Package ‘stagedtrees’

February 14, 2024
Type Package
Title Staged Event Trees
Version 2.3.0

Description Creates and fits staged event tree probability models,
which are probabilistic graphical models capable of representing
asymmetric conditional independence statements
for categorical variables.

Includes functions to create, plot and fit staged

event trees from data, as well as many efficient structure
learning algorithms.

References:

Carli F, Leonelli M, Riccomagno E, Varando G (2022).
<doi:10.18637/jss.v102.106>.

Collazo R. A., Gorgen C. and Smith J. Q.

(2018, ISBN:9781498729604).

Gorgen C., Bigatti A., Riccomagno E. and Smith J. Q. (2018)
<arXiv:1705.09457>.

Thwaites P. A., Smith, J. Q. (2017) <arXiv:1510.00186>.
Barclay L. M., Hutton J. L. and Smith J. Q. (2013)
<doi:10.1016/j.ijar.2013.05.006>.

Smith J. Q. and Anderson P. E. (2008)
<doi:10.1016/j.artint.2007.05.004>.

License MIT + file LICENSE
Encoding UTF-8

LazyData true
RoxygenNote 7.3.1

URL https://github.com/stagedtrees/stagedtrees

BugReports https://github.com/stagedtrees/stagedtrees/issues
Imports stats, graphics, cli, rlang, matrixStats

Suggests testthat (>= 3.0.0), bnlearn, covr, clue, igraph
Config/testthat/edition 3

Depends R (>=2.10)

https://doi.org/10.18637/jss.v102.i06
https://arxiv.org/abs/1705.09457
https://arxiv.org/abs/1510.00186
https://doi.org/10.1016/j.ijar.2013.05.006
https://doi.org/10.1016/j.artint.2007.05.004
https://github.com/stagedtrees/stagedtrees
https://github.com/stagedtrees/stagedtrees/issues

2 R topics documented:

NeedsCompilation no

Author Gherardo Varando [aut, cre] (<https://orcid.org/0000-0002-6708-1103>),
Federico Carli [aut],
Manuele Leonelli [aut] (<https://orcid.org/0000-0002-2562-5192>),
Eva Riccomagno [aut]

Maintainer Gherardo Varando <gherardo.varando@gmail.com>
Repository CRAN
Date/Publication 2024-02-14 11:50:02 UTC

R topics documented:

as.character.parentslist 3
ASYM . . L o e e 4
as_adj_matriX e e e e e e e e e e e 5
AS_ DN . L e 5
as_parentslist L 6
AS_SEVE . . o o e e e e e e 7
barplot.sevt L e e e e 8
CEE . o v v e e 9
Cid . . e e e e 10
CI_MALTICES v ot it e e e e e e e e e e e e e e e e e 11
COMPATE_SLAZES . . .« « v v v e v v e e e e e e e e e e e e e e e e e e 11
confint.SeVt e e e e 13
Covid_patients e e e e e e e e e e 15
depsubtreeo L e 17
fullindep 18
generate_linear_dataset e e 20
generate_random_dataset oL 21
generate_xor_dataset L 21
GEE_SLAZE e 22
1graph-conversion e e e e e e 23
INClUSIONS_Stages e e e e 25
JOIN_POSIIONS v v o o o e e e 26
join_unobserved L e e 26
logLik.sevt o e e e 27
Ir teSt . . . e s, 28
PhDATrticles e e e e 29
PIOL.CEE . . . o e e e e 30
PIOLSEVE . . . o o e e e 31
Pokemon e e e 33
predict.SeVE . . . L L e e e e e e 34
PrinLSEVE L e e e e 35
PIOb . o 36
random_parentslist L. e 37
random_SevVt e e e e e 38

TENAME_STAZE . . .« . v vttt e e e e e e e e e e e e e e e e 39

https://orcid.org/0000-0002-6708-1103
https://orcid.org/0000-0002-2562-5192

as.character.parentslist 3

sample_from L L e e e 40
search_best L e 40
search_greedy 41
SEVE o e e e e e e e s 42
sevi_add e, 44
sevt_df e e e 45
SEVE_fIt . . . o e, 45
SEVE TIVAT . v v v v v e e e e e e e e e e e 46
seve_simplify oL 47
SEVE_VAIMAIMES . .+« v v v v e e e e e e e e e e e e e 48
Stagedtrees L e e e e e e 48
SLAZES . . . e e e e e e e 50
stages_bhc L L e 52
stages_bher 53
stages_bj ... 54
stages_csbhe L. L e 55
stages_fbhe L 56
stages_hc . . . L e 57
stages_hclust L 58
stages_kmeans L. L e e e 60
stages_simplebhc oL 61
stndnaming L. e 62
SUDIICE o o e e e e e e e e e e e e e 63
SUMMATY.SEVE . . ¢ . v v v v bt e e e e e e e e e e e e e e e 64
EEXLSEVE . . o o e e e e e e e e e e e e e e e e e e 64
traJectories v v e e e e e e 65
write_tiKz e e e 67
Index 70

as.character.parentslist
Print a parentslist object

Description

Nice print of a parentslist object

Usage

S3 method for class 'parentslist'
as.character(x, only_parents = FALSE, ...)

S3 method for class 'parentslist'
print(x, ...)

4 Asym

Arguments

X an object of class parentslist.
only_parents logical, if the basic DAG encoding is to be returned.

additional arguments for compatibility.

Value

as.character.parentslist returns a string encoding the associated directed graph and eventually
the context specific independences. The encoding is similar to the one returned by modelstring in
package bnlearn and package deal. In particular, parents of a variable can be enclosed in:

* () if a partial (conditional) independence is present.

» { }if a context specific independence is present.

e <> if no context specific and partial (conditional) independences are present, but at least a

local independence is detected.

If a parent is not enclosed in parenthesis the dependence is full.

If only_parents = TRUE, the simple DAG encoding as in bnlearn is returned.

Examples

model <- stages_hclust(full(Titanic), k = 2)
pl <- as_parentslist(model)

pl

as.character(pl)

as.character(pl, only_parents = TRUE)

Asym Asym dataset

Description

Artificial dataset with observations from four variables having a non-symmetrical conditional inde-
pendence structure.

Usage
Asym

Format

A data frame with 1000 observations of 4 binary variables.

Source

The data has been generated by Federico Carli <carli@dima.unige>.

as_adj_matrix

as_adj_matrix Convert to an adjacency matrix

Description

Convert to an adjacency matrix

Usage

as_adj_matrix(x, ...)

S3 method for class 'parentslist'
as_adj_matrix(x, ...)

S3 method for class 'ceg'
as_adj_matrix(x, ignore = x$name_unobserved, endnode = TRUE,

Arguments
X an R object
additional parameters
ignore list of stages to be ignored.
endnode logical value. If TRUE a final node fil be added.
Value

the equivalent adjacency matrix

for as_adj_matrix.ceg: the adj matrix corresponding to the CEG.

L)

as_bn Convert to a bnlearn object

Description

Convert a staged tree object into an object of class bn from the bnlearn package.

Usage

as_bn(x)

S3 method for class 'parentslist'
as_bn(x)

S3 method for class 'sevt'
as_bn(x)

6 as_parentslist

Arguments

X an R object of class sevt or parentslist.

Value

an object of class bn from package bnlearn.

as_parentslist Obtain the equivalent DAG as list of parents

Description

Convert to the equivalent representation as list of parents.

Usage

as_parentslist(x, ...)

S3 method for class 'bn'
as_parentslist(x, order = NULL, ...)

S3 method for class 'bn.fit'
as_parentslist(x, order = NULL, ...)

S3 method for class 'sevt'

as_parentslist(x, silent = FALSE, ...)
Arguments
X an R object.

additional parameters.

order order of the variables, usually a topological order.
silent if function should be silent.
Details

The output of this function is an object of class parentslist which is one of the possible encoding
for a directed graph. This is mainly an internal class and its specification can be changed in the
future. For example, now it may also include information on the sample space of the variables and
the context/partial/local independences.

In as_parentslist.sevt, if a context-specific or a local-partial independence is detected a mes-
sage is printed (if silent = FALSE) and the minimal super-model is returned.

as_sevt

Value

An object of class parentslist for which a print method exists. Basically a list with one entries
for each variable with fields:

See Also

parents The parents of the variable.
context Where context independences are detected.
partial Where partial independences are detected.

local Where no context/partial independences are detected, but local independences are
present.

values values for the variable.

print.parentslist and as.character.parentslist for the parenthesis-encoding of the DAG
structure and the asymmetric independences.

Examples

model <- stages_hclust(full(Titanic), k = 2)
pl <- as_parentslist(model)
pl$Age

as_sevt Coerce to sevt

Description

Convert to an equivalent object of class sevt.

Usage

as_sevt(x, ...)

S3 method for class 'bn.fit'
as_sevt(x, order = NULL, ...)

S3 method for class 'bn'
as_sevt(x, order = NULL, values = NULL, ...)

S3 method for class 'parentslist'

as_sevt(x, order = NULL, values = NULL, ...)
Arguments
X an R object.

additional parameters to be used by specific methods.

order order of the variables.

values the values for each variable, the sample space.

8 barplot.sevt

Details

In as_sevt.bn.fit the order argument, if provided, must be a topological order of the bn.fit
object (no check is performed). If the order is not provided a topological order will be used (the one
returned by bnlearn: :node.ordering).

In as_sevt.parentslist the order argument, if provided, must be a topological order of the
corresponding DAG (no check is performed). If the order is not provided names (x) is used.

The values parameter is used to specify the sample space of each variable. For a parentslist
object created with as_parentslist from an object of class sevt, it is, usually, not needed to
specify the values parameter, since the sample space is saved in the parentslist object.

Value

the equivalent object of class sevt.

Examples

model <- stages_hclust(full(Titanic), k = 2)

plot(model)

pl <- as_parentslist(model)

model2 <- as_sevt(pl)

plot(model2) ## this is a super-model of the first staged tree
we can check it with

inclusions_stages(model, model2)

barplot.sevt Bar plots of stage probabilities

Description

Create a bar plot visualizing probabilities associated to the different stages of a variable in a staged
event tree.

Usage

S3 method for class 'sevt'
barplot(
height,
var,
ignore = height$name_unobserved,
beside = TRUE,
horiz = FALSE,
legend. text = FALSE,
col = NULL,
xlab = ifelse(horiz, "probability”, NA),
ylab = ifelse(!horiz, "probability", NA),

ceg

Arguments

height
var

ignore

beside
horiz
legend. text
col

xlab

ylab

Value

an object of class sevt.
name of a variable in object.

vector of stages which will be ignored and left untouched, by default the name
of the unobserved stages stored in object$name_unobserved.

a logical value. See barplot.

a logical value. See barplot.

logical.

color mapping for the stages, see col argument in plot.sevt.
a label for the x axis.

a label for the y axis.

additional arguments passed to barplot.

As barplot: A numeric vector (or matrix, when beside = TRUE), giving the coordinates of all the
bar midpoints drawn, useful for adding to the graph.

Examples

model <- stages_fbhc(full(PhDArticles, lambda = 1))
barplot(model, "Kids", beside = TRUE)

ceg

Chain event graph (CEG)

Description

Build the CEG representation from an object of class sevt.

Usage
ceg(object)

Arguments

object

Details

an object of class sevt.

An object of class ceg is a staged event tree object with additional information on the positions.

Value

an object of class ceg.

10 cid

Examples

DD <- generate_xor_dataset(3, 100)
model <- stages_bhc(full(DD))
model.ceg <- ceg(model)
model.ceg$positions

cid Context specific interventional discrepancy

Description
Compute the context specific interventional discrepeancy of a staged tree with respect to a reference
staged tree.

Usage

cid(objectl, object2, FUN = mean)

Arguments
object1 an object of class sevt.
object?2 an object of class sevt.
FUN a function that is used to aggregate CID for each variable. The default mean will
obtain the CID as defined in Leonelli and Varando (2023).
Value

A list with components:

* wrong a stages-like structure which record where object2 wrongly infer the interventional
distance with respect to object1.

* cid the value of the computed CID.

References

Leonelli M., Varando G. Context-Specific Causal Discovery for Categorical Data Using Staged
Trees, The 26th International Conference on Artificial Intelligence and Statistics (AISTATS), 2023,
https://arxiv.org/abs/2106.04416

Examples

modell <- stages_bhc(full(Titanic))
model2 <- stages_bhc(full(Titanic,
order = c("Survived”, "Sex", "Age", "Class")
))
cid(modell, model2)$cid
cid(modell, model2)$wrong

https://arxiv.org/abs/2106.04416

ci_matrices 11

ci_matrices Conditional independences matrices of stages

Description

Generate the sequence of all the conditional independences matrices of stages for a given variable
in the model.

Usage

ci_matrices(object, var)

Arguments

object an object of class sevt.

var string, the name of one of the variables in object.
Value

A list with i-1 matrices, where i is the depth of variable var in the tree.

Examples

mod <- sevt(list(A = c("a", "aa"),

= c("b", "bb", "bbb"),

= c("c", "cc")), full = TRUE)

= "a", B = c("b", "bb")] <- "stagel”
= "aa"] <- "stage2"

= "a", B = "bbb"] <- "stage2"

stages(mod)["C",
stages(mod)["C",
stages(mod)["C",

> > > O W
|

ci_matrices(mod, "C")

compare_stages Compare two staged event tree

Description

Compare two staged event trees, return the differences of the stages structure and plot the difference
tree. Three different methods to compute the difference tree are available (see Details).

12 compare_stages

Usage

compare_stages(
object1,
object2,
method = "naive”,
return_tree = FALSE,
plot = FALSE,

hamming_stages(object1, object2, return_tree = FALSE)

diff_stages(objectl, object2)

Arguments
object1 an object of class sevt.
object?2 an object of class sevt.
method character, method to compare staged event trees. One of: "naive”, "hamming”
or "stages".
return_tree logical, if TRUE the difference tree is returned.
plot logical.
additional parameters to be passed to plot.sevt.
Details

compare_stages tests if the stage structure of two sevt objects is the same. Three methods are
available:

* naive first applies stndnaming to both objects and then simply compares the resulting stage
names.

* hamming uses the hamming_stages function that finds a minimal subset of nodes which stages
must be changed to obtain the same structure.

* stages uses the diff_stages function that compares stages to check whether the same stage
structure is present in both models.

Setting return_tree = TRUE will return the stages difference obtained with the selected method.
The stages difference is a list of numerical vectors with same lengths and structure as stages(object1)
or stages(object2), where values are 1 if the corresponding node has different (with respect to
the selected method) associated stage, and 0 otherwise.

With plot = TRUE the plot of the difference tree is displayed.

If return_tree = FALSE and plot = FALSE the logical output is the same for the three methods and
thus the naive method should be used since it is computationally faster.

hamming_stages finds a minimal set of nodes for which the associated stages should be changed to
obtain equivalent structures. To do that, a maximum-weight bipartite matching problem between the
stages of the two staged trees is solved using the Hungarian method implemented in the solve_LSAP
function of the clue package. hamming_stages requires the package clue.

confint.sevt 13

Value

compare_stages: if return_tree = FALSE, logical: TRUE if the two models are exactly equal,
otherwise FALSE. Else if return_tree = TRUE, the differences between the two trees, according to
the selected method.

hamming_stages: if return_tree = FALSE, integer, the minimum number of situations where the
stage should be changed to obtain the same models. If return_tree = TRUE a stages-like structure
showing which situations should be modified to obtain the same models.

diff_stages: a stages-like structure marking the situations belonging to stages which are not the
exactly equal.

Examples

data("Asym")

mod1 <- stages_bhc(full(Asym, lambda = 1))
mod2 <- stages_fbhc(full(Asym, lambda = 1))
compare_stages(mod1, mod2)

HHHHHHEE

m@ <- full(PhDArticles[, 1:4], lambda = @)

ml <- stages_bhc(mo)

m2 <- stages_bj(m@, distance = "totvar”, thr = 0.25)
diff_stages(ml, m2)

confint.sevt Confidence intervals for staged event tree parameters

Description

Confint method for class sevt.

Usage

S3 method for class 'sevt'
confint(
object,
parm,
level = 0.95,
method = c("wald”, "waldcc”, "wilson”, "goodman", "quesenberry-hurst"),
ignore = object$name_unobserved,

Arguments

object an object of class sevt.

14

parm

level

method

ignore

Details

confint.sevt

a specification of which parameters are to be given confidence intervals, either
a vector of numbers or a vector of names. If missing, all parameters are consid-
ered.

the confidence level required.

a character string specifing which method to use: wald", "waldcc", "goodman",
"quesenberry-hurst"” or "wilson".

vector of stages which will be ignored, by default the name of the unobserved
stages stored in object$name_unobserved.

additional argument(s) for compatibility with confint methods.

Compute confidence intervals for staged event trees. Currently five methods are available:

* wald, waldcc: Wald method and with continuity correction.

* wilson, quesenberry-hurst and goodman.

Value

A matrix with columns giving lower and upper confidence limits for each parameter. These will be
labelled as (1-1level)/2 and 1 - (1-1level)/2 in % (by default 2.5% and 97.5%).

Author(s)

The function is partially inspired by code in the MultinomCI function from the DescTools package,
implemented by Andri Signorelli and Pablo J. Villacorta Iglesias.

References

Goodman, L. A. (1965) On Simultaneous Confidence Intervals for Multinomial Proportions Tech-
nometrics, 7, 247-254.

Wald, A. Tests of statistical hypotheses concerning several parameters when the number of obser-
vations is large, Trans. Am. Math. Soc. 54 (1943) 426-482.

Wilson, E. B. Probable inference, the law of succession and statistical inference, J.Am. Stat. Assoc.
22 (1927) 209-212.

Quesenberry, C., & Hurst, D. (1964). Large Sample Simultaneous Confidence Intervals for Multi-
nomial Proportions. Technometrics, 6(2), 191-195

Examples

ml <- stages_bj(full(PhDArticles), distance = "kullback”, thr = 0.01)
confint(ml, "Prestige”, level = 0.90)

confint(ml, "Married”, method = "goodman")

confint(ml, c("Married”, "Kids"))

covid_patients 15

covid_patients Trajectories of hospitalized SARS-CoV-2 patients

Description

Dataset with observations from four variables (Sex, Age, ICU, death) for 10000 simulated SARS-
CoV-2 hospital patients.
Usage

covid_patients

Format

A data frame with 10000 observations of 4 variables. The variables and their levels are as follows:

¢ Sex: Female, Male

Age: 0-39, 40-49, 50-59, 60-69, 70-79, 80+

e ICU: yes, no

* death: yes, no

Details

The data are simulated from an event tree where conditional probabilities for ICU and death are
taken from the results of Lefrancq et al. (2021). Lefrancq et al. (2021) estimated such probabilities
from data on patients, recorded in the SI-VIC database, who started their hospitalization between
13 March and 30 November 2020.

Source

The data has been generated with the code in the Examples section. Conditional probabilities were
copied from the tables in the Supplementary materials of Lefrancq et al. (2021). Marginal probabil-
ities of gender and probabilities of age given gender were instead obtained from the linked GitHub
repository https://github.com/noemielefrancq/Evolution-Outcomes-COVID19-France.

References

Leonelli, M. and Varando, G. (2023). Context-Specific Causal Discovery for Categorical Data Us-
ing Staged Trees. Proceedings of The 26th International Conference on Artificial Intelligence and
Statistics, in Proceedings of Machine Learning Research 206:8871-8888 Available from https://proceedings.mlr.press/v206/le

Lefrancq N., Paireau J., Hozé N., Courtejoie N., Yazdanpanah Y., Bouadma L. (2021). Evolution
of outcomes for patients hospitalised during the first 9 months of the SARS-CoV-2 pandemic in
France: A retrospective national surveillance data analysis. The Lancet Regional Health - Europe,
5:100087.

https://github.com/noemielefrancq/Evolution-Outcomes-COVID19-France

16

Examples

library(stagedtrees)

data_model <- sevt(list(
c("Female”, "Male"),

Sex =
Age =

c(

"9-39", "40-49", "50-59", "60-69",
"70-79" "8Q+"

))

ICU = c("yes", "no"),

death
), full

data_model$prob$Sex <- list("1" = c(Female = 0.45185, Male = 0.54815))

- c(”yes" ,

= TRUE)
data_model$prob <- list()

n

no")

dist_age_male <- c(
0.01616346, # 0 - 39
0.04159445, # 40 - 49
0.10130439, # 50 - 59
0.16825686, # 60 - 69
0.25217550, # 70 - 79
0.42050534

) # 8o+

dist_age_female <- c(
0.01688613, # @ - 39
0.04271329, # 40 - 49
0.10131681, # 50 - 59
0.16841872, # 60 - 69
0.25289366, # 70 - 79
0.41777138

) # 8o+

names(dist_age_male) <- data_model$tree$Age
names(dist_age_female) <- data_model$tree$Age
data_model$prob$Age <- list(
dist_age_female,

nn =

"2" = dist_age_male

)

data_model$prob$ICU <- list
"1" = c(yes = 0.125, no =
"2" = c(yes = 0.149, no =
"3" = c(yes = 0.193, no =
"4" = c(yes = 0.225, no =
"5" = c(yes = 0.175, no =
"6" = c(yes = 0.037, no =
"7" = c(yes = 0.197, no =
"8" = c(yes = 0.2687, no
"9" = c(yes = 0.3171, no
"10" = c(yes = 0.3415, no
"11" = c(yes = 0.274, no
"12" = c(yes = 0.073, no

—_ g

=1
=1

=1
=1

- 0.125), # Female 0-39
- 0.149), # Female 40-49
- 0.193), # Female 50-59
- 0.225), # Female 60-69
- 0.175), # Female 70-79
- 0.037), # Female 80+

- 0.197), # Male 0-39

- 0.2687), # Male 40-49
- 0.3171), # Male 50-59
1 - 0.3415), # Male 60-69
- 0.274), # Male 70-79

- 0.073) # Male 80+

covid_patients

depsubtree

)

data_model$prob$death <- list(

AR FEMALE $HHHHEHHHBHEHBHEERAHERHER R

" c(yes = 0.077, no = 1 - 0.077), # Female 0-39 ICU

npn c(yes = 0.004, no = 1 - 0.004), # Female ©-39 no-ICU
"3 c(yes = 0.117, no =1 - 0.117), # Female 40-49 ICU
"4" c(yes = 0.017, no =1 - 0.017), # Female 40-49 no-ICU
"5" c(yes = 0.185, no = 1 - 0.185), # Female 50-59 ICU
"6" c(yes = 0.030, no = 1 - 0.030), # Female 50-59 no-ICU
"7 c(yes = 0.239, no = 1 - 0.239), # Female 60-69 ICU
"g" c(yes = 0.058, no = 1 - 0.058), # Female 60-69 no-ICU
"9" c(yes = 0.324, no = 1 - 0.324), # Female 70-79 ICU
"10" = c(yes = 0.124, no =1 - 0.124), # Female 70-79 no-ICU
"11" = c(yes = 0.454, no = 1 - 0.454), # Female 80+ ICU

"12" = c(yes = 0.266, no = 1 - 0.266), # Female 80+ no-ICU
AR MALE #H
"13" = c(yes = 0.079, no = 1 - 0.079), # Male 0-39 ICU

"14" = c(yes = 0.008, no = 1 - 0.008), # Male 0-39 no-ICU
"15" = c(yes = 0.098, no = 1 - 0.098), # Male 40-49 ICU

"16" = c(yes = 0.016, no = 1 - 0.016), # Male 40-49 no-ICU
"17" = c(yes = 0.171, no =1 - 0.171), # Male 50-59 ICU

"18" = c(yes = 0.030, no =1 - 0.030), # Male 50-59 no-ICU
"19" = c(yes = 0.278, no = 1 - 0.278), # Male 60-69 ICU

"20" = c(yes = 0.067, no =1 - 0.067), # Male 60-69 no-ICU
"21" = c(yes = 0.383, no = 1 - 0.383), # Male 70-79 ICU

"22" = c(yes = 0.150, no = 1 - 0.150), # Male 70-79 no-ICU
"23" = c(yes = 0.478, no = 1 - 0.478), # Male 80+ ICU

"24" = c(yes = 0.363, no = 1 - 0.363) # Male 80+ no-ICU

covid_patients <- sample_from(data_model, 10000, seed = 123)
usethis::use_data(covid_patients, overwrite =

TRUE)

17

depsubtree

Extract dependency subtree

Description

Extract the dependency subtree of a staged tree with respect to a variable

Usage

depsubtree(object, var, other_stages = c(”"NA", "indep", "full"))

Arguments

object

var

other_stages

an object of class sevt.

the name of one of the variable of the staged event tree.

how to set stages for other variables (if any).

18 full_indep

Details

The dependency sub-tree is a staged event tree which is sufficient to describe the conditional dis-
tribution of the variable var given its predecessors in the original tree represented by object. In
particular the preceding variables are restricted to the parents of var in the minimal-DAG obtained
with as_parentslist. This is the minimal set of variables which contexts are sufficient to fully
represent the conditional distribution of var. Stages for variables different from var are either set
to NA, or to the full or indep model, depending on other_stages.

Value

an object of class sevt representing the dependency sub-tree.

Examples

mod <- stages_kmeans(full(Titanic), k = 2)

par(mfrow = c(1, 2))

plot(mod, main = "staged tree")

plot(depsubtree(mod, "Age"”), main = "dependency subtree for Age")
par(mfrow = c(1, 1))

full_indep Full and independent staged event tree

Description

Build fitted staged event tree from data.

Usage
full(
data,
order = NULL,
join_unobserved = TRUE,
lambda = 0,
name_unobserved = "UNOBSERVED"
)
S3 method for class 'table'
full(
data,

order = names(dimnames(data)),

join_unobserved = TRUE,

lambda = 0,

name_unobserved = "UNOBSERVED"
)

S3 method for class 'data.frame'

full_indep 19

full(
data,
order = colnames(data),
join_unobserved = TRUE,

lambda = 0,

name_unobserved = "UNOBSERVED"
)
indep(

data,

order = NULL,

join_unobserved = TRUE,

lambda = 0,

name_unobserved = "UNOBSERVED"
)
S3 method for class 'table'
indep(

data,

order = names(dimnames(data)),
join_unobserved = TRUE,

lambda = 0,

name_unobserved = "UNOBSERVED"
)
S3 method for class 'data.frame'
indep(

data,

order = colnames(data),
join_unobserved = TRUE,

lambda = 0,
name_unobserved = "UNOBSERVED"
)
Arguments
data data to create the model, data.frame or table.
order character vector, order of variables.

join_unobserved

logical, if situations with zero observations should be joined (default TRUE).
lambda smoothing coefficient (default 0).
name_unobserved

name to pass to join_unobserved.

Details

Functions to create full or independent staged tree models from data. The full (or saturated) staged
tree is the model where every situation is in a different stage, and thus the model has the maximum

20 generate_linear_dataset

number of parameters. Conversely, the independent staged tree (indep) assigns all the situations
related to the same variable to the same stage, thus it is equivalent to the independence factorization.

Examples

full model
DD <- generate_xor_dataset(4, 100)
model_full <- full(DD, lambda = 1)

independence model (data.frame)
DD <- generate_xor_dataset(4, 100)
model <- indep(DD, lambda = 1)
model

generate_linear_dataset
Generate a random binary dataset for classification

Description

Randomly generate a simple classification problem.

Usage
generate_linear_dataset(
P,
n’
eps = 1.2,
gamma = runif(1, min = -p, max = p),
alpha = runif(p, min = -p, max = p)
)
Arguments
p number of variables.
n number of observations.
eps noise.
gamma numeric.
alpha numeric vector of length n.
Value

A data.frame with n independent random variables and one class variable C computed as sign(sum(x
* alpha) + runif (1, -eps, eps) + gamma).

Examples

DD <- generate_linear_dataset(p = 5, n = 1000)

generate_random_dataset 21

generate_random_dataset
Generate a random binary dataset

Description

Randomly generate a data.frame of independent binary variables.

Usage

generate_random_dataset(p, n)

Arguments

p number of variables.

n number of observations.
Value

A data.frame with n independent random variables.

Examples

DD <- generate_random_dataset(p = 5, n = 1000)

generate_xor_dataset Generate a xor dataset

Description

Generate a xor dataset

Usage

generate_xor_dataset(p, n, eps = 1.2)

Arguments
p number of variables.
n number of observations.
eps error.

Value

The xor dataset with n + 1 variables, where the first one is the class variable C computed as a noisy
XOr.

22 get_stage

Examples

DD <- generate_xor_dataset(p = 5, n = 1000, eps = 1.2)

get_stage Get stage or path

Description

Utility functions to obtain stages from paths and paths from stages.

Usage

get_stage(object, path)

get_path(object, var, stage)

Arguments
object an object of class sevt.
path character vector, the path from root or a two dimensional array where each row
is a path from root.
var character, one of the variable in the staged tree.
stage character vector, the name of the stages for which the paths should be returned.
Value

get_stage returns the stage name(s) for given path(s).

get_path returns a data.frame containing the paths corresponding to the given stage(s).

Examples

model <- stages_fbhc(full(PhDArticles))
get_stage(model, c("0", "male"))

paths <- expand.grid(model$tree[2:1])[, 2:1]
get_stage(model, paths)

get_path(model, "Kids”, "5")

get_path(model, "Gender"”, "2")
get_path(model, "Kids"”, c("5", "6"))

igraph-conversion 23

igraph-conversion igraph conversion

Description

Obtain the graph representation of a staged tree or a CEG as an object from the igraph package.
Usage
get_edges(x, ignore = x$name_unobserved, ...)

S3 method for class 'sevt'
get_edges(x, ignore = x$name_unobserved, ...)

get_vertices(x, ignore = x$name_unobserved, ...)

S3 method for class 'sevt'
get_vertices(x, ignore = x$name_unobserved, ...)

S3 method for class 'ceg'
get_edges(x, ignore = x$name_unobserved, ...)

S3 method for class 'ceg'
get_vertices(x, ignore = x$name_unobserved, ...)

as_igraph(x, ignore = x$name_unobserved, ...)

S3 method for class 'sevt'
as_igraph(x, ignore = x$name_unobserved, ...)

S3 method for class 'ceg'

as_igraph(x, ignore = x$name_unobserved, ...)
Arguments
X an object of class sevt or ceg.
ignore vector of stages which will be ignored and excluded, by default the name of the

unobserved stages stored in x$name_unobserved.

additional parameters.

Details

Functions to transalte the graph structure of a sevt or ceg object to a graph object from the igraph
package. Additional functions that extract the edge lists and the vertices are available. This can be
useful, for example to plot the staged tree with igraph or additional packages (see the examples).

24

Value

for get_edges: the edges list corresponding to the graph associated to x.

for get_vertices: the vertices list corresponding to the graph associated to x.

for as.igraph: a graph object from the igraph package.

Examples

mod <- stages_bhc(full(Titanic))
get_edges(mod)
get_vertices(mod)
Not run:
library(igraph)
library(ggraph)
H#iHHHEEE sevt example #iHEHHEHE
convert to igraph object
g <- as_igraph(mod)
plot with igraph directly
plot(g, layout = layout_with_sugiyama)
plot with ggraph
ggraph(g, "sugiyama") +
geom_edge_fan(
aes(
label = label,
label_pos = 0.5 + runif(length(label), -0.1, 0.1)
),

angle_calc = "along", show.legend = FALSE, check_overlap = FALSE,

end_cap = circle(0.02, "npc"),
arrow = grid::arrow(
angle = 25,
length = unit(0.025, "npc"),
type = "closed”
)
) +
geom_node_point(aes(x = x, y =y, color = stage),
size = 5,
show.legend = FALSE
) +

ggforce: :theme_no_axes() + coord_flip() + scale_y_reverse()

HiHHEHEHE ceg example #HHEHEH

g.ceg <- as_igraph(ceg(mod))

igraph plotting functions can be used
plot(g.ceg, layout = layout.sugiyama)

igraph object can be also plotted with ggplot2 and ggraph

ggraph(g.ceg, "sugiyama") +
geom_edge_fan(
aes(
label = label,
color = label,
label_pos = 0.5 + runif(length(label), -0.1, 0.1)
),

igraph-conversion

inclusions_stages 25

angle_calc = "along"”, show.legend = FALSE, check_overlap = FALSE,
end_cap = circle(0.02, "npc"),
arrow = grid::arrow(
angle = 25,
length = unit(0.025, "npc"),
type = "closed”
)
) +
geom_node_point(aes(x = x, y = vy, color = stage), size = 3, show.legend = FALSE) +
ggforce: :theme_no_axes() + coord_flip() + scale_y_reverse()

End(Not run)

inclusions_stages Inclusions of stages

Description

Display the relationship between two staged tree models over the same variables.

Usage

inclusions_stages(object1, object2)

Arguments
object1 an object of class sevt.
object2 an object of class sevt.
Details

Computes the relations between the stages structures of the two models.

The relations between stages of the same variable are stored in a data frame with three columns
where each row represent a relation between a stage of the first model (s1) and a stage of the
second model (s2). The relation can be one of the following: inclusion (s1 < s2 or s1 > s2; equal
(s1 =s2); not-equal (s1 !=s2).

Value

a list with inclusion relations between stage structures for each variable in the models.

Examples

mod1 <- stages_bhc(full(PhDArticles[, 1:5], lambda = 1))
mod2 <- stages_fbhc(full(PhDArticles[, 1:5], lambda = 1))
inclusions_stages(mod1, mod2)

26 Jjoin_unobserved

join_positions Jjoin positions in a staged tree model

Description

join positions in a staged tree model

Usage

join_positions(model, var, s1, s2)

Arguments
model an object of class sevt.
var the name of a variable in the model.
s1 stage to join
s2 stage to join
Details

this functions works similarly to the join_stages function in the stagedtrees package, but it
also joins downstream stages to make nodes with stages s1,s2 in the same position. This function
works properly only when downstream variables from var have full stages vectors.

join_unobserved Join situations with no observations

Description

Join situations with no observations

Usage

join_unobserved(
object,
fit = TRUE,
trace = 0,
name = "UNOBSERVED",
scope = sevt_varnames(object)[-1],
lambda = object$lambda

logLik.sevt 27

Arguments
object an object of class sevt with associated data.
fit if TRUE update model’s probabilities.
trace if > @ print information to console.
name character, name for the new stage storing unobserved situations.
scope character vector, list of variables in object.
lambda smoothing parameter for the fitting.
Details

It takes as input a (fitted) staged event tree object and it joins, in the same stage, all the situations
with zero recorded observations. Since such joining does not change the log-likelihood of the
model, it is a useful (time-wise) pre-processing prior to others model selection algorithms.

Unobserved situations can be joined directly in full or indep, by setting join_unobserved =
TRUE.

Value

a staged event tree with at most one stage per variable with no observations. If, as default, fit=TRUE
the model will be re-fitted, if fit=FALSE probabilities in the output model are not estimated.

Examples

DD <- generate_xor_dataset(p = 5, n = 10)

model_full <- full(DD, lambda = 1, join_unobserved = FALSE)
model <- join_unobserved(model_full)

loglik(model_full)

loglLik(model)

BIC(model_full, model)

loglLik.sevt Log-Likelihood of a staged event tree

Description

Compute, or extract the log-likelihood of a staged event tree.

Usage
S3 method for class 'sevt'
logLik(object, ...)

Arguments
object an fitted object of class sevt.

additional parameters (compatibility).

28 Ir test

Value

An object of class logLik.

Examples

data("PhDArticles”)
mod <- indep(PhDArticles)
loglLik(mod)

lr_test Likelihood Ratio Test for staged trees models

Description

Function to perform likelihood ratio test between two or multiple staged event tree models.

Usage
1r_test(object, ...)
Arguments
object an object of class sevt.
further objects of class sevt. Must specify super-models of object. See below
for details.
Details

If a single object of class sevt is passed as argument, it computes the likelihood-ratio test with
respect to the independence model. If multiple objects are passed, likelihood-ratio tests between
the first object and the followings are computed. In the latter case the function checks automatically
if the first model is nested in the additional ones, via inclusions_stages, and throws an error if
not.

Value

An object of class anova which contains the log-likelihood, degrees of freedom, difference in de-
grees of freedom, likelihood ratio statistics and corresponding p values.

Examples
data(PhDArticles)
order <- c("Gender"”, "Kids", "Married”, "Articles")

phd.mod1 <- stages_hc(indep(PhDArticles, order))
phd.mod2 <- stages_hc(full(PhDArticles, order))

compare two nested models
1lr_test(phd.mod1, phd.mod2)

PhDArticles 29

compare a single model vs the independence model
1r_test(phd.mod1)

PhDArticles PhD Students Publications

Description

Number of publications of 915 PhD biochemistry students during the 1950’s and 1960’s.

Usage

PhDArticles

Format

A data frame with 915 rows and 6 variables:

Articles Number of articles during the last 3 years of PhD: either @, 1-2 or >2.
Gender male or female.

Kids yes if the student has at least one kid 5 or younger, no otherwise.
Married yes or no.

Mentor Number of publications of the student’s mentor: low between 0 and 3, medium between 4
and 10, high otherwise.

Prestige low if the student is at a low-prestige university, high otherwise.

Source

The data has been modified from the Rchoice package.

References

Long, J. S. (1990). The origins of sex differences in science. Social Forces, 68(4), 1297-1316.

30 plot.ceg

plot.ceg igraph’s plotting for CEG

Description

igraph’s plotting for CEG

Usage
S3 method for class 'ceg'
plot(x, col = NULL, ignore = x$name_unobserved, layout = NULL, ...)
Arguments
X an object of class ceg.
col colors specification see plot.sevt.
ignore vector of stages which will be ignored and left untouched, by default the name

of the unobserved stages stored in x$name_unobserved.
layout an igraph layout.

additional arguments passed to plot.igraph.

Details

This function is a simple wrapper around igraph’s plot. igraph. The ceg object is converted to an
igraph object with as_igraph. If not specified, the default layout used is a rotated layout. sugiyama.

We use palette() as palette for the igraph plotting, while plot. igraph uses as default a different
palette. This is to allow matching stages colors between plot.ceg and plot.sevt.

Examples

Not run:

model <- stages_bhc(full(Titanic))

model.ceg <- ceg(model)

plot(model.ceg, edge.arrow.size = 0.1, vertex.label.dist = -2)

End(Not run)

plot.sevt 31

plot.sevt Plot method for staged event trees

Description

Plot method for staged event tree objects. It allows easy plotting of staged event trees with some
options (see Examples).

Usage

S3 method for class 'sevt'

plot(
X,
y =10,
limit =y,
xlim = c(o, 1),
ylim = c(0, 1),
main = NULL,
sub = NULL,
asp =1,

cex_label_nodes
cex_label_edges
cex_nodes = 2,
cex_tree_y = 0.9,

col = NULL,

col_edges = "black”,
var_names = TRUE,

ignore = x$name_unobserved,

I n
-

pch_nodes = 16,
lwd_nodes = 1,
lwd_edges = 1,

)

make_stages_col(x, col = NULL, ignore = x$name_unobserved, limit = NULL)

Arguments
X an object of class sevt.
y alias for 1imit for compatibility with plot.
limit maximum number of variables plotted.
xlim the x limits (x1, x2) of the plot.
ylim the y limits of the plot.
main an overall title for the plot.

sub a sub title for the plot.

32 plot.sevt

asp the y/x aspect ratio.

cex_label_nodes
the magnification to be used for the node labels. If set to @ (as default) node
labels are not showed.

cex_label_edges
the magnification for the edge labels. If set to @ edge labels are not displayed.

cex_nodes the magnification for the nodes of the tree.

cex_tree_y the magnification for the tree in the vertical direction. Default is 0.9 to leave
some space for the variable names.

col color mapping for stages, one of the following: NULL (color will be assigned
based on the current palette); a named (variables) list of named (stages) vec-
tors of colors; the character "stages”, in which case the stage names will
be used as colors; a function that takes as input a vector of stages and out-
put the corresponding colors. Check the provided examples. The function
make_stages_col is used internally and make_stages_col(x, NULL) or make_stages_col(x,
"stages") can be used as a starting point for colors tweaking.

col_edges color for the edges.

var_names logical, if variable names should be added to the plot, otherwise variable names
can be added manually using text.sevt.

ignore vector of stages which will be ignored and left untouched, by default the name
of the unobserved stages stored in x$name_unobserved.

pch_nodes either an integer specifying a symbol or a single character to be used as the
default in plotting nodes shapes see points.

lwd_nodes the line width for edges, a positive number, defaulting to 1.

lwd_edges the line width for nodes, a positive number, defaulting to 1.

additional graphical parameters to be passed to points, lines, title, text and
plot.window.

Examples

data(”"PhDArticles”)
mod <- stages_bj(full(PhDArticles, join_unobserved = TRUE))

simple plotting
plot(mod)

labels in nodes
plot(mod, cex_label_nodes = 1, cex_nodes = 0)

reduce nodes size
plot(mod, cex_nodes = 0.5)

change line width and nodes style
plot(mod, lwd_edges = 3, pch_nodes = 5)

changing palette

Pokemon 33

plot(mod, col = function(s) heat.colors(length(s)))

or changing global palette
palette(hcl.colors(1@, "Harmonic"))
plot(mod)

palette("default”) ##

forcing plotting of unobserved stages
plot(mod, ignore = NULL)

use function to specify colors
plot(mod, col = function(stages) {
hcl.colors(n = length(stages))

»

manually give stages colors
as an example we will assign colors only to the stages of two variables
Gender (one stage named "1") and Mentor (six stages)
col <- list(
Gender = c("1" = "blue"),
Mentor = c(
"UNOBSERVED" = "grey",

"2" = "red",

"3" = "purple”,
"10" = "pink”,
"18" = "green”,
"22" = "brown”

)

)
by setting ignore = NULL we will plot also the UNOBSERVED stage for Mentor
plot(mod, col = col, ignore = NULL)

Pokemon Pokemon Go Users

Description

Demographic information of a population of possible Pokemon Go users.

Usage

Pokemon

Format
A data frame with 999 rows and 5 variables:

Use Y if the individual used the app, N otherwise
Age >30 if the individual is older than 30, <=30 otherwise

Degree Yes if the individual completed a Higher Education degree, No otherwise

34 predict.sevt

Gender Male or Female

Activity Yes if the individual was physically active (i.e. had a walk longer than 30 mins, went
for a run or had a bike ride to get some exercise) in the past week before the experiment, No
otherwise

Source

https://osf.io/xy5g6/

References

Gabbiadini, Alessandro, Christina Sagioglou, and Tobias Greitemeyer. "Does Pokémon Go lead to
a more physically active life style?." Computers in Human Behavior 84 (2018): 258-263.

predict.sevt Predict method for staged event tree

Description

Predict class values from a staged event tree model.

Usage

S3 method for class 'sevt'

predict(object, newdata = NULL, class = NULL, prob = FALSE, log = FALSE, ...)
Arguments

object an object of class sevt with fitted probabilities.

newdata the newdata to perform predictions

class character, the name of the variable to use as the class variable, if NULL the first

element names(object$tree) will be used.
prob logical, if TRUE the probabilities of class are returned
log logical, if TRUE log-probabilities are returned

additional parameters, see details

Details

Predict the most probable a posterior value for the class variable given all the other variables in the
model. Ties are broken at random and if, for a given vector of predictor variables, all conditional
probabilities are 0, NA is returned.

if prob = TRUE, a matrix with number of rows equals to the number of rows in the newdata and
number of columns as the number of levels of the class variable is returned. if log = TRUE, log-
probabilities are returned.

if prob = FALSE, a vector of length as the number of rows in the newdata with the level with higher
estimated probability for each new observations is returned.

https://osf.io/xy5g6/

print.sevt 35

Value

A vector of predictions or the corresponding matrix of probabilities.

Examples

DD <- generate_xor_dataset(p = 4, n = 600)

order <- c("C", "X1", "X2", "X3", "X4")

train <- DD[1:500, order]

test <- DD[501:600, order]

model <- full(train)

model <- stages_bhc(model)

pr <- predict(model, newdata = test, class = "C")
table(pr, test$C)

class values:

predict(model, newdata = test, class = "C")

probabilities:

predict(model, newdata = test, class = "C", prob = TRUE)
log-probabilities:

predict(model, newdata = test, class = "C", prob = TRUE, log = TRUE)

print.sevt Print a staged event tree

Description

Print a staged event tree

Usage
S3 method for class 'sevt'
print(x, ..., max = 5)

Arguments
X an object of class sevt.

additional parameters (compatibility).

max integer, limit on the numebr of variables to print.

Details
The order of the variables in the staged tree is printed (from root). In addition the number of levels
of each variable is shown in square brackets. If available the log-likelihood of the model is printed.
Value

An invisible copy of x.

36 prob

Examples

DD <- generate_xor_dataset(5, 100)
model <- full(DD, lambda = 1)
print(model)

prob Probabilities for a staged event tree

Description
Compute (marginal and/or conditional) probabilities of elementary events with respect to the prob-
ability encoded in a staged event tree.

Usage
prob(object, x, conditional_on = NULL, log = FALSE, na@® = TRUE)

Arguments
object an object of class sevt with probabilities.
X the vector or data.frame of observations.

conditional_on named vector, the conditioning event.

log logical, if TRUE log-probabilities are returned.
nao logical, if NA should be converted to 0.
Details

Computes probabilities related to a vector or a data.frame of observations.

Optionally, conditional probabilities can be obtained by specifying the conditioning event in conditional_on.
This can be done either with a single named vector or with a data.frame object with the same num-

ber of rows of x. In the former, the same conditioning is used for all the computed probabilities (if

x has multiple rows); while with the latter different conditioning events (but on the same variables)

can be specified for each row of x.

Value

the probabilities to observe each observation in x, possibly conditional on the event(s) in conditional_on.

Examples

data(Titanic)

model <- full(Titanic, lambda = 1)

samples <- expand.grid(model$treelc(1, 4)1)
pr <- prob(model, samples)

probabilities sum up to one

sum(pr)

print observations with probabilities

random_parentslist 37

print(cbind(samples, probability = pr))

compute one probability
prob(model, c(Class = "1st”, Survived = "Yes"))

compute conditional probability
prob(model, c(Survived = "Yes"), conditional_on = c(Class = "1st"))

compute conditional probabilities with different conditioning set
prob(model, data.frame(Age = rep("Adult”, 8)),
conditional_on = expand.grid(model$tree[2:1])
)
the above should be the same as
summary (model) $stages.info$Age

random_parentslist Generate a random parentslist object (DAG)

Description

generate a random DAG coded as parentslist object.

Usage

random_parentslist(n, k = 2, maxp = n)

Arguments
n number of variables.
k maximum number of levels for each variable.
maxp maximum cardinality of parents sets.

Details

For each variable a subset of random cardinality (maximum maxp) of the preceding variables is
randomly selected as parents set. The possible levels of each variables are randomly selected in
2,...,k

Value

a parentslist object.

Examples
random_parentslist(5, 3, 2)
we can generate the associated staged tree

pl <- random_parentslist(4, 2, 2)
plot(as_sevt(pl), main = as.character(pl))

38 random_sevt

random_sevt Generate a random (fitted) sevt

Description

Generate a random sevt from a DAG or a tree. Probabilities are also randomly generated.

Usage

random_sevt(x, q = 0.5, rfun = rexp)

S3 method for class 'list'
random_sevt(x, q = 0.5, rfun = rexp)

S3 method for class 'parentslist'
random_sevt(x, q = 0.5, rfun = rexp)

S3 method for class 'sevt'
random_sevt(x, q = 0.5, rfun = rexp)

Arguments
X a sevt object, a parentslist objectora list.
q probability of joining stages.
rfun a function which is used to generate random conditional probabilities associated
to each stage.
Details

The generated staged tree is obtained by randomly joining stages with probability q.

For random_sevt.list, x should be a list representing an event tree, same format as lists provided
to sevt.list. The random generated sevt will be obtained by randomly joining stages starting
from a full staged event tree.

For random_sevt.parentslist, x should be a parentslist object representing a DAG, this could
be obtained with as_parentslist or with random_parentslist. The random generated sevt will
be obtained by randomly joining stages starting from a the staged tree equivalent to the DAG.

For random_sevt.sevt, x should be a sevt. The random generated sevt will be obtained by
randomly joining stages starting from the provided sevt object.

Stages (conditional) probabilities are sampled from

the corresponding probability simplex by generating

a vector with the user-defined function \code{rfun} and
normalizing it to sum up to one.

Absolute value is applied to assure non-negativity.

The default \code{rfun = rexp} induces a uniform sampling
from the probability simplex.

rename_stage 39

Value

A randomly generated fitted sevt object.

Examples

model_gt <- random_sevt(list(
X = c("a", "b"), Y = c("c", "d", "e"),
Z=c("", "2, "3"), W= c("yes”, "no")
))

sample data from model_gt and estimate a staged tree
data <- sample_from(model_gt, 100)
model_est <- stages_bhc(full(data))

compare true and estimated model
hamming_stages(model_gt, model_est)
compare_stages(model_gt, model_est, method = "hamming"”, plot = TRUE)

rename_stage Rename stage(s) in staged event tree

Description

Change the name of a stage in a staged event tree.

Usage

rename_stage(object, var, stage, new)

Arguments
object an object of class sevt.
var name of a variable in object.
stage name of the stage to be renamed.
new new name for the stage.

Details

No internal checks are performed and as side effect stages can be joined, if e.g. new is equal to the
name of a stage for variable var.

Value

a staged event tree object where stages stage have been renamed to new.

40 search_best

sample_from Sample from a staged event tree

Description

Generate a random sample from the distribution encoded in a staged event tree object.

Usage

sample_from(object, size = 1, seed = NULL)

Arguments
object an object of class sevt with fitted probabilities.
size number of observations to sample.
seed an object specifying if and how the random number generator should be initial-
ized (‘seeded’). Either NULL or an integer that will be used in a call to set.seed.
Details

It samples size observations according to the transition probabilities (object$prob) in the model.

Value

A data frame containing size observations from the variables in object.

Examples

model <- stages_fbhc(full(PhDArticles, lambda = 1))
sample_from(model, 10)

search_best Optimal Order Search

Description

Find the optimal staged event tree with a dynamic programming approach.

Usage

search_best(
data,
alg = stages_bhc,
search_criterion = BIC,
lambda = 0,
join_unobserved = TRUE,

search_greedy 41

Arguments
data either a data.frame or a table containing the data.
alg a function that performs stages structure estimation. Similar to stages_bhc or

stages_hclust. The function alg must accept the argument scope.
search_criterion
the criterion minimized in the order search.

lambda numerical value passed to full.

join_unobserved
logical, passed to full.

additional arguments, passed to alg.

Details

This function is an implementation of the dynamic programming approach of Silander and Leong
(2013). If the search_criterion is decomposable the returned model attains the best value among
all possible orders.

Value

The estimated staged event tree model.

References

Silander T., Leong TY. A Dynamic Programming Algorithm for Learning Chain Event Graphs.
In: Fiirnkranz J., Hiilllermeier E., Higuchi T. (eds) Discovery Science. DS 2013. Lecture Notes in
Computer Science, vol 8140. Springer, Berlin, Heidelberg. 2013.

Cowell R and Smith J. Causal discovery through MAP selection of stratified chain event graphs.
Electronic Journal of Statistics, 8(1):965-997, 2014.

Examples

default search using BIC score
model <- search_best(Titanic, alg = stages_kmeans)

use df as search_criterion
model1 <- search_best(Titanic, alg = stages_bhc,
search_criterion = function(m) attr(logLik(m), "df"))

search_greedy Greedy Order Search

Description

Search the optimal staged event tree with a greedy heuristic.

42

sevt
Usage
search_greedy (
data,
alg = stages_bhc,
search_criterion = BIC,
lambda = 9,
join_unobserved = TRUE,
)
Arguments
data either a data.frame or a table containing the data.
alg a function that performs stages structure estimation. Similar to stages_bhc or

stages_hclust. The function alg must accept the argument scope.
search_criterion
the criterion minimized in the order search.

lambda numerical value passed to full.
join_unobserved
logical, passed to full.

additional arguments, passed to alg.

Details

The greedy approach implemented in this function iteratively adds variables to the staged tree that
better improve the search_criterion.
Value

The estimated staged event tree model.

Examples

model <- search_greedy(Titanic, alg = stages_fbhc)
print(model)

sevt Staged event tree (sevt) class

Description

Structure and usage of S3 class sevt, used to store a staged event tree.

sevt

Usage

43

sevt(x, full = FALSE, order = NULL)

S3 method for class 'table'
sevt(x, full = FALSE, order = names(dimnames(x)))

S3 method for class 'data.frame'
sevt(x, full = FALSE, order = colnames(x))

S3 method for class 'list'
sevt(x, full = FALSE, order = names(x))

Arguments
X a list, a data frame or table object.
full logical, if TRUE the full model is created otherwise the independence model.
order character vector, order of the variables to build the tree, by default the order of
the variables in x.
Details

A staged event tree object is a list with components:

tree (required): A named list with one component for each variable in the model, a character
vector with the names of the levels for that variable. The order of the variables in tree is the
order of the event tree.

stages (required): A named list with one component for each variable but the first, a character
vector storing the stages for the situations related to path ending in that variable.

ctables: A named list with one component for each variable, the flat contingency table of that
variable given the previous variables.

lambda: The smoothing parameter used to compute probabilities.
name_unobserved: The stage name for unobserved situations.

prob: The conditional probability tables for every variable and stage. Stored in a named list
with one component for each variable, a list with one component for each stage.

11: The log-likelihood of the estimated model. If present, loglLik. sevt will return this value
instead of computing the log-likelihood.

The tree structure is never defined explicitly, instead it is implicitly defined by the list tree contain-
ing the order of the variables and the names of their levels. This is sufficient to define a complete
symmetric tree where an internal node at a depth related to a variable v has a number of children
equal to the cardinality of the levels of v. The stages information is instead stored as a list of vectors,
where each vector is indexed as the internal nodes of the tree at a given depth.

To define a staged tree from data (data frame or table) the user can call either full or indep
which both construct the staged tree object, attach the data in ctables and compute probabilities.
After, one of the available model selection algorithm can be used, see for example stages_hc,
stages_bhc or stages_hclust. If, mainly for development, only the staged tree structure is needed
(without data or probabilities) the basic sevt constructor can be used.

44 sevt_add

Value

A staged event tree object, an object of class sevt.

Examples

#it###HHA from table
model.titanic <- sevt(Titanic, full = TRUE)

#iHHEHHAH from data frame

DD <- generate_random_dataset(p = 4, n = 1000)
model.indep <- sevt(DD)

model.full <- sevt(DD, full = TRUE)

##HHHAEAH from list
model <- sevt(list(
X = c("good”, "bad"),
Y = c("high”, "low")
))

sevt_add Add a variable to a staged event tree

Description

Return an updated staged event tree with one additional variable at the end of the tree.

Usage

sevt_add(object, var, data, join_unobserved = TRUE, useNA = "ifany")

Arguments
object an object of class sevt.
var character, the name of the new variable to be added.
data either a data. frame or a table containing the data from the variables in object

plus var.
join_unobserved
logical, passed to full.

useNA whether to include NA values in the tables. Argument passed to table.

Details

This function update a staged event tree object with an additional variable. The stages structure of
the new variable is initialized as in the saturated model.

sevt_df 45

Value

An object of class sevt representing a staged event tree model with var added as last variable.

Examples

model <- full(Titanic, order = c("Age", "Class"))

print(model)
model <- sevt_add(model, "Survived”, Titanic)
print(model)
sevt_df Number of parameters of a staged event tree
Description

Return the number of parameters of the model.

Usage
sevt_df (x)

Arguments

X An object of class sevt.

Value

integer, degrees of freedom of the staged event tree.

sevt_fit Fit a staged event tree

Description

Estimate transition probabilities in a staged event tree from data. Probabilities are estimated with
the relative frequencies plus, eventually, an additive (Laplace) smoothing.

Usage
sevt_fit(
object,
data = NULL,
lambda = NULL,
scope = NULL,

compute_loglLik = TRUE

46

Arguments

object
data
lambda

scope

compute_loglik

Details

sevt_nvar

an object of class sevt.
data.frame or contingency table with observations of the variables in object.

smoothing parameter or pseudocount. Default (NULL) to lambda value stored
in object. If no lambda value is stored nor provided, O will be used with a
warning.

which variable should be fitted. Default (NULL) to all variables in the model. A
partial re-fit is possible only for model which are already fitted and in that case
the provided 1ambda will be ignored if different from object$lambda.

logical value. If TRUE the log-likelihood of the model is computed and stored.

The data in form of contingency tables and the log-likelihood of the model is (eventually) stored in
the returned staged event tree. Partial re-fit of a model can be performed with the scope argument.
Partial re-fit can only be done over a fully fitted model, e.g. when changing the stages structure
of one of the variables. In case of a partial re-fit, the data and lambda arguments will be ignored
and the data and lambda value stored in the sevt object will be used (a warning is issued if such
arguments are supplied).

Value

A fitted staged event tree, that is an object of class sevt with ctables and prob components.
Additionally the chosen lambda is stored in the returned object and eventually the log-likelihood of
the model is saved in the 11 field.

Examples

A

model <- sevt(list(

X
Y
))

D <- data.frame(

X = c("good"”, '

c("good”, "bad"),
c("high”, "low")

'good”, "bad"),

Y = C("high”, I’lOW”, "].OW“)

)

model.fit <- sevt_fit(model, data = D, lambda = 1)

sevt_nvar

Number of variables

Description

Utility returning the number of variables in a staged event tree model.

sevt_simplify 47

Usage

sevt_nvar(object)

Arguments

object An object of class sevt.

Value

integer, the number of variables.

sevt_simplify Simplify a staged tree model

Description

Function to simplify a staged tree model.

Usage

sevt_simplify(object, fit = TRUE)

Arguments

object an object of class sevt

fit logical, if TRUE refit the model after simplification.
Details

The simplify function will produce the corresponding simple staged tree, that is a staged tree
where stages and positions are equivalent. To do so the function ceg is used to compute positions,
and then the stages’ vectors are replaced with the positions’ vectors. The model is the re-fitted if
the input was a fitted staged tree. Despite the name, the simplified staged tree has always a number
of stages greater or equal to the initial staged tree, thus it is a more complex statistical model.

Value

an object of class sevt representing the simplified model. The returned model will be fitted if the
input model was.

Examples

mod <- stages_kmeans(full(Titanic), k = 2)
simpl <- sevt_simplify(mod)
plot(simpl)

48 stagedtrees

sevt_varnames Variable names

Description

Utility returning variable-names in a staged event tree model.

Usage

sevt_varnames(object)

Arguments

object an object of class sevt.

Value

A character vector.

stagedtrees Staged event trees.

Description

Algorithms to create, learn, fit and explore staged event tree models. Functions to compute proba-
bilities, make predictions from the fitted models and to plot, analyze and manipulate staged event
trees.

Details

A staged event tree is a representation of a particular factorization of a joint probability over a prod-
uct space. In particular, given a vector of categorical random variables X1, X2,.. ., a staged event
tree represents the factorization P(X1,X2,X3,...) = P(X1)P(X2|X1)P(X3|X1,X2)....
Additionally, the stages structure indicates which conditional probabilities are equal.

Model selection algorithms:

¢ full model full

* independence model indep

* Hill-Climbing stages_hc

* Backward Hill-Climbing stages_bhc

* Fast Backward Hill-Climbing stages_fbhc

* Backward Hill-Climbing Random stages_bhcr
* Backward joining stages_bj

» Simple Backward Hill-Climbing stages_simplebhc

stagedtrees

* Hierarchical Clustering stages_hclust
¢ K-Means Clustering stages_kmeans
* Optimal order search search_best

* Greedy order search search_greedy
Probabilities, log-likelihood and predictions:

* Marginal/Conditional probabilities prob

Log-Likelihood loglLik.sevt
¢ Predict method predict.sevt

* Confidence intervals confint.sevt
Plot, explore and compare:

e Plot plot.sevt

* Compare compare_stages

 Stages inclusion inclusions_stages
 Stages info summary.sevt

* List of parents as_parentslist

* Barplot construction barplot.sevt

Likelihood-ratio test 1r_test

* Context-specific interventional distance cid
Modify models:

¢ Join and isolate unobserved situations join_unobserved
* Join two stages join_stages
* Join two positions join_positions

* Rename a stage rename_stage

Author(s)
Maintainer: Gherardo Varando <gherardo.varando@gmail.com> (ORCID)

Authors:

¢ Federico Carli
¢ Manuele Leonelli (ORCID)

* Eva Riccomagno

49

https://orcid.org/0000-0002-6708-1103
https://orcid.org/0000-0002-2562-5192

50 stages

References

Collazo R. A., Gorgen C. and Smith J. Q. Chain event graphs. CRC Press, 2018.

Gorgen C., Bigatti A., Riccomagno E. and Smith J. Q. Discovery of statistical equivalence classes
using computer algebra. International Journal of Approximate Reasoning, vol. 95, pp. 167-184,
2018.

Barclay L. M., Hutton J. L. and Smith J. Q. Refining a Bayesian network using a chain event graph.
International Journal of Approximate Reasoning, vol. 54, pp. 1300-1309, 2013.

Smith J. Q. and Anderson P. E. Conditional independence and chain event graphs. Artificial Intelli-
gence, vol. 172, pp. 42-68, 2008.

Thwaites P. A., Smith, J. Q. A new method for tackling asymmetric decision problems. Interna-
tional Journal of Approximate Reasoning, vol. 88, pp. 624-639, 2017.

See Also
Useful links:

* https://github.com/stagedtrees/stagedtrees
* Report bugs at https://github.com/stagedtrees/stagedtrees/issues

Examples

data("PhDArticles")

mf <- full(PhDArticles, join_unobserved = TRUE)
mod <- stages_fbhc(mf)

plot(mod)

stages The stages of a staged event tree

Description

Functions to get or set the stages of an object of class sevt.

Usage

stages(object)

S3 method for class 'sevt'
stages(object)

S3 method for class 'sevt.stgs'
print(x, ..., max = 5)

stages(object) <- value

S3 method for class 'sevt.stgs'

https://github.com/stagedtrees/stagedtrees
https://github.com/stagedtrees/stagedtrees/issues

stages 51

x[i, ...]

S3 replacement method for class 'sevt.stgs'
x[i, ..., fit = TRUE] <- value

S3 method for class 'sevt.stgs'

xC[...]1]
S3 replacement method for class 'sevt.stgs'
x[[..., fit = TRUE]] <- value
Arguments
object an object of class sevt.
X an object of class sevt.stgs (obtained by stages(object)).

a path or context in the event tree.

max integer, limit on the number of variables to print.

value the stages replacement value.

i index of variables in the tree.

fit logical, if TRUE (default) the model will be re-fitted.
Details

This functions are the preferred way to access and modify directly the stages of an object of class
sevt. In particular the indexing and replacing methods for the object extracted with the function
stages() take care of checking the stages sanity and refit the object probabilities when needed.
This is useful for manually setting some independence statements (see the Examples).

Value

For stages(): returns an object of class sevt.stgs which encode the stages of object. Objects
of class sevt.stgs have dedicated method for sub-setting and replacing.

Stages indexing

Stages can be indexed, retrieved and replaced by the corresponding variables names and/or by paths
or contexts.

In particular, stages(object)[[var]] extracts the stages vector corresponding to variable var
(similarly to object$stages[[var]]. Alternatively stages(object)[[path]] indexes a stage
via the corresponding path from root (similar to get_stage); a path is recognized as such if named
or if of length > 2.

stages(object)[var, context] extracts multiple stages corresponding to a variable and eventu-
ally filtered by a specific context on the preceding variables.

52 stages_bhc

Examples

start with full model
mod <- full(Titanic)

impose the context independence Survived indep Sex, Age | Class = 1st
stages(mod)["Survived”, Class = "1st"] <- "C1"

impose Survived indep Class | Class in (2nd 3rd)
stages(mod)["Survived”, Class = "3rd"] <- stages(mod)["”Survived”, Class = "2nd"]

impose Age indep Class | Sex
stages(mod)["Age"”, Sex = "Female"] <- "S-female”
stages(mod)["Age"”, Sex = "Male"] <- "S-male”

stages of Survived
stages(mod)[["Survived"]]

stages of Survived and Age
stages(mod)[c("Survived”, "Age")]

stages of Survived in the context Class 2nd or 3rd
stages(mod)["Survived”, Class = c("2nd"”, "3rd")]

check independencies
as_parentslist(mod)

stages_bhc Backward hill-climbing

Description

Greedy search of staged event trees with iterative joining of stages.

Usage

stages_bhc(
object,
score = function(x) {
return(-BIC(x))

1

max_iter = Inf,

scope = NULL,

ignore = object$name_unobserved,
trace = 0

stages_bhcr 53

Arguments
object an object of class sevt with fitted probabilities and data, as returned by full or
sevt_fit.
score the score function to be maximized.
max_iter the maximum number of iterations per variable.
scope names of variables that should be considered for the optimization.
ignore vector of stages which will be ignored and left untouched, by default the name
of the unobserved stages stored in object$name_unobserved.
trace if >0 increasingly amount of info is printed (via message).
Details

For each variable the algorithm tries to join stages and moves to the best model that increases the
score. When no increase is possible it moves to the next variable.

Value

The final staged event tree obtained.

Examples

DD <- generate_xor_dataset(p = 4, n = 100)

model <- stages_bhc(full(DD), trace = 2)
summary (model)
stages_bhcr Backward random hill-climbing
Description

Randomly try to join stages. This is a pretty-useless function, used for comparisons.

Usage

stages_bhcr(
object,
score = function(x) {
return(-BIC(x))
b
max_iter = 100,
trace = 0

54 stages_bj

Arguments

object an object of class sevt.

score the score function to be maximized.

max_iter the maximum number of iteration.

trace if >0 increasingly amount of info is printed (via message).
Details

At each iteration a variable and two of its stages are randomly selected. If joining the stages in-
creases the score, the model is updated. The procedure is repeated until the number of iterations
reaches max_iter.

Value

an object of class sevt.

Examples

DD <- generate_xor_dataset(p = 4, n = 100)
model <- stages_bhcr(full(DD), trace = 2)
summary (model)

stages_bj Backward joining of stages

Description

Join stages from more complex to simpler models using a distance and a threshold value.

Usage
stages_bj(
object,
distance = "kullback”,
thr = 0.1,
scope = NULL,
ignore = object$name_unobserved,
trace = @
)
Arguments
object an object of class sevt with fitted probabilities and data, as returned by full or
sevt_fit.
distance character, see details.

thr the threshold for joining stages

stages_csbhc 55

scope names of variables that should be considered for the optimization.

ignore vector of stages which will be ignored and left untouched, by default the name
of the unobserved stages stored in object$name_unobserved.

trace if >0 increasingly amount of info is printed (via message).

Details

For each variable in the model stages are joined iteratively. At each iteration the two stages with
minimum distance are selected and joined if their distance is less than thr.

Available distances are: manhattan (manhattan), euclidean (euclidean), Renyi divergence (reny),
Kullback-Liebler (kullback), total-variation (totvar), squared Hellinger (hellinger), Bhattacharyya
(bhatt), Chan-Darwiche (chandarw). See also probdist.

Value

The final staged event tree obtained.

Examples

DD <- generate_xor_dataset(p = 5, n = 1000)
model <- stages_bj(full(DD, lambda = 1), trace = 2)
summary (model)

stages_csbhc Context-specific Backward hill-climbing

Description

Greedy search of staged event trees with iterative joining of stages.

Usage

stages_csbhc(
object,
score = function(x) {
return(-BIC(x$11))
1
max_iter = Inf,
scope = NULL,
ignore = object$name_unobserved

)

56

Arguments

object

score
max_iter
scope

ignore

Details

stages_tbhc

an object of class sevt with fitted probabilities and data, as returned by full or
sevt_fit.

the score function to be maximized.
the maximum number of iterations per variable.
names of variables that should be considered for the optimization.

vector of stages which will be ignored and left untouched, by default the name
of the unobserved stages stored in object$name_unobserved.

For each variable the algorithm tries to join stages , by adding context specific independences, and
moves to the best model that increases the score. When no increase is possible it moves to the next

variable.

Value

The final staged event tree obtained.

Examples

model <- stages_csbhc(full(Titanic))

summary (model)

stages_fbhc

Fast backward hill-climbing

Description

Greedy search of staged event trees with iterative joining of stages.

Usage

stages_fbhc(
object,

score = function(x) {
return(-BIC(x))

b

max_iter = Inf,

scope = NULL,

ignore = object$name_unobserved,

trace = 0

stages_hc

Arguments
object an object of class sevt with fitted probabilities and data, as returned by full or
sevt_fit.
score the score function to be maximized.
max_iter the maximum number of iteration.
scope names of variables that should be considered for the optimization.
ignore vector of stages which will be ignored and left untouched, by default the name
of the unobserved stages stored in object$name_unobserved.
trace if >0 increasingly amount of info is printed (via message).
Details

For each variable the algorithm tries to join stages and moves to the first model that increases the

score. When no increase is possible it moves to the next variable.

Value

The final staged event tree obtained.

Examples

DD <- generate_xor_dataset(p = 5, n = 100)
model <- stages_fbhc(full(DD), trace = 2)
summary (model)

stages_hc Hill-climbing

Description

Greedy search of staged event trees with iterative moving of nodes between stages.

Usage

stages_hc(
object,
score = function(x) {
return(-BIC(x))

1

max_iter = Inf,

scope = NULL,

ignore = object$name_unobserved,
trace = 0

58 stages_hclust

Arguments
object an object of class sevt with fitted probabilities and data, as returned by full or
sevt_fit.
score the score function to be maximized.
max_iter the maximum number of iterations per variable.
scope names of variables that should be considered for the optimization
ignore vector of stages which will be ignored and left untouched, by default the name
of the unobserved stages stored in object$name_unobserved.
trace if >0 increasingly amount of info is printed (via message).
Details

For each variable node-moves that best increases the score are performed until no increase is pos-
sible. A node-move is either changing the stage associate to a node or move the node to a new
stage.

The ignore argument can be used to specify stages that should not be affected during the search,
that is left untouched. This is useful for preserving structural zeroes and to speed-up computations.
Value

The final staged event tree obtained.

Examples

start <- indep(PhDArticles[, 1:5], join_unobserved = TRUE)
model <- stages_hc(start)

stages_hclust Learn a staged tree with hierarchical clustering

Description

Build a stage event tree with k stages for each variable by clustering stage probabilities with hierar-
chical clustering.

Usage
stages_hclust(
object,
distance = "totvar”,
k = NA,
method = "complete”,

ignore = object$name_unobserved,
limit = length(object$tree),
scope = NULL,

stages_hclust 59

score = function(x) {
return(-BIC(x))

3
)
Arguments

object an object of class sevt with fitted probabilities and data, as returned by full or
sevt_fit.

distance character, the distance measure to be used, either a possible method for dist or
one of the following: "totvar”, "hellinger”.

k integer or (named) vector: number of clusters, that is stages per variable. Values
will be recycled if needed. If NA (default) a search of the number of stage is per-
formed with respect to the maximization of the score function. NA and integer
can be mixed to fix the number of stage for some variables and use the score to
select others.

method the agglomeration method to be used in hclust.

ignore vector of stages which will be ignored and left untouched. By default the name
of the unobserved stages stored in object$name_unobserved.

limit the maximum number of variables to consider.

scope names of the variables to consider.

score A function. Score to maximize for automatic selection of the number of stages.
Used if k=NA for some variables.

Details

hclust_sevt performs hierarchical clustering of the initial stage probabilities in object and it
aggregates them into the specified number of stages (k). A different number of stages for the
different variables in the model can be specified by supplying a (named) vector via the argument
k. If k is NA for some variables, all possible number of stages will be checked and the one that
maximize the score will be selected.

Value

A staged event tree object.

Examples

data("Titanic")
model <- stages_hclust(full(Titanic, join_unobserved = TRUE, lambda = 1), k = 2)
summary (model)

or search k via BIC minimization
modell <- stages_hclust(full(Titanic), k = NA)

60 stages_kmeans

stages_kmeans Learn a staged tree with k-means clustering

Description

Build a stage event tree with k stages for each variable by clustering (transformed) probabilities
with k-means.

Usage

stages_kmeans(
object,
k = length(object$treel[[1]]),
algorithm = "Hartigan-Wong",
transform = sqrt,
ignore = object$name_unobserved,
limit = length(object$tree),

scope = NULL,
nstart = 1
)
Arguments
object an object of class sevt with fitted probabilities and data, as returned by full or
sevt_fit.
k integer or (named) vector: number of clusters, that is stages per variable. Values
will be recycled if needed.
algorithm character: as in kmeans.
transform function applied to the probabilities before clustering.
ignore vector of stages which will be ignored and left untouched, by default the name
of the unobserved stages stored in object$name_unobserved.
limit the maximum number of variables to consider.
scope names of the variables to consider.
nstart as in kmeans
Details

kmenas_sevt performs k-means clustering to aggregate the stage probabilities of the initial staged
tree object. Different values for k can be specified by supplying a (named) vector to k. kmeans
from the stats package is used internally and arguments algorithm and nstart refer to the same
arguments as kmeans.

Value

A staged event tree.

stages_simplebhc 61

Examples

data("Titanic")
model <- stages_kmeans(full(Titanic, join_unobserved = TRUE, lambda = 1), k = 2)
summary (model)

stages_simplebhc Backward hill-climbing for simple staged trees

Description

Greedy search of simple staged event trees with iterative joining of positions.

Usage

stages_simplebhc(

object,

score = function(x) {

return(-BIC(x))

1

scope = NULL,

max_iter = Inf,

ignore = object$name_unobserved

)
Arguments
object an object of class sevt with fitted probabilities and data, as returned by full or
sevt_fit.
score the score function to be maximized.
scope names of variables that should be considered for the optimization.
max_iter the maximum number of iterations per variable.
ignore vector of stages which will be ignored and left untouched, by default the name
of the unobserved stages stored in object$name_unobserved.
Details

This function is similar to the classical backward hill-climbing implemented in stages_bhc, but
instead of joining stages it consider joining of positions via join_positions. Thus, the search is
in the space of simple staged tree models if the initial stage tree is simple. See the references for
additional details.

Value

an object of class sevt, the simple staged tree resulting from the search.

62 stndnaming

References

Leonelli M, Varando G. Structural Learning of Simple Staged Trees, arXiv preprint arXiv:2203.04390v 1

See Also

join_positions() sevt_simplify()

Examples

mod <- stages_simplebhc(full(Titanic))
plot(mod)

stndnaming Standard renaming of stages

Description

Rename all stages in a staged event tree.

Usage

stndnaming(
object,
uniq = FALSE,
prefix = FALSE,
ignore = object$name_unobserved

)
Arguments
object an object of class sevt.
uniq logical, if stage numbers should be unique over all tree.
prefix logical, if stage names should be prefixed with variable name.
ignore vector of stages which will be ignored and left untouched, by default the name
of the unobserved stages stored in object$name_unobserved.
Value

a staged event tree object with stages named with consecutive integers.

https://arxiv.org/abs/2203.04390

subtree

Examples

model <- stages_fbhc(full(PhDArticles, join_unobserved = TRUE))
model$stages

modell <- stndnaming(model)

modell$stages

unique stage names in all tree
model2 <- stndnaming(model, uniq = TRUE)
model2$stages

prefix stage names with variable name
model3 <- stndnaming(model, prefix = TRUE)
model3$stages

manuallty select stage names left untouched
model4 <- stndnaming(model, ignore = c("2", "6"), prefix = TRUE)
model4$stages

63

subtree Extract subtree

Description

Extract subtree

Usage

subtree(object, path)

Arguments

object an object of class sevt.

path the path from root after which extract the subtree.
Details

Returns the subtree of the staged event tree, starting from path.

Value

A staged event tree object corresponding to the subtree.

Examples

DD <- generate_random_dataset(4, 100)

model <- sevt(DD, full = TRUE)

plot(model)

modell <- subtree(model, path = c("-1", "1"))
plot(model?)

64

text.sevt

summary.sevt Summarizing staged event trees

Description

Summary method for class sevt.

Usage

S3 method for class 'sevt'
summary (object, ...)

S3 method for class 'summary.sevt'

print(x, max = 10, ...)
Arguments
object an object of class sevt.

arguments for compatibility.

X an object of class summary.sevt.
max the maximum number of variables for which information is printed.
Details

Print model information and summary of stages.

Value

An object of class summary . sevt for which a print method exist.

Examples

model <- stages_fbhc(full(PhDArticles, lambda = 1))
summary (model)

text.sevt Add text to a staged event tree plot

Description

Add text to a staged event tree plot

Usage

S3 method for class 'sevt'
text(x, y = ylim[1], limit = 10, xlim = c(@, 1), ylim = c(o, 1), ...)

trajectories 65

Arguments

X An object of class sevt.

y the position of the labels.

limit maximum number of variables plotted.

xLlim graphical parameter.

ylim graphical parameter.

additional parameters passed to text.
trajectories Hospital trajectories

Description

Generated dataset with observations from five variables (SEX, AGE, ICU, RSP, OUT) describing
imaginary patients’ trajectories in a hospital.

Usage

trajectories

Format

A data frame with 10000 observations of 5 variables.

Source

The data has been generated with the code in the Examples section.

Examples

library("stagedtrees")

tree <- list(SEX = c("male"”, "female"),

AGE = c("child”, "adult”, "elder"),
ICU = c("e”, "1"),
RSP = c("intub”, "mask”, "no"),

OUT = c("death”, "survived"))
model <- sevt(tree, full = TRUE)
stages(model)["ICU", AGE = "child"] <- "ICUchild”

stages(model)["ICU"”, SEX = "male"”, AGE = "elder"] <-
stages(model)["ICU", SEX = "female", AGE = "elder"]

stages(model)["RSP", AGE = c(”child"), ICU = "@"] <- "childnoICU"
stages(model)["RSP", AGE = c(”child”), ICU = "1”] <- "childICU"

66

trajectories

stages(model) ["RSP"”, AGE = c("adult")] <- stages(model)["RSP", AGE = c("elder"”)]

stages(model)["OUT"”, AGE = "adult”,
SEX = "female”,
Icu = "1",
RSP = c("intub”, "mask")] <- "femaleICUresp”

stages(model)["OUT", AGE = "child",
cu = "1,
RSP = "intub”] <- "childICUintub”

stages(model)["OUT"”, AGE = "child",
Icy = "1",
RSP = "mask"”] <- "childICUmask"

stages(model)["OUT", AGE = "child",
Icu = "1",
RSP = "no"] <- "childICUno"

stages(model)["OUT", AGE = "adult"”, SEX = "male"] <-
stages(model)["OUT", AGE = "elder"”, SEX = "female"]

stages(model)["OUT"”, ICU = "@", RSP = "intub"] <- "UNOBS"
stages(model)["OUT"”, ICU = "@", RSP = "intub"”] <- "UNOBS"
stages(model)["OUT"”, AGE = "child”, ICU = "@"] <- "UNOBS"

model$prob <- list()

model$prob$SEX <- list("NA" = c(male = 0.4, female = 0.6))

model$prob$AGE <- list("1" = c("child” = @.1, "adult” = 0.5, "elder”
"2" = ¢c("child” = 0.1, "adult” = 0.3, "elder”

0.4),
0.6))

model$prob$ICU <- list("ICUchild” = c("@" =0, "1" = 1),

" = c("0” = 0.4, "1" = 0.6), ## male adult
"5" = c("0" = 0.2, "1" = 0.8), ## female adult
"6" = c("0" = 0.7, "1" = 0.3)) ## elder

model$prob$RSP <- list("childnoICU” = c("intub” = NA, "mask” = NA, "no” = NA),
"childICU" = c("intub” = 0.1, "mask” = 0.7, "no" = 0.2),
"5" = c("intub” = @, "mask” = 0.7, "no” = 0.3), # male noICU
"6" = c("intub” = 0.4, "mask"” = 0.5, "no" = 0.1), # male ICU
"11" = c("intub” = @, "mask” = 0.5, "no"” = 0.5), # female noICU
"12" = c("intub” = 0.4, "mask” = 0.5, "no"” = 0.1)) # female ICU

model$prob$0OUT <- list("UNOBS" = c("death” = NA, "survived” = NA),
"childICUintub” = c("death” = 0.03, "survived” = 0.97),
"childICUmask"” = c("death” = .02, "survived" = 0.98),
"childICUno"” = c("death” = 0.01, "survived” = 0.99),
male adult and female elder ICU = 0 :
"32" = c("death” = 0.05, "survived” = 0.95), ## mask
"33" = c("death” = 0.01, "survived” = 0.99), ## no

write_tikz

male adult and
"34" = c("death” =
"35" = c("death” =
"36" = c("death” =
HHHHHHE

"14" = c("death” =
"15" = c("death” =
"16" = c("death” =
"17" = c("death” =
"18" = c("death” =
HHHHHHE

"26" = c("death” =
"27" = c("death” =
"30" = c("death” =

female elder ICU
0.15, "survived”
0.08, "survived”
0.04, "survived”

.2, "survived"
.1, "survived”
.3, "survived"
.25, "survived”
.3, "survived”

(SIS IS BN I

[

.1, "survived”
.15, "survived”
0.2, "survived"

[

67

=1

= 0.85), ## intub
= 0.92), ## mask
= 0.96), ## no

0.8), # male elder @ mask
0.9), # male elder @ no
0.7), # male elder 1 intub
= 0.75), # male elder 1 mask
0.7), # male elder 1 no

0.9), # female adult @ mask
= 0.85), # female adult @ no
0.8), # female adult 1 no

S
"femaleICUresp” = c("death” = 0.1, "survived” = 0.9)
)
trajectories <- sample_from(model, 10000, seed = 1)
usethis::use_data(trajectories, overwrite = TRUE)
write_tikz Export the staged tree or CEG graph to tikz

Description

Generate tikz code to draw the staged tree or CEG graph.

Usage

write_tikz(
X,
layout = NULL,
file = ",
col = NULL,
ignore = x$name_unobserved,
node_label = function(node) {

ifelse(is.na(node$stage), "", node$stage)
1
edge_label = function(edge) {
ifelse(is.na(edge$label), "", edge$label)

1
edge_label_options = function(edge)
return(”sloped”)

})

scale = 10,
normalize_layout = TRUE,
node_shape = "circle”,

node_inner_sep = "1mm",

{

68

)

node_minimum_size = "@.3cm",
node_draw_color = "black”,
node_thickness = "very thick”,
node_text_color = "black”

S3 method for class 'sevt'
write_tikz(

X)

layout = NULL,
file = ",

col = NULL,

ignore = x$name_unobserved,
node_label = function(node) {

ifelse(is.na(node$stage), "", node$stage)
1
edge_label = function(edge) {
ifelse(is.na(edge$label), "", edge$label)
1

edge_label_options = function(edge) {
return(”sloped”)

write_tikz

1
scale = 10,
normalize_layout = TRUE,
node_shape = "circle”,
node_inner_sep = "1mm",
node_minimum_size = "0.3cm",
node_draw_color = "black”,
node_thickness = "very thick”,
node_text_color = "black”
)
Arguments
X an object of class sevt or ceg.
layout the layout of the graph, given as matrix with two columns and as many rows as
nodes in the staged tree. By default, a modified sugiyama layout is used. The
layout matrix can be obtained with igraph layout functions.
file A connection or a character string naming the file to print to. Passed to cat.
col color specifications for the stages of the staged even tree. Same as plot.sevt
and make_stages_col.
ignore vector of stages which will be ignored and not plotted, by default the name of
the unobserved stages stored in x$name_unobserved.
node_label a function that produces nodes labels.
edge_label a function that produces edge labels.

edge_label_options

a function that produces edge label options.

write_tikz 69

scale for the tikzfigure.
normalize_layout

a logical value. If TRUE layout positions are scaled to the [0, 1] interval.
node_shape the shape to be used for nodes.

node_inner_sep the inner sep parameter.
node_minimum_size

the minimum size parameter for the nodes.
node_draw_color

the color for line drawing the nodes.
node_thickness the thickness of the lines.
node_text_color

the color for label in nodes.

Details
This function can be used to create a working tikz code that compile to a graph similar to the one
obtained by plot.sevt(x, ...) or plot.ceg(x, ...).

References

Code partially inspired by the code in Exporting graphs to LaTeX, using igraph and TikZ http:
//igraph.wikidot.com/r-recipes#toc2

http://igraph.wikidot.com/r-recipes#toc2
http://igraph.wikidot.com/r-recipes#toc2

Index

+ datasets
Asym, 4
covid_patients, 15
PhDArticles, 29
Pokemon, 33
trajectories, 65
[.sevt.stgs (stages), 50
[<-.sevt.stgs (stages), 50
[[.sevt.stgs (stages), 50
[[<-.sevt.stgs (stages), 50

as.character.parentslist, 3,7
as_adj_matrix, 5

as_bn, 5

as_igraph, 30

as_igraph (igraph-conversion), 23
as_parentslist, 6, 8, 18, 38, 49
as_sevt, 7

Asym, 4

barplot, 9
barplot.sevt, 8, 49

cat, 68

ceg, 9, 23, 30, 68
ci_matrices, 11

cid, 10, 49
compare_stages, 11, 49
confint.sevt, 13, 49
covid_patients, 15

depsubtree, 17
diff_stages (compare_stages), 11
dist, 59

full, 27, 4144, 48, 61
full (full_indep), 18
full_indep, 18

generate_linear_dataset, 20
generate_random_dataset, 21

70

generate_xor_dataset, 21

get_edges (igraph-conversion), 23
get_path (get_stage), 22
get_stage, 22, 51

get_vertices (igraph-conversion), 23

hamming_stages (compare_stages), 11
hclust, 59

igraph-conversion, 23
inclusions_stages, 25, 28, 49
indep, 27, 43, 48

indep (full_indep), 18

join_positions, 26,49, 61
join_positions(), 62
join_stages, 49
join_unobserved, 19, 26, 49

kmeans, 60

loglik, 28
loglLik.sevt, 27, 43,49
1r_test, 28, 49

make_stages_col, 68
make_stages_col (plot.sevt), 31

parentslist, 37, 38
PhDArticles, 29
plot.ceg, 30
plot.sevt, 9, 12, 30, 31, 49, 68
points, 32
Pokemon, 33
predict.sevt, 34, 49
print.parentslist, 7
print.parentslist
(as.character.parentslist), 3
print.sevt, 35
print.sevt.stgs (stages), 50
print.summary.sevt (summary.sevt), 64

INDEX

prob, 36, 49
probdist, 55

random_parentslist, 37, 38
random_sevt, 38
rename_stage, 39, 49

sample_from, 40
search_best, 40, 49
search_greedy, 41, 49

sevt, 7-10, 17, 18, 23, 28, 38, 42,43, 61, 68
sevt.list, 38

sevt_add, 44

sevt_df, 45

sevt_fit, 45,61
sevt_nvar, 46
sevt_simplify, 47
sevt_simplify(), 62
sevt_varnames, 48
stagedtrees, 48
stagedtrees-package (stagedtrees), 48
stages, 50

stages<- (stages), 50
stages_bhc, 4143, 48, 52, 61
stages_bhcr, 48, 53
stages_bj, 48, 54
stages_csbhc, 55
stages_fbhc, 48, 56
stages_hc, 43, 48, 57
stages_hclust, 4143, 49, 58
stages_kmeans, 49, 60
stages_simplebhc, 48, 61
stndnaming, 12, 62
subtree, 63
summary.sevt, 49, 64

table, 44
text, 65
text.sevt, 32, 64
trajectories, 65

write_tikz, 67

71

	as.character.parentslist
	Asym
	as_adj_matrix
	as_bn
	as_parentslist
	as_sevt
	barplot.sevt
	ceg
	cid
	ci_matrices
	compare_stages
	confint.sevt
	covid_patients
	depsubtree
	full_indep
	generate_linear_dataset
	generate_random_dataset
	generate_xor_dataset
	get_stage
	igraph-conversion
	inclusions_stages
	join_positions
	join_unobserved
	logLik.sevt
	lr_test
	PhDArticles
	plot.ceg
	plot.sevt
	Pokemon
	predict.sevt
	print.sevt
	prob
	random_parentslist
	random_sevt
	rename_stage
	sample_from
	search_best
	search_greedy
	sevt
	sevt_add
	sevt_df
	sevt_fit
	sevt_nvar
	sevt_simplify
	sevt_varnames
	stagedtrees
	stages
	stages_bhc
	stages_bhcr
	stages_bj
	stages_csbhc
	stages_fbhc
	stages_hc
	stages_hclust
	stages_kmeans
	stages_simplebhc
	stndnaming
	subtree
	summary.sevt
	text.sevt
	trajectories
	write_tikz
	Index

