Package ‘usethis’

November 26, 2024
Title Automate Package and Project Setup
Version 3.1.0

Description Automate package and project setup tasks that are otherwise
performed manually. This includes setting up unit testing, test
coverage, continuous integration, Git, 'GitHub', licenses, 'Repp’,
'RStudio’ projects, and more.

License MIT + file LICENSE
URL https://usethis.r-1lib.org, https://github.com/r-1lib/usethis

BugReports https://github.com/r-1lib/usethis/issues

Depends R (>=3.6)

Imports cli (>=3.0.1), clipr (>= 0.3.0), crayon, curl (>=2.7), desc
(>=1.4.2), fs (>=1.3.0), gert (>= 1.4.1), gh (>=1.2.1), glue
(>= 1.3.0), jsonlite, lifecycle (>= 1.0.0), purrr, rappdirs,
rlang (>= 1.1.0), rprojroot (>= 1.2), rstudioapi, stats, tools,
utils, whisker, withr (>=2.3.0), yaml

Suggests covr, knitr, magick, pkgload (>= 1.3.2.1), rmarkdown,
roxygen2 (>=7.1.2), spelling (>= 1.2), styler (>= 1.2.0),
testthat (>= 3.1.8)

Config/Needs/website 1-lib/asciicast, tidyverse/tidytemplate, xml2
Config/testthat/edition 3

Config/testthat/parallel TRUE

Config/testthat/start-first github-actions, release

Encoding UTF-8

Language en-US

RoxygenNote 7.3.2

NeedsCompilation no

Author Hadley Wickham [aut] (<https://orcid.org/0000-0003-4757-117X>),
Jennifer Bryan [aut, cre] (<https://orcid.org/0000-0002-6983-2759>),
Malcolm Barrett [aut] (<https://orcid.org/0000-0003-0299-5825>),
Andy Teucher [aut] (<https://orcid.org/0000-0002-7840-692X>),

Posit Software, PBC [cph, fnd]

https://usethis.r-lib.org
https://github.com/r-lib/usethis
https://github.com/r-lib/usethis/issues
https://orcid.org/0000-0003-4757-117X
https://orcid.org/0000-0002-6983-2759
https://orcid.org/0000-0003-0299-5825
https://orcid.org/0000-0002-7840-692X

2 Contents

Maintainer Jennifer Bryan <jenny@posit.co>
Repository CRAN
Date/Publication 2024-11-26 10:20:02 UTC

Contents
badges L e e 4
browse-this e e e e e e e 5
create_from_github Lo 7
create_package 9
edit . . . e e 10
git-default-branch 11
github-token L 14
git_protocol e e e 15
GULSIIED . . o o o o e e e 16
IL_VACCINALE e e e 17
issue-this L e e e e e e 17
LICENSES o e e e e e e e e e e 18
Proj_activate it e e e e e e e e 19
PIrOJ_SItIED . . o . o o o e e e e e e 20
Proj_utils . . .o e e e e 21
pull-requests e 23
rename_files e e e 26
rprofile-helper L e 27
Ui_SIENce s 27
usethis_options L e e 28
use_addin oL L e e 29
use_author 29
use_blank_slate e 30
use_build_ignore e e e e e 31
USE_CIAtION o o o o e e e e e e e e, 31
use_code of conduct e 32
USE_COVETAZE .« « v v v v v e e e e e e e e e e e e e e e e e e e 32
use_cppll . . oL 33
USE_Cran_COMIMENLS+ v v v v e e e e e e e e e e e e e e e e s e 33
use_data L L e e e e e e e e e e e e e 34
use_data_table L e 35
use_description e e 35
use_directory e e e e e e 37
USE_@IE . . o oo e e e e e 37
use_github 38
use_github_action L. 40
use_github_file 41
use_github_labels 43
use_github_links L 45
use_github_pages e e e e e e 46

use_github_release L 47

Contents

Index

3

use_gitlab_Ci L e e e e 47
use_git_config L. e e e 48
use_git_hook L e e 49
USE_GIt IGNOTE o it e e e e e e e e e 50
USE_ZIt_TEMOE v v v v v e e e e e e e e e e e e e e e e 50
use_import_from e 51
use_jenkins e e e e e e 52
use_lifecycle 53
USe_logOo e 53
use_make e e 54
USE_NAMESPACE .« .« v v v v v e v e 54
use news Md e e 55
USE_PacKage e e e e 55
use_package_doc 56
USE_PIPE « o v v v e e e e e e e e 57
use_pkgdown 57
USE T\ v v v v v e e e e e e e 58
USE_ICPP « « v v v e e e e e e e e e e e e e e e e e 60
use_readme_rmd L e 60
use_release _ISSUE e e e e e e e 61
USE_IeVAED e e 62
use_rmarkdown_templateo 63
use_roxygen_md e e e e e e e 64
use_rstudio . .. oL . . e 64
use_rstudio_preferences e e e 65
use_spell_check L 65
use_standalone L L 66
use_template e e e e e e 67
use_testthat L L e e 68
use_test_helper L e 69
use_tibble e 70
use_tidy_github_actions oL 71
use_tidy_thanks 73
use_tutorial L L L e e 74
USE_UPKEEP_ISSUE v o v v i it e e e e e e e e 75
USE_VEISION .« o v v v e o e e e e e s 76
USE_VIZNELLe o 77
zip-utils . ..o 78
80

4 badges
badges README badges
Description
These helpers produce the markdown text you need in your README to include badges that re-
port information, such as the CRAN version or test coverage, and link out to relevant external
resources. To add badges automatically ensure your badge block starts with a line containing only
<!-- badges: start -->and ends with a line containing only <!-- badges: end -->.
Usage
use_badge(badge_name, href, src)
use_cran_badge()
use_bioc_badge()
use_lifecycle_badge(stage)
use_binder_badge(ref = git_default_branch(), urlpath = NULL)
use_posit_cloud_badge(url)
Arguments
badge_name Badge name. Used in error message and alt text
href, src Badge link and image src
stage Stage of the package lifecycle. One of "experimental”, "stable", "superseded",
or "deprecated".
ref A Git branch, tag, or SHA
urlpath An optional urlpath component to add to the link, e.g. "rstudio” to open an
RStudio IDE instead of a Jupyter notebook. See the binder documentation for
additional examples.
url A link to an existing Posit Cloud project. See the Posit Cloud documentation for
details on how to set project access and obtain a project link.
Details

* use_badge(): a general helper used in all badge functions

* use_bioc_badge(): badge indicates BioConductor build status

* use_cran_badge(): badge indicates what version of your package is available on CRAN,
powered by https://www.r-pkg.org

» use_lifecycle_badge(): badge declares the developmental stage of a package according to
https://lifecycle.r-1ib.org/articles/stages.html.

https://mybinder.readthedocs.io/en/latest/howto/user_interface.html
https://posit.cloud
https://posit.cloud/learn/guide#project-settings-access
https://bioconductor.org/developers/
https://www.r-pkg.org
https://lifecycle.r-lib.org/articles/stages.html

browse-this 5

* use_binder_badge(): badge indicates that your repository can be launched in an executable
environment on https://mybinder.org/

» use_posit_cloud_badge(): badge indicates that your repository can be launched in a Posit
Cloud project

e use_rscloud_badge(): [Deprecated]: Use use_posit_cloud_badge() instead.

See Also

Functions that configure continuous integration, such as use_github_actions(), also create badges.

Examples

Not run:
use_cran_badge()
use_lifecycle_badge("stable")

End(Not run)

browse-this Visit important project-related web pages

Description

These functions take you to various web pages associated with a project (often, an R package) and
return the target URL(s) invisibly. To form these URLs we consult:
* Git remotes configured for the active project that appear to be hosted on a GitHub deployment

» DESCRIPTION file for the active project or the specified package. The DESCRIPTION file
is sought first in the local package library and then on CRAN.

* Fixed templates:

— Circle CI: https://circleci.com/gh/{OWNERY}/{PACKAGE}
— CRAN landing page: https://cran.r-project.org/package={PACKAGE}

— GitHub mirror of a CRAN package: https://github.com/cran/{PACKAGE} Templated
URLs aren’t checked for existence, so there is no guarantee there will be content at the
destination.

Usage

browse_package(package = NULL)
browse_project()
browse_github(package = NULL)

browse_github_issues(package = NULL, number = NULL)

https://mybinder.org/
https://posit.cloud
https://posit.cloud

6 browse-this

browse_github_pulls(package = NULL, number = NULL)
browse_github_actions(package = NULL)
browse_circleci(package = NULL)

browse_cran(package = NULL)

Arguments
package Name of package. If NULL, the active project is targeted, regardless of whether
it’s an R package or not.
number Optional, to specify an individual GitHub issue or pull request. Can be a number
or "new”.
Details

* browse_package(): Assembles a list of URLs and lets user choose one to visit in a web
browser. In a non-interactive session, returns all discovered URLs.

* browse_project(): Thin wrapper around browse_package () that always targets the active
usethis project.

* browse_github(): Visits a GitHub repository associated with the project. In the case of a
fork, you might be asked to specify if you’re interested in the source repo or your fork.

* browse_github_issues(): Visits the GitHub Issues index or one specific issue.
* browse_github_pulls(): Visits the GitHub Pull Request index or one specific pull request.
* browse_circleci(): Visits the project’s page on Circle CI.

* browse_cran(): Visits the package on CRAN, via the canonical URL.

Examples

works on the active project
browse_project()

browse_package("httr")
browse_github("gh")
browse_github_issues("fs")
browse_github_issues("fs", 1)
browse_github_pulls(”curl”)
browse_github_pulls(”curl”, 183)
browse_cran("MASS")

https://circleci.com

create_from_github

create_from_github Create a project from a GitHub repo

Description

Creates a new local project and Git repository from a repo on GitHub, by either cloning or fork-
and-cloning. In the fork-and-clone case, create_from_github() also does additional remote and
branch setup, leaving you in the perfect position to make a pull request with pr_init(), one of
several functions for working with pull requests.

create_from_github() works best when your GitHub credentials are discoverable. See below for
more about authentication.

Usage

create_from_github(

repo_spec,

destdir = NULL,

fork = NA,

rstudio = NULL,
open = rlang::is_interactive(),
protocol = git_protocol(),

host = NULL

Arguments

repo_spec

destdir

fork

A string identifying the GitHub repo in one of these forms:

* Plain OWNER/REPO spec

¢ Browser URL, such as "https://github.com/OWNER/REPQO"

e HTTPS Git URL, such as "https://github.com/OWNER/REPO.git"

¢ SSH Git URL, such as "git@github.com:OWNER/REPO.git"
Destination for the new folder, which will be named according to the REPO ex-
tracted from repo_spec. Defaults to the location stored in the global option

usethis.destdir, if defined, or to the user’s Desktop or similarly conspicuous
place otherwise.

If FALSE, we clone repo_spec. If TRUE, we fork repo_spec, clone that fork,
and do additional setup favorable for future pull requests:

* The source repo, repo_spec, is configured as the upstream remote, using
the indicated protocol.

¢ The local DEFAULT branch is set to track upstream/DEFAULT, where DEFAULT
is typically main or master. It is also immediately pulled, to cover the case
of a pre-existing, out-of-date fork.

If fork = NA (the default), we check your permissions on repo_spec. If you can
push, we set fork = FALSE, If you cannot, we set fork = TRUE.

https://docs.github.com/en/get-started/quickstart/fork-a-repo
https://docs.github.com/en/get-started/quickstart/fork-a-repo

8 create_from_github

rstudio Initiate an RStudio Project? Defaults to TRUE if in an RStudio session and project
has no pre-existing .Rproj file. Defaults to FALSE otherwise (but note that the
cloned repo may already be an RStudio Project, i.e. may already have a .Rproj
file).

open If TRUE, activates the new project:
* If using RStudio desktop, the package is opened in a new session.
* If on RStudio server, the current RStudio project is activated.
¢ Otherwise, the working directory and active project is changed.
protocol One of "https" or "ssh"

host GitHub host to target, passed to the . api_url argumentof gh: : gh (). If repo_spec
is a URL, host is extracted from that.

If unspecified, gh defaults to "https://api.github.com", although gh’s default can
be customised by setting the GITHUB_API_URL environment variable.

For a hypothetical GitHub Enterprise instance, either "https://github.acme.com/api/v3"
or "https://github.acme.com" is acceptable.

Git/GitHub Authentication

Many usethis functions, including those documented here, potentially interact with GitHub in two
different ways:

* Via the GitHub REST API. Examples: create a repo, a fork, or a pull request.
* As a conventional Git remote. Examples: clone, fetch, or push.

Therefore two types of auth can happen and your credentials must be discoverable. Which creden-
tials do we mean?

* A GitHub personal access token (PAT) must be discoverable by the gh package, which is used
for GitHub operations via the REST API. See gh_token_help() for more about getting and
configuring a PAT.

* If you use the HTTPS protocol for Git remotes, your PAT is also used for Git operations, such
as git push. Usethis uses the gert package for this, so the PAT must be discoverable by gert.
Generally gert and gh will discover and use the same PAT. This ability to "kill two birds with
one stone" is why HTTPS + PAT is our recommended auth strategy for those new to Git and
GitHub and PRs.

¢ If you use SSH remotes, your SSH keys must also be discoverable, in addition to your PAT.
The public key must be added to your GitHub account.

Git/GitHub credential management is covered in a dedicated article: Managing Git(Hub) Creden-
tials

See Also
* use_github() to go the opposite direction, i.e. create a GitHub repo from your local repo
* git_protocol() for background on protocol (HTTPS vs SSH)

* use_course() to download a snapshot of all files in a GitHub repo, without the need for any
local or remote Git operations

https://r-pkgs.org/workflow101.html#sec-workflow101-rstudio-projects
https://usethis.r-lib.org/articles/articles/git-credentials.html
https://usethis.r-lib.org/articles/articles/git-credentials.html

create_package 9

Examples

Not run:
create_from_github("r-1lib/usethis")

repo_spec can be a URL
create_from_github("https://github.com/r-1lib/usethis”)

a URL repo_spec also specifies the host (e.g. GitHub Enterprise instance)
create_from_github("https://github.acme.com/OWNER/REPO")

End(Not run)

create_package Create a package or project

Description

These functions create an R project:

* create_package() creates an R package

* create_project() creates a non-package project, i.e. a data analysis project

Both functions can be called on an existing project; you will be asked before any existing files are
changed.

Usage

create_package(
path,
fields = list(),
rstudio = rstudioapi::isAvailable(),
roxygen = TRUE,
check_name = TRUE,
open = rlang::is_interactive()

create_project(
path,
rstudio = rstudioapi::isAvailable(),
open = rlang::is_interactive()

)

Arguments

path A path. If it exists, it is used. If it does not exist, it is created, provided that the
parent path exists.

10

fields

rstudio

roxygen
check_name

open

Value

edit

A named list of fields to add to DESCRIPTION, potentially overriding default val-
ues. See use_description() for how you can set personalized defaults using
package options.

If TRUE, calls use_rstudio() to make the new package or project into an RStu-
dio Project. If FALSE and a non-package project, a sentinel . here file is placed
so that the directory can be recognized as a project by the here or rprojroot pack-
ages.

Do you plan to use roxygen2 to document your package?
Whether to check if the name is valid for CRAN and throw an error if not.
If TRUE, activates the new project:

* If using RStudio desktop, the package is opened in a new session.
* If on RStudio server, the current RStudio project is activated.

» Otherwise, the working directory and active project is changed.

Path to the newly created project or package, invisibly.

See Also

create_tidy_package() is a convenience function that extends create_package() by immedi-
ately applying as many of the tidyverse development conventions as possible.

edit

Open configuration files

Description

e edit_r_profile() opens .Rprofile

* edit_r_environ() opens .Renviron

* edit_r_makevars() opens .R/Makevars

e edit_git_config() opens .gitconfigor .git/config

* edit_git_ignore() opens global (user-level) gitignore file and ensures its path is declared
in your global Git config.

* edit_pkgdown_config opens the pkgdown YAML configuration file for the current Project.

* edit_rstudio_snippets() opens RStudio’s snippet config for the given type.

* edit_rstudio_prefs() opens RStudio’s preference file.

https://r-pkgs.org/workflow101.html#sec-workflow101-rstudio-projects
https://r-pkgs.org/workflow101.html#sec-workflow101-rstudio-projects
https://here.r-lib.org
https://rprojroot.r-lib.org

git-default-branch 11

Usage
edit_r_profile(scope = c("user”, "project”))
edit_r_environ(scope = c("user”, "project"))

edit_r_buildignore()
edit_r_makevars(scope = c("user”, "project"))

edit_rstudio_snippets(
type = c("r", "markdown”, "c_cpp"”, "css”, "html"”, "java", "javascript”, "python”,

”sql”7 "Stan", "texll’ ”yamll’)
)
edit_rstudio_prefs()
edit_git_config(scope = c("user"”, "project"))
edit_git_ignore(scope = c("user"”, "project"))
edit_pkgdown_config()
Arguments
scope Edit globally for the current user, or locally for the current project
type Snippet type (case insensitive text).
Details

The edit_r_*() functions consult R’s notion of user’s home directory. The edit_git_x() func-
tions (and usethis in general) inherit home directory behaviour from the fs package, which differs
from R itself on Windows. The fs default is more conventional in terms of the location of user-level
Git config files. See f's: :path_home() for more details.

Files created by edit_rstudio_snippets() will mask, not supplement, the built-in default snip-
pets. If you like the built-in snippets, copy them and include with your custom snippets.

Value

Path to the file, invisibly.

git-default-branch Get or set the default Git branch

Description

The git_default_branch*() functions put some structure around the somewhat fuzzy (but defi-
nitely real) concept of the default branch. In particular, they support new conventions around the
Git default branch name, globally or in a specific project / Git repository.

12 git-default-branch
Usage
git_default_branch()
git_default_branch_configure(name = "main")
git_default_branch_rediscover(current_local_default = NULL)

git_default_branch_rename(from = NULL, to = "main")

Arguments

name Default name for the initial branch in new Git repositories.
current_local_default

Name of the local branch that is currently functioning as the default branch. If
unspecified, this can often be inferred.

from Name of the branch that is currently functioning as the default branch.
to New name for the default branch.
Value

Name of the default branch.

Background on the default branch

Technically, Git has no official concept of the default branch. But in reality, almost all Git repos
have an effective default branch. If there’s only one branch, this is it! It is the branch that most bug
fixes and features get merged in to. It is the branch you see when you first visit a repo on a site such
as GitHub. On a Git remote, it is the branch that HEAD points to.

Historically, master has been the most common name for the default branch, but main is an in-
creasingly popular choice.

git_default_branch_configure()

This configures init.defaultBranch at the global (a.k.a user) level. This setting determines
the name of the branch that gets created when you make the first commit in a new Git repo.
init.defaultBranch only affects the local Git repos you create in the future.

git_default_branch()

This figures out the default branch of the current Git repo, integrating information from the local
repo and, if applicable, the upstream or origin remote. If there is a local vs. remote mismatch,
git_default_branch() throws an error with advice to call git_default_branch_rediscover()
to repair the situation.

For a remote repo, the default branch is the branch that HEAD points to.
For the local repo, if there is only one branch, that must be the default! Otherwise we try to identify

the relevant local branch by looking for specific branch names, in this order:

* whatever the default branch of upstream or origin is, if applicable

git-default-branch 13

* main
* master

* the value of the Git option init.defaultBranch, with the usual deal where a local value, if
present, takes precedence over a global (a.k.a. user-level) value

git_default_branch_rediscover()

This consults an external authority — specifically, the remote source repo on GitHub — to learn the
default branch of the current project / repo. If that doesn’t match the apparent local default branch
(for example, the project switched from master to main), we do the corresponding branch renaming
in your local repo and, if relevant, in your fork.

See https://happygitwithr.com/common-remote-setups.html for more about GitHub remote
configurations and, e.g., what we mean by the source repo. This function works for the configura-

n o n

tions "ours”, "fork”, and "theirs".

git_default_branch_rename()

Note: this only works for a repo that you effectively own. In terms of GitHub, you must own the
source repo personally or, if organization-owned, you must have admin permission on the source
repo.

This renames the default branch in the source repo on GitHub and then calls git_default_branch_rediscover(),
to make any necessary changes in the local repo and, if relevant, in your personal fork.

See https://happygitwithr.com/common-remote-setups.html for more about GitHub remote
configurations and, e.g., what we mean by the source repo. This function works for the configura-

non

tions "ours”, "fork"”, and "no_github".

Regarding "no_github”: Of course, this function does what you expect for a local repo with no
GitHub remotes, but that is not the primary use case.

Examples

Not run:
git_default_branch()

End(Not run)
Not run:
git_default_branch_configure()

End(Not run)
Not run:
git_default_branch_rediscover()

you can always explicitly specify the local branch that's been playing the
role of the default
git_default_branch_rediscover("unconventional_default_branch_name")

End(Not run)
Not run:
git_default_branch_rename()

https://happygitwithr.com/common-remote-setups.html
https://happygitwithr.com/common-remote-setups.html

14 github-token
you can always explicitly specify one or both branch names
git_default_branch_rename(from = "this”, to = "that")

End(Not run)
github-token Get help with GitHub personal access tokens

Description
A personal access token (PAT) is needed for certain tasks usethis does via the GitHub API, such
as creating a repository, a fork, or a pull request. If you use HTTPS remotes, your PAT is also
used when interacting with GitHub as a conventional Git remote. These functions help you get and
manage your PAT:

* gh_token_help() guides you through token troubleshooting and setup.

* create_github_token() opens a browser window to the GitHub form to generate a PAT,
with suggested scopes pre-selected. It also offers advice on storing your PAT.

* gitcreds::gitcreds_set() helps you register your PAT with the Git credential manager
used by your operating system. Later, other packages, such as usethis, gert, and gh can auto-
matically retrieve that PAT and use it to work with GitHub on your behalf.

Usually, the first time the PAT is retrieved in an R session, it is cached in an environment variable,
for easier reuse for the duration of that R session. After initial acquisition and storage, all of this
should happen automatically in the background. GitHub is encouraging the use of PATs that expire
after, e.g., 30 days, so prepare yourself to re-generate and re-store your PAT periodically.
Git/GitHub credential management is covered in a dedicated article: Managing Git(Hub) Creden-
tials

Usage
create_github_token(

scopes = c("repo”, "user", "gist", "workflow"),
description = "DESCRIBE THE TOKEN'S USE CASE",
host = NULL
)
gh_token_help(host = NULL)
Arguments

scopes Character vector of token scopes, pre-selected in the web form. Final choices
are made in the GitHub form. Read more about GitHub API scopes at https://

docs.github.com/apps/building-oauth-apps/understanding-scopes-for-oauth-apps/.

description Short description or nickname for the token. You might (eventually) have multi-
ple tokens on your GitHub account and a label can help you keep track of what
each token is for.

https://docs.github.com/articles/creating-a-personal-access-token-for-the-command-line
https://usethis.r-lib.org/articles/articles/git-credentials.html
https://usethis.r-lib.org/articles/articles/git-credentials.html
https://docs.github.com/apps/building-oauth-apps/understanding-scopes-for-oauth-apps/
https://docs.github.com/apps/building-oauth-apps/understanding-scopes-for-oauth-apps/

git_protocol 15

host GitHub host to target, passed to the .api_url argument of gh::gh(). If un-
specified, gh defaults to "https://api.github.com", although gh’s default can be
customised by setting the GITHUB_API_URL environment variable.

For a hypothetical GitHub Enterprise instance, either "https://github.acme.com/api/v3"
or "https://github.acme.com" is acceptable.

Details
create_github_token() has previously gone by some other names: browse_github_token()
and browse_github_pat().

Value

Nothing

See Also

gh::gh_whoami() for information on an existing token and gitcreds::gitcreds_set() and
gitcreds::gitcreds_get() for a secure way to store and retrieve your PAT.

Examples

Not run:
create_github_token()

End(Not run)
Not run:
gh_token_help()

End(Not run)

git_protocol See or set the default Git protocol

Description

Git operations that address a remote use a so-called "transport protocol". usethis supports HTTPS
and SSH. The protocol dictates the Git URL format used when usethis needs to configure the first
GitHub remote for a repo:

e protocol = "https" implies https://github.com/<OWNER>/<REPO>.git
* protocol = "ssh” implies git@github.com:<OWNER>/<REPO>.git

Two helper functions are available:

* git_protocol() reveals the protocol "in force". As of usethis v2.0.0, this defaults to "https".
You can change this for the duration of the R session with use_git_protocol(). Change
the default for all R sessions with code like this in your .Rprofile (easily editable via
edit_r_profile()):

16 git_sitrep

options(usethis.protocol = "ssh")
* use_git_protocol() sets the Git protocol for the current R session

This protocol only affects the Git URL for newly configured remotes. All existing Git remote URLSs
are always respected, whether HTTPS or SSH.

Usage

git_protocol()

use_git_protocol (protocol)

Arguments

protocol One of "https" or "ssh"

Value

The protocol, either "https" or "ssh"

Examples

Not run:
git_protocol()

use_git_protocol(”"ssh")
git_protocol()

use_git_protocol("https"”)
git_protocol()

End(Not run)

git_sitrep Git/GitHub sitrep

Description
Get a situation report on your current Git/GitHub status. Useful for diagnosing problems. The
default is to report all values; provide values for tool or scope to be more specific.

Usage

git_sitrep(tool = c("git"”, "github"), scope = c("user”, "project"))

Arguments

tool Report for git, or github

scope Report globally for the current user, or locally for the current project

git_vaccinate 17

Examples

Not run:
report all
git_sitrep()

report git for current user
git_sitrep("git", "user”

End(Not run)

git_vaccinate Vaccinate your global gitignore file

Description

Adds .Rproj.user, .Rhistory, .Rdata, .httr-oauth, .DS_Store, and .quarto to your global
(ak.a. user-level) .gitignore. This is good practice as it decreases the chance that you will
accidentally leak credentials to GitHub. git_vaccinate() also tries to detect and fix the situation
where you have a global gitignore file, but it’s missing from your global Git config.

Usage

git_vaccinate()

issue-this Helpers for GitHub issues

Description

The issue_# family of functions allows you to perform common operations on GitHub issues from
within R. They’re designed to help you efficiently deal with large numbers of issues, particularly
motivated by the challenges faced by the tidyverse team.

* issue_close_community() closes an issue, because it’s not a bug report or feature request,
and points the author towards Posit Community as a better place to discuss usage (https:
//forum.posit.co).

* issue_reprex_needed() labels the issue with the "reprex" label and gives the author some
advice about what is needed.

Usage

issue_close_community(number, reprex = FALSE)

issue_reprex_needed(number)

https://forum.posit.co
https://forum.posit.co

18 licenses

Arguments
number Issue number
reprex Does the issue also need a reprex?

Saved replies
Unlike GitHub’s "saved replies", these functions can:

* Be shared between people

 Perform other actions, like labelling, or closing
» Have additional arguments

* Include randomness (like friendly gifs)

Examples

Not run:
issue_close_community(12, reprex = TRUE)

issue_reprex_needed(241)

End(Not run)

licenses License a package

Description
Adds the necessary infrastructure to declare your package as licensed with one of these popular
open source licenses:

Permissive:

e MIT: simple and permissive.
* Apache 2.0: MIT + provides patent protection.

Copyleft:

* GPL v2: requires sharing of improvements.

* GPL v3: requires sharing of improvements.

* AGPL v3: requires sharing of improvements.

e LGPL v2.1: requires sharing of improvements.
* LGPL v3: requires sharing of improvements.

Creative commons licenses appropriate for data packages:

* CCO: dedicated to public domain.
* CC-BY: Free to share and adapt, must give appropriate credit.
See https://choosealicense.com for more details and other options.

Alternatively, for code that you don’t want to share with others, use_proprietary_license()
makes it clear that all rights are reserved, and the code is not open source.

https://choosealicense.com/licenses/mit/
https://choosealicense.com/licenses/apache-2.0/
https://choosealicense.com/licenses/gpl-2.0/
https://choosealicense.com/licenses/gpl-3.0/
https://choosealicense.com/licenses/agpl-3.0/
https://choosealicense.com/licenses/lgpl-2.1/
https://choosealicense.com/licenses/lgpl-3.0/
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/licenses/by/4.0/
https://choosealicense.com

proj_activate 19
Usage

use_mit_license(copyright_holder = NULL)

use_gpl_license(version = 3, include_future = TRUE)

3, include_future = TRUE)

use_agpl_license(version

use_lgpl_license(version = 3, include_future = TRUE)

use_apache_license(version = 2, include_future = TRUE)
use_cc@_license()
use_ccby_license()

use_proprietary_license(copyright_holder)

Arguments

copyright_holder
Name of the copyright holder or holders. This defaults to "{package name}
authors"”; you should only change this if you use a CLA to assign copyright to
a single entity.

version License version. This defaults to latest version all licenses.

include_future If TRUE, will license your package under the current and any potential future
versions of the license. This is generally considered to be good practice because
it means your package will automatically include "bug" fixes in licenses.
Details
CRAN does not permit you to include copies of standard licenses in your package, so these functions
save the license as LICENSE . md and add it to .Rbuildignore.

See Also

For more details, refer to the the license chapter in R Packages.

proj_activate Activate a project

Description

Activates a project in usethis, R session, and (if relevant) RStudio senses. If you are in RStudio, this
will open a new RStudio session. If not, it will change the working directory and active project.

https://r-pkgs.org/license.html

20 proj_sitrep

Usage

proj_activate(path)

Arguments

path Project directory

Value

Single logical value indicating if current session is modified.

proj_sitrep Report working directory and usethis/RStudio project

Description
proj_sitrep() reports
* current working directory

* the active usethis project

* the active RStudio Project

Call this function if things seem weird and you’re not sure what’s wrong or how to fix it. Usually,
all three of these should coincide (or be unset) and proj_sitrep() provides suggested commands
for getting back to this happy state.

Usage

proj_sitrep()

Value
A named list, with S3 class sitrep (for printing purposes), reporting current working directory,
active usethis project, and active RStudio Project

See Also

Other project functions: proj_utils

Examples

proj_sitrep()

proj_utils 21

proj_utils Utility functions for the active project

Description

Most use_*() functions act on the active project. If it is unset, usethis uses rprojroot to find
the project root of the current working directory. It establishes the project root by looking for a
.here file, an RStudio Project, a package DESCRIPTION, Git infrastructure, a remake.yml file, or a
.projectile file. It then stores the active project for use for the remainder of the session.

In general, end user scripts should not contain direct calls to usethis: :proj_*() utility functions.
They are internal functions that are exported for occasional interactive use or use in packages that
extend usethis. End user code should call functions in rprojroot or its simpler companion, here, to
programmatically detect a project and build paths within it.

If you are puzzled why a path (usually the current working directory) does not appear to be inside
project, it can be helpful to call here: :dr_here() to get much more verbose feedback.

Usage
proj_get()
proj_set(path = ".", force = FALSE)
proj_path(..., ext = "")

with_project(

path = ".",
code,
force = FALSE,
setwd = TRUE,
quiet = getOption("usethis.quiet"”, default = FALSE)
)
local_project(
path = ".",
force = FALSE,
setwd = TRUE,
quiet = getOption("usethis.quiet”, default = FALSE),
.local_envir = parent.frame()
)
Arguments
path Path to set. This path should exist or be NULL.
force If TRUE, use this path without checking the usual criteria for a project. Use

sparingly! The main application is to solve a temporary chicken-egg problem:
you need to set the active project in order to add project-signalling infrastructure,
such as initialising a Git repo or adding a DESCRIPTION file.

https://rprojroot.r-lib.org
https://rprojroot.r-lib.org
https://here.r-lib.org

22

ext
code

setwd

quiet

.local_envir

Functions

proj_utils

character vectors, if any values are NA, the result will also be NA. The paths
follow the recycling rules used in the tibble package, namely that only length 1
arguments are recycled.

An optional extension to append to the generated path.
Code to run with temporary active project

Whether to also temporarily set the working directory to the active project, if it
is not NULL

Whether to suppress user-facing messages, while operating in the temporary
active project

The environment to use for scoping. Defaults to current execution environment.

» proj_get(): Retrieves the active project and, if necessary, attempts to set it in the first place.

* proj_set(): Sets the active project.

* proj_path(): Builds paths within the active project returned by proj_get(). Thin wrapper
around fs: :path().

* with_project(): Runs code with a temporary active project and, optionally, working direc-
tory. It is an example of the with_*() functions in withr.

* local_project(): Sets an active project and, optionally, working directory until the current
execution environment goes out of scope, e.g. the end of the current function or test. It is an
example of the local_x() functions in withr.

See Also

Other project functions: proj_sitrep()

Examples

Not run:

see the active project

proj_get()

manually set the active project
proj_set("path/to/target/project”)

build a path within the active project (both produce same result)
proj_path("R/foo.R")
proj_path("R", "foo", ext = "R")

build a path within SOME OTHER project
with_project("path/to/some/other/project”, proj_path("blah.R"))

convince yourself that with_project() temporarily changes the project
with_project("path/to/some/other/project”, print(proj_sitrep()))

End(Not run)

https://withr.r-lib.org
https://withr.r-lib.org

pull-requests 23

pull-requests Helpers for GitHub pull requests

Description

The pr_* family of functions is designed to make working with GitHub pull requests (PRs) as
painless as possible for both contributors and package maintainers.

To use the pr_* functions, your project must be a Git repo and have one of these GitHub remote
configurations:
 "ours": You can push to the GitHub remote configured as origin and it’s not a fork.

* "fork": You can push to the GitHub remote configured as origin, it’s a fork, and its parent
is configured as upstream. origin points to your personal copy and upstream points to the
source repo.

"Ours" and "fork" are two of several GitHub remote configurations examined in Common remote
setups in Happy Git and GitHub for the useR.

The Pull Request Helpers article walks through the process of making a pull request with the pr_*
functions.

The pr_* functions also use your Git/GitHub credentials to carry out various remote operations; see
below for more about auth. The pr_* functions also proactively check for agreement re: the default
branch in your local repo and the source repo. See git_default_branch() for more.

Usage

pr_init(branch)

pr_resume(branch = NULL)

pr_fetch(number = NULL, target = c("source”, "primary"))
pr_push()

pr_pull()

pr_merge_main()

pr_view(number = NULL, target = c("source”, "primary"))
pr_pause()
pr_finish(number = NULL, target = c("”source”, "primary"))

pr_forget()

https://happygitwithr.com/common-remote-setups.html
https://happygitwithr.com/common-remote-setups.html
https://usethis.r-lib.org/articles/articles/pr-functions.html

24 pull-requests

Arguments
branch Name of a new or existing local branch. If creating a new branch, note this
should usually consist of lower case letters, numbers, and -.
number Number of PR.
target Which repo to target? This is only a question in the case of a fork. In a fork,

there is some slim chance that you want to consider pull requests against your
fork (the primary repo, i.e. origin) instead of those against the source repo (i.e.
upstream, which is the default).

Git/GitHub Authentication

Many usethis functions, including those documented here, potentially interact with GitHub in two
different ways:

* Via the GitHub REST API. Examples: create a repo, a fork, or a pull request.

* As a conventional Git remote. Examples: clone, fetch, or push.

Therefore two types of auth can happen and your credentials must be discoverable. Which creden-
tials do we mean?

* A GitHub personal access token (PAT) must be discoverable by the gh package, which is used
for GitHub operations via the REST APIL. See gh_token_help() for more about getting and
configuring a PAT.

* If you use the HTTPS protocol for Git remotes, your PAT is also used for Git operations, such
as git push. Usethis uses the gert package for this, so the PAT must be discoverable by gert.
Generally gert and gh will discover and use the same PAT. This ability to "kill two birds with
one stone" is why HTTPS + PAT is our recommended auth strategy for those new to Git and
GitHub and PRs.

¢ If you use SSH remotes, your SSH keys must also be discoverable, in addition to your PAT.
The public key must be added to your GitHub account.

Git/GitHub credential management is covered in a dedicated article: Managing Git(Hub) Creden-
tials

For contributors

To contribute to a package, first use create_from_github("OWNER/REPO"). This forks the source
repository and checks out a local copy.

Next use pr_init() to create a branch for your PR. It is best practice to never make commits to the
default branch branch of a fork (usually named main or master), because you do not own it. A pull
request should always come from a feature branch. It will be much easier to pull upstream changes
from the fork parent if you only allow yourself to work in feature branches. It is also much easier
for a maintainer to explore and extend your PR if you create a feature branch.

Work locally, in your branch, making changes to files, and committing your work. Once you’re
ready to create the PR, run pr_push() to push your local branch to GitHub, and open a webpage
that lets you initiate the PR (or draft PR).

To learn more about the process of making a pull request, read the Pull Request Helpers vignette.

https://usethis.r-lib.org/articles/articles/git-credentials.html
https://usethis.r-lib.org/articles/articles/git-credentials.html
https://usethis.r-lib.org/articles/articles/pr-functions.html

pull-requests 25

If you are lucky, your PR will be perfect, and the maintainer will accept it. You can then run
pr_finish() to delete your PR branch. In most cases, however, the maintainer will ask you to
make some changes. Make the changes, then run pr_push() to update your PR.

It’s also possible that the maintainer will contribute some code to your PR: to get those changes
back onto your computer, run pr_pull(). It can also happen that other changes have occurred in
the package since you first created your PR. You might need to merge the default branch (usually
named main or master) into your PR branch. Do that by running pr_merge_main(): this makes
sure that your PR is compatible with the primary repo’s main line of development. Both pr_pull()
and pr_merge_main() can result in merge conflicts, so be prepared to resolve before continuing.

For maintainers

To download a PR locally so that you can experiment with it, run pr_fetch () and select the PR or, if
you already know its number, call pr_fetch(<pr_number>). If you make changes, run pr_push()
to push them back to GitHub. After you have merged the PR, run pr_finish() to delete the local
branch and remove the remote associated with the contributor’s fork.

Overview of all the functions

e pr_init(): As a contributor, start work on a new PR by ensuring that your local repo is
up-to-date, then creating and checking out a new branch. Nothing is pushed to or created on
GitHub until you call pr_push().

e pr_fetch(): As a maintainer, review or contribute changes to an existing PR by creating a
local branch that tracks the remote PR. pr_fetch() does as little work as possible, so you can
also use it to resume work on an PR that already has a local branch (where it will also ensure
your local branch is up-to-date). If called with no arguments, up to 9 open PRs are offered for
interactive selection.

* pr_resume(): Resume work on a PR by switching to an existing local branch and pulling any
changes from its upstream tracking branch, if it has one. If called with no arguments, up to 9
local branches are offered for interactive selection, with a preference for branches connected
to PRs and for branches with recent activity.

e pr_push(): The first time it’s called, a PR branch is pushed to GitHub and you’re taken to a
webpage where a new PR (or draft PR) can be created. This also sets up the local branch to
track its remote counterpart. Subsequent calls to pr_push() make sure the local branch has
all the remote changes and, if so, pushes local changes, thereby updating the PR.

e pr_pull(): Pulls changes from the local branch’s remote tracking branch. If a maintainer has
extended your PR, this is how you bring those changes back into your local work.

e pr_merge_main(): Pulls changes from the default branch of the source repo into the current
local branch. This can be used when the local branch is the default branch or when it’s a PR
branch.

* pr_pause(): Makes sure you’re up-to-date with any remote changes in the PR. Then switches
back to the default branch and pulls from the source repo. Use pr_resume() with name of
branch or use pr_fetch() to resume using PR number.

e pr_view(): Visits the PR associated with the current branch in the browser (default) or the
specific PR identified by number. (FYI browse_github_pulls() is a handy way to visit the
list of all PRs for the current project.)

26

rename_files

pr_forget(): Does local clean up when the current branch is an actual or notional PR that you
want to abandon. Maybe you initiated it yourself, via pr_init(), or you used pr_fetch() to
explore a PR from GitHub. Only does local operations: does not update or delete any remote
branches, nor does it close any PRs. Alerts the user to any uncommitted or unpushed work
that is at risk of being lost. If user chooses to proceed, switches back to the default branch,
pulls changes from source repo, and deletes local PR branch. Any associated Git remote is
deleted, if the "forgotten" PR was the only branch using it.

pr_finish(): Does post-PR clean up, but does NOT actually merge or close a PR (maintainer
should do this in the browser). If number is not given, infers the PR from the upstream tracking
branch of the current branch. If number is given, it does not matter whether the PR exists
locally. If PR exists locally, alerts the user to uncommitted or unpushed changes, then switches
back to the default branch, pulls changes from source repo, and deletes local PR branch. If the
PR came from an external fork, any associated Git remote is deleted, provided it’s not in use
by any other local branches. If the PR has been merged and user has permission, deletes the
remote branch (this is the only remote operation that pr_finish() potentially does).

Examples

Not run:
pr_fetch(123)

End(Not run)

rename_files Automatically rename paired R/ and test/ files

Description

Moves R/{old}.Rto R/{new}.R
Moves src/{old}.* to src/{new}.*
Moves tests/testthat/test-{old}.Rto tests/testthat/test-{new}.R

Moves tests/testthat/test-{old}-*.* to tests/testthat/test-{new}-*.* and up-
dates paths in the test file.

Removes context () calls from the test file, which are unnecessary (and discouraged) as of
testthat v2.1.0.

This is a potentially dangerous operation, so you must be using Git in order to use this function.

Usage

rename_files(old, new)

Arguments

old, new Old and new file names (with or without .R extensions).

rprofile-helper

27

rprofile-helper Helpers to make useful changes to .Rprofile

Description

All functions open your .Rprofile and give you the code you need to paste in.

Usage

use_

use_

use_

use_

use_

use_devtools(): makes devtools available in interactive sessions.
use_usethis(): makes usethis available in interactive sessions.

use_reprex(): makes reprex available in interactive sessions.

use_conflicted(): makes conflicted available in interactive sessions.

use_partial_warnings(): warns on partial matches.

conflicted()
reprex()
usethis()
devtools()

partial_warnings()

ui_silence Suppress usethis’s messaging

Description

Execute a bit of code without usethis’s normal messaging.

Usage

ui_silence(code)

Arguments

code Code to execute with usual Ul output silenced.

Value

Whatever code returns.

28 usethis_options

Examples

compare the messaging you see from this:
browse_github("usethis")
vs. this:
ui_silence(
browse_github("usethis”)

)

usethis_options Options consulted by usethis

Description

User-configurable options consulted by usethis, which provide a mechanism for setting default
behaviors for various functions.

If the built-in defaults don’t suit you, set one or more of these options. Typically, this is done in the
.Rprofile startup file, which you can open for editing with edit_r_profile() - this will set the
specified options for all future R sessions. Your code will look something like:

options(
usethis.description = list(
"Authors@R"” = utils: :person(

”Jane", ”Doe”,
email = "jane@example.com”,
role = c("aut”, "cre"),
comment = c(ORCID = "YOUR-ORCID-ID")
),
License = "MIT + file LICENSE"
),
usethis.destdir = "/path/to/folder/", # for use_course(), create_from_github()
usethis.protocol = "ssh”, # Use ssh git protocol

usethis.overwrite = TRUE # overwrite files in Git repos without confirmation

Options for the usethis package

* usethis.description: customize the default content of new DESCRIPTION files by setting
this option to a named list. If you are a frequent package developer, it is worthwhile to pre-
configure your preferred name, email, license, etc. See the example above and the article on
usethis setup for more details.

e usethis.destdir: Default directory in which to place new projects downloaded by use_course ()
and create_from_github(). If this option is unset, the user’s Desktop or similarly conspic-
uous place will be used.

» usethis.protocol: specifies your preferred transport protocol for Git. Either "https" (de-
fault) or "ssh":

— usethis.protocol = "https"” implies https://github.com/<OWNER>/<REPO>.git

https://usethis.r-lib.org/articles/articles/usethis-setup.html
https://usethis.r-lib.org/articles/articles/usethis-setup.html

use_addin 29

— usethis.protocol = "ssh"” implies git@github.com:<OWNER>/<REPO>.git
You can also change this for the duration of your R session with use_git_protocol().

* usethis.overwrite: If TRUE, usethis overwrites an existing file without asking for user con-
firmation if the file is inside a Git repo. The rationale is that the normal Git workflow makes
it easy to see and selectively accept/discard any proposed changes.

* usethis.quiet: Set to TRUE to suppress user-facing messages. Default FALSE.

* usethis.allow_nested_project: Whether or not to allow you to create a project inside
another project. This is rarely a good idea, so this option defaults to FALSE.

use_addin Add minimal RStudio Addin binding

Description

This function helps you add a minimal RStudio Addin binding to inst/rstudio/addins.dcf.

Usage

use_addin(addin = "new_addin”, open = rlang::is_interactive())
Arguments

addin Name of the addin function, which should be defined in the R folder.

open Open the newly created file for editing? Happens in RStudio, if applicable, or

viautils::file.edit() otherwise.
use_author Add an author to the AuthorseR field in DESCRIPTION

Description

use_author () adds a person to the Authors@R field of the DESCRIPTION file, creating that field
if necessary. It will not modify, e.g., the role(s) or email of an existing author (judged using their
"Given Family" name). For that we recommend editing DESCRIPTION directly. Or, for program-
matic use, consider calling the more specialized functions available in the desc package directly.

use_author () also surfaces two other situations you might want to address:

» Explicit use of the fields Author or Maintainer. We recommend switching to the more
modern Authors@R field instead, because it offers richer metadata for various downstream
uses. (Note that AuthorseR is eventually processed to create Author and Maintainer fields,
but only when the tar. gz is built from package source.)

* Presence of the fake author placed by create_package() and use_description(). This
happens when usethis has to create a DESCRIPTION file and the user hasn’t given any author
information via the fields argument or the global option "usethis.description”. The
placeholder looks something like First Last <first.last@example.com> [aut, cre]
and use_author () offers to remove it in interactive sessions.

https://rstudio.github.io/rstudioaddins/

30 use_blank_slate

Usage
use_author(given = NULL, family = NULL, ..., role = "ctb")
Arguments
given a character vector with the given names, or a list thereof.
family a character string with the family name, or a list thereof.
Arguments passed on to utils: :person
middle a character string with the collapsed middle name(s). Deprecated, see
Details.
email a character string (or vector) giving an e-mail address (each), or a list
thereof.
comment a character string (or vector) providing comments, or a list thereof.
first acharacter string giving the first name. Deprecated, see Details.
last a character string giving the last name. Deprecated, see Details.
role a character vector specifying the role(s) of the person (see Details), or a list
thereof.
Examples
Not run:
use_author(
given = "Lucy”,
family = "van Pelt”,
role = C(”aut", "Cre“)’
email = "lucy@example.com”,
comment = c(ORCID = "LUCY-ORCID-ID")
)
use_author("Charlie”, "Brown")
End(Not run)
use_blank_slate Don’t save/load user workspace between sessions

Description

R can save and reload the user’s workspace between sessions via an .RData file in the current
directory. However, long-term reproducibility is enhanced when you turn this feature off and clear
R’s memory at every restart. Starting with a blank slate provides timely feedback that encourages
the development of scripts that are complete and self-contained. More detail can be found in the
blog post Project-oriented workflow.

https://www.tidyverse.org/blog/2017/12/workflow-vs-script/

use_build_ignore 31

Usage
use_blank_slate(scope = c("user”, "project"))
Arguments
scope Edit globally for the current user, or locally for the current project
use_build_ignore Add files to .Rbuildignore
Description

.Rbuildignore has a regular expression on each line, but it’s usually easier to work with specific
file names. By default, use_build_ignore() will (crudely) turn a filename into a regular expres-
sion that will only match that path. Repeated entries will be silently removed.

use_build_ignore() is designed to ignore individual files. If you want to ignore all files with
a given extension, consider providing an "as-is" regular expression, using escape = FALSE; see
examples.

Usage

use_build_ignore(files, escape = TRUE)

Arguments

files Character vector of path names.

escape If TRUE, the default, will escape . to \\. and surround with * and $.
Examples

Not run:

ignore all Excel files
use_build_ignore("[.]Ix1sx$", escape = FALSE)

End(Not run)

use_citation Create a CITATION template

Description

Use this if you want to encourage users of your package to cite an article or book.

Usage

use_citation()

32 use_coverage

use_code_of_conduct Add a code of conduct

Description

Adds a CODE_OF _CONDUCT . md file to the active project and lists in .Rbuildignore, in the case of a
package. The goal of a code of conduct is to foster an environment of inclusiveness, and to explicitly
discourage inappropriate behaviour. The template comes from https://www.contributor-covenant.
org, version 2.1: https://www.contributor-covenant.org/version/2/1/code_of_conduct/.

Usage

use_code_of_conduct(contact, path = NULL)

Arguments
contact Contact details for making a code of conduct report. Usually an email address.
path Path of the directory to put CODE_OF _CONDUCT . md in, relative to the active project.
Passed along to use_directory(). Default s to locate at top-level, but . github/
is also common.
Details

If your package is going to CRAN, the link to the CoC in your README must be an absolute
link to a rendered website as CODE_OF_CONDUCT . md is not included in the package sent to CRAN.
use_code_of_conduct() will automatically generate this link if (1) you use pkgdown and (2)
have set the url field in _pkgdown.yml; otherwise it will link to a copy of the CoC on https:
//www.contributor-covenant.org.

use_coverage Test coverage

Description

Adds test coverage reporting to a package, using either Codecov (https://codecov.io) or Cover-
alls (https://coveralls.io).

Usage

use_coverage(type = c("codecov”, "coveralls"), repo_spec = NULL)

use_covr_ignore(files)

https://www.contributor-covenant.org
https://www.contributor-covenant.org
https://www.contributor-covenant.org/version/2/1/code_of_conduct/
https://www.contributor-covenant.org
https://www.contributor-covenant.org

use_cppll 33

Arguments
type Which web service to use.
repo_spec Optional GitHub repo specification in this form: owner/repo. This can usually
be inferred from the GitHub remotes of active project.
files Character vector of file globs.
use_cpp11 Use C++ via the cppll package
Description

Adds infrastructure needed to use the cpp11 package, a header-only R package that helps R package
developers handle R objects with C++ code:

e Creates src/
* Adds cppll to DESCRIPTION

* Creates src/code. cpp, an initial placeholder . cpp file

Usage

use_cpp11()

use_cran_comments CRAN submission comments

Description

Creates cran-comments.md, a template for your communications with CRAN when submitting a
package. The goal is to clearly communicate the steps you have taken to check your package on a
wide range of operating systems. If you are submitting an update to a package that is used by other
packages, you also need to summarize the results of your reverse dependency checks.

Usage

use_cran_comments(open = rlang::is_interactive())

Arguments

open Open the newly created file for editing? Happens in RStudio, if applicable, or
viautils::file.edit() otherwise.

https://cpp11.r-lib.org

34

use_data

use_data

Create package data

Description

use_data() makes it easy to save package data in the correct format. I recommend you save
scripts that generate package data in data-raw: use use_data_raw() to set it up. You also need to
document exported datasets.

Usage

use_data(

L

internal = FALSE,
overwrite = FALSE,
compress = "bzip2",

version = 3,
ascii = FALSE
)

use_data_raw(name = "DATASET"”, open = rlang::is_interactive())

Arguments

internal

overwrite

compress

version

ascii

name

open

Unquoted names of existing objects to save.

If FALSE, saves each object in its own .rda file in the data/ directory. These
data files bypass the usual export mechanism and are available whenever the
package is loaded (or via data() if LazyData is not true).

If TRUE, stores all objects in a single R/sysdata.rda file. Objects in this file
follow the usual export rules. Note that this means they will be exported if you
are using the common exportPattern() rule which exports all objects except
for those that start with ..

By default, use_data() will not overwrite existing files. If you really want to
do so, set this to TRUE.

Choose the type of compression used by save(). Should be one of "gzip",
"bzip2", or "xz".

The serialization format version to use. The default, 3, can only be read by R
versions 3.5.0 and higher. For R 1.4.0 to 3.5.3, use version 2.

if TRUE, an ASCII representation of the data is written. The default value of
ascii is FALSE which leads to a binary file being written. If NA and version >=
2, a different ASCII representation is used which writes double/complex num-
bers as binary fractions.

Name of the dataset to be prepared for inclusion in the package.

Open the newly created file for editing? Happens in RStudio, if applicable, or
viautils::file.edit() otherwise.

use_data_table 35

See Also

The data chapter of R Packages.

Examples

Not run:
X <-1:10
y <- 1:100

use_data(x, y) # For external use
use_data(x, y, internal = TRUE) # For internal use

End(Not run)
Not run:

use_data_raw("daisy")

End(Not run)

use_data_table Prepare for importing data.table

Description

use_data_table() imports the data. table() function from the data.table package, as well as sev-

eral important symbols: :=, .SD, .BY, .N, . I, .GRP, .NGRP, .EACHI. This is a minimal setup and you

can learn much more in the "Importing data.table" vignette: https://rdatatable.gitlab.io/data.table/articles/dat
In addition to importing these functions, use_data_table() also blocks the usage of data.table in

the Depends field of the DESCRIPTION file; data. table should be used as an imported or suggested

package only. See this discussion.

Usage

use_data_table()

use_description Create or modify a DESCRIPTION file

Description

use_description() creates a DESCRIPTION file. Although mostly associated with R packages, a
DESCRIPTION file can also be used to declare dependencies for a non-package project. Within such
a project, devtools: :install_deps() can then be used to install all the required packages. Note
that, by default, use_decription() checks for a CRAN-compliant package name. You can turn
this off with check_name = FALSE.

usethis consults the following sources, in this order, to set DESCRIPTION fields:

https://r-pkgs.org/data.html
https://r-pkgs.org
https://github.com/Rdatatable/data.table/issues/3076

36 use_description

e fields argument of create_package() or use_description()
e getOption("usethis.description”)

¢ Defaults built into usethis

The fields discovered via options or the usethis package can be viewed with use_description_defaults().

If you create a lot of packages, consider storing personalized defaults as a named list in an option
named "usethis.description”. Here’s an example of code to include in .Rprofile, which can
be opened via edit_r_profile():

options(
usethis.description = list(
"Authors@R"” = utils::person(

"Jane", "Doe",

email = "jane@example.com”,

role = c("aut”, "cre"),

comment = c(ORCID = "YOUR-ORCID-ID")
),
Language = "es",
License = "MIT + file LICENSE"”

Prior to usethis v2.0.0, getOption(“"devtools.desc"”) was consulted for backwards compatibility,
but now only the "usethis.description” option is supported.

Usage

use_description(fields = list(), check_name = TRUE, roxygen = TRUE)

use_description_defaults(package = NULL, roxygen = TRUE, fields = list())

Arguments
fields A named list of fields to add to DESCRIPTION, potentially overriding default val-
ues. Default values are taken from the "usethis.description” option or the
usethis package (in that order), and can be viewed with use_description_defaults().
check_name Whether to check if the name is valid for CRAN and throw an error if not.
roxygen If TRUE, sets RoxygenNote to current roxygen2 version
package Package name
See Also

The description chapter of R Packages

https://r-pkgs.org/description.html
https://r-pkgs.org

use_directory 37

Examples

Not run:
use_description()

use_description(fields = list(Language = "es"))
use_description_defaults()

End(Not run)

use_directory Use a directory

Description

use_directory() creates a directory (if it does not already exist) in the project’s top-level directory.
This function powers many of the other use_ functions such as use_data() and use_vignette().

Usage

use_directory(path, ignore = FALSE)

Arguments
path Path of the directory to create, relative to the project.
ignore Should the newly created file be added to .Rbuildignore?
Examples
Not run:

use_directory("inst")

End(Not run)

use_git Initialise a git repository

Description
use_git() initialises a Git repository and adds important files to .gitignore. If user consents, it
also makes an initial commit.

Usage

use_git(message = "Initial commit")

38 use_github

Arguments

message Message to use for first commit.

See Also

Other git helpers: use_git_config(), use_git_hook(), use_git_ignore()

Examples

Not run:
use_git()

End(Not run)

use_github Connect a local repo with GitHub

Description

use_github() takes a local project and:

* Checks that the initial state is good to go:
— Project is already a Git repo
— Current branch is the default branch, e.g. main or master
— No uncommitted changes
— No pre-existing origin remote
* Creates an associated repo on GitHub
* Adds that GitHub repo to your local repo as the origin remote
* Makes an initial push to GitHub
* Calls use_github_links(), if the project is an R package
* Configures origin/DEFAULT to be the upstream branch of the local DEFAULT branch, e.g. main

or master

See below for the authentication setup that is necessary for all of this to work.

Usage

use_github(
organisation = NULL,
private = FALSE,

visibility = c("public”, "private"”, "internal”),
protocol = git_protocol(),
host = NULL

use_github 39

Arguments

organisation If supplied, the repo will be created under this organisation, instead of the login
associated with the GitHub token discovered for this host. The user’s role and
the token’s scopes must be such that you have permission to create repositories
in this organisation.

private If TRUE, creates a private repository.

visibility Only relevant for organisation-owned repos associated with certain GitHub En-
terprise products. The special "internal" visibility grants read permission
to all organisation members, i.e. it’s intermediate between "private" and "pub-
lic", within GHE. When specified, visibility takes precedence over private

= TRUE/FALSE.
protocol One of "https" or "ssh"
host GitHub host to target, passed to the .api_url argument of gh::gh(). If un-

specified, gh defaults to "https://api.github.com", although gh’s default can be
customised by setting the GITHUB_API_URL environment variable.

For a hypothetical GitHub Enterprise instance, either "https://github.acme.com/api/v3"
or "https://github.acme.com" is acceptable.

Git/GitHub Authentication

Many usethis functions, including those documented here, potentially interact with GitHub in two
different ways:

* Via the GitHub REST API. Examples: create a repo, a fork, or a pull request.

* As a conventional Git remote. Examples: clone, fetch, or push.

Therefore two types of auth can happen and your credentials must be discoverable. Which creden-
tials do we mean?

* A GitHub personal access token (PAT) must be discoverable by the gh package, which is used
for GitHub operations via the REST API. See gh_token_help() for more about getting and
configuring a PAT.

¢ If you use the HTTPS protocol for Git remotes, your PAT is also used for Git operations, such
as git push. Usethis uses the gert package for this, so the PAT must be discoverable by gert.
Generally gert and gh will discover and use the same PAT. This ability to "kill two birds with
one stone" is why HTTPS + PAT is our recommended auth strategy for those new to Git and
GitHub and PRs.

¢ If you use SSH remotes, your SSH keys must also be discoverable, in addition to your PAT.
The public key must be added to your GitHub account.

Git/GitHub credential management is covered in a dedicated article: Managing Git(Hub) Creden-
tials

Examples

Not run:
pkgpath <- file.path(tempdir(), "testpkg")
create_package (pkgpath)

https://usethis.r-lib.org/articles/articles/git-credentials.html
https://usethis.r-lib.org/articles/articles/git-credentials.html

40

use_github_action

now, working inside "testpkg"”, initialize git repository
use_git()

create github repository and configure as git remote
use_github()

End(Not run)

use_github_action Set up a GitHub Actions workflow

Description

Sets up continuous integration (CI) for an R package that is developed on GitHub using GitHub
Actions. CI can be used to trigger various operations for each push or pull request, e.g. running
R CMD check or building and deploying a pkgdown site.

Workflows:
There are four particularly important workflows that are used by many packages:

e check-standard: Run R CMD check using R-latest on Linux, Mac, and Windows, and
using R-devel and R-oldrel on Linux. This is a good baseline if you plan on submitting your
package to CRAN.

* test-coverage: Compute test coverage and report to https://about.codecov. io by call-
ing covr: :codecov ().

* pkgdown: Automatically build and publish a pkgdown website. But we recommend instead
calling use_pkgdown_github_pages () which performs other important set up.

* pr-commands: Enables the use of two R-specific commands in pull request issue comments:
/document to run roxygen2::roxygenise() and /style to run styler::style_pkg().
Both will update the PR with any changes once they’re done.

If you call use_github_action() without arguments, you’ll be prompted to pick from one
of these. Otherwise you can see a complete list of possibilities provided by r-lib at https:
//github.com/r-1lib/actions/tree/v2/examples, or you can supply your own url to use
any other workflow.

Usage

use_github_action(
name = NULL,
ref = NULL,
url = NULL,

save_as = NULL,
readme = NULL,
ignore = TRUE,
open = FALSE,
badge = NULL

https://github.com/features/actions
https://github.com/features/actions
https://about.codecov.io
https://github.com/r-lib/actions/tree/v2/examples
https://github.com/r-lib/actions/tree/v2/examples

use_github_file

Arguments

name

ref

url

save_as

readme

ignore

open

badge

Examples

Not run:

41

For use_github_action(): Name of one of the example workflow from https:
//github.com/r-1lib/actions/tree/v2/examples (with or without extension),

non

e.g. "pkgdown”, "check-standard.yaml”.
If the name starts with check-, save_as will default to R-CMD-check . yaml and
badge default to TRUE.

Desired Git reference, usually the name of a tag ("v2") or branch ("main").
Other possibilities include a commit SHA ("d1c516d") or "HEAD" (meaning "tip
of remote’s default branch"). If not specified, defaults to the latest published re-
lease of r-1ib/actions (https://github.com/r-1lib/actions/releases).

The full URL to a . yaml file on GitHub. See more details in use_github_file().

Name of the local workflow file. Defaults to name or fs: :path_file(url) for
use_github_action(). Do not specify any other part of the path; the parent
directory will always be . github/workflows, within the active project.

The full URL to a README file that provides more details about the workflow.
Ignored when url is NULL.

Should the newly created file be added to .Rbuildignore?

Open the newly created file for editing? Happens in RStudio, if applicable, or
viautils::file.edit() otherwise.

Should we add a badge to the README?

use_github_action()

use_github_action_check_standard()

use_github_action("pkgdown™)

End(Not run)

use_github_file

Copy a file from any GitHub repo into the current project

Description

Gets the content of a file from GitHub, from any repo the user can read, and writes it into the active
project. This function wraps an endpoint of the GitHub API which supports specifying a target
reference (i.e. branch, tag, or commit) and which follows symlinks.

https://github.com/r-lib/actions/tree/v2/examples
https://github.com/r-lib/actions/tree/v2/examples
https://github.com/r-lib/actions/releases

42 use_github_file

Usage
use_github_file(
repo_spec,
path = NULL,
save_as = NULL,
ref = NULL,
ignore = FALSE,
open = FALSE,
overwrite = FALSE,
host = NULL
)
Arguments
repo_spec A string identifying the GitHub repo or, alternatively, a GitHub file URL. Ac-
ceptable forms:
* Plain OWNER/REPO spec
* Ablob URL, suchas "https://github.com/OWNER/REPO/blob/REF/path/to/some/file”
¢ Araw URL, such as "https://raw.githubusercontent.com/OWNER/REPO/REF/path/to/some/f
In the case of a URL, the path, ref, and host are extracted from it, in addition
to the repo_spec.
path Path of file to copy, relative to the GitHub repo it lives in. This is extracted from
repo_spec when user provides a URL.
save_as Path of file to create, relative to root of active project. Defaults to the last part of
path, in the sense of basename (path) or fs: :path_file(path).
ref The name of a branch, tag, or commit. By default, the file at path will be
copied from its current state in the repo’s default branch. This is extracted from
repo_spec when user provides a URL.
ignore Should the newly created file be added to .Rbuildignore?
open Open the newly created file for editing? Happens in RStudio, if applicable, or
viautils::file.edit() otherwise.
overwrite Force overwrite of existing file?
host GitHub host to target, passed to the .api_url argument of gh::gh(). If un-
specified, gh defaults to "https://api.github.com", although gh’s default can be
customised by setting the GITHUB_API_URL environment variable.
For a hypothetical GitHub Enterprise instance, either "https://github.acme.com/api/v3"
or "https://github.acme.com" is acceptable.
Value

A logical indicator of whether a file was written, invisibly.

use_github_labels 43

Examples

Not run:

use_github_file(
"https://github.com/r-lib/actions/blob/v2/examples/check-standard.yaml”

)

use_github_file(

"r-lib/actions”,

path = "examples/check-standard.yaml”,

ref = "v2",

save_as = ".github/workflows/R-CMD-check.yaml”
)

End(Not run)

use_github_labels Manage GitHub issue labels

Description

use_github_labels() can create new labels, update colours and descriptions, and optionally
delete GitHub’s default labels (if delete_default = TRUE). It will never delete labels that have
associated issues.

use_tidy_github_labels() calls use_github_labels() with tidyverse conventions powered by
tidy_labels(), tidy_labels_rename(), tidy_label_colours() and tidy_label_descriptions().

tidyverse label usage:

Labels are used as part of the issue-triage process, designed to minimise the time spent re-reading
issues. The absence of a label indicates that an issue is new, and has yet to be triaged.

There are four mutually exclusive labels that indicate the overall "type" of issue:

* bug: an unexpected problem or unintended behavior.
* documentation: requires changes to the docs.
» feature: feature requests and enhancement.
* upkeep: general package maintenance work that makes future development easier.
Then there are five labels that are needed in most repositories:
* breaking change: issue/PR will requires a breaking change so should be not be included in
patch releases.

* reprex indicates that an issue does not have a minimal reproducible example, and that a
reply has been sent requesting one from the user.

e good first issue indicates a good issue for first-time contributors.
* help wanted indicates that a maintainer wants help on an issue.

 wip indicates that someone is working on it or has promised to.

44 use_github_labels
Finally most larger repos will accumulate their own labels for specific areas of functionality. For
example, usethis has labels like "description", "paths", "readme", because time has shown these
to be common sources of problems. These labels are helpful for grouping issues so that you can
tackle related problems at the same time.

Repo-specific issues should have a grey background (#eeeeee) and an emoji. This keeps the issue
page visually harmonious while still giving enough variation to easily distinguish different types
of label.

Usage

use_github_labels(
labels = character(),
rename = character(),
colours = character(),
descriptions = character(),
delete_default = FALSE
)
use_tidy_github_labels()
tidy_labels()
tidy_labels_rename()
tidy_label_colours()
tidy_label_descriptions()
Arguments
labels A character vector giving labels to add.
rename A named vector with names giving old names and values giving new names.
colours, descriptions
Named character vectors giving hexadecimal colours (like e@2a2a) and longer
descriptions. The names should match label names, and anything unmatched
will be left unchanged. If you create a new label, and don’t supply colours, it
will be given a random colour.
delete_default If TRUE, removes GitHub default labels that do not appear in the labels vector
and that do not have associated issues.
Examples

Not run:
typical use in, e.g., a new tidyverse project
use_github_labels(delete_default = TRUE)

create labels without changing colours/descriptions
use_github_labels(
labels = c("foofy”, "foofier"”, "foofiest"),

use_github_links 45

colours = NULL,
descriptions = NULL

)

change descriptions without changing names/colours
use_github_labels(

labels = NULL,

colours = NULL,

descriptions = c("foofiest” = "the foofiest issue you ever saw")

)

End(Not run)

use_github_links Use GitHub links in URL and BugReports

Description

Populates the URL and BugReports fields of a GitHub-using R package with appropriate links. The
GitHub repo to link to is determined from the current project’s GitHub remotes:

» If we are not working with a fork, this function expects origin to be a GitHub remote and the
links target that repo.

 If we are working in a fork, this function expects to find two GitHub remotes: origin (the
fork) and upstream (the fork’s parent) remote. In an interactive session, the user can confirm
which repo to use for the links. In a noninteractive session, links are formed using upstream.

Usage

use_github_links(overwrite = FALSE)

Arguments
overwrite By default, use_github_links() will not overwrite existing fields. Set to TRUE
to overwrite existing links.
Examples
Not run:

use_github_links()

End(Not run)

46 use_github_pages

use_github_pages Configure a GitHub Pages site

Description

Activates or reconfigures a GitHub Pages site for a project hosted on GitHub. This function antici-
pates two specific usage modes:

* Publish from the root directory of a gh-pages branch, which is assumed to be only (or at
least primarily) a remote branch. Typically the gh-pages branch is managed by an automatic
"build and deploy" job, such as the one configured by use_github_action("pkgdown").

* Publish from the "/docs” directory of a "regular" branch, probably the repo’s default branch.
The user is assumed to have a plan for how they will manage the content below "/docs”.

Usage

use_github_pages(branch = "gh-pages”, path = "/", cname = NA)

Arguments

branch, path Branch and path for the site source. The default of branch = "gh-pages” and
path = "/" reflects strong GitHub support for this configuration: when a gh-pages
branch is first created, it is automatically published to Pages, using the source
foundin "/". If a gh-pages branch does not yet exist on the host, use_github_pages()
creates an empty, orphan remote branch.
The most common alternative is to use the repo’s default branch, coupled with
path = "/docs"”. It is the user’s responsibility to ensure that this branch pre-
exists on the host.
Note that GitHub does not support an arbitrary path and, at the time of writing,
only "/" or "/docs" are accepted.

chame Optional, custom domain name. The NA default means "don’t set or change this",
whereas a value of NULL removes any previously configured custom domain.

Note that this can add or modify a CNAME file in your repository. If you are
using Pages to host a pkgdown site, it is better to specify its URL in the pkgdown
config file and let pkgdown manage CNAME.

Value

Site metadata returned by the GitHub API, invisibly

See Also

* use_pkgdown_github_pages() combines use_github_pages() with other functions to fully
configure a pkgdown site

* https://docs.github.com/en/pages
* https://docs.github.com/en/rest/pages

https://docs.github.com/en/pages
https://docs.github.com/en/rest/pages

use_github_release 47

Examples

Not run:
use_github_pages()
use_github_pages(branch = git_default_branch(), path = "/docs")

End(Not run)

use_github_release Publish a GitHub release

Description

Pushes the current branch (if safe) then publishes a GitHub release for the latest CRAN submission.

If youuse devtools: : submit_cran() to submit to CRAN, information about the submitted state is
captured in a CRAN-SUBMISSION file. use_github_release() uses this info to populate the GitHub
release notes and, after success, deletes the file. In the absence of such a file, we assume that current
state (SHA of HEAD, package version, NEWS) is the submitted state.

Usage

use_github_release(publish = TRUE)

Arguments
publish If TRUE, publishes a release. If FALSE, creates a draft release.
use_gitlab_ci Continuous integration setup and badges
Description
[Questioning]

These functions are not actively used by the tidyverse team, and may not currently work. Use at
your own risk.

Sets up third-party continuous integration (CI) services for an R package on GitLab or CircleCI.
These functions:

* Add service-specific configuration files and add them to .Rbuildignore.

* Activate a service or give the user a detailed prompt.

* Provide the markdown to insert a badge into README.

48 use_git_config
Usage

use_gitlab_ci()

use_circleci(browse = rlang::is_interactive(), image = "rocker/verse:latest")

use_circleci_badge(repo_spec = NULL)

Arguments
browse Open a browser window to enable automatic builds for the package.
image The Docker image to use for build. Must be available on DockerHub. The
rocker/verse image includes TeXLive, pandoc, and the tidyverse packages. For
a minimal image, try rocker/r-ver. To specify a version of R, change the tag
from latest to the version you want, e.g. rocker/r-ver:3.5.3.
repo_spec Optional GitHub repo specification in this form: owner/repo. This can usually

be inferred from the GitHub remotes of active project.

use_gitlab_ci()
Adds a basic .gitlab-ci.yml to the top-level directory of a package. This is a configuration file
for the GitLab CI/CD continuous integration service.

use_circleci()
Adds abasic .circleci/config.yml to the top-level directory of a package. This is a configuration
file for the CircleCI continuous integration service.

use_circleci_badge()

Only adds the Circle CI badge. Use for a project where Circle CI is already configured.

use_git_config Configure Git

Description

Sets Git options, for either the user or the project ("global" or "local", in Git terminology). Wraps
gert::git_config_set() and gert::git_config_global_set(). To inspect Git config, see
gert::git_config().

Usage
use_git_config(scope = c("user"”, "project"), ...)
Arguments
scope Edit globally for the current user, or locally for the current project

Name-value pairs, processed as <dynamic-dots>.

https://hub.docker.com
https://hub.docker.com/r/rocker/verse
https://hub.docker.com/r/rocker/r-ver
https://docs.gitlab.com/ee/ci/
https://circleci.com/
https://circleci.com/

use_git_hook 49

Value

Invisibly, the previous values of the modified components, as a named list.

See Also

Other git helpers: use_git(), use_git_hook(), use_git_ignore()

Examples
Not run:
set the user's global user.name and user.email
use_git_config(user.name = "Jane", user.email = "jane@example.org")

set the user.name and user.email locally, i.e. for current repo/project
use_git_config(

scope = "project”,
user.name = "Jane",
user.email = "jane@example.org”

)

End(Not run)

use_git_hook Add a git hook

Description

Sets up a git hook using the specified script. Creates a hook directory if needed, and sets correct
permissions on hook.

Usage

use_git_hook (hook, script)

Arguments
hook Hook name. One of "pre-commit", "prepare-commit-msg", "commit-msg", "post-
commit", "applypatch-msg", "pre-applypatch", "post-applypatch", "pre-rebase",
"post-rewrite", "post-checkout", "post-merge", "pre-push”, "pre-auto-gc".
script Text of script to run
See Also

Other git helpers: use_git(), use_git_config(), use_git_ignore()

50

use_git_remote

use_git_ignore Tell Git to ignore files

Description

Tell Git to ignore files

Usage

n o n

use_git_ignore(ignores, directory = ".")

Arguments

ignores Character vector of ignores, specified as file globs.

directory Directory relative to active project to set ignores

See Also

Other git helpers: use_git(), use_git_config(), use_git_hook()

use_git_remote Configure and report Git remotes

Description

Two helpers are available:

e use_git_remote() sets the remote associated with name to url.

* git_remotes() reports the configured remotes, similar to git remote -v.

Usage

use_git_remote(name = "origin”, url, overwrite = FALSE)

git_remotes()

Arguments

name A string giving the short name of a remote.

url A string giving the url of a remote.

overwrite Logical. Controls whether an existing remote can be modified.
Value

Named list of Git remotes.

use_import_from 51

Examples

Not run:
see current remotes
git_remotes()

add new remote named 'foo', a la “git remote add <name> <url>"
use_git_remote(name = "foo"”, url = "https://github.com/<OWNER>/<REPO>.git")

remove existing 'foo' remote, a la “git remote remove <name>"
use_git_remote(name = "foo"”, url = NULL, overwrite = TRUE)

change URL of remote 'foo', a la “git remote set-url <name> <newurl>"
use_git_remote(

name = "foo",

url = "https://github.com/<OWNER>/<REPO>.git",

overwrite = TRUE

Scenario: Fix remotes when you cloned someone's repo, but you should
have fork-and-cloned (in order to make a pull request).

Store origin = main repo's URL, e.g., "git@github.com:<OWNER>/<REPO>.git"
upstream_url <- git_remotes()[["origin"]]

IN THE BROWSER: fork the main GitHub repo and get your fork's remote URL
my_url <- "git@github.com:<ME>/<REPO>.git"

Rotate the remotes

use_git_remote(name = "origin”, url = my_url)
use_git_remote(name = "upstream”, url = upstream_url)
git_remotes()

Scenario: Add upstream remote to a repo that you fork-and-cloned, so you
can pull upstream changes.

Note: If you fork-and-clone via “usethis::create_from_github()", this is
done automatically!

Get URL of main GitHub repo, probably in the browser
upstream_url <- "git@github.com:<OWNER>/<REPO>.git"

use_git_remote(name = "upstream”, url = upstream_url)

End(Not run)

use_import_from Import a function from another package

Description

use_import_from() imports a function from another package by adding the roxygen2 @importFrom
tag to the package-level documentation (which can be created with use_package_doc()). Import-

52 use_jenkins

ing a function from another package allows you to refer to it without a namespace (e.g., fun()
instead of package: : fun()).

use_import_from() also re-documents the NAMESPACE, and re-load the current package. This
ensures that fun is immediately available in your development session.

Usage

use_import_from(package, fun, load = is_interactive())

Arguments

package Package name

fun A vector of function names

load Logical. Re-load with pkgload: :load_all()?
Value

Invisibly, TRUE if the package document has changed, FALSE if not.

Examples

Not run:
use_import_from("glue”, "glue")

End(Not run)

use_jenkins Create Jenkinsfile for Jenkins CI Pipelines

Description

use_jenkins() adds a basic Jenkinsfile for R packages to the project root directory. The Jenkinsfile
stages take advantage of calls to make, and so calling this function will also run use_make() if a
Makefile does not already exist at the project root.

Usage

use_jenkins()

See Also

The documentation on Jenkins Pipelines.

use_make ()

https://www.jenkins.io/doc/book/pipeline/jenkinsfile/

use_lifecycle 53

use_lifecycle Use lifecycle badges

Description

This helper:

* Adds lifecycle as a dependency.
* Imports lifecycle: :deprecated() for use in function arguments.
* Copies the lifecycle badges into man/figures.

* Reminds you how to use the badge syntax.

Learn more at https://lifecycle.r-1ib.org/articles/communicate.html

Usage
use_lifecycle()

See Also

use_lifecycle_badge() to signal the lifecycle stage of your package as whole

use_logo Use a package logo

Description
This function helps you use a logo in your package:

* Enforces a specific size
* Stores logo image file at man/figures/logo.png

* Produces the markdown text you need in README to include the logo

Usage

use_logo(img, geometry = "240x278", retina = TRUE)

Arguments
img The path to an existing image file
geometry a magick::geometry string specifying size. The default assumes that you have a
hex logo using spec from http://hexb.in/sticker.html.
retina TRUE, the default, scales the image on the README, assuming that geometry is

double the desired size.

https://lifecycle.r-lib.org/articles/communicate.html
https://lifecycle.r-lib.org/articles/stages.html
http://hexb.in/sticker.html

54

Examples

Not run:
use_logo("usethis.png")

End(Not run)

use_namespace

use_make Create Makefile

Description

use_make () adds a basic Makefile to the project root directory.

Usage

use_make ()

See Also
The documentation for GNU Make.

use_namespace Use a basic NAMESPACE

Description

If roxygen is TRUE generates an empty NAMESPACE that exports nothing; you’ll need to explicitly
export functions with @export. If roxygen is FALSE, generates a default NAMESPACE that exports all

functions except those that start with ..

Usage

use_namespace (roxygen = TRUE)

Arguments

roxygen Do you plan to manage NAMESPACE with roxygen2?

See Also

The namespace chapter of R Packages.

https://www.gnu.org/software/make/manual/html_node/
https://r-pkgs.org/dependencies-mindset-background.html#sec-dependencies-namespace
https://r-pkgs.org

use_news_md 55

use_news_md Create a simple NEWS . md

Description

This creates a basic NEWS.md in the root directory.

Usage

use_news_md(open = rlang::is_interactive())

Arguments
open Open the newly created file for editing? Happens in RStudio, if applicable, or
viautils::file.edit() otherwise.
See Also

The other markdown files section of R Packages.

use_package Depend on another package

Description

use_package () adds a CRAN package dependency to DESCRIPTION and offers a little advice about
how to best use it. use_dev_package () adds a dependency on an in-development package, adding
the dev repo to Remotes so it will be automatically installed from the correct location. There is no
helper to remove a dependency: to do that, simply remove that package from your DESCRIPTION
file.

use_package () exists to support a couple of common maneuvers:

* Add a dependency to Imports or Suggests or LinkingTo.
* Add a minimum version to a dependency.

* Specify the minimum supported version for R.

use_package() probably works for slightly more exotic modifications, but at some point, you
should edit DESCRIPTION yourself by hand. There is no intention to account for all possible edge
cases.

Usage

use_package(package, type = "Imports”, min_version = NULL)

use_dev_package(package, type = "Imports"”, remote = NULL)

https://r-pkgs.org/other-markdown.html
https://r-pkgs.org

56 use_package_doc

Arguments
package Name of package to depend on.
type Type of dependency: must be one of "Imports”, "Depends”, "Suggests", "En-
hances", or "LinkingTo" (or unique abbreviation). Matching is case insensitive.
min_version Optionally, supply a minimum version for the package. Set to TRUE to use the
currently installed version or use a version string suitable for numeric_version(),
such as "2.5.0".
remote By default, an OWNER/REPO GitHub remote is inserted. Optionally, you can sup-
ply a character string to specify the remote, e.g. "gitlab::jimhester/covr”,
using any syntax supported by the remotes package.
See Also

The dependencies section of R Packages.

Examples

Not run:
use_package("ggplot2")
use_package("dplyr"”, "suggests")
use_dev_package("glue")

Depend on R version 4.1
use_package("R", type = "Depends”, min_version = "4.1")

End(Not run)

use_package_doc Package-level documentation

Description

Adds a dummy .R file that will cause roxygen2 to generate basic package-level documentation. If
your package is named "foo", this will make help available to the user via ?foo or package?foo.
Once you call devtools: :document(), roxygen2 will flesh out the .Rd file using data from the
DESCRIPTION. That ensures you don’t need to repeat (and remember to update!) the same infor-
mation in multiple places. This .R file is also a good place for roxygen directives that apply to the
whole package (vs. a specific function), such as global namespace tags like @importFrom.

Usage

use_package_doc(open = rlang::is_interactive())

Arguments

open Open the newly created file for editing? Happens in RStudio, if applicable, or
viautils::file.edit() otherwise.

https://remotes.r-lib.org/articles/dependencies.html#other-sources
https://r-pkgs.org/dependencies-mindset-background.html
https://r-pkgs.org

use_pipe 57

See Also

The documentation chapter of R Packages

use_pipe Use magrittr’s pipe in your package

Description

Does setup necessary to use magrittr’s pipe operator, %>% in your package. This function requires
the use of roxygen2.

* Adds magrittr to "Imports" in DESCRIPTION.
* Imports the pipe operator specifically, which is necessary for internal use.

» Exports the pipe operator, if export = TRUE, which is necessary to make %>% available to the
users of your package.

Usage
use_pipe(export = TRUE)

Arguments
export If TRUE, the file R/utils-pipe.Ris added, which provides the roxygen template
to import and re-export %>%. If FALSE, the necessary roxygen directive is added,
if possible, or otherwise instructions are given.
Examples
Not run:
use_pipe()

End(Not run)

use_pkgdown Use pkgdown

Description

pkgdown makes it easy to turn your package into a beautiful website. usethis provides two functions
to help you use pkgdown:

* use_pkgdown(): creates a pkgdown config file and adds relevant files or directories to .Rbuildignore
and .gitignore.

* use_pkgdown_github_pages(): implements the GitHub setup needed to automatically pub-
lish your pkgdown site to GitHub pages:

https://r-pkgs.org/man.html
https://r-pkgs.org
https://pkgdown.r-lib.org

58 use_r

(first, it calls use_pkgdown())

— use_github_pages() prepares to publish the pkgdown site from the gh-pages branch

— use_github_action("pkgdown") configures a GitHub Action to automatically build the
pkgdown site and deploy it via GitHub Pages

— The pkgdown site’s URL is added to the pkgdown configuration file, to the URL field of
DESCRIPTION, and to the GitHub repo.

— Packages owned by certain GitHub organizations (tidyverse, r-lib, and tidymodels) get

some special treatment, in terms of anticipating the (eventual) site URL and the use of a

pkgdown template.

Usage
use_pkgdown(config_file = "_pkgdown.yml"”, destdir = "docs")

use_pkgdown_github_pages()

Arguments

config_file Path to the pkgdown yaml config file, relative to the project.
destdir Target directory for pkgdown docs.

See Also

https://pkgdown.r-1lib.org/articles/pkgdown.html#configuration

use_r Create or edit R or test files

Description

This pair of functions makes it easy to create paired R and test files, using the convention that the
tests for R/foofy.R should live in tests/testthat/test-foofy.R. You can use them to create
new files from scratch by supplying name, or if you use RStudio, you can call to create (or navigate
to) the companion file based on the currently open file. This also works when a test snapshot file is
active, i.e. if you’re looking at tests/testthat/_snaps/foofy.md, use_r() or use_test() take
you to R/foofy.R or tests/testthat/test-foofy.R, respectively.

Usage

use_r(name = NULL, open = rlang::is_interactive())

use_test(name = NULL, open = rlang::is_interactive())

Arguments

name Either a string giving a file name (without directory) or NULL to take the name
from the currently open file in RStudio.

open Whether to open the file for interactive editing.

https://pkgdown.r-lib.org/articles/pkgdown.html#configuration

use_r 59

Renaming files in an existing package

Here are some tips on aligning file names across R/ and tests/testthat/ in an existing package
that did not necessarily follow this convention before.

This script generates a data frame of R/ and test files that can help you identify missed opportunities
for pairing:

library(fs)
library(tidyverse)

bind_rows(
tibble(
type = "R",
path = dir_1s("R/", regexp = "\\.[Rrl$"),
name = as.character(path_ext_remove(path_file(path))),
),
tibble(
type = "test”,
path = dir_ls("tests/testthat/", regexp = "/test[*/]+\\.[Rr]$"),
name = as.character(path_ext_remove(str_remove(path_file(path), "*test[-_1"))),
)
) %B>%
pivot_wider(names_from = type, values_from = path) %>%
print(n = Inf)

The rename_files() function can also be helpful.

See Also

* The testing and R code chapters of R Packages.

* use_test_helper() to create a testthat helper file.

Examples

Not run:
create a new .R file below R/
use_r("coolstuff")

if “R/coolstuff.R™ is active in a supported IDE, you can now do:
use_test()

if “tests/testthat/test-coolstuff.R™ is active in a supported IDE, you can
return to “R/coolstuff.R™ with:

use_r()

End(Not run)

https://r-pkgs.org/testing-basics.html
https://r-pkgs.org/code.html
https://r-pkgs.org

60 use_readme_rmd

use_rcpp Use C, C++, ReppArmadillo, or ReppEigen

Description

Adds infrastructure commonly needed when using compiled code:

* Creates src/
* Adds required packages to DESCRIPTION
* May create an initial placeholder . c or . cpp file

* Creates Makevars and Makevars.win files (use_rcpp_armadillo() only)
Usage
use_rcpp(name = NULL)
use_rcpp_armadillo(name = NULL)
use_rcpp_eigen(name = NULL)

use_c(name = NULL)

Arguments
name Either a string giving a file name (without directory) or NULL to take the name
from the currently open file in RStudio.
use_readme_rmd Create README files
Description

Creates skeleton README files with possible stubs for

* a high-level description of the project/package and its goals
* R code to install from GitHub, if GitHub usage detected
* a basic example
Use Rmd if you want a rich intermingling of code and output. Use md for a basic README.

README . Rmd will be automatically added to .Rbuildignore. The resulting README is populated
with default YAML frontmatter and R fenced code blocks (md) or chunks (Rmd).

If you use Rmd, you’ll still need to render it regularly, to keep README . md up-to-date. devtools: :build_readme()
is handy for this. You could also use GitHub Actions to re-render README .Rmd every time you

use_release_issue 61

push. An example workflow can be found in the examples/ directory here: https://github.
com/r-1lib/actions/.

If the current project is a Git repo, then use_readme_rmd() automatically configures a pre-commit
hook that helps keep README . Rmd and README . md, synchronized. The hook creates friction if you
try to commit when README . Rmd has been edited more recently than README . md. If this hook causes
more problems than it solves for you, it is implemented in .git/hooks/pre-commit, which you
can modify or even delete.

Usage

use_readme_rmd(open = rlang::is_interactive())

use_readme_md(open = rlang::is_interactive())

Arguments
open Open the newly created file for editing? Happens in RStudio, if applicable, or
viautils::file.edit() otherwise.
See Also

The other markdown files section of R Packages.

Examples

Not run:
use_readme_rmd()
use_readme_md()

End(Not run)

use_release_issue Create a release checklist in a GitHub issue

Description

When preparing to release a package to CRAN there are quite a few steps that need to be performed,
and some of the steps can take multiple hours. This function creates a checklist in a GitHub issue
to:

* Help you keep track of where you are in the process

* Feel a sense of satisfaction as you progress towards final submission

* Help watchers of your package stay informed.
The checklist contains a generic set of steps that we’ve found to be helpful, based on the type of

release ("patch", "minor", or "major"). You’re encouraged to edit the issue to customize this list to
meet your needs.

https://github.com/r-lib/actions/
https://github.com/r-lib/actions/
https://r-pkgs.org/other-markdown.html
https://r-pkgs.org

62 use_revdep

Customization:

 If you want to consistently add extra bullets for every release, you can include your own
custom bullets by providing an (unexported) release_bullets() function that returns a
character vector. (For historical reasons, release_questions() is also supported).

 If you want to check additional packages in the revdep check process, provide an (unex-
ported) release_extra_revdeps() function that returns a character vector. This is currently
only supported for Posit internal check tooling.

Usage

use_release_issue(version = NULL)

Arguments
version Optional version number for release. If unspecified, you can make an interactive
choice.
Examples
Not run:

use_release_issue("2.0.0")

End(Not run)

use_revdep Reverse dependency checks

Description

Performs set up for checking the reverse dependencies of an R package, as implemented by the
revdepcheck package:

* Creates revdep/ directory and adds it to .Rbuildignore
» Populates revdep/.gitignore to prevent tracking of various revdep artefacts

* Prompts user to run the checks with revdepcheck: : revdep_check()

Usage

use_revdep()

use_rmarkdown_template 63

use_rmarkdown_template
Add an RMarkdown Template

Description

Adds files and directories necessary to add a custom rmarkdown template to RStudio. It creates:

e inst/rmarkdown/templates/{{template_dir}}. Main directory.
* skeleton/skeleton.Rmd. Your template Rmd file.

e template.yml with basic information filled in.

Usage

use_rmarkdown_template(
template_name = "Template Name"”,
template_dir = NULL,
template_description = "A description of the template”,
template_create_dir = FALSE

)

Arguments

template_name The name as printed in the template menu.

template_dir Name of the directory the template will live in within inst/rmarkdown/templates.
If none is provided by the user, it will be created from template_name.

template_description
Sets the value of description in template.yml.

template_create_dir
Sets the value of create_dir in template.yml.

Examples

Not run:
use_rmarkdown_template()

End(Not run)

64 use_rstudio

use_roxygen_md Use roxygen2 with markdown

Description

If you are already using roxygen2, but not with markdown, you’ll need to use roxygen2md to
convert existing Rd expressions to markdown. The conversion is not perfect, so make sure to check
the results.

Usage

use_roxygen_md(overwrite = FALSE)

Arguments
overwrite Whether to overwrite an existing Roxygen field in DESCRIPTION with "1ist(markdown
= TRUE)".
use_rstudio Add RStudio Project infrastructure
Description

Itis likely that you want to use create_project() or create_package () instead of use_rstudio()!
Both create_* () functions can add RStudio Project infrastructure to a pre-existing project or pack-
age. use_rstudio() is mostly for internal use or for those creating a usethis-like package for their
organization. It does the following in the current project, often after executing proj_set(...,
force = TRUE):

e Creates an .Rproj file
¢ Adds RStudio files to .gitignore
* Adds RStudio files to .Rbuildignore, if project is a package

Usage
use_rstudio(line_ending = c("posix”, "windows"), reformat = TRUE)
Arguments
line_ending Line ending
reformat If TRUE, the .Rproj is setup with common options that reformat files on save:

adding a trailing newline, trimming trailing whitespace, and setting the line-
ending. This is best practice for new projects.

If FALSE, these options are left unset, which is more appropriate when you’re
contributing to someone else’s project that does not have its own .Rproj file.

https://roxygen2md.r-lib.org

use_rstudio_preferences 65

use_rstudio_preferences
Set global RStudio preferences

Description

This function allows you to set global RStudio preferences, achieving the same effect programmati-

cally as clicking buttons in RStudio’s Global Options. You can find a list of configurable properties

at https://docs.posit.co/ide/server-pro/reference/session_user_settings.html.
Usage

use_rstudio_preferences(...)

Arguments

<dynamic-dots> Property-value pairs.

Value

A named list of the previous values, invisibly.

use_spell_check Use spell check

Description

Adds a unit test to automatically run a spell check on documentation and, optionally, vignettes
during R CMD check, using the spelling package. Also adds a WORDLIST file to the package, which
is a dictionary of whitelisted words. See spelling::wordlist for details.

Usage

use_spell_check(vignettes = TRUE, lang = "en-US", error = FALSE)

Arguments
vignettes Logical, TRUE to spell check all rmd and rnw files in the vignettes/ folder.
lang Preferred spelling language. Usually either "en-US" or "en-GB".
error Logical, indicating whether the unit test should fail if spelling errors are found.

Defaults to FALSE, which does not error, but prints potential spelling errors

https://docs.posit.co/ide/server-pro/reference/session_user_settings.html

66 use_standalone

use_standalone Use a standalone file from another repo

Description

A "standalone" file implements a minimum set of functionality in such a way that it can be copied
into another package. use_standalone() makes it easy to get such a file into your own repo.

It always overwrites an existing standalone file of the same name, making it easy to update previ-
ously imported code.

Usage
use_standalone(repo_spec, file = NULL, ref = NULL, host = NULL)

Arguments

repo_spec A string identifying the GitHub repo in one of these forms:

* Plain OWNER/REPO spec
¢ Browser URL, such as "https://github.com/OWNER/REPQO"
e HTTPS Git URL, such as "https://github.com/OWNER/REPO.git"
* SSH Git URL, such as "git@github.com:0OWNER/REPO.git"
file Name of standalone file. The standalone- prefix and file extension are op-

tional. If omitted, will allow you to choose from the standalone files offered by
that repo.

ref The name of a branch, tag, or commit. By default, the file at path will be
copied from its current state in the repo’s default branch. This is extracted from
repo_spec when user provides a URL.

host GitHub host to target, passed to the . api_url argumentof gh: :gh(). If repo_spec
is a URL, host is extracted from that.
If unspecified, gh defaults to "https://api.github.com", although gh’s default can
be customised by setting the GITHUB_API_URL environment variable.
For a hypothetical GitHub Enterprise instance, either "https://github.acme.com/api/v3"
or "https://github.acme.com" is acceptable.

Supported fields

A standalone file has YAML frontmatter that provides additional information, such as where the file
originates from and when it was last updated. Here is an example:

repo: r-lib/rlang

file: standalone-types-check.R
last-updated: 2023-03-07

license: https://unlicense.org
dependencies: standalone-obj-type.R

use_template 67

imports: rlang (>= 1.1.0)

Two of these fields are consulted by use_standalone():
* dependencies: A file or a list of files in the same repo that the standalone file depends on.
These files are retrieved automatically by use_standalone().

* imports: A package or list of packages that the standalone file depends on. A minimal version
may be specified in parentheses, e.g. rlang (>= 1.0.0). These dependencies are passed to
use_package () to ensure they are included in the Imports: field of the DESCRIPTION file.

Note that lists are specified with standard YAML syntax, using square brackets, for example:
imports: [rlang (>= 1.0.0), purrrl.

Examples

Not run:
use_standalone("r-1lib/rlang”, file = "types-check")
use_standalone("r-lib/rlang”, file = "types-check”, ref = "standalone-dep")

End(Not run)

use_template Use a usethis-style template

Description

Creates a file from data and a template found in a package. Provides control over file name, the
addition to .Rbuildignore, and opening the file for inspection.

Usage

use_template(
template,
save_as = template,
data = list(),
ignore = FALSE,

open = FALSE,
package = "usethis”
)
Arguments
template Path to template file relative to templates/ directory within package; see de-
tails.
save_as Path of file to create, relative to root of active project. Defaults to template

data A list of data passed to the template.

68 use_testthat

ignore Should the newly created file be added to .Rbuildignore?
open Open the newly created file for editing? Happens in RStudio, if applicable, or
viautils::file.edit() otherwise.
package Name of the package where the template is found.
Details

This function can be used as the engine for a templating function in other packages. The template
argument is used along with the package argument to derive the path to your template file; it
will be expected at fs: :path_package(package = package, "templates”, template). We use
fs::path_package() instead of base: : system.file() so that path construction works even in a
development workflow, e.g., works with devtools: :load_all() or pkgload: :load_all(). Note
this describes the behaviour of fs: :path_package() in fsv1.2.7.9001 and higher.

To interpolate your data into the template, supply a list using the data argument. Internally, this
function uses whisker: :whisker.render() to combine your template file with your data.

Value

A logical vector indicating if file was modified.

Examples

Not run:
Note: running this will write “NEWS.md™ to your working directory
use_template(
template = "NEWS.md",
data = list(Package = "acme”, Version = "1.2.3"),
package = "usethis”

)

End(Not run)

use_testthat Sets up overall testing infrastructure

Description

Creates tests/testthat/, tests/testthat.R, and adds the testthat package to the Suggests field.
Learn more in https://r-pkgs.org/testing-basics.html

Usage

use_testthat(edition = NULL, parallel = FALSE)

https://r-pkgs.org/testing-basics.html

use_test_helper 69

Arguments
edition testthat edition to use. Defaults to the latest edition, i.e. the major version
number of the currently installed testthat.
parallel Should tests be run in parallel? This feature appeared in testthat 3.0.0; see
https://testthat.r-1ib.org/articles/parallel.html for details and caveats.
See Also

use_test() to create individual test files

Examples

Not run:
use_testthat()

use_test()
use_test("something-management”)

End(Not run)

use_test_helper Create or edit a test helper file

Description

This function creates (or opens) a test helper file, typically tests/testthat/helper.R. Test helper
files are executed at the beginning of every automated test run and are also executed by load_all().
A helper file is a great place to define test helper functions for use throughout your test suite, such
as a custom expectation.

Usage

use_test_helper(name = NULL, open = rlang::is_interactive())

Arguments
name Can be used to specify the optional "SLUG" in tests/testthat/helper-SLUG.R.
open Whether to open the file for interactive editing.

See Also

* use_test() to create a test file.

* The testthat vignette on special files vignette(”special-files”, package = "testthat").

https://testthat.r-lib.org/articles/parallel.html

70

use_tibble

Examples

Not run:
use_test_helper()
use_test_helper("mocks")

End(Not run)

use_tibble Prepare to return a tibble

Description

[Questioning]

Does minimum setup such that a tibble returned by your package is handled using the tibble method
for generics like print () or [. Presumably you care about this if you’ve chosen to store and expose
an object with class tb1_df. Specifically:

* Check that the active package uses roxygen2
* Add the tibble package to "Imports" in DESCRIPTION
 Prepare the roxygen directive necessary to import at least one function from tibble:
— If possible, the directive is inserted into existing package-level documentation, i.e. the

roxygen snippet created by use_package_doc()
— Otherwise, we issue advice on where the user should add the directive

This is necessary when your package returns a stored data object that has class tbl_df, but the
package code does not make direct use of functions from the tibble package. If you do nothing, the
tibble namespace is not necessarily loaded and your tibble may therefore be printed and subsetted
like a base data. frame.

Usage

use_tibble()

Examples

Not run:
use_tibble()

End(Not run)

use_tidy_github_actions 71

use_tidy_github_actions
Helpers for tidyverse development

Description

These helpers follow tidyverse conventions which are generally a little stricter than the defaults,
reflecting the need for greater rigor in commonly used packages.

Usage

use_tidy_github_actions(ref = NULL)
create_tidy_package(path, copyright_holder = NULL)
use_tidy_description()

use_tidy_dependencies()

use_tidy_contributing()

use_tidy_support()

use_tidy_issue_template()

use_tidy_coc()

use_tidy_github()

use_tidy_style(strict = TRUE)
use_tidy_logo(geometry = "240x278", retina = TRUE)

use_tidy_upkeep_issue(last_upkeep = last_upkeep_year())

Arguments
ref Desired Git reference, usually the name of a tag ("v2") or branch ("main").
Other possibilities include a commit SHA ("d1c516d") or "HEAD"” (meaning "tip
of remote’s default branch"). If not specified, defaults to the latest published re-
lease of r-1ib/actions (https://github.com/r-1lib/actions/releases).
path A path. If it exists, it is used. If it does not exist, it is created, provided that the

parent path exists.

copyright_holder
Name of the copyright holder or holders. This defaults to "{package name}
authors"”; you should only change this if you use a CLA to assign copyright to
a single entity.

https://github.com/r-lib/actions/releases

72 use_tidy_github_actions

strict Boolean indicating whether or not a strict version of styling should be applied.
See styler::tidyverse_style() for details.

geometry a magick::geometry string specifying size. The default assumes that you have a
hex logo using spec from http://hexb.in/sticker.html.

retina TRUE, the default, scales the image on the README, assuming that geometry is
double the desired size.

last_upkeep Year of last upkeep. By default, the Config/usethis/last-upkeep field in
DESCRIPTION is consulted for this, if it’s defined. If there’s no information on
the last upkeep, the issue will contain the full checklist.

Details

e use_tidy_github_actions(): Sets up the following workflows using GitHub Actions:

— Run R CMD check on the current release, devel, and four previous versions of R. The
build matrix also ensures R CMD check is run at least once on each of the three major
operating systems (Linux, macOS, and Windows).

— Report test coverage.
— Build and deploy a pkgdown site.

— Provide two commands to be used in pull requests: /document to run roxygen2: : roxygenise()
and update the PR, and /style to run styler: :style_pkg() and update the PR.
This is how the tidyverse team checks its packages, but it is overkill for less widely used
packages. Consider using the more streamlined workflows set up by use_github_actions()
or use_github_action_check_standard().

» create_tidy_package(): creates a new package, immediately applies as many of the tidy-
verse conventions as possible, issues a few reminders, and activates the new package.

* use_tidy_dependencies(): sets up standard dependencies used by all tidyverse packages
(except packages that are designed to be dependency free).

e use_tidy_description(): puts fields in standard order and alphabetises dependencies.

* use_tidy_eval(): imports a standard set of helpers to facilitate programming with the tidy
eval toolkit.

e use_tidy_style(): styles source code according to the tidyverse style guide. This function
will overwrite files! See below for usage advice.

e use_tidy_contributing(): adds standard tidyverse contributing guidelines.

* use_tidy_issue_template(): adds a standard tidyverse issue template.

* use_tidy_release_test_env(): updates the test environment section in cran-comments. md.
* use_tidy_support(): adds a standard description of support resources for the tidyverse.

* use_tidy_coc(): equivalent to use_code_of_conduct (), but puts the documentina .github/
subdirectory.

* use_tidy_github(): convenience wrapper that calls use_tidy_contributing(), use_tidy_issue_template(),
use_tidy_support(), use_tidy_coc().

e use_tidy_github_labels() calls use_github_labels() to implement tidyverse conven-
tions around GitHub issue label names and colours.

http://hexb.in/sticker.html
https://github.com/features/actions
https://style.tidyverse.org

use_tidy_thanks 73

e use_tidy_upkeep_issue() creates an issue containing a checklist of actions to bring your
package up to current tidyverse standards. Also records the current date in the Config/usethis/last-upkeep
field in DESCRIPTION.

* use_tidy_logo() calls use_logo() on the appropriate hex sticker PNG file at https://
github.com/rstudio/hex-stickers.

use_tidy_style()
Uses the styler package package to style all code in a package, project, or directory, according to
the tidyverse style guide.

Warning: This function will overwrite files! It is strongly suggested to only style files that are
under version control or to first create a backup copy.

Invisibly returns a data frame with one row per file, that indicates whether styling caused a change.

use_tidy_thanks Identify contributors via GitHub activity

Description

Derives a list of GitHub usernames, based on who has opened issues or pull requests. Used to
populate the acknowledgment section of package release blog posts at https://www. tidyverse.
org/blog/. If no arguments are given, we retrieve all contributors to the active project since its last
(GitHub) release. Unexported helper functions, releases() and ref_df () can be useful interac-
tively to get a quick look at release tag names and a data frame about refs (defaulting to releases),
respectively.

Usage

use_tidy_thanks(repo_spec = NULL, from = NULL, to = NULL)

Arguments

repo_spec Optional GitHub repo specification in any form accepted for the repo_spec
argument of create_from_github() (plain spec or a browser or Git URL). A
URL specification is the only way to target a GitHub host other than "github. com”,
which is the default.

from, to GitHub ref (i.e., a SHA, tag, or release) or a timestamp in ISO 8601 format, spec-
ifying the start or end of the interval of interest, in the sense of [from, to]. Ex-
amples: "08a560d", "v1.3.0", "2018-02-24T00:13:45Z", "2018-05-01". When
from = NULL, to = NULL, we set from to the timestamp of the most recent
(GitHub) release. Otherwise, NULL means "no bound".

Value

A character vector of GitHub usernames, invisibly.

https://github.com/rstudio/hex-stickers
https://github.com/rstudio/hex-stickers
https://styler.r-lib.org
https://style.tidyverse.org
https://www.tidyverse.org/blog/
https://www.tidyverse.org/blog/

74 use_tutorial

Examples

Not run:
active project, interval = since the last release
use_tidy_thanks()

active project, interval = since a specific datetime
use_tidy_thanks(from = "2020-07-24T00:13:452")

r-lib/usethis, interval = since a certain date
use_tidy_thanks("r-lib/usethis”, from = "2020-08-01")

r-lib/usethis, up to a specific release
use_tidy_thanks("r-lib/usethis”, from = NULL, to = "v1.1.0")

r-lib/usethis, since a specific commit, up to a specific date
use_tidy_thanks("r-lib/usethis”, from = "@8a560d", to = "2018-05-14")

r-lib/usethis, but with copy/paste of a browser URL
use_tidy_thanks("https://github.com/r-1lib/usethis")

End(Not run)

use_tutorial Create a learnr tutorial

Description

Creates a new tutorial below inst/tutorials/. Tutorials are interactive R Markdown documents
built with the learnr package. use_tutorial() does this setup:

* Adds learnr to Suggests in DESCRIPTION.
 Gitignores inst/tutorials/*.html so you don’t accidentally track rendered tutorials.
* Creates a new .Rmd tutorial from a template and, optionally, opens it for editing.

¢ Adds new .Rmd to .Rbuildignore.

Usage

use_tutorial(name, title, open = rlang::is_interactive())

Arguments
name Base for file name to use for new .Rmd tutorial. Should consist only of numbers,
letters, _ and -. We recommend using lower case.
title The human-facing title of the tutorial.
open Open the newly created file for editing? Happens in RStudio, if applicable, or

viautils::file.edit() otherwise.

https://rstudio.github.io/learnr/index.html

use_upkeep_issue 75

See Also

The learnr package documentation.

Examples

Not run:
use_tutorial("learn-to-do-stuff”, "Learn to do stuff”)

End(Not run)

use_upkeep_issue Create an upkeep checklist in a GitHub issue

Description

This opens an issue in your package repository with a checklist of tasks for regular maintenance
of your package. This is a fairly opinionated list of tasks but we believe taking care of them will
generally make your package better, easier to maintain, and more enjoyable for your users. Some
of the tasks are meant to be performed only once (and once completed shouldn’t show up in subse-
quent lists), and some should be reviewed periodically. The tidyverse team uses a similar function
use_tidy_upkeep_issue() for our annual package Spring Cleaning.

Usage

use_upkeep_issue(year = NULL)

Arguments
year Year you are performing the upkeep, used in the issue title. Defaults to current
year
Examples
Not run:

use_upkeep_issue()

End(Not run)

https://rstudio.github.io/learnr/index.html

76 use_version

use_version Increment package version

Description

usethis supports semantic versioning, which is described in more detail in the version section of R
Packages. A version number breaks down like so:

<major>.<minor>.<patch> (released version)
<major>.<minor>.<patch>.<dev> (dev version)

use_version() increments the "Version" field in DESCRIPTION, adds a new heading to NEWS.md (if
it exists), commits those changes (if package uses Git), and optionally pushes (if safe to do so). It
makes the same update to a line like PKG_version = "x.y.z"; in src/version.c (if it exists).

use_dev_version() increments to a development version, e.g. from 1.0.0 to 1.0.0.9000. If the
existing version is already a development version with four components, it does nothing. Thin
wrapper around use_version().

Usage

use_version(which = NULL, push = FALSE)

use_dev_version(push = FALSE)

Arguments
which A string specifying which level to increment, one of: "major", "minor", "patch",
"dev". If NULL, user can choose interactively.
push If TRUE, also attempts to push the commits to the remote branch.
See Also

The version section of R Packages.

Examples

Not run:
for interactive selection, do this:
use_version()

request a specific type of increment
use_version("minor")

use_dev_version()

End(Not run)

https://r-pkgs.org/lifecycle.html#sec-lifecycle-version-number
https://r-pkgs.org
https://r-pkgs.org
https://r-pkgs.org/lifecycle.html#sec-lifecycle-version-number
https://r-pkgs.org

use_vignette 77

use_vignette Create a vignette or article

Description

Creates a new vignette or article in vignettes/. Articles are a special type of vignette that ap-
pear on pkgdown websites, but are not included in the package itself (because they are added to
.Rbuildignore automatically).

Usage

use_vignette(name, title = NULL)

use_article(name, title = NULL)

Arguments
name File name to use for new vignette. Should consist only of numbers, letters, _ and
-. Lower case is recommended. Can include the ".Rmd"” or ".qmd" file exten-
sion, which also dictates whether to place an R Markdown or Quarto vignette.
R Markdown (".Rmd") is the current default, but it is anticipated that Quarto
(".gmd") will become the default in the future.
title The title of the vignette. If not provided, a title is generated from name.

General setup

* Adds needed packages to DESCRIPTION.
* Adds inst/doc to .gitignore so built vignettes aren’t tracked.

e Addsvignettes/*.html and vignettes/*.Rto .gitignore so you never accidentally track
rendered vignettes.

* For *.gmd, adds Quarto-related patterns to .gitignore and .Rbuildignore.

» The vignettes chapter of R Packages
* The pkgdown vignette on Quarto: vignette("”quarto”, package = "pkgdown")

* The quarto (as in the R package) vignette on HTML vignettes: vignette("hello”, package
= "quarto")

Examples

Not run:

use_vignette("how-to-do-stuff”, "How to do stuff”)
use_vignette("r-markdown-is-classic.Rmd”, "R Markdown is classic”)
use_vignette("quarto-is-cool.gmd”, "Quarto is cool"”)

End(Not run)

https://r-pkgs.org/vignettes.html
https://r-pkgs.org

78 zip-utils

zip-utils Download and unpack a ZIP file

Description

Functions to download and unpack a ZIP file into a local folder of files, with very intentional default
behaviour. Useful in pedagogical settings or anytime you need a large audience to download a
set of files quickly and actually be able to find them. The underlying helpers are documented in
use_course_details.

Usage

use_course(url, destdir = getOption("usethis.destdir"))

use_zip(
url,
destdir = getwd(),
cleanup = if (rlang::is_interactive()) NA else FALSE

)
Arguments
url Link to a ZIP file containing the materials. To reduce the chance of typos in live
settings, these shorter forms are accepted:
* GitHub repo spec: "OWNER/REPO". Equivalent to https://github.com/OWNER/REPO/DEFAULT_L
* bit.ly, pos.it, or rstd.io shortlinks: "bit.ly/xxx-yyy-zzz", "pos.it/foofy" or
"rstd.io/foofy". The instructor must then arrange for the shortlink to point to
a valid download URL for the target ZIP file. The helper create_download_url()
helps to create such URLs for GitHub, DropBox, and Google Drive.
destdir Destination for the new folder. Defaults to the location stored in the global
option usethis.destdir, if defined, or to the user’s Desktop or similarly con-
spicuous place otherwise.
cleanup Whether to delete the original ZIP file after unpacking its contents. In an in-
teractive setting, NA leads to a menu where user can approve the deletion (or
decline).
Value

Path to the new directory holding the unpacked ZIP file, invisibly.

Functions

* use_course(): Designed with live workshops in mind. Includes intentional friction to high-
light the download destination. Workflow:

— User executes, e.g., use_course("bit.ly/xxx-yyy-zzz").

zip-utils 79

— User is asked to notice and confirm the location of the new folder. Specify destdir or
configure the "usethis.destdir” option to prevent this.

— User is asked if they’d like to delete the ZIP file.

— If new folder contains an .Rproj file, a new instance of RStudio is launched. Otherwise,
the folder is opened in the file manager, e.g. Finder or File Explorer.

* use_zip(): More useful in day-to-day work. Downloads in current working directory, by
default, and allows cleanup behaviour to be specified.

Examples

Not run:

download the source of usethis from GitHub, behind a bit.ly shortlink
use_course("bit.ly/usethis-shortlink-example”)
use_course("http://bit.ly/usethis-shortlink-example”)

download the source of rematch2 package from CRAN
use_course("https://cran.r-project.org/bin/windows/contrib/3.4/rematch2_2.0.1.zip")

download the source of rematch2 package from GitHub, 4 ways
use_course("r-lib/rematch2")
use_course("https://api.github.com/repos/r-1lib/rematch2/zipball/HEAD")
use_course("https://api.github.com/repos/r-lib/rematch2/zipball/main")
use_course("https://github.com/r-1lib/rematch2/archive/main.zip")

End(Not run)

Index

* git helpers
use_git, 37
use_git_config, 48
use_git_hook, 49
use_git_ignore, 50

* project functions
proj_sitrep, 20
proj_utils, 21

activates, 8, 10
active project, 19

badges, 4

browse-this, 5

browse_circleci (browse-this), 5
browse_cran (browse-this), 5
browse_github (browse-this), 5
browse_github_actions (browse-this), 5
browse_github_issues (browse-this), 5
browse_github_pulls (browse-this), 5
browse_github_pulls(), 25
browse_package (browse-this), 5
browse_project (browse-this), 5

covr: :codecov(), 40
create_download_url(), 78
create_from_github, 7
create_from_github(), 28, 73
create_github_token (github-token), 14
create_package, 9
create_package(), 29, 36, 64
create_project (create_package), 9
create_project(), 64
create_tidy_package
(use_tidy_github_actions), 71
create_tidy_package(), 10

data(), 34
devtools::submit_cran(), 47

edit, 10

80

edit_git_config(edit), 10
edit_git_ignore (edit), 10
edit_pkgdown_config (edit), 10
edit_r_buildignore (edit), 10
edit_r_environ (edit), 10
edit_r_makevars (edit), 10
edit_r_profile (edit), 10
edit_r_profile(), 15, 28, 36
edit_rstudio_prefs (edit), 10
edit_rstudio_snippets (edit), 10

fs::path(), 22

fs::path_home(), 11

functions for working with pull
requests, 7

gert::git_config(), 48
gert::git_config_global_set(), 48
gert::git_config_set(), 48
gh::gh(), 8, 15, 39,42, 66
gh: :gh_whoami(), 15
gh_token_help (github-token), 14
gh_token_help(), 8, 24, 39
git-default-branch, 11
git_default_branch
(git-default-branch), 11
git_default_branch(), 23
git_default_branch_configure
(git-default-branch), 11
git_default_branch_rediscover
(git-default-branch), 11
git_default_branch_rename
(git-default-branch), 11
git_protocol, 15
git_protocol(), 8
git_remotes (use_git_remote), 50
git_sitrep, 16
git_vaccinate, 17
github-token, 14

INDEX

issue-this, 17
issue_close_community (issue-this), 17
issue_reprex_needed (issue-this), 17

licenses, 18

lifecycle: :deprecated(), 53
load_all(), 69

local_project (proj_utils), 21

magick: :geometry, 53, 72
numeric_version(), 56

pkgload::load_all(), 52
pr_fetch (pull-requests), 23
pr_finish (pull-requests), 23
pr_forget (pull-requests), 23
pr_init (pull-requests), 23
pr_init(), 7

pr_merge_main (pull-requests), 23
pr_pause (pull-requests), 23
pr_pull (pull-requests), 23
pr_push (pull-requests), 23
pr_resume (pull-requests), 23
pr_view (pull-requests), 23
proj_activate, 19

proj_get (proj_utils), 21
proj_path (proj_utils), 21
proj_set (proj_utils), 21
proj_sitrep, 20, 22
proj_utils, 20, 21
pull-requests, 23

rename_files, 26
rename_files(), 59

reverse dependency checks, 33
rprofile-helper, 27

RStudio’s preference file, 10

save(), 34

spelling, 65

spelling: :wordlist, 65
styler::tidyverse_style(), 72

tidy_label_colours (use_github_labels),
43

tidy_label_descriptions
(use_github_labels), 43

tidy_labels (use_github_labels), 43

81

tidy_labels_rename (use_github_labels),
43
tidyverse (use_tidy_github_actions), 71

ui_silence, 27
use_addin, 29
use_agpl3_license (licenses), 18
use_agpl_license (licenses), 18
use_apache_license (licenses), 18
use_apl2_license (licenses), 18
use_article (use_vignette), 77
use_author, 29
use_badge (badges), 4
use_binder_badge (badges), 4
use_bioc_badge (badges), 4
use_blank_slate, 30
use_build_ignore, 31
use_c (use_rcpp), 60
use_cc@_license (licenses), 18
use_ccby_license (licenses), 18
use_circleci (use_gitlab_ci), 47
use_circleci_badge (use_gitlab_ci), 47
use_citation, 31
use_code_of_conduct, 32
use_conflicted (rprofile-helper), 27
use_course (zip-utils), 78
use_course(), 8, 28
use_course_details, 78
use_coverage, 32
use_covr_ignore (use_coverage), 32
use_cppl11, 33
use_cran_badge (badges), 4
use_cran_comments, 33
use_data, 34
use_data(), 37
use_data_raw (use_data), 34
use_data_table, 35
use_description, 35
use_description(), 10, 29
use_description_defaults
(use_description), 35
use_dev_package (use_package), 55
use_dev_version (use_version), 76
use_devtools (rprofile-helper), 27
use_directory, 37
use_directory(), 32
use_git, 37, 49, 50
use_git_config, 38, 48, 49, 50
use_git_hook, 38, 49, 49, 50

82

use_git_ignore, 38, 49, 50
use_git_protocol (git_protocol), 15
use_git_protocol(), 29
use_git_remote, 50
use_github, 38
use_github(), 8
use_github_action, 40
use_github_action(pkgdown), 46, 58
use_github_action_check_standard(), 72
use_github_actions(), 5, 72
use_github_file, 41
use_github_file(), 41
use_github_labels, 43
use_github_links, 45
use_github_links(), 38
use_github_pages, 46
use_github_pages(), 58
use_github_release, 47
use_gitlab_ci, 47
use_gpl3_license (licenses), 18
use_gpl_license (licenses), 18
use_import_from, 51
use_jenkins, 52
use_lgpl_license (licenses), 18
use_lifecycle, 53
use_lifecycle_badge (badges), 4
use_lifecycle_badge(), 53
use_logo, 53
use_make, 54
use_make(), 52
use_mit_license (licenses), 18
use_namespace, 54
use_news_md, 55
use_package, 55
use_package(), 67
use_package_doc, 56
use_package_doc(), 51, 70
use_partial_warnings (rprofile-helper),
27
use_pipe, 57
use_pkgdown, 57
use_pkgdown_github_pages (use_pkgdown),
57
use_pkgdown_github_pages(), 40, 46
use_posit_cloud_badge (badges), 4
use_posit_cloud_badge(), 5
use_proprietary_license (licenses), 18
use_r, 58

INDEX

use_rcpp, 60

use_rcpp_armadillo (use_rcpp), 60

use_rcpp_eigen (use_rcpp), 60

use_readme_md (use_readme_rmd), 60

use_readme_rmd, 60

use_release_issue, 61

use_reprex (rprofile-helper), 27

use_revdep, 62

use_rmarkdown_template, 63

use_roxygen_md, 64

use_rstudio, 64

use_rstudio(), 10

use_rstudio_preferences, 65

use_spell_check, 65

use_standalone, 66

use_template, 67

use_test (use_r), 58

use_test(), 69

use_test_helper, 69

use_test_helper(), 59

use_testthat, 68

use_tibble, 70

use_tidy_coc (use_tidy_github_actions),
71

use_tidy_contributing
(use_tidy_github_actions), 71

use_tidy_dependencies
(use_tidy_github_actions), 71

use_tidy_description
(use_tidy_github_actions), 71

use_tidy_github
(use_tidy_github_actions), 71

use_tidy_github_actions, 71

use_tidy_github_labels
(use_github_labels), 43

use_tidy_github_labels(), 72

use_tidy_issue_template
(use_tidy_github_actions), 71

use_tidy_logo
(use_tidy_github_actions), 71

use_tidy_style
(use_tidy_github_actions), 71

use_tidy_support
(use_tidy_github_actions), 71

use_tidy_thanks, 73

use_tidy_upkeep_issue
(use_tidy_github_actions), 71

use_tidy_upkeep_issue(), 75

INDEX

use_tutorial, 74

use_upkeep_issue, 75

use_usethis (rprofile-helper), 27

use_version, 76

use_vignette, 77

use_vignette(), 37

use_zip (zip-utils), 78

usethis_options, 28

utils::file.edit(), 29, 33, 34,41, 42, 55,
56,61, 68, 74

utils: :person, 30

whisker: :whisker.render(), 68
with_project (proj_utils), 21

zip-utils, 78

83

	badges
	browse-this
	create_from_github
	create_package
	edit
	git-default-branch
	github-token
	git_protocol
	git_sitrep
	git_vaccinate
	issue-this
	licenses
	proj_activate
	proj_sitrep
	proj_utils
	pull-requests
	rename_files
	rprofile-helper
	ui_silence
	usethis_options
	use_addin
	use_author
	use_blank_slate
	use_build_ignore
	use_citation
	use_code_of_conduct
	use_coverage
	use_cpp11
	use_cran_comments
	use_data
	use_data_table
	use_description
	use_directory
	use_git
	use_github
	use_github_action
	use_github_file
	use_github_labels
	use_github_links
	use_github_pages
	use_github_release
	use_gitlab_ci
	use_git_config
	use_git_hook
	use_git_ignore
	use_git_remote
	use_import_from
	use_jenkins
	use_lifecycle
	use_logo
	use_make
	use_namespace
	use_news_md
	use_package
	use_package_doc
	use_pipe
	use_pkgdown
	use_r
	use_rcpp
	use_readme_rmd
	use_release_issue
	use_revdep
	use_rmarkdown_template
	use_roxygen_md
	use_rstudio
	use_rstudio_preferences
	use_spell_check
	use_standalone
	use_template
	use_testthat
	use_test_helper
	use_tibble
	use_tidy_github_actions
	use_tidy_thanks
	use_tutorial
	use_upkeep_issue
	use_version
	use_vignette
	zip-utils
	Index

