3DLDF User and Reference Manual

3-dimensional drawing with MetaPost output.
Manual edition 1.1.5.1 for 3DLDF Version 1.1.5.1
January 2004

Laurence D. Finston

This is the 3DLDF User and Reference Manual, edition 1.1.5.1 for SDLDF 1.1.5.1. This
manual was last updated on 16 January 2004. 3DLDF is a GNU package for three-
dimensional drawing with MetaPost output. The author is Laurence D. Finston.

Copyright (©) 2003, 2004 Laurence D. Finston.

Permission is granted to copy, distribute and /or modify this document under the
terms of the GNU Free Documentation License, Version 1.2 or any later version
published by the Free Software Foundation; with no Invariant Sections, no
Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included
in the section entitled “GNU Free Documentation License”.

Short Contents

© 00 J O Ot = W N

W W W W W W N NN DNDDNDDNDDNDDNDNIDNFE = = = = = = = =
U W NN = O © 00~ O Ui W N = O © 0 N O Ui W NN = O

Introduction e « o v o o v v v e et v v s eesossoessnsoesoasnes 1
001 1= 10
Transforming Points « . oo v v ev e e ven e it 13
Transforms . v oo oo v e e oo veveeooeessoesssoeossons 19
Drawing and Labeling Pointscoovoo... 24
Paths v oo v ittt ittt ii st neseesssoensnnns 28
Plane Figures . o v o o v vt vt v i i i ittt eennnnnnns 36
Solid Figures v v o v oo v et it i ii e iiieeenneennns 47
Pictures . v v v e v v e o vttt e st enoeeeeesesoesoesneas 54
InterSectionS e v v v v v v v e e s veoeesessessoesonsonss 73
Installing and Running 3DLDF 74
Typedefs and Utility Structures. « v o v e v v v v v veeeeeenn. 81
Global Constants and Variables. . o v v v v v v v v e v v v v e nsnn 82
Dynamic Allocation of Shapes. .. .oveveveeeeeeen.. 84
System Information « « oo v v v v e v ittt i i, 85
Color Reference. o v v v v v oo e e vvveseeeessoeossonas 88
Input and Output « o o o v v vttt e e e it i e e ennnns 92
Shape Reference oo oo i v i i i i it iiiennn. 93
Transform Reference « .« v v v v v v v v et eeeeneeeenns 96
Label Reference. . v v v v v v v v vt oot st eeeeeessnnns 108
Picture Reference « ... v v e e eeeneeeeneeeeenns 111
Point Reference . « v v v v v v v v it ittt it i ineeenneenas 119
Focus Reference. « o v v v v v v v v v e v eeveoeeeesoeonsns 151
Line Reference « . oo v v v v i i i e ie et eneeeeeneoennns 154
Plane Reference. . « v v v e v v v v e v e v v e enneeesononns 157
Path Reference o v v v v v v v vt ii it ittt enennnss 165
Polygon Reference « v v v v v v v e i i i i i iiiiii i 199
Regular Polygon Reference « ..o v v v v v viiiinn... 205
Rectangle Referenceo v iiien... 211
Regular Closed Plane Curve Reference 216
Ellipse Reference « o v v v v v v v v v i it i i i eeennnnss 222
Circle Reference oo v v v v v et v enesveeesoennsnnns 238
Pattern Reference « .o v v v v v v v v i i ittt e e eneennnss 242
Solid Reference « v v v v o v v v v e s s vveesoesesoeoesns 248
Faced Solid Reference. . o v v v v v v v v v v eeeeeeeeeneees 257

36 Cuboid Reference + v v o v v v v v e v veeeeeeeeesoeonsns 258
37 Polyhedron Reference.ovvviennieeennn. 260
38 Utility Functions . « v v v o oo v v v it e i i e 271
39 AddingaFile c oo vvee i eeenns 273
40 Future Plans v i i ittt teeeeesoeoeenenns 275
4] ChangeS . oo v e ve oot eoeonosoeeeeosssssssnnnnas 278
Bibliography « ¢ o o o oo v v ettt ittt it e e 280
A GNU Free Documentation License « « o o v o v v v v oo voeess 282
Data Type and Variable Index . « v v o v o e v v v v i i e e, 289
Function Index « v v v v v vt v e e e s v e eoesseoessonsns 292

Concept Index o o v oo v s ittt i iiie ettt ieeeenennnns 295

il

Table of Contents

1

Introduction................... 1
1.1 Sources of Information..................... 1
1.2 About This Manual 2

1.2.1 Conventions.ouiiiiiiineeinna.. 3
1.2.2 Hlustrationsc.oooveiiiinniinne... 4
1.3 CWEB Documentationooviiineai.... 5
1.4 Metafont and MetaPost. 6
1.5 Caveats .. .ovo 7
1.5.1 ACCUTACY -« oo e ettt et e e e 7
1.5.2 NoInput Routine.............. 8
1.6 Ports. ..o 8
1.7 Contributing to 3DLDF 9

Points.............coiiiiiiiiiiiiiina... 10
2.1 Declaring and Initializing Points......................... 10
2.2 Setting and Assigning to Points 11

Transforming Points 13
31 Shiftingooori 13
3.2 Scaling ... 14
3.3 Shearing........ ..o 14
34 Rotating........ ..o 17

Transforms.................coiiiiiin... 19
4.1 Applying Transforms to Points 20
4.2 Inverting Transforms, 21

Drawing and Labeling Points.............. 24
5.1 Drawing Points 24
5.2 Labeling Points 26

Paths............. ... i, 28
6.1 Declaring and Initializing Paths 28
6.2 Drawing and Filling Paths........................... ... 30

Plane Figuresou.... 36
7.1 Regular Polygons i 36
7.2 Rectangles. 39
7.3 EIPSES. ..ot 43

T4 CIrCles . ..o 45

10

11

12

13

14

15

16

Solid Figures, 47
8.1 Cuboids..... ... 47
8.2 Polyhedron 48

8.2.1 Tetrahedron............. 48
8.2.2 Dodecahedron............ 49
8.2.3 Icosahedron 51

Pictures..............o ... 54

9.1 Projectionsc.o i 58
9.1.1 Parallel Projections............................ 58

9.1.2 The Perspective Projection..................... 60

9.2 FOCUSES. . vttt 63
9.3 Surface Hiding 66
Intersectionsvvin... 73
Installing and Running 3DLDF........... 74
11.1 Imstalling 3DLDF 74
11.1.1 Template Functions........................... 74

11.2 Running 3DLDF 75
11.2.1 Converting EPS Files 7

11.2.1.1 Emacs-Lisp Functions 78

11.2.2 Command Line Arguments.................... 79
Typedefs and Utility Structures 81
Global Constants and Variables........... 82
Dynamic Allocation of Shapes............ 84
System Information...................... 85
15.1 Endiannessooiiiiii 85
15.2 Register Width 86
15.3 Get Second Largest Real............................... 86
Color Reference 88
16.1 Data Members......... ... 88
16.2 Constructors and Setting Functions..................... 88
16.3 Operatorscovuin et 89
16.4 Modifyingo 89
16.5 Showingoooii 90
16.6 QUETYING . ..ottt 90
16.7 Defining and Initializing Colors......................... 90

16.8 Namespace Colors. ...t 90

v

17 Input and Output 92

17.1 Global Variables 92
17.2 I/O Functions i 92
18 Shape Reference......................... 93
18.1 Data Members............... .. 93
18.2 OPeratorst 93
18.3 COPYING .« v vttt et 93
184 Modifying 93
18.5 Affine Transformationsc.oo. ... 94
18.6 Applying Transformations 94
18.7 Clearingoouiie 94
188 QUEIYING .. oottt 94
18.9 ShowWingooiiiii 94
18.10 Outputting ... 94
19 Transform Reference..................... 96
19.1 Data Members.............c.iiiii .. 96
19.2 Global Variables and Constants 96
19.3 ConstructorS.ottt 96
19.4 Operatorsouiue it 96
19.5 Matrix Inversion 99
19.6 Setting Values ... 99
197 QUETYING . . oot vt 99
19.8 Returning Information................................ 100
19.9 Showingcoiiii 100
19.10 Affine Transformations 101
19.11 Alignment with an Axis 105
19.12 Resetting....... ..o 107
19.13 Cleaning 107
20 Label Reference 108
20.1 Data Members............... i 108
20.2 COPYINE - oottt et 109

20.3 Outputting ... 109

21 Picture Reference 111
21.1 Data Members....... ...t 111
21.2 Global Variables 111
21.3 ConstrucCtorS.ovv i 111
214 OPeratorsottt e 112
21.5 Affine Transformations 113
21.6 Modifyingcooi 113
21.7 ShOWING . .ottt e 114
21.8 Outputtingcooiiiii 114

21.8.1 NamespacCesSvurrmieneneeaenan.. 114
21.8.1.1 Namespace Projections.............. 114
21.8.1.2 Namespace Sorting.................. 114

21.8.2 Output Functions 115

22 Point Reference 119
22.1 Data Members.oiii . 119
22.2 Typedefs and Utility Structures 121
22.3 Global Constants and Variables 122
22.4 Constructors and Setting Functions.................... 122
22.5 Destructor. 123
22.6 OPEratorscouuii i e 124
22.7 COPYING .« vttt 126
22.8 QUETYING ...\t 126
22.9 Returning Coordinates 127
22.10 Returning Information................ 129
22.11 Modifying . ..o 129
22.12 Affine Transformations 130
22.13 Applying Transformations 135
22.14 Projecting...........oiiiimii 135
22.15 Vector Operations.ccviviiiinnieinna... 135
22.16 Pointsand Lines.............c.uuiiiiiinnnn.. 140
22.17 IntersectionsS.ouuuriii i 143
2218 Drawing........oiiiii 144
22.19 Labelling........cooooii 147
2220 ShOWING . ..ot 149
2221 Outputting..........coooiin 149

23 Focus Reference 151
23.1 Data Members............oi .. 151
23.2 Global Variablesco 151
23.3 Constructors and Setting Functions.................... 152
234 OPeratorsoeoun et e 152
23.5 Modifyingcooii 152
23.6 QUETYING . ..ot 153
23.7 ShOWINGot 153

vi

24 Line Reference 154
24.1 Data Members....... 154
24.2 Global Constants 154
24.3 ConstrucCtorS.ov it e 154
244 OPEratorsottt e 155
245 Get Path 155
24.6 ShOWING . ..\ttt e 155
25 Plane Reference 157
25.1 Data Members.oii . 157
25.2 Global Constants 157
25.3 ConStruCtorS. . ..ot 157
25.4 Operatorsou et e 158
25.5 Returning Information.................... 159
25.6 IntersectionsS.c.ouiiini i 160
25.7 SHOWINE . . oottt et ettt e 163
26 Path Reference......................... 165
26.1 Data Members............oou .. 165
26.2 Constructors and Setting Functions.................... 167
26.3 Destructor...........o 171
26.4 OPEratorscouue it e 171
26.5 Appending ... 172
26.6 COPYING -« v vttt ettt 173
26.7 Clearingcouuiiiii 173
26.8 Modifyingcoouiin 173
26.9 Affine Transformations 174
26.10 Aligning with an Axis.......... 178
26.11 Applying Transformations 180
26.12 Drawing and Filling 180
26.13 Labelling......... ..o 191
26.14 ShOWING . ..ot 192
26.15 QUETYING ...\ttt 194
26.16 Outputting 196
26.17 IntersectionsS.ouuuuiii .. 197
27 Polygon Reference...................... 199
27.1 Data Members.oii 199
27.2 OPEratorsttt e 199
27.3 QUETYING . ..ot 199
27.4 Affine Transformations 199
27.5 IntersectionsSc..ouuri et 200

vii

28

29

30

31

32

33

Regular Polygon Reference.............. 205
28.1 Data Members.............iiiii 205
28.2 Constructors and Setting Functions.................... 205
28.3 Operatorsuuiii 207
284 QUETYING ..o ottt 207
28.5 CHrCles ..o 207
Rectangle Reference 211
29.1 Data Members....... ...t 211
29.2 Constructors and Setting Functions.................... 211
29.3 Operatorsc.uuiii e 212
29.4 Returning Points.......... 212
29.5 QUETYING . ..o ot 213
2.6 EIPSES. ..ttt 213

Regular Closed Plane Curve Reference... 216

30.1 Data Members..........co.oiii 216
30.2 QUETYING ..ottt e 216
30.3 Intersections.ei i 217
30.4 Segmentsiiii 219
Ellipse Reference 222
31.1 Data Members.co.uiii 222
31.2 Constructors and Setting Functions.................... 222
31.3 Performing Transformations........................... 224
314 Operatorsuee i 224
31.5 Labeling........ .o 224
31.6 Affine Transformationscooiiieoo... 226
317 QUETYING ..ottt 226
31.8 Returning Elements and Information 227
31.9 Intersections. 230
3110 SOIVING . . oo et 235
31.11 Rectangles. 236
Circle Reference........................ 238
32.1 Data Members...........iii 238
32.2 Constructors and Setting Functions.................... 238
32.3 Operatorsuee 238
324 QUETYING . oottt 239
32.5 IntersectionS.............c.uiiii . 240
Pattern Reference 242
33.1 Plane Tesselations. 242
33.2 Roulettes and Involutes. 244

33.2.1 Epicycloids. 245

viii

34 Solid Reference..........ccovvieiei.... 248

34.1 Data Members...... ... 248
34.2 Constructors and Setting Functions.................... 248
34.3 Destructor........ .. 249
344 Operatorsueei 249
345 COPYINE . . oo ettt 249
34.6 Setting Members............... oo 249
347 QUETYING . .. 250
34.8 Returning Elements and Information 250
Getting Shape Centers, 250
Getting Shapes ... 251

34.9 Showing.........oo i 253
34.10 Affine Transformations 253
34.11 Applying Transformations 254
34.12 Outputting 254
34.13 Drawing and Filling........... 255
3414 Clearing.ot 256
35 Faced Solid Reference................... 257
35.1 Data Members......... ... 257
36 Cuboid Reference 258
36.1 Data Members.......... ... i 258
36.2 Constructors and Setting Functions.................... 258
36.3 Operatorsoueir 259
37 Polyhedron Reference................... 260
37.1 Data Members......... ... 260
37.2 Regular Platonic Polyhedra........................... 260
37.2.1 Tetrahedron.............. 260
37.2.1.1 Data Members...................... 260

37.2.1.2 Constructors and Setting Functions .. 260

37213 Net.ooooii 262

37.2.2 Dodecahedron................. 264
37.2.2.1 Data Members...................... 264

37.2.2.2 Constructors and Setting Functions .. 264

37223 Net..oooii 265

37.2.3 Icosahedron............... 266
37.2.3.1 Data Members...................... 266

37.2.3.2 Constructors and Setting Functions .. 266

37233 Net.ooooooi 267

37.3 Semi-Regular Archimedean Polyhedra 269
37.3.1 Truncated Octahedron....................... 269
37.3.1.1 Data Members...................... 269

37.3.1.2 Constructors and Setting Functions .. 269
37313 Net......ooooi .. 270

38 Utility Functions 271

38.1 Perspective Functions 271
39 AddingaPFile.......................... 273
40 FuturePlans........................... 275
40.1 GEOMEtTY oottt et 275
40.2 Curves and Surfaces...................iiiiii... 275
40.3 Shadows, Reflections, and Rendering 276
40.4 Multi-Threading 277
41 Changesccviiiiiiiinnnnnnennnss 278
41.1 3DLDF 1.1.5.1 . .. 278
41.2 3DLDF 1.1.5. .. 278
41.3 3DLDF 1.1.4.2. .. o 279
41.4 3DLDF 1.1.4.1 e 279
41.5 3DLDF 1.1.4. 279
41.6 3DLDF 1.1.1. ... 279
Bibliography.............. ... o oo, 280

Appendix A GNU Free Documentation License
....................................... 282

A.0.1 ADDENDUM: How to use this License for your

documentscoiiiiii 288
Data Type and Variable Index............... 289
FunctionIndexcvvv... 292

Concept Indexcoiiiiiiinna.. 295

Chapter 1: Introduction 1

1 Introduction

3DLDF is a free software package for three-dimensional drawing written by Laurence D.
Finston, who is also the author of this manual. It is written in C++ using CWEB and it
outputs MetaPost code.

3DLDF is a GNU package. It is part of the GNU Project of the Free Soft-
ware Foundation and is published under the GNU General Public License. See
the website http://www.gnu.org for more information. 3DLDF is available for
downloading from http://ftp.gnu.org/gnu/3dldf. The official 3DLDF website is
http://www.gnu.org/software/3d1ldf. More information about 3DLDF can be found at
the author’s website: http://wuwuser.gwdg.de/ 1finstol.

Please send bug reports to:
bug-3DLDF@gnu.org and

Two other mailing lists may be of interest to users of SDLDF: help-3DLDF@gnu. org is for
people to ask other users for help and info-3DLDF@gnu.org is for sending announcements
to users. To subscribe, send an email to the appropriate mailing list or lists with the word
"subscribe" as the subject. The author’s website is http://wwwuser.gwdg.de/ 1finstol.

My primary purpose in writing 3DLDF was to make it possible to use MetaPost for
three-dimensional drawing. I've always enjoyed using MetaPost, and thought it was a
shame that I could only use it for making two-dimensional drawings. 3DLDF is a front-
end that operates on three-dimensional data, performs the necessary calculations for the
projection onto two dimensions, and writes its output in the form of MetaPost code.

While 3DLDF’s data types and operations are modelled on those of Metafont and Meta-
Post, and while the only form of output 3DLDF currently produces is MetaPost code, it is
nonetheless not in principle tied to MetaPost. It could be modified to produce PostScript
code directly, or output in other formats. It would also be possible to modify 3DLDF so
that it could be used for creating graphics interactively on a terminal, by means of an
appropriate interface to the computer’s graphics hardware.

The name “3DLDF” (“3D” plus the author’s initials) was chosen because, while not
pretty, it’s unlikely to conflict with any of the other programs called “3D”-something.

1.1 Sources of Information

This handbook, and the use of 3DLDF itself, presuppose at least some familiarity on the
part of the reader with Metafont, MetaPost, CWEB, and C++. If you are not familiar with
any or all of them, I recommend the following sources of information:

Knuth, Donald Ervin. The METAFONTbook. Computers and Typesetting; C. Addison
Wesley Publishing Company, Inc. Reading, Massachusetts 1986.

Hobby, John D. A User’s Manual for MetaPost. AT & T Bell Laboratories. Murray Hill,
NJ. No date.

Knuth, Donald E. and Silvio Levy. The CWEB System of Structured Documentation.
Version 3.64—February 2002.

Chapter 1: Introduction 2

Stroustrup, Bjarne. The C++ Programming Language. Special Edition. Reading, Mas-
sachusetts 2000. Addison-Wesley. ISBN 0-201-70073-5.

The manuals for MetaPost and CWEB are available from the Comprehensive TEX
Archive Network (CTAN). See one of the following web sites for more information:

Germany http://dante.ctan.org, http://ftp.dante.de
http://www.dante.de.

United Kingdom
http://www.cam.ctan.org
http://ftp.tex.ac.uk.

USA http://www.tug.ctan.org
http://www.ctan.tug.org.

1.2 About This Manual

This manual has been created using Texinfo, a documentation system which is part of the
GNU Project, whose main sponsor is the Free Software Foundation. Texinfo can be used
to generate online and printed documentation from the same input files.

For more information about Texinfo, see:

Stallmann, Richard M. and Robert J. Chassell. Tezinfo. The GNU Documentation Format.
The Free Software Foundation. Boston 1999.

For more information about the GNU Project and the Free Software Foundation, see
the following web site: http://www.gnu.org.

The edition of this manual is 1.1.5.1 and it documents version 1.1.5.1 of 3DLDF. The
edition number of the manual and the version number of the program are the same (as of
16 January 2004), but may diverge at a later date.

Note that “I”, “me”, etc., in this manual refers to Laurence D. Finston, so far the sole
author of both 3DLDF and this manual. “Currently” and similar formulations refer to
version 1.1.5.1 of 3DLDF as of 16 January 2004.

This manual is intended for both beginning and advanced users of 3DLDF. So, if there’s
something you don’t understand, it’s probably best to skip it and come back to it later.
Some of the more difficult points, or ones that presuppose familiarity with features not yet
described, are in the footnotes.

I firmly believe that an adequate program with good documentation is more useful
than a great program with poor or no documentation. The ideal case, of course, is a
great program with great documentation. I'm sorry to say, that this manual is not
yet as good as I'd like it to be. I apologize for the number of typos and other errors.
I hope they don’t detract too much from its usefulness. I would have liked to have
proofread and corrected it again before publication, but for reasons external to 3DLDF,
it is necessary for me to publish now. I plan to set up an errata list on the official
3DLDF website (http://www.gnu.org/software/3d1ldf), and/or my own website
(http://wwwuser.gwdg.de/ 1finstol).

Chapter 1: Introduction 3

Unless I've left anything out by mistake, this manual documents all of the data types,
constants and variables, namespaces, and functions defined in 3SDLDF. However, some of the
descriptions are terser than I would like, and I’d like to have more examples and illustrations.
There is also more to be said on a number of topics touched on in this manual, and some
topics I haven’t touched on at all. In general, while I've tried to give complete information
on the “what and how”, the “why and wherefore” has sometimes gotten short shrift. I hope
to correct these defects in future editions.

1.2.1 Conventions

Data types are formatted like this: int, Point, Path. Plurals are formatted in the same
way: ints, Points, Paths. It is poor typographical practice to typeset a single word using
more than one font, e.g., ints, Points, Paths. This applies to data types whose plurals do

738}

not end in “s” as well, e.g., the plural of the C++ class Polyhedron is Polyhedra.
When C+ functions are discussed in this manual, I always include a pair of parentheses
to make it clear that the item in question is a function and not a variable, but I generally
do not include the arguments. For example, if I mention the function foo (), this doesn’t
imply that foo() takes no arguments. If it were appropriate, I would include the argument
type:
foo(int)

or the argument type and a placeholder name:
foo(int arg)

or I would write
foo(void)

to indicate that foo () takes no arguments. Also, I generally don’t indicate the return type,
unless it is relevant. If it is a member function of a class, I may indicate this, e.g.,, bar_
class::foo(), or not, depending on whether this information is relevant. This convention
differs from that used in the [Function Index], page 292, which is generated automatically
by Texinfo. There, only the name of the function appears, without parentheses, parameters,
or return values. The class type of member functions may appear in the Function Index,
(e.g., bar_class: :foo), but only in index entries that have been entered explicitly by the
author; such entries are not generated by Texinfo automatically.

Examples are formatted as follows:

Point p0(1, 2, 3);
Point p1(5, 6, 7.9);
Path pa(p0, pl);
pO.show("p0:");

4 p0: (1, 2, 3)

Examples can contain the following symbols:
- Indicates output to the terminal when 3DLDF is run.

= Indicates a result of some sort. It may precede a illustration generated by the
code in the example.

Indicates that the following text is an error message.

Chapter 1: Introduction 4

This manual does not use all of the symbols provided by Texinfo. If you find a symbol
you don’t understand in this manual (which shouldn’t happen), see page 103 of the Texinfo
manual.

Symbols:

N The set of the natural numbers {0, 1,2,3,4,...}.

Z The set of the integers {...,—3,-2,—1,0,1,2,3,4,...}.
R The set of the real numbers.

1.2.2 Tllustrations

The illustrations in this manual have been created using 3DLDF. The code that generates
them is in the Texinfo files themselves, that contain the text of the manual. Texinfo is
based on TEX, so it’s possible to make use of the latter’s facility for writing ASCII text to
files using TEX’s \write command.

The file ‘3DLDF-1.1.5.1/CWEB/exampman.web’ contains the C++ code, and the file
‘3DLDF-1.1.5.1/CWEB/examples.mp’ contains the MetaPost code for generating the
illustrations. 3DLDF was built using GCC 2.95 when the illustrations were generated. For
some reason, GCC 3.3 has difficulty with them. It works to generate them in batches of
about 50 with GCC 3.3.

MetaPost outputs Encapsulated PostScript files. These can be included in TEX files,
as explained below. However, in order to display the illustrations in the HTML ver-
sion of this manual, I had to convert them to PNG (“Portable Network Graphics”) for-
mat (http://www.libpng.org/pub/png/index.html). See Section 11.2.1 [Converting EPS
Files|, page 77, for instructions on how to do this.

Please note that the illustrations cannot be shown in the Info output format!

If you have problems including the illustrations in the printed version, for example, if
your installation doesn’t have dvips, look for the following lines in ‘3DLDF.texi’:

\doepsftrue %% One of these two lines should be commented-out.
%\doepsffalse

Now, remove the ‘%’ from in front of ‘\doepsffalse’ and put one in front of ‘\doepsftrue’.
This will prevent the illustrations from being included. This should only be done as a last
resort, however, because it will make it difficult if not impossible to understand this manual.

The C++ code in an example is not always the complete code used to create the illustra-
tion that follows it, since the latter may be cluttered with commands that would detract
from the clarity of the example. The actual code used always follows the example in the
Texinfo source file, so the latter may be referred to, if the reader wishes to see exactly what
code was used to generate the illustration.

You may want to skip the following paragraphs in this section, if you're reading this
manual for the first time. Don’t worry if you don’t understand it, it’s meaning should
become clear after reading the manual and some experience with using 3DLDF.

The file ‘3DLDF.texi’ in the directory ‘3DLDF-1.1.5.1/D0OC/TEXINFO’, the driver file for
this manual, contains the following TEX code:

Chapter 1: Introduction 5

\newif\ifmakeexamples
\makeexamplestrue %% One of these two lines should be commented-out.
%\makeexamplesfalse

When texi2dvi is run on ‘3DLDF.texi’, \makeexamplestrue is not commented-
out, and \makeexamplesfalse is, the C++ code for the illustrations is written
to the file ‘examples.web’. If the EPS files don’t already exist (in the directory
‘3DLDF-1.1.5.1/DOC/TEXINFO/EPS’), the TEX macro \PEX, which includes them in the
Texinfo files, will signal an error each time it can’t find one. Just type ‘s’ at the command
line to tell TEX to keep going. If you want to be sure that these are indeed the only errors,
you can type ‘<RETURN>’ after each one instead.

texi2dvi 3DLDF.texi also generates the file ‘extext.tex’, which contains TEX code for
including the illustrations by themselves.

‘examples.web’ must now be moved to ‘3DLDF-1.1.5.1/CWEB/’ and ctangled,
‘examples.c’ must compiled, and 3DLDF must be relinked. ctangle examples also
generates the header file ‘example.h’, which is included in ‘main.web’. Therefore, if
the contents of ‘examples.h’ have changed since the last time ‘main.web’ was ctangled,
‘main.web’ will have to be ctangled, and ‘main.c’ recompiled, before ‘3d1df’ is relinked.?

Running 3d1df and MetaPost now generates the EPS (Encapsulated PostScript) files
‘3DLDFmp.1’ through (currently) ‘3DLDFmp.199’ for the illustrations. They must be moved
to ‘3DLDF-1.1.5.1/DOC/TEXINFO/EPS’. Now, when texi2dvi 3DLDF.texi is run again,
the dvips command ‘\epsffile’ includes the EPS files for the illustrations in the manual.
‘3DLDF . texi’ includes the line ‘\input epsf’, so that ‘\epsffile’ works. Of course, dvips
(or some other program that does the job) must be used to convert ‘3DLDF.dvi’ to a
PostScript file. To see exactly how this is done, take a look at the ‘.texi’ source files of
this manual.?

In the ‘3DLDF.texi’ belonging to the 3DLDF distribution, \makeexamplestrue will be
commented-out, and makeexamplesfalse won’t be, because the EPS files for the illustra-
tions are included in the distribution.

The version of ‘examples.web’ in ‘3DLDF-1.1.5.1/CWEB’ merely includes the files

‘subexl.web’ and ‘subex2.web’. If you rename ‘3DLDF-1.1.5.1/CWEB/exampman.web’ to
‘examples.web’, you can generate the illustrations.

1.3 CWEB Documentation

As mentioned above, 3DLDF has been programmed using CWEB, which is a “literate
programming” tool developed by Donald E. Knuth and Silvio Levy. See Section 1.1 [Sources
of Information], page 1, for a reference to the CWEB manual. Knuth’s TEX—The Program
and Metafont—The Program both include a section “How to read a WEB” (pp. x—=xv, in
both volumes).

! ctangle creates ‘<filename>.c’ from ‘<filename>.web’, so the compiler must compile the C++ files

using the ‘-x c++’ option. Otherwise, it would handle them as if they contained C code.

If you want to try generating the illustrations yourself, you can save a little run-time by calling tex
3DLDF.texi the first time, rather than texi2dvi. The latter program runs TEX twice, because it needs
two passes in order to generate the contents, indexing, and cross reference information (and maybe some
other things, t00).

Chapter 1: Introduction 6

CWEB files combine source code and documentation. Running ctangle on a CWEB
file, for example, ‘main.web’, produces the file ‘main.c’ containing C or C++ code. Running
cweave main.web creates a TEX file with pretty-printed source code and nicely formatted
documentation. I find that using CWEB makes it more natural to document my code
as I write it, and makes the source files easier to read when editing them. It does have
certain consequences with regard to compilation, but these are taken care of by make.
See Chapter 39 [Adding a File|, page 273, and Chapter 41 [Changes|, page 278, for more
information.

The CWEB files in the directory ‘3DLDF-1.1.5.1/CWEB/’ contain the source code for
3DLDF. The file ‘3DLDFprg.web’ in this directory is only ever used for cweaving; it is never
ctangled and contains no C++ code for compilation. It does, however, include all of the other
CWESB files, so that cweave 3DLDFprg.web generates the TEX file containing the complete
documentation of the source code of 3DLDF.

The files ‘3DLDF-1.1.5.1/CWEB/3DLDFprg. tex’, ‘3DLDF-1.1.5.1/CWEB/3DLDFprg.dvi’,|]
and ‘3DLDF-1.1.5.1/CWEB/3DLDFprg.ps’ are included in the distribution of 3DLDF as
a convenience. However, users may generate them themselves, should there be some
reason for doing so, by entering make ps from the command line of a shell from the
working directory ‘3DLDF-1.1.5.1/’ or ‘3DLDF-1.1.5.1/CWEB’. Alternatively, the user
may generate them by hand from the working directory ‘3DLDF-1.1.5.1/CWEB/’ in the
following way:

1. cweave 3DLDFprg.web generates ‘3DLDFprg.tex’.
2. tex 3DLDFprg or tex 3DLDFprg.tex generates ‘3DLDFprg.dvi’.

3. dvips -o 3DLDFprg.ps 3DLDFprg (possibly with additional options) generates
‘3DLDFprg.ps’.

4. 1pr -P<print queue> 3DLDFprg.ps sends ‘3DLDFprg.ps’ to a printer, on a UNIX or
UNIX-like system.

The individual commands may differ, depending on the system you’re using.

1.4 Metafont and MetaPost

Metafont is a system created by Donald E. Knuth for generating fonts, in particular for
use with TEX, his well-known typsetting system.?® Expressed in a somewhat simplified way,
Metafont is a system for programming curves, which are then digitized and output in the
form of run-time encoded bitmaps. (See Knuth’s The Metafontbook for more information).

John D. Hobby modified Metafont’s source code to create MetaPost, which functions in
much the same way, but outputs encapsulated PostScript (EPS) files instead of bitmaps.
MetaPost is very useful for creating graphics and is a convenient interface to PostScript. It
is also easy both to imbed TEX code in MetaPost programs, for instance, for typesetting
labels, and to include MetaPost graphics in ordinary TEX files, e.g., by using dvips.* Apart
from simply printing the PostScript file output by dvips, there are many programs that

3 Knuth, Donald E. The Tj EXbook. Computers and Typesetting; A. Addison-Wesley Publishing Company.
Reading, Massachusetts 1986.

4 Rokicki, Tomas. Duvips: A DVI-to-PostScript Translator February 1997. Available from CTAN. See
Section 1.1 [Sources of Information], page 1.

Chapter 1: Introduction 7

can process ordinary or encapsulated PostScript files and convert them to other formats.
Just two of the many possibilities are ImageMagick and GIMP, both of which can be used
to create animations from MetaPost graphics.

However, MetaPost inherited a significant limitation from Metafont: it’s not possible to
use it for making three-dimensional graphics, except in a very limited way. One insuperable
problem is the severe limitation on the magnitude of user-defined numerical variables in
Metafont and MetaPost.® This made sense for Metafont’s and MetaPost’s original purposes,
but they make it impossible to perform the calculations needed for 3D graphics.

Another problem is the data types defined in Metafont: Points are represented as pairs
of real values and affine transformations as sets of 6 real values. This corresponds to the
representation of points and affine transformations in the plane as a two-element vector on
the one hand and a six element matrix on the other. While it is possible to work around the
limitation imposed by having points be represented by only two values, it is impracticable
in the case of the transformations.

For these reasons, I decided to write a program that would behave more or less like
Metafont, but with suitable extensions, and the ability to handle three dimensional data;
namely 3DLDF. It stores the data and performs the transformations and other necessary
calculations and is not subject to the limitations of MetaPost and its data types. Upon
output, it performs a perspective transformation, converting the 3D image into a 2D one.
The latter can now be expressed as an ordinary MetaPost program, so 3DLDF writes its
output as MetaPost code to a file.

In the following, it may be a little unclear why I sometimes refer to Metafont and
sometimes to MetaPost. The reason is that Metafont inherited much of its functionality
from Metafont. Certain operations in Metafont have no meaning in MetaPost and so have
been removed, while MetaPost’s function of interfacing with PostScript has caused other
operations to be added. For example, in MetaPost, color is a data type, but not in
Metafont. Unless otherwise stated, when I refer to Metafont, it can be assumed that what
I say applies to MetaPost as well. However, when I refer to MetaPost, it will generally be
in connection with features specific to MetaPost.

1.5 Caveats

1.5.1 Accuracy

When 3DLDF is run, it uses the three-dimensional data contained in the user code to create
a two-dimensional projection. Currently, this can be a perspective projection, or a parallel
projection onto one of the major planes. MetaPost code representing this projection is then
written to the output file. 3DLDF does no scan conversion,® so all of the curves in the

5 «..] METAFONT deals only with numbers in a limited range: A numeric token must be less than 4096,
and its value is always rounded to the nearest multiple of ﬁ.” Knuth, The METAFON Tbhook, p. 50.

6 Scan conversion is the process of digitizing geometric data. The ultimate result is a 2 x 2 map of pixels,
which can be used for printing or representing the projection on a computer screen. The number of
pixels per a given unit of measurement is the resolution of a given output device, e.g., 300 pixels per
inch.

Chapter 1: Introduction 8

projection are generated by means of the algorithms MetaPost inherited from Metafont.
These algorithms, however, are designed to find the “most pleasing curve”” given one or
more two-dimensional points and connectors; they do not account for the the fact that
the two-dimensional points are projections of three-dimensional ones. This can lead to
unsatisfactory results, especially where extreme foreshortening occurs. In particular, ‘curl’,
dir, ‘tension’, and control points should be used cautiously, or avoided altogether, when
specifying connectors.

3DLDF operates on the assumption that, given an adequate number of points, MetaPost
will produce an adequate approximation to the desired curve in perspective, since the greater
the number of points given for a curve, the less “choice” MetaPost has for the path through
them. My experience with 3SDLDF bears this out. Generally, the curves look quite good.
Where problems arise, it usually helps to increase the number of points in a curve.

A more serious problem is the imprecision resulting from the operation of rotation.
Rotations use the trigonometric functions, which return approximate values. This has the
result that points that should have identical coordinate values, sometimes do not. This
has consequences for the functions that compare points. The more rotations are applied to
points, the greater the divergence between their actual coordinate values, and the values
they should have. So far, I haven’t found a solution for this problem. On the other hand,
it hasn’t yet affected the usability of 3DLDF.

1.5.2 No Input Routine

3DLDF does not yet include a routine for reading input files. This means that user code
must be written in C++, compiled, and linked with the rest of the program. I admit, this
is not ideal, and writing an input routine for user code is one of the next things I plan to
add to 3DLDF.

I plan to use Flex and Bison to write the input routine.® The syntax of the input code
should be as close as possible to that of MetaPost, while taking account of the differences
between MetaPost and 3DLDF.

For the present, however, the use of 3DLDF is limited to those who feel comfortable
using C+ and compiling and relinking programs. Please don’t be put off by this! It’s
not so difficult, and make does most of the work of recompiling and running 3DLDF. See
Chapter 11 [Installing and Running 3DLDF], page 74, for more information.

1.6 Ports

I originally developed 3DLDF on a DECalpha Personal Workstation with two processors
running under the operating system Tru64 Unix 5.1, using the DEC C++ compiler. I then
ported it to a PC Pentium 4 running under Linux 2.4, using the GNU C++ compiler GCC
2.95.3, and a PC Pentium II XEON under Linux 2.4, using GCC 3.3. I am currently only
maintaining the last version. I do not believe that it’s worthwhile to maintain a version for
GCC 2.95. While I would like 3DLDF to run on as many platforms as possible, I would

" Knuth, The METAFONTbook, Chapter 14, p. 127.

8 Flex is a program for generating text scanners and Bison is a parser generator. They are available from
http://www.gnu.org.

Chapter 1: Introduction 9

rather spend my time developing it than porting it. This is something where I would be
grateful for help from other programmers.

Although I am no longer supporting ports to other systems, I have left some conditionally
compiled code for managing platform dependencies in the CWEB sources of 3DLDF. This
may make it easier for other people who want to port 3DLDF to other platforms.

Currently, the files ‘io.web’, ‘loader.web’, ‘main.web’, ‘points.web’, and ‘pspglb.web’
contain conditionally compiled code, depending on which compiler, or in the case of GCC,
which version of the compiler, is used. The DEC C++ compiler defines the preprocessor
macro ‘__DECCXX’ and GCC defines ‘'__GNUC__’. In order to distinguish between GCC 2.95.3
and GCC 3.3, I've added the macros ‘LDF_GCC_2_95" and ‘LDF_GCC_3_3’ in ‘loader.web’,
which should be defined or undefined, depending on which compiler you’re using. In the
distribution, ‘LDF_GCC_3_3’ is defined and ‘LDF_GCC_2_95’ is undefined, so if you want to
try using GCC 2.95, you’ll have to change this (it’s not guaranteed to work).

3DLDF 1.1.5.1 now uses Autoconf and Automake, and the ‘configure’ script generates
a ‘config.h’ file, which is now included in ‘loader.web’. Some of the preprocessor macros
defined in ‘config.h’ are used to conditionally include library header files, but so far, there
is no error handling code for the case that a file can’t be included. I hope to improve the
way 3DLDF works together with Autoconf and Automake in the near future.

3DLDF 1.1.5 is the first release that contains template functions. Template instantiation
differs from compiler to compiler, so using template functions will tend to make 3DLDF
less portable. See Section 11.1.1 [Template Functions|, page 74, for more information. I
am no longer able to build 3SDLDF on the DECalpha Personal Workstation. I'm fairly sure
that it would be possible to port it, but I don’t plan to do this, since Tru64 Unix 5.1 and
the DEC C++ compiler are non-free software.

1.7 Contributing to 3aDLDF

So far, I've been the sole author and user of 3DLDF. I would be very interested in having
other programmers contribute to it. I would be particularly interested in help in making
3DLDF conform as closely as possible to the GNU Coding Standards. I would be grateful if
someone would write proper Automake and Autoconf files, since I haven’t yet learned how
to do so (I'm working on it).

See Chapter 1 [Introduction], page 1, for information on how to contact the author.

Using 3DLDF

Since 3DLDF does not yet have an input routine, user code must be written in C++ (in
‘main.web’, or some other file) and compiled. Then, 3DLDF must be relinked, together
with the new file of object code resulting from the compilation. For now, the important
point is that the text of the examples in this manual represent C++ code. See Chapter 11
[Installing and Running 3DLDF], page 74, for more information.

Chapter 2: Points 10

2 Points

2.1 Declaring and Initializing Points

The most basic drawable object in 3DLDF is class Point. It is analogous to pair in
Metafont. For example, in Metafont one can define a pair using the “z” syntax as follows:

z0 = (1cm, 1cm);
There are other ways of defining pairs in Metafont (and MetaPost), but this is the usual
way.

In 3DLDF, a Point is declared and initialized as follows:

Point pt0(1, 2, 3);

This simple example demonstrates several differences between Metafont and 3DLDF.
First of all, there is no analog in 3DLDF to Metafont’s “z” syntax. If I want to have Points
called “pt0”, “pt1”, “pt2”, etc., then I must declare each of them to be a Point:

Point pt0(10, 15, 2);

Point pt1(13, 41, 5.5);

Point pt2(62.9, 7.02, 8);

Alternatively, I could declare an array of Points:

Point pt[3];
Now I can refer to pt [0], pt[1], and pt[2].
In the Metafont example, the x and y-coordinates of the pair z0 are specified using the unit
of measurement, in this case, centimeters. This is currently not possible in 3SDLDF. The
current unit of measurement is stored in the static variable Point: :measurement_units,
which is a string. Its default value is "cm" for “centimeters”. At present, it is best to stick
with one unit of measurement for a drawing. After I’ve defined an input routine, 3DLDF
should handle units of measurement in the same way that Metafont does.

Another difference is that the Points ptO, ptl, and pt2 have three coordinates, x, y,
and z, whereas z0 has only two, x and y. Actually, the difference goes deeper than this. In
Metafont, a pair has two parts, xpart and ypart, which can be examined by the user. In
3DLDF, a Point contains the following sets of coordinates:

world_coordinates
user_coordinates
view_coordinates
projective_coordinates

These are sets of 3-dimensional homogeneous coordinates, which means that they contain
four coordinates: x, y, z, and w. Homogeneous coordinates are used in the affine and
perspective transformations (see Chapter 4 [Transforms|, page 19).

Currently, only world_coordinates and projective_coordinates are used in 3DLDF.
The world_coordinates refer to the position of a Point in 3DLDF’s basic, unchanging co-
ordinate system. The projective_coordinates are the coordinates of the two-dimensional
projection of the Point onto a plane. This projection is what is ultimately printed out or
displayed on the computer screen. Please note, that when the coordinates of a Point are
referred to in this manual, the world_coordinates are meant, unless otherwise stated.

Chapter 2: Points 11

Points can be declared and their values can be set in different ways.

Point ptO;

Point pt1(1);

Point pt2(2.3, 52);

Point pt3(4.5, 7, 13.205);

ptO is declared without any arguments, i.e., using the default constructor, so the values
of its x, y, and z-coordinates are all 0.

ptl is declared and initialized with one argument for the x-coordinate, so its y and z-
coordinates are initialized with the values of CURR_Y and CURR_Z respectively. The latter
are static constant data members of class Point, whose values are 0 by default. They can
be reset by the user, who should make sure that they have sensible values.

pt2 is declared and initialized with two arguments for its x and y-coordinates, so its
z-coordinate is initialized to the value of CURR_Z. Finally, pt3 has an argument for each of
its coordinates.

Please note that ptO is constructed using a the default constructor, whereas the
other Points are constructed using a constructor with one required argument (for the
x-coordinate), and two optional arguments (for the y and z-coordinates). The default
constructor always sets all the coordinates to 0, irrespective of the values of CURR_Y and
CURR_Z.

2.2 Setting and Assigning to Points

It is possible to change the value of the coordinates of Points by using the assignment
operator = (Point: :operator=()) or the function Point::set() (with appropriate argu-
ments):

Point pt0(2, 3.3, 7);
Point ptil;

ptl = ptO;

ptO0.set (34, 99, 107.5);
ptO.show("ptO:");

+ ptO: (34, 99, 107.5)
ptl.show("ptl:");

4 pti: (2, 3.3, 7)

In this example, ptO is initialized with the coordinates (2, 3.3, 7), and pt1 with the
coordinates (0, 0, 0). ptl = ptO causes ptl to have the same coordinates as ptO, then
the coordinates of ptO are changed to (34, 99, 107.5). This doesn’t affect ptl, whose
coordinates remain (2, 3.3, 7).

Another way of declaring and initializing Points is by using the copy constructor:

Point pt0(1, 3.5, 19);
Point pt1(pt0);

Point pt2 = ptO;

Point pt3;

pt3 = ptO;

Chapter 2: Points 12

In this example, pt1 and pt2 are both declared and initialized using the copy constructor;
Point pt2 = pt0 does not invoke the assignment operator. pt3, on the other hand, is
declared using the default constructor, and not initialized. In the following line, pt3 = pt0
does invoke the assignment operator, thus resetting the coordinate values of pt3 to those
of ptO.

Chapter 3: Transforming Points 13

3 Transforming Points

Points don’t always have to remain in the same place. There are various ways of moving
or transforming them:

e Shifting. This is often called “translating”, but the operation in Metafont that performs
translation is called shift, so I call it “shifting”.

e Scaling.
e Shearing.

e Rotating about an axis.

class Point has several member functions for applying these affine transformations! to
a Point. Most of the arguments to these functions are of type real. As you may know,
there is no such data type in C++. I have defined real using typedef to be either float
or double, depending on the value of a preprocessor switch for conditional compilation.?
3DLDF uses many real values and I wanted to be able to change the precision used by
making one change (in the file ‘pspglb.web’) rather than having to examine all the places
in the program where float or double are used. Unfortunately, setting real to double
currently doesn’t work.

3.1 Shifting

The function shift() adds its arguments to the corresponding world_coordinates of
a Point. In the following example, the function show() is used to print the world_
coordinates of pO to standard output.

Point p0(0, 0, 0);
pO.shift(1, 2, 3);
pO.show("p0:");

4 p0: (1, 2, 3)
pO.shift(10);
pO.show("p0:");

4 p0: (11, 2, 3)
p0.shift (0, 20);
pO.show("p0:");

4 p0: (11, 22, 3)
p0.shift (0, 0, 30);
pO.show("p0:");

4 po: (11, 22, 33)

L Affine transformations are operations that have the property that parallelity of lines is maintained.
That is, if two lines (each determined by two points) are parallel before the transformation, they will
also be parallel after the transformation. Affine transformations are discussed in many books about
computer graphics and geometry. For 3DLDF, I've mostly used Jones, Computer Graphics through Key
Mathematics and Salomon, Computer Graphics and Geometric Modeling.

I try to avoid the use of preprocessor macros as much as possible, for the reasons given by Stroustrup in
the The C++ Programming Language, §7.8, pp. 160-163, and Design and Evolution of C++, Chapter
18, pp. 423-426. However, conditional compilation is one of the tasks that only the preprocessor can
perform.

Chapter 3: Transforming Points 14

shift takes three real arguments, whereby the second and third are optional. To shift a
Point in the direction of the positive or negative y-axis, and/or the positive or negative
z-axis only, then a 0 argument for the x direction, and possibly one for the y direction must
be used as placeholders, as in the example above.

shift () can be invoked with a Point argument instead of real arguments. In this case,
the x, y, and z-coordinates of the argument are used for shifting the Point:

Point a(10, 10, 10);
Point b(1, 2, 3);
a.shift(b);
a.show("a:")

4 a: (11, 12, 13)

Another way of shifting Points is to use the binary += operator (Point: :operator+=())
with a Point argument.

Point a0O(1, 1, 1);
Point al1(2, 2, 2);
a0 += al;
a0.show("a0:");

-4 a0: (3, 3, 3)

3.2 Scaling

The function scale() takes three real arguments. The x, y, and z-coordinates of the
Point are multiplied by the first, second, and third arguments respectively. Only the first
argument is required; the default for the others is 1.

If one wants to perform scaling in either the y-dimension only, or the y and z-dimensions
only, a dummy argument of 1 must be passed for scaling in the x-dimension. Similarly,
if one wants to perform scaling in the z-dimension only, dummy arguments of 1 must be
passed for scaling in the x and y-dimensions.

Point p0(1, 2, 3);
pO.scale(2, 3, 4);
pO.show("p0:");

4 p0: (2, 6, 12)
pO.scale(2);
pO.show("p0:");

4 p0: (4, 6, 12)
pO.scale(1l, 3);
pO.show("p0:");

4 po: (4, 18, 12)
pO.scale(l, 1, 3);
pO.show("p0:");

4 pO: (4, 18, 36)

Chapter 3: Transforming Points 15

3.3 Shearing

Shearing is more complicated than shifting or scaling. The function shear () takes six real
arguments. If p is a Point, then p.shear(a, b, c, d, e, f) sets x, to x, + ay, + bz,, y,
to y, + cxp + dz,, and z, to z, + ex, + fy,. In this way, each coordinate of a Point is
modified based on the values of the other two coordinates, whereby the influence of the
other coordinates on the new value is weighted according to the arguments.

Point p(1, 1, 1);
p.shear(1);
p.-show("p:");

4 p: (2, 1, 1)
p-set(1, 1, 1);
p.shear(1, 1);
p.show("p:");

4 p: (3, 1, 1)
p-set(1, 1, 1);
p.shear(1, 1, 2, 2, 3, 3);
p.show("p:");

4 p: (3, 5,7

Fig. 1 demonstrates the effect of shearing the points of a rectangle in the x-y plane.

Point PO;

Point P1(3);

Point P2(3, 3);

Point P3(0, 3);

Rectangle r(p0, pl, p2, p3);
r.draw();

Rectangle q(r);
q.shear(1.5);

q.draw(black, "evenly");

Chapter 3: Transforming Points

P, = (3, 3)

Q?) = (45a 3) QQ = (757 3)

e]

Figure 1.

16

Chapter 3: Transforming Points 17

3.4 Rotating

The function rotate () rotates a Point about one or more of the main axes. It takes three
real arguments, specifying the angles of rotation in degrees about the x, y, and z-axes
respectively. Only the first argument is required, the other two are 0 by default. If rotation
about the y-axis, or the y and z-axes only are required, then 0 must be used as a placeholder
for the first and possibly the second argument.

Point p(0, 1);
p.rotate(90);
p.show("p:");

4 p: (0, 0, -1)
p.rotate(0, 90);
p-show("p:");

4 p: (1, 0, 0)
p.rotate(0, 0, 90);
p.show("p:");

4 p: (0, 1, 0)

The rotations are performed successively about the x, y, and z-axes. However, rotation
is not a commutative operation, so if rotation about the main axes in a different order is
required, then rotate () must be invoked more than once:

Point A(2, 3, 4);

Point B(A);

A.rotate(30, 60, 90);

A.show("A:");

-+ A: (-4.59808, -0.700962, 2.7141)
B.rotate(0, 0, 90);

B.rotate(0, 60);

B.rotate(30);

B.show("B:");

-4 B: (-4.9641, 1.43301, -1.51795)

Rotation need not be about the main axes; it can also be performed about a line defined
by two Points. The function rotate() with two Point arguments and a real argument
for the angle of rotation (in degrees) about the axis. The real argument is optional, with
180° as the default.

Point pO (-1.06066, 0, 1.06066);
Point p1 (1.06066, 0, -1.06066);

pl *= pO.rotate(0, 30, 30);
pO.show("p0:");

- pO0: (-1.25477, -0.724444, 0.388228)
pl.show("pl:");

4 pi: (1.25477, 0.724444, -0.388228)
pO.draw(pl);

Point p2(1.06066, 0, 1.06066);
p2.show("p2:");

- p2: (1.06066, 0, 1.06066)

Chapter 3: Transforming Points 18

Point p3(p2);

p3.rotate(pl, p0, 45);
p3.show("p3:");

- p3 (1.09721, 1.15036, 1.17879)
Point p4(p2);

p4.rotate(pl, pO, 90);
p4.show("pd:");

4 p4: (0.882625, 2.05122, 0.485242)
Point p5(p2);

p5.rotate(pl, pO, 135);
p5.show("p5:");

- pb5: (0.542606, 2.17488, -0.613716)
Point p6(p2);

p6.rotate(pl, pO);

p6.show("p6:");

- p6: (0.276332, 1.44889, -1.47433)

y

&
e

Figure 2.

I have sometimes gotten erroneous results using rotate () for rotation about two Points.
It’s usually worked to reverse the order of the Point arguments, or to change sign of the
angle argument. I think I've fixed the problem, though.

Chapter 4: Transforms 19

4 Transforms

When Points are transformed using shift (), shear(), or one of the other transforma-
tion functions, the world_coordinates are not modified directly. Instead, another data
member of class Point is used to store the information about the transformation, namely
transform of type class Transform. A Transform object has a single data element of
type Matrix and a number of member functions. A Matrix is simply a 4 x 4 array! of
reals defined using typedef real Matrix[4] [4]. Such a matrix suffices for performing all
of the transformations (affine and perspective) possible in three-dimensional space.? Any
combination of transformations can be represented by a single transformation matrix. This
means that consecutive transformations of a Point can be “saved up” and applied to its
coordinates all at once when needed, rather than updating them for each transformation.

Transforms work by performing matrix multiplication of Matrix with the homogeneous
world_coordinates of Points. If a set of homogeneous coordinates « = (x,y, z,w) and

a e 1t m
Matrix M = b f i m
c g k o
d h I p

then the set of homogeneous coordinates 3 resulting from multiplying o and M is calculated
as follows:

B =axM = ((za+yb+zctwd), (xe+yf+zg+wh), (xi+yj+zk+wl), (xm+yn+zo+wp))

Please note that each coordinate of 3 can be influenced by all of the coordinates of «.

Operations on matrices are very important in computer graphics applications and are
described in many books about computer graphics and geometry. For 3DLDF, I've mostly
used Huw Jones’ Computer Graphics through Key Mathematics and David Salomon’s Com-
puter Graphics and Geometric Modeling.

It is often useful to declare and use Transform objects in 3DLDF, just as it is for
transforms in Metafont. Transformations can be stored in Transforms and then be used
to transform Points by means of Point: :operator*=(const Transform&).

1. Transform t;

2. t.shift (0, 1);

3. Point p(1, 0, 0);
4. p *= t;

L 1t is unfortunate that the terms “array”, “matrix”, and “vector” have different meanings in C++ and
in normal mathematical usage. However, in practice, these discrepancies turn out not to cause many
problems. Stroustrup, The C++ Programming Language, § 22.4, p. 662.

In fact, none of the operations for transformations require all of the elements of a 4 x 4 matrix. In
many 3D graphics programs, the matrix operations are modified to use smaller transformation matrices,
which reduces the storage requirements of the program. This is a bit tricky, because the affine trans-
formations and the perspective transformation use different elements of the matrix. I consider that the
risk of something going wrong, possibly producing hard-to-find bugs, outweighs any benefits from saving
memory (which is usually no longer at a premium, anyway). In addition, there may be some interesting
non-affine transformations that would be worth implementing. Therefore, I've decided to use full 4 x 4
matrices in 3DLDF.

Chapter 4: Transforms 20

5. p.show("p:");
4 p: (1, 1, 0)

When a Transform is declared (line 1), it is initialized to an identity matrix. All identity
matrices are square, all of the elements of the main diagonal (upper left to lower right) are
1, and all of the other elements are 0. So a 4 x 4 identity matrix, as used in 3DLDF, looks
like this:

1 0 0 0
01 00
0 010
0 0 0 1

If a matrix A is multiplied with an identity matrix I, the result is identical to A, i.e.,
A x I = A. This is the salient property of an identity matrix.

The same affine transformations are applied in the same way to Transforms as they are
to Points, i.e., the functions scale(), shift (), shear (), and rotate() correspond to the
Point versions of these functions, and they take the same arguments:

Point p;

Transform t;

p.shift(3, 4, 5);
t.shift(3, 4, 5);

= p.transform = t
p.show_transform("p:");

- p:
Transform:
0 0.707 0.707 0
-0.866 0.354 -0.354 0
-0.