditional quantile regression. ArXiv.

See Also

```
plot_qr
```

```
require(spdep)
data(boston)
y <- boston.c[, "CMEDV" ]</pre>
x \leftarrow boston.c[,c("CRIM","ZN","INDUS", "CHAS", "NOX","RM", "AGE",
                        "DIS" ,"RAD", "TAX", "PTRATIO", "B", "LSTAT")]
coords <- boston.c[,c("LON", "LAT")]</pre>
meig
        <- meigen(coords=coords)
res
        <- resf_qr(y=y,x=x,meig=meig, boot=FALSE)</pre>
res
plot_qr(res,1)
                  # Intercept
                 # Coefficient on CRIM
plot_qr(res,2)
plot_qr(res,1,"s") # spcomp_SE
plot_qr(res,2,"s") # spcomp_Moran.I/max(Moran.I)
###Not run
#res <- resf_qr(y=y,x=x,meig=meig, boot=TRUE)</pre>
#res
                 # Intercept + 95 percent confidence interval (CI)
#plot_qr(res,1)
                  # Coefficient on CRIM + 95 percent CI
#plot_qr(res,2)
#plot_qr(res,1,"s") # spcomp_SE + 95 percent CI
#plot_qr(res,2,"s") # spcomp_Moran.I/max(Moran.I) + 95 percent CI
```

resf_vc	spatial and spatio-temporal regression models with varying coeffi- cients

Description

This function estimates spatially varying coefficients (SVC) or spatio-temporally varying coefficients (STVC), group effects, considering residual spatial/spatio-temporal dependence. A nonlinear function of x (NVC) can be added on each SVC/STVC mainly to stablize the estimation (see Murakami and Griffith, 2020). Approximate Gaussian processes based on Moran eigenvectors are used for modeling the spatio-temporal processes. Type of coefficients (constant or varying) is selected through a BIC minimization. If nonugauss is specified, non-Gaussian explained variables are Gaussianized using a compositional warping function (see nongauss_y). This augument allows the resf function to be applied to non-Gaussian explained variables, including count data.

Note that, for very large samples, this function can overlook small-scale spatial variations. addlearn_local applies an model aggregation/averaging technique to address this problem.

Usage

Arguments

У	Vector of explained variables (N x 1)
X	Matrix of explanatory variables assuming SVC/STVC (N x K)
xconst	Matrix of explanatory variables assuming constant coefficients (N x K_c). Default is NULL
xgroup	Matrix of group IDs for modeling group-wise random effects. The IDs may be group numbers or group names (N x K_g). Default is NULL
weight	Vector of weights for samples (N x 1). If non-NULL, the adjusted R-squared value is evaluated for weighted explained variables. Default is NULL
offset	Vector of offset variables (N x 1). Available if y is count ($y_type = "count"$ is specified in the nongauss_y function). Default is NULL
x_nvc	If TRUE, a non-linear function of x (NVC) is added on each varying coefficient on x to stablize the estimate. Default is FALSE
xconst_nvc	If TRUE, NVCs is added on each constant coefficient on xconst model estimate non-linear influence from xconst
x_sel	If TRUE, type of coefficient on x (STVC, SVC, or constant) is selected through a BIC minimization. If FALSE, $S(T)VCs$ are assumed across x. Alternatively, x_sel can be given by column number(s) of x. For example, if x_sel = 2, the coefficient on the second explanatory variable is $S(T)VC$ and the other coefficients are constants. The Default is TRUE

x_nvc_sel	If TRUE, with/without NVC on x is selected. If FALSE, NVCs are assumed across x. Alternatively, x_nvc_sel can be given by column number(s) of x. For example, if $x_nvc_sel = 2$, the coefficient on the second explanatory variable is NVC and the other coefficients are constants. The Default is TRUE
xconst_nvc_sel	If TRUE, with/without NVC on xconst is selected. If FALSE, NVCs are assumed across xconst. Alternatively, xconst_nvc_sel can be given by column number(s) of xconst. For example, if xconst_nvc_sel = 2, the coefficient on xconst[,2] becomes constant + NVC while the other coefficients become constants. The Default is TRUE
nvc_num	Number of natural spline basis functions to be used in NVC. Default is 5
meig	Moran eigenvectors and eigenvalues. Output from meigen or meigen_f
method	Estimation method. Restricted maximum likelihood method ("reml") and maximum likelihood method ("ml") are available. Default is "reml"
penalty	Penalty for model estimation and selection. "bic" for the Baysian information criterion-type penalty (N $x \log(K)$) and "aic" for the Akaike information criterion (2K). Default is "bic"
nongauss	Parameter setup for modeling non-Gaussian continuous and count data. Output from nongauss_y
miniter	Minimum number of iterations. Default is NULL
maxiter	Maximum number of iterations. Default is 30
tol	The tolerance for matrix inversion. Some errors regarding singular fit can be avoided by reducing the value, but the output can be unstable. Default is 1e-30

Details

For modeling non-Gaussian data including count data, see nongauss_y.

Value

b_vc	Matrix of estimated spatially/spatio-temporally varying coefficients (S(T)VC + NVC) on x (N x K)
bse_vc	Matrix of standard errors for the varying coefficients on x (N x k)
t_vc	Matrix of t-values for the coefficients on x (N x K)
p_vc	Matrix of p-values for the coefficients on x (N x K)
B_vc_s	List of the estimated $S(T)VCs$ in b_vc (= $S(T)VC + NVC$). The elements are the $S(T)VCs$ (N x K), the standard errors (N x K), t-values (N x K), and p-values (N x K), respectively
B_vc_n	List of the estimated NVCs in b_vc (= $S(T)VC + NVC$). The elements are the NVCs (N x K), the standard errors (N x K), t-values (N x K), and p-values (N x K), respectively
С	Matrix with columns for the estimated coefficients on xconst, their standard errors, t-values, and p-values ($K_c \times 4$). Effective if $x = FALSE$
c_vc	Matrix of estimated NVCs on xconst (N x K_c). Effective if xconst_nvc = TRUE

cse_vc	Matrix of standard errors for the NVCs on xconst (N x k_c). Effective if xconst_nvc = TRUE
ct_vc	Matrix of t-values for the NVCs on xconst (N x K_c). Effective if xconst_nvc = TRUE
cp_vc	Matrix of p-values for the NVCs on xconst (N x K_c). Effective if xconst_nvc = TRUE
b_g	List of K_g matrices with columns for the estimated group effects, their standard errors, and t-values
S	List of the variance parameters for the varying coefficient on x. The first element is a 2 x K matrix summarizing variance parameters for S(T)VC. The (1, k)-th element is the standard deviation of the k-th SVC, while the (2, k)-th element is the Moran's I value that is scaled to take a value between 0 (no spatial dependence) and 1 (strongest spatial dependence). Based on Griffith (2003), the scaled Moran'I value is interpretable as follows: 0.25-0.50:weak; 0.50-0.70:moderate; 0.70-0.90:strong; 0.90-1.00:marked. The second element of s is the vector of standard deviations of the NVCs
S_C	Vector of standard deviations of the NVCs on xconst
s_g	Vector of standard deviations of the group effects
VC	List indicating whether S(T)VC/NVC are removed or not during the BIC minimization. 1 indicates not removed (replaced with constant) whreas 0 indicates removed
e	Error statistics. When y_type="continuous", it includes residual standard error (resid_SE), adjusted conditional R2 (adjR2(cond)), restricted log-likelihood (rlogLik), Akaike information criterion (AIC), and Bayesian information criterion (BIC). rlogLik is replaced with log-likelihood (logLik) if method = "ml". resid_SE is replaced with the residual standard error for the transformed y (resid_SE_trans) if nongauss is specified. When y_type="count", the error statistics includes root mean squared error (RMSE), Gaussian likelihood approximating the model, AIC and BIC based on the likelihood, and the proportion of the null deviance explained by the model (deviance explained (%)). deviance explained, which is also used in the mgcv package, corresponds to the adjusted R2 in case of the linear regression
pred	ror (resid_SE), adjusted conditional R2 (adjR2(cond)), restricted log-likelihood (rlogLik), Akaike information criterion (AIC), and Bayesian information criterion (BIC). rlogLik is replaced with log-likelihood (logLik) if method = "ml". resid_SE is replaced with the residual standard error for the transformed y (resid_SE_trans) if nongauss is specified. When y_type="count", the error statistics includes root mean squared error (RMSE), Gaussian likelihood approximating the model, AIC and BIC based on the likelihood, and the proportion of the null deviance explained by the model (deviance explained (%)). deviance explained, which is also used in the mgcv package, corresponds to the adjusted R2 in case of the
	ror (resid_SE), adjusted conditional R2 (adjR2(cond)), restricted log-likelihood (rlogLik), Akaike information criterion (AIC), and Bayesian information criterion (BIC). rlogLik is replaced with log-likelihood (logLik) if method = "ml". resid_SE is replaced with the residual standard error for the transformed y (resid_SE_trans) if nongauss is specified. When y_type="count", the error statistics includes root mean squared error (RMSE), Gaussian likelihood approximating the model, AIC and BIC based on the likelihood, and the proportion of the null deviance explained by the model (deviance explained (%)). deviance explained, which is also used in the mgcv package, corresponds to the adjusted R2 in case of the linear regression Matrix of predicted values for y (pred) and their standard errors (pred_se) (N x 2). If y is transformed by specifying nongauss_y, the predicted values in the
pred	ror (resid_SE), adjusted conditional R2 (adjR2(cond)), restricted log-likelihood (rlogLik), Akaike information criterion (AIC), and Bayesian information criterion (BIC). rlogLik is replaced with log-likelihood (logLik) if method = "ml". resid_SE is replaced with the residual standard error for the transformed y (resid_SE_trans) if nongauss is specified. When y_type="count", the error statistics includes root mean squared error (RMSE), Gaussian likelihood approximating the model, AIC and BIC based on the likelihood, and the proportion of the null deviance explained by the model (deviance explained (%)). deviance explained, which is also used in the mgcv package, corresponds to the adjusted R2 in case of the linear regression Matrix of predicted values for y (pred) and their standard errors (pred_se) (N x 2). If y is transformed by specifying nongauss_y, the predicted values in the transformed/normalized scale are added as another column named pred_trans Matrix of the quantiles for the predicted values (N x 15). It is useful to evaluate
<pre>pred pred_quantile</pre>	ror (resid_SE), adjusted conditional R2 (adjR2(cond)), restricted log-likelihood (rlogLik), Akaike information criterion (AIC), and Bayesian information criterion (BIC). rlogLik is replaced with log-likelihood (logLik) if method = "ml". resid_SE is replaced with the residual standard error for the transformed y (resid_SE_trans) if nongauss is specified. When y_type="count", the error statistics includes root mean squared error (RMSE), Gaussian likelihood approximating the model, AIC and BIC based on the likelihood, and the proportion of the null deviance explained by the model (deviance explained (%)). deviance explained, which is also used in the mgcv package, corresponds to the adjusted R2 in case of the linear regression Matrix of predicted values for y (pred) and their standard errors (pred_se) (N x 2). If y is transformed by specifying nongauss_y, the predicted values in the transformed/normalized scale are added as another column named pred_trans Matrix of the quantiles for the predicted values (N x 15). It is useful to evaluate uncertainty in the predictive value List of the parameter estimates for the tr_num SAL transformations. The k-th element of the list includes the four parameters for the k-th SAL transformation
<pre>pred pred_quantile tr_par</pre>	ror (resid_SE), adjusted conditional R2 (adjR2(cond)), restricted log-likelihood (rlogLik), Akaike information criterion (AIC), and Bayesian information criterion (BIC). rlogLik is replaced with log-likelihood (logLik) if method = "ml". resid_SE is replaced with the residual standard error for the transformed y (resid_SE_trans) if nongauss is specified. When y_type="count", the error statistics includes root mean squared error (RMSE), Gaussian likelihood approximating the model, AIC and BIC based on the likelihood, and the proportion of the null deviance explained by the model (deviance explained (%)). deviance explained, which is also used in the mgcv package, corresponds to the adjusted R2 in case of the linear regression Matrix of predicted values for y (pred) and their standard errors (pred_se) (N x 2). If y is transformed by specifying nongauss_y, the predicted values in the transformed/normalized scale are added as another column named pred_trans Matrix of the quantiles for the predicted values (N x 15). It is useful to evaluate uncertainty in the predictive value List of the parameter estimates for the tr_num SAL transformations. The k-th element of the list includes the four parameters for the k-th SAL transformation (see nongauss_y)

ро	lf	Matrix whose first column consists of evenly spaced values within the value range of y and the second column consists of the estimated value of the probability density function for y if y_type in nongauss_y is "continuous" and probability mass function if y_type = "count". If offset is specified (and y_type = "count"), the PMF given median offset value is evaluated
sk	kew_kurt	Skewness and kurtosis of the estimated probability density/mass function of y
ot	cher	List of other outputs, which are internally used

Author(s)

Daisuke Murakami

References

Murakami, D., Yoshida, T., Seya, H., Griffith, D.A., and Yamagata, Y. (2017) A Moran coefficient-based mixed effects approach to investigate spatially varying relationships. Spatial Statistics, 19, 68-89.

Murakami, D., Kajita, M., Kajita, S. and Matsui, T. (2021) Compositionally-warped additive mixed modeling for a wide variety of non-Gaussian data. Spatial Statistics, 43, 100520.

Murakami, D., and Griffith, D.A. (2021) Balancing spatial and non-spatial variations in varying coefficient modeling: a remedy for spurious correlation. Geographical Analysis, DOI: 10.1111/gean.12310.

Murakami, D., Shirota, S., Kajita, S., and Kajita, S. (2024) Fast spatio-temporally varying coefficient modeling with reluctant interaction selection. ArXiv.

Griffith, D. A. (2003) Spatial autocorrelation and spatial filtering: gaining understanding through theory and scientific visualization. Springer Science & Business Media.

See Also

```
meigen, meigen_f, coef_marginal, besf_vc, addlearn_local
```

```
require(spdep)
data(boston)
     <- boston.c[, "CMEDV"]
     <- boston.c[,c("CRIM", "AGE")]</pre>
xconst <- boston.c[,c("ZN","DIS","RAD","NOX", "TAX","RM", "PTRATIO", "B")]</pre>
xgroup <- boston.c[,"TOWN"]</pre>
coords <- boston.c[,c("LON", "LAT")]</pre>
     <- meigen(coords=coords)
# meig <- meigen_f(coords=coords) ## for large samples</pre>
###### Gaussian regression with SVC ##############
res
     <- resf_vc(y=y,x=x,xconst=xconst,meig=meig )</pre>
```

```
plot_s(res,0) # Spatially varying intercept
plot_s(res,1) # 1st SVC (Not shown because the SVC is estimated constant)
plot_s(res,2) # 2nd SVC
#### For large samples (e.g., n > 5,000), the following
#### additional learning often improves the modeling accuracy
# res_adj<- addlearn_local(res)</pre>
# res_adj
# plot_s(res_adj,0)
# plot_s(res_adj,1)
# plot_s(res_adj,2)
#### Group-level SVC (s_id) + random intercepts (xgroup)
# meig_g <- meigen(coords, s_id=xgroup)</pre>
# res2 <- resf_vc(y=y,x=x,xconst=xconst,meig=meig_g,xgroup=xgroup)</pre>
###### Gaussian regression with SVC + NVC #########
# res3 <- resf_vc(y=y,x=x,xconst=xconst,meig=meig, x_nvc =TRUE)</pre>
# plot_s(res3,0)
                         # Spatially varying intercept
                       # Spatial plot of the varying coefficient (SVC + NVC) on x[,1]
# plot_s(res3,1)
# plot_s(res3,1,btype="svc")# Spatial plot of SVC in the coefficient
# plot_s(res3,1,btype="nvc")# Spatial plot of NVC in the coefficient
                          # 1D plot of the NVC
# plot_n(res3,1)
####### Non-Gaussian regression with SVC #########
#### Model for non-Gaussian continuous data
# - Probability distribution is estimated from data
         <- nongauss_y( tr_num = 2 )# 2 SAL transformations to Gaussianize y
# ng4
# res4 <- resf_vc(y=y,x=x,xconst=xconst,meig=meig, nongauss = ng4 )</pre>
# res4
                         # tr_num may be selected by comparing BIC
# coef_marginal_vc(res4) # marginal effects from x (dy/dx)
# plot(res4$pdf,type="1") # Estimated probability density function
# res4$skew_kurt
                 # Skew and kurtosis of the estimated PDF
# res4$pred_quantile[1:2,]# predicted value by quantile
#### Model for non-Gaussian and non-negative continuous data
# - Probability distribution is estimated from data
## 2 SAL trans. + 1 Box-Cox trans. to Gaussianize y
        <- nongauss_y( tr_num = 2, y_nonneg = TRUE )</pre>
# ng5
# res5 <- resf_vc(y=y,x=x,xconst=xconst,meig=meig, nongauss = ng5 )</pre>
# coef_marginal_vc(res5)
```

42 weigen

```
#### Overdispersed Poisson model for count data
# - y: count data
       <- nongauss_y( y_type = "count" )</pre>
#ng6
       <- resf_vc(y=y,x=x,xconst=xconst,meig=meig, nongauss = ng6 )</pre>
#res6
#### General model for count data
# - y: count data
# - Probability distribution is estimated from data
       <- nongauss_y( y_type = "count", tr_num = 2 )</pre>
#ng7
       <- resf_vc(y=y,x=x,xconst=xconst,meig=meig, nongauss = ng7 )</pre>
#res7
# See \url{https://github.com/dmuraka/spmoran}
#require(spData)
#data(house)
#dat0
        <- st_as_sf(house)
#dat
        <- data.frame(st_coordinates(dat0), dat0)
       <- log(dat[,"price"])
#y
        <- dat[,c("lotsize","TLA")]</pre>
#x
#xconst <- dat[,c("rooms","beds")]</pre>
#byear <- house$yrbuilt</pre>
#syear <- as.numeric(as.character(house$syear))#factor -> numeric
#coords_z<- cbind(byear,syear)</pre>
#meig <- meigen_f(coords=coords, coords_z=cbind(byear,syear),interact=TRUE)</pre>
#res8
        <- resf_vc(y=y,x=x,xconst=xconst,meig=meig )</pre>
#res8
## Varying intercept for byear <=1950 and syear==1998
#plot_s(res8,0, coords_z1_lim=c(-Inf, 1950),coords_z2_lim=1998)
## 1st STVCs which are significant at the 5 percent level, for byear <= 1950
#plot_s(res8,1, coords_z1_lim=c(-Inf, 1950), pmax=0.05)
## 2nd STVC for byear >= 1951
#plot_s(res8,2, coords_z1_lim=c(1951,Inf))
```

weigen

Extract eigenvectors from a spatial weight matrix

Description

This function extracts eigenvectors and eigenvalues from a spatial weight matrix.

weigen 43

Usage

```
weigen( x = NULL, type = "knn", k = 4, threshold = 0.25, enum = NULL)
```

Arguments

x Matrix of spatial point coordinates (N x 2), sf polygon object (N spatial units),

or an user-specified spatial weight matrix (N x N) (see Details)

type Type of spatial weights. The currently available options are "knn" for the k-

nearest neighbor-based weights, and "tri" for the Delaunay triangulation-based weights. If sf polygons are provided for x, type is ignored, and the rook-type

neighborhood matrix is created

k Number of nearest neighbors. It is used if type ="knn"

threshold Threshold for the eigenvalues (scalar). Suppose that lambda_1 is the maxi-

mum eigenvalue. Then, this fucntion extracts eigenvectors whose corresponding eigenvalues are equal or greater than [threshold x lambda_1]. It must be a value

between 0 and 1. Default is 0.25 (see Details)

enum Optional. The muximum acceptable mumber of eigenvectors to be used for

spatial modeling (scalar)

Details

If user-specified spatial weight matrix is provided for x, this function returns the eigen-pairs of the matrix. Otherwise, if sf polygon object is provided to x, the rook-type neighborhood matrix is created using this polygon, and eigen-decomposed. Otherwise, if point coordinats are provided to x, a spatial weight matrix is created according to type, and eigen-decomposed.

By default, the ARPACK routine is implemented for fast eigen-decomposition.

threshold = 0.25 (default) is a standard setting for topology-based ESF (see Tiefelsdorf and Griffith, 2007) while threshold = 0.00 is a usual setting for distance-based ESF.

Value

sf Matrix of the first L eigenvectors (N x L)

ev Vector of the first L eigenvalues (L x 1)

other List of other outcomes, which are internally used

Author(s)

Daisuke Murakami

References

Tiefelsdorf, M. and Griffith, D.A. (2007) Semiparametric filtering of spatial autocorrelation: the eigenvector approach. Environment and Planning A, 39 (5), 1193-1221.

Murakami, D. and Griffith, D.A. (2018) Low rank spatial econometric models. Arxiv, 1810.02956.

44 weigen

See Also

```
meigen, meigen_f
```

```
require(spdep)
data(boston)
######## Rook adjacency-based W
        <- st_read(system.file("shapes/boston_tracts.shp",package="spData")[1])</pre>
poly
         <- weigen( poly )
weig1
####### knn-based W
coords <- boston.c[,c("LON", "LAT")]</pre>
weig2
         <- weigen( coords, type = "knn" )</pre>
######## Delaunay triangulation-based W
coords
       <- boston.c[,c("LON", "LAT")]</pre>
weig3
         <- weigen( coords, type = "tri")
######## User-specified W
dmat
      <- as.matrix(dist(coords))
         <- exp(-dmat)
cmat
diag(cmat)<- 0
      <- weigen( cmat, threshold = 0 )</pre>
weig4
```

Index

```
addlearn_local, 2, 8, 11, 27, 28, 37, 40
besf, 5, 25, 27, 28, 33
besf_vc, 2-4, 8, 25, 27, 28, 40
coef_marginal, 12, 33, 40
{\tt coef\_marginal\_vc}, 13
esf, 13, 28
1sem, 15, 18
1slm, 17
meigen, 14, 16, 18, 20-22, 27, 31, 33, 35, 38,
          40, 44
meigen0, 3, 20, 28, 29
meigen_f, 14, 16, 20, 21, 21, 27, 31, 33, 35,
          38, 40, 44
nongauss_y, 12, 13, 23, 28, 30–32, 37–40
par, 26
plot_n, 25
plot_qr, 26, 36
plot_s, 27
predict0, 28
resf, 7, 12, 15, 24, 25, 27–29, 30
\mathsf{resf\_qr}, \textcolor{red}{26}, \textcolor{blue}{34}
resf_vc, 2-4, 11, 13, 24, 25, 27, 28, 37
weigen, 15, 17, 18, 42
```