I

JSON Web Encryption (JWE)
draft-ietf-jose-json-web-encryption-10

Abstract

JSON Web Encryption (JWE) is a means of representing encrypted content using JavaScript
Object Notation (JSON) data structures. Cryptographic algorithms and identifiers for use with
this specification are described in the separate JSON Web Algorithms (JWA) specification.
Related digital signature and MAC capabilities are described in the separate JSON Web
Signature (JWS) specification.

Status of this Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note
that other groups may also distribute working documents as Internet-Drafts. The list of
current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated,
replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-
Drafts as reference material or to cite them other than as “work in progress.”

This Internet-Draft will expire on October 27, 2013.

Copyright Notice

Copyright (c) 2013 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and
restrictions with respect to this document. Code Components extracted from this document
must include Simplified BSD License text as described in Section 4.e of the Trust Legal
Provisions and are provided without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction
1.1. Notational Conventions
2. Terminology
3. JSON Web Encryption (JWE) Overview
3.1. Example JWE using RSAES OAEP and AES GCM
3.2. Example JWE using RSAES-PKCS1-V1 5 and
AES_128 CBC_HMAC_SHA 256
4. JWE Header
4.1. Reserved Header Parameter Names
4.1.1. "alg" (Algorithm) Header Parameter

oy
=
N

"enc" (Encryption Method) Header Parameter
"epk" (Ephemeral Public Key) Header Parameter
"zip" (Compression Algorithm) Header Parameter
"jku" (JWK Set URL) Header Parameter
"jwk" (JSON Web Key) Header Parameter
"x5u” (X.509 URL) Header Parameter
"x5t" (X.509 Certificate Thumbprint) Header Parameter
"x5c¢" (X.509 Certificate Chain) Header Parameter
"kid" (Key ID) Header Parameter
"typ" (Type) Header Parameter
"cty" (Content Type) Header Parameter
"apu" (Agreement PartyUinfo) Header Parameter
"apv" (Agreement PartyVinfo) Header Parameter
"crit" (Critical) Header Parameter
Publlc Header Parameter Names
Private Header Parameter Names
oducing and Consuming JWEs
Message Encryption
Message Decryption
String Comparison Rules
ncrypting JWEs with Cryptographic Algorithms
6 1. CEK Encryption
. JSON Serialization
7.1. Example JWE-JS
8. Implementation Considerations
9. IANA Considerations
9.1. Registration of JWE Header Parameter Names
9.1.1. Registry Contents
9.2. JSON Web Signature and Encryption Type Values Registration
9.2.1. Registry Contents
9.3. Media Type Registration
9.3.1. Registry Contents
10. Security Considerations
11. References
11.1. Normative References
11.2. Informative References
Appendix A. JWE Examples
A.1. Example JWE using RSAES OAEP and AES GCM
A.1.1. JWE Header
A.1.2. Encoded JWE Header
A.1.3. Content Encryption Key (CEK)
1.4. Key Encryption
Encoded JWE Encrypted Key
. Initialization Vector
. Additional Authenticated Data Parameter
Plaintext Encryption
Encoded JWE Ciphertext
Encoded JWE Authentication Tag
Complete Representation
A.1.12. Validation
mple JWE using RSAES-PKCS1-V1 5 and
 CBC_HMAC_SHA 256
. JWE Header
Encoded JWE Header
Content Encryption Key (CEK)
Key Encryption
Encoded JWE Encrypted Key
. Initialization Vector
. Additional Authenticated Data Parameter
Plaintext Encryption
Encoded JWE Ciphertext
Encoded JWE Authentication Tag
. Complete Representation
A.2.12. Validation
A.3. mple JWE using AES Key Wrap and AES GCM
. JWE Header
Encoded JWE Header
Content Encryption Key (CEK)

oy
=
)

o
=
IS

oy
=
)

&
=
o

oy
=
N

&
=
0

B
|.|
ﬂD

1
.1,
.1.12,
.1,
.1,
.1,

MTNTNINININIS
= [[fi 1 [
o B[R o

B

o
www &
WNI—'WW

o

|\l

's

'
=
w

>
=
o

'
=
N

>
=
0

>
=
©

Nip>p
el Lol Lo
NHOo"

F

N0 = 1 1
X
o

>

m

m
>S
(=]

'
N
N

'
N
)

>
N
IS

>
N
)

'
N
o

'
N
N

'
N
0

>
N
©

>
Jddaddd
WW W mINNIN
W (N (1= X 1= (1= =
b A m!UH_O'

>
w
B

Key Encryption

A.3.5. Encoded JWE Encrypted Key

A.3.6. Initialization Vector

A.3.7. Additional Authenticated Data Parameter
A.3.8. Plaintext Encryption

A.3.9. Encoded JWE Ciphertext

A.3.10. Encoded JWE Authentication Tag

A.3.11. Complete Representation

A.3.12. Validation

=2

Appendix B. Example AES_128 CBC_HMAC_SHA_ 256 Computation

B.1l. Extract MAC_KEY and ENC_KEY from Key

B.2. Encrypt Plaintext to Create Ciphertext

B.3. Create 64 Bit Big Endian Representation of AAD Length
B.4. Initialization Vector Value

B.5. Create Input to HMAC Computation

B.6. Compute HMAC Value

B.7. Truncate HMAC Value to Create Authentication Tag

Appendix C. Possible Compact Serialization for Multiple Recipients
Appendix D. Acknowledgements

Appendix E. Document History

& Authors' Addresses

TOC
1. Introduction

JSON Web Encryption (JWE) is a compact encryption format intended for space constrained
environments such as HTTP Authorization headers and URI query parameters. It represents
this content using JavaScript Object Notation (JSON) [RFC4627] based data structures. The

JWE cryptographic mechanisms encrypt and provide integrity protection for arbitrary
sequences of octets.

Cryptographic algorithms and identifiers for use with this specification are described in the
separate JSON Web Algorithms (JWA) [JWA] specification. Related digital signature and MAC
capabilities are described in the separate JSON Web Signature (JWS) [JWS] specification.

TOC
1.1. Notational Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be

interpreted as described in Key words for use in RFCs to Indicate Requirement Levels
[RFC2119].

2. Terminology s

JSON Web Encryption (JWE)
A data structure representing an encrypted message. The structure represents
five values: the JWE Header, the JWE Encrypted Key, the JWE Initialization Vector,
the JWE Ciphertext, and the JWE Authentication Tag.

Authenticated Encryption
An Authenticated Encryption algorithm is one that provides an integrated content
integrity check. Authenticated Encryption algorithms accept two inputs, the
Plaintext and the Additional Authenticated Data value, and produce two outputs,
the Ciphertext and the Authentication Tag value. AES Galois/Counter Mode (GCM)
is one such algorithm.

Plaintext
The sequence of octets to be encrypted -- a.k.a., the message. The plaintext can
contain an arbitrary sequence of octets.

Ciphertext
An encrypted representation of the Plaintext.

Additional Associated Data (AAD)

An input to an Authenticated Encryption operation that is integrity protected but
not encrypted.

Authentication Tag
An output of an Authenticated Encryption operation that ensures the integrity of
the Ciphertext and the Additional Associated Data.

Content Encryption Key (CEK)
A symmetric key for the Authenticated Encryption algorithm used to encrypt the
Plaintext for the recipient to produce the Ciphertext and the Authentication Tag.

JSON Text Object
A UTF-8 [RFC3629] encoded text string representing a JSON object; the syntax of
JSON objects is defined in Section 2.2 of [RFC4627].

JWE Header
A JSON Text Object that describes the encryption operations applied to create the
JWE Encrypted Key, the JWE Ciphertext, and the JWE Authentication Tag.

JWE Encrypted Key
The result of encrypting the Content Encryption Key (CEK) with the intended
recipient's key using the specified algorithm. Note that for some algorithms, the
JWE Encrypted Key value is specified as being the empty octet sequence.

JWE Initialization Vector
A sequence of octets containing the Initialization Vector used when encrypting the
Plaintext. Note that some algorithms may not use an Initialization Vector, in which
case this value is the empty octet sequence.

JWE Ciphertext
A sequence of octets containing the Ciphertext for a JWE.

JWE Authentication Tag
A sequence of octets containing the Authentication Tag for a JWE.

Base64url Encoding
The URL- and filename-safe Base64 encoding described in RFC 4648 [RFC4648],
Section 5, with the (non URL-safe) '=' padding characters omitted, as permitted by
Section 3.2. (See Appendix C of [JWS] for notes on implementing base64url
encoding without padding.)

Encoded JWE Header
Base64url encoding of the JWE Header.

Encoded JWE Encrypted Key
Base64url encoding of the JWE Encrypted Key.

Encoded JWE Initialization Vector
Base64url encoding of the JWE Initialization Vector.

Encoded JWE Ciphertext
Baseb64url encoding of the JWE Ciphertext.

Encoded JWE Authentication Tag
Base64url encoding of the JWE Authentication Tag.

Header Parameter Name
The name of a member of the JWE Header.

Header Parameter Value
The value of a member of the JWE Header.

JWE Compact Serialization
A representation of the]JWE as the concatenation of the Encoded JWE Header, the
Encoded JWE Encrypted Key, the Encoded JWE Initialization Vector, the Encoded
JWE Ciphertext, and the Encoded JWE Authentication Tag in that order, with the five
strings being separated by four period ('.') characters. This results in a compact,
URL-safe representation.

JWE JSON Serialization
A representation of the JWE as a JSON structure containing Encoded JWE Header,
Encoded JWE Encrypted Key, Encoded JWE Initialization Vector, Encoded JWE
Ciphertext, and Encoded JWE Authentication Tag values. Unlike the JWE Compact
Serialization, the JWE JSON Serialization enables the same content to be encrypted
to multiple parties. This representation is neither compact nor URL-safe.

Collision Resistant Namespace
A namespace that allows names to be allocated in a manner such that they are
highly unlikely to collide with other names. For instance, collision resistance can be
achieved through administrative delegation of portions of the namespace or
through use of collision-resistant name allocation functions. Examples of Collision
Resistant Namespaces include: Domain Names, Object Identifiers (OIDs) as
defined in the ITU-T X.660 and X.670 Recommendation series, and Universally
Unique IDentifiers (UUIDs) [RFC4122]. When using an administratively delegated
namespace, the definer of a name needs to take reasonable precautions to
ensure they are in control of the portion of the namespace they use to define the
name.

StringOrURI
A JSON string value, with the additional requirement that while arbitrary string
values MAY be used, any value containing a ":" character MUST be a URI
[RFC3986]. StringOrURI values are compared as case-sensitive strings with no
transformations or canonicalizations applied.

Key Management Mode
A method of determining the Content Encryption Key (CEK) value to use. Each
algorithm used for determining the CEK value uses a specific Key Management
Mode. Key Management Modes employed by this specification are Key Encryption,

Key Wrapping, Direct Key Agreement, Key Agreement with Key Wrapping, and
Direct Encryption.

Key Encryption
A Key Management Mode in which the Content Encryption Key (CEK) value is
encrypted to the intended recipient using an asymmetric encryption algorithm.
Key Wrapping
A Key Management Mode in which the Content Encryption Key (CEK) value is
encrypted to the intended recipient using a symmetric key wrapping algorithm.
Direct Key Agreement
A Key Management Mode in which a key agreement algorithm is used to agree
upon the Content Encryption Key (CEK) value.
Key Agreement with Key Wrapping
A Key Management Mode in which a key agreement algorithm is used to agree
upon a symmetric key used to encrypt the Content Encryption Key (CEK) value to
the intended recipient using a symmetric key wrapping algorithm.
Direct Encryption
A Key Management Mode in which the Content Encryption Key (CEK) value used is
the secret symmetric key value shared between the parties.

3. JSON Web Encryption (JWE) Overview —

JWE represents encrypted content using JSON data structures and base64url encoding. Five
values are represented in a JWE: the]JWE Header, the JWE Encrypted Key, the JWE Initialization
Vector, the JWE Ciphertext, and the JWE Authentication Tag. In the Compact Serialization, the
five values are base64url-encoded for transmission, and represented as the concatenation of
the encoded strings in that order, with the five strings being separated by four period ('.")
characters. A JSON Serialization for this information is also defined in Section 7.

JWE utilizes authenticated encryption to ensure the confidentiality and integrity of the
Plaintext.

3.1. Example JWE using RSAES OAEP and AES GCM _—

This example encrypts the plaintext "The true sign of intelligence is not knowledge but
imagination." to the recipient using RSAES OAEP and AES GCM.

The following example JWE Header declares that:
o the Content Encryption Key is encrypted to the recipient using the RSAES OAEP

algorithm to produce the JWE Encrypted Key and

e the Plaintext is encrypted using the AES GCM algorithm with a 256 bit key to
produce the Ciphertext.

{"alg":"RSA-OAEP", "enc":"A256GCM"}

Base64url encoding the octets of the UTF-8 representation of the JWE Header yields this
Encoded JWE Header value:

eyJhbGciOiJSUGEtTOFFUCISIMVUYYI6IKEYNTZHQOOifQ

The remaining steps to finish creating this JWE are:

e Generate a random Content Encryption Key (CEK)

e Encrypt the CEK with the recipient's public key using the RSAES OAEP algorithm
to produce the JWE Encrypted Key

e Baseb4url encode the JWE Encrypted Key to produce the Encoded JWE Encrypted
Key

¢ Generate a random JWE Initialization Vector

e Base64url encode the JWE Initialization Vector to produce the Encoded JWE
Initialization Vector

¢ Concatenate the Encoded JWE Header value, a period ('.") character, and the
Encoded JWE Encrypted Key to create the Additional Authenticated Data
parameter

e Encrypt the Plaintext with AES GCM using the CEK as the encryption key, the JWE
Initialization Vector, and the Additional Authenticated Data value, requesting a
128 bit Authentication Tag output

e Baseb4url encode the Ciphertext to create the Encoded JWE Ciphertext

e Base64url encode the Authentication Tag to create the Encoded JWE
Authentication Tag

e Assemble the final representation: The Compact Serialization of this result is the
concatenation of the Encoded JWE Header, the Encoded JWE Encrypted Key, the
Encoded JWE Initialization Vector, the Encoded JWE Ciphertext, and the Encoded
JWE Authentication Tag in that order, with the five strings being separated by four
period ('.") characters.

The final result in this example (with line breaks for display purposes only) is:

eyJhbGci0iJSUBGEtTOFFUCISIMVUYYI6IKEYNTZHQOOifQ.
ApfOLCaDbqs_JXPYy2I937v_xmrzj-Iss1mG6NAHmeJViM6j210MHvfseIdHVyU2
BIoGVu9ohvkkWiRg5DL2]jYZTPA9TAdwq3FUIVyoH-Pedf6elHIVFi2KGDESpYMtQ
ARMMSBCcS7ps1x6f1lh1Cfh3GBKysztVMEhZ_maFkm4PYVCsJsvg6Ct3fg2CIPOSOX
1DHUxXZKoIGIqcheK4XE05a0h5TAUJObKATFOOdKwTNSSbpu5sFrpRFwWV2FTTYoqF4
2I46N9-_hMIznlEpftRXhScEJuZ9HG8C8CHB1WRZ_J48PleqdhF407fB5J1wFqUX
BtbtuGJ_A2Xe6AEhrlzCOw.

48V1_ALb6US04U3b.
5eym8TW_c8SuK01ltJ3rpYIz0eDQz7TALVtu6UGO0oMo4vpzs9tX_EFShS8iB7j6ji
SdiwkIr3ajwQzaBtQD_A.

ghEgxninkHEAMp4xZtB2mA

See Appendix A.1 for the complete details of computing this JWE.

3.2. Example JWE using RSAES-PKCS1-V1_5 and AES_128_CBC_HMAC_SHA_256

This example encrypts the plaintext "Live long and prosper." to the recipient using RSAES-
PKCS1-V1 5 and AES_ 128 CBC_HMAC_SHA_ 256.

The following example JWE Header (with line breaks for display purposes only) declares that:
e the Content Encryption Key is encrypted to the recipient using the RSAES-
PKCS1-V1 5 algorithm to produce the JWE Encrypted Key and

o the Plaintext is encrypted using the AES_128 CBC_HMAC_SHA 256 algorithm to
produce the Ciphertext.

{"alg":"RSA1_5","enc":"A128CBC-HS256"}

Base64url encoding the octets of the UTF-8 representation of the JWE Header yields this
Encoded JWE Header value:

eyJhbGci0iJSUGEXxXzUiLCJ1bmMiOiJBMTI4Q0JDKOhTMjU2INO

The remaining steps to finish creating this JWE are the same as for the previous example, but
using RSAES-PKCS1-v1l 5 instead of RSAES OAEP and using the

AES 128 CBC_HMAC _SHA 256 algorithm (which is specified in Sections 4.8 and 4.8.3 of JWA)
instead of AES GCM.

The final result in this example (with line breaks for display purposes only) is:

eyJhbGci0iJSUGEXxXzUiLCJ1bmMi0iJBMTI4Q0JDLUNhTMjU2INO.
nJa_uE2DOwlKz-0cwSbKFzj302xYSI-RLBM6hbVGmP4axtJQPA9SOp0o3s3NMkmOm
kkawnfwPNjpcOmc3z79cuQWkQPFQo-mDxmogz8dxBcheaTUg3ZvpbGCXxZjDYENR
WizZ5M9BiLy®9BIF5mHP85QL6XED1JEZMOh-1uT11qPDcDD79gWtr CFEIMNmT sx5f
CB2PfAcVtQOt_YmOXx5_GuOitlnILKXLR2YnfO9mfLhEcC5LebpWyEHW6WZzQ41iH9S
IcIupPV1iKCzmJcPrDBJ5Fc_KMBcXBinaS__ wftNywaGgfi_ NSsx24LxtK6fIkej
R1IMBmCfxvOTg8CtxpURigg.

AxY8DCtDaGlsbGljb3RoZQ.

KD1TtXchhZTGufMYmOYGS4HT fxPSUrfmgCHXaI9wOGY .
fY2U_Hx5VcfXmipEldHhMA

See Appendix A.2 for the complete details of computing this JWE.

4. JWE Header s

The members of the JSON object represented by the JWE Header describe the encryption
applied to the Plaintext and optionally additional properties of the JWE. The Header Parameter
Names within this object MUST be unique; JWEs with duplicate Header Parameter Names
MUST be rejected.

Implementations are required to understand the specific header parameters defined by this
specification that are designated as "MUST be understood" and process them in the manner
defined in this specification. All other header parameters defined by this specification that are
not so designated MUST be ignored when not understood. Unless listed as a critical header
parameter, per Section 4.1.15, all other header parameters MUST be ignored when not
understood.

There are two ways of distinguishing whether a header is a JWS Header or a]WE Header. The
first is by examining the alg (algorithm) header parameter value. If the value represents a
digital signature or MAC algorithm, or is the value none, it is for a JWS; if it represents a Key
Encryption, Key Wrapping, Direct Key Agreement, Key Agreement with Key Wrapping, or
Direct Encryption algorithm, it is for a JWE. A second method is determining whether an enc
(encryption method) member exists. If the enc member exists, it is a JWE; otherwise, it is a
JWS. Both methods will yield the same result for all legal input values.

There are three classes of Header Parameter Names: Reserved Header Parameter Names,
Public Header Parameter Names, and Private Header Parameter Names.

TOC
4.1. Reserved Header Parameter Names

The following Header Parameter Names are reserved with meanings as defined below. All the
names are short because a core goal of this specification is for the resulting representations
using the JWE Compact Serialization to be compact.

Additional reserved Header Parameter Names MAY be defined via the IANA JSON Web
Signature and Encryption Header Parameters registry [JWS]. As indicated by the common
registry, JWSs and JWEs share a common header parameter space; when a parameter is
used by both specifications, its usage must be compatible between the specifications.

4.1.1. "alg" (Algorithm) Header Parameter o

The alg (algorithm) header parameter identifies the cryptographic algorithm used to encrypt
or determine the value of the Content Encryption Key (CEK). The algorithm specified by the
alg value MUST be supported by the implementation and there MUST be a key for use with
that algorithm associated with the intended recipient or the JWE MUST be rejected. alg
values SHOULD either be registered in the IANA JSON Web Signature and Encryption
Algorithms registry [JWA] or be a value that contains a Collision Resistant Namespace. The
alg value is a case sensitive string containing a StringOrURI value. Use of this header
parameter is REQUIRED. This header parameter MUST be understood by implementations.

A list of defined alg values can be found in the IANA JSON Web Signature and Encryption
Algorithms registry [JWA]; the initial contents of this registry are the values defined in
Section 4.1 of the JSON Web Algorithms (JWA) [JWA] specification.

4.1.2. "enc" (Encryption Method) Header Parameter _—

The enc (encryption method) header parameter identifies the block encryption algorithm
used to encrypt the Plaintext to produce the Ciphertext. This algorithm MUST be an
Authenticated Encryption algorithm with a specified key length. The algorithm specified by
the enc value MUST be supported by the implementation or the JWE MUST be rejected. enc
values SHOULD either be registered in the IANA JSON Web Signature and Encryption
Algorithms registry [JWA] or be a value that contains a Collision Resistant Namespace. The
enc value is a case sensitive string containing a StringOrURI value. Use of this header
parameter is REQUIRED. This header parameter MUST be understood by implementations.

A list of defined enc values can be found in the IANA JSON Web Signature and Encryption
Algorithms registry [JWA]; the initial contents of this registry are the values defined in
Section 4.2 of the JSON Web Algorithms (JWA) [JWA] specification.

4.1.3. "epk" (Ephemeral Public Key) Header Parameter s

The epk (ephemeral public key) value created by the originator for the use in key agreement
algorithms. This key is represented as a JSON Web Key [JWK] value. Use of this header
parameter is OPTIONAL, although its use is REQUIRED with some alg algorithms. When its
use is REQUIRED, this header parameter MUST be understood by implementations.

4.1.4. "zip" (Compression Algorithm) Header Parameter _—

The zip (compression algorithm) applied to the Plaintext before encryption, if any. If present,
the value of the zip header parameter MUST be the case sensitive string "DEF".
Compression is performed with the DEFLATE [RFC1951] algorithm. If no zip parameter is
present, no compression is applied to the Plaintext before encryption. Use of this header
parameter is OPTIONAL. This header parameter MUST be understood by implementations.

4.1.5. "jku" (JWK Set URL) Header Parameter s

The jku (JWK Set URL) header parameter is a URI [RFC3986] that refers to a resource for a
set of JSON-encoded public keys, one of which is the key to which the JWE was encrypted; this
can be used to determine the private key needed to decrypt the JWE. The keys MUST be
encoded as a JSON Web Key Set (JWK Set) [JWK]. The protocol used to acquire the resource
MUST provide integrity protection; an HTTP GET request to retrieve the certificate MUST use
TLS [RFC2818] [RFC5246]; the identity of the server MUST be validated, as per Section
3.1 of HTTP Over TLS [RFC2818]. Use of this header parameter is OPTIONAL.

4.1.6. "jwk" (JSON Web Key) Header Parameter —

The jwk (JSON Web Key) header parameter is the public key to which the JWE was encrypted;
this can be used to determine the private key needed to decrypt the JWE. This key is
represented as a JSON Web Key [JWK]. Use of this header parameter is OPTIONAL.

4.1.7. "x5u" (X.509 URL) Header Parameter —

The x5u (X.509 URL) header parameter is a URI [RFC3986] that refers to a resource for the
X.509 public key certificate or certificate chain [RFC5280] containing the key to which the
JWE was encrypted; this can be used to determine the private key needed to decrypt the JWE.
The identified resource MUST provide a representation of the certificate or certificate chain
that conforms to RFC 5280 [RFC5280] in PEM encoded form [RFC1421]. The certificate
containing the public key to which the JWE was encrypted MUST be the first certificate. This
MAY be followed by additional certificates, with each subsequent certificate being the one
used to certify the previous one. The protocol used to acquire the resource MUST provide
integrity protection; an HTTP GET request to retrieve the certificate MUST use TLS
[RFC2818] [RFC5246]; the identity of the server MUST be validated, as per Section 3.1 of
HTTP Over TLS [RFC2818]. Use of this header parameter is OPTIONAL.

4.1.8. "x5t" (X.509 Certificate Thumbprint) Header Parameter _—

The x5t (X.509 Certificate Thumbprint) header parameter provides a base64url encoded
SHA-1 thumbprint (a.k.a. digest) of the DER encoding of the X.509 certificate [RFC5280]
containing the key to which the JWE was encrypted; this can be used to determine the private
key needed to decrypt the JWE. Use of this header parameter is OPTIONAL.

If, in the future, certificate thumbprints need to be computed using hash functions other than
SHA-1, it is suggested that additional related header parameters be defined for that
purpose. For example, it is suggested that a new x5t#S256 (X.509 Certificate Thumbprint
using SHA-256) header parameter could be defined by registering it in the IANA JSON Web
Signature and Encryption Header Parameters registry [JWS].

4.1.9. "x5c¢" (X.509 Certificate Chain) Header Parameter _—

The x5c¢ (X.509 Certificate Chain) header parameter contains the X.509 public key certificate
or certificate chain [RFC5280] containing the key to which the JWE was encrypted; this can
be used to determine the private key needed to decrypt the JWE. The certificate or certificate
chain is represented as an array of certificate value strings. Each string is a base64 encoded
(IRFC4648] Section 4 -- not base64url encoded) DER [ITU.X690.1994] PKIX certificate
value. The certificate containing the public key to which the JWE was encrypted MUST be the
first certificate. This MAY be followed by additional certificates, with each subsequent
certificate being the one used to certify the previous one. Use of this header parameter is
OPTIONAL.

See Appendix B of [JWS] for an example x5c value.

4.1.10. "kid" (Key ID) Header Parameter —

The kid (key ID) header parameter is a hint indicating which key to which the JWE was
encrypted; this can be used to determine the private key needed to decrypt the JWE. This
parameter allows originators to explicitly signal a change of key to recipients. Should the
recipient be unable to locate a key corresponding to the kid value, they SHOULD treat that
condition as an error. The interpretation of the kid value is unspecified. Its value MUST be a
string. Use of this header parameter is OPTIONAL.

When used with a JWK, the kid value can be used to match a JWK kid parameter value.

4.1.11. "typ" (Type) Header Parameter s

The typ (type) header parameter is used to declare the type of this object. The type value
JWE is used to indicate that this object is a JWE using the JWE Compact Serialization. The type
value JWE-JS is used to indicate that this object is a JWE using the JWE JSON Serialization. The
typ value is a case sensitive string. Use of this header parameter is OPTIONAL.

MIME Media Type [RFC2046] values MAY be used as typ values.

typ values SHOULD either be registered in the IANA JSON Web Signature and Encryption
Type Values registry [JWS] or be a value that contains a Collision Resistant Namespace.

4.1.12. "cty" (Content Type) Header Parameter —

The cty (content type) header parameter is used to declare the type of the encrypted
content (the Plaintext). For example, the JSON Web Token (JWT) [JWT] specification uses the
cty value JWT to indicate that the Plaintext is a JSON Web Token (JWT). The cty value is a
case sensitive string. Use of this header parameter is OPTIONAL.

The values used for the cty header parameter come from the same value space as the typ
header parameter, with the same rules applying.

4.1.13. "apu" (Agreement PartyUinfo) Header Parameter s

The apu (agreement PartyUInfo) value for key agreement algorithms using it (such as ECDH-
ES), represented as a base64url encoded string. Use of this header parameter is OPTIONAL.
When the alg value used identifies an algorithm for which apu is a parameter, this header
parameter MUST be understood by implementations.

4.1.14. "apv" (Agreement PartyVinfo) Header Parameter s

The apv (agreement PartyVinfo) value for key agreement algorithms using it (such as ECDH-
ES), represented as a base64url encoded string. Use of this header parameter is OPTIONAL.
When the alg value used identifies an algorithm for which apv is a parameter, this header
parameter MUST be understood by implementations.

ocC
4.1.15. "crit" (Critical) Header Parameter .

The crit (critical) header parameter is array listing the names of header parameters that
are present in the]WE Header that MUST be understood and processed by the
implementation or if not understood, MUST cause the JWE to be rejected. This list MUST NOT
include header parameters defined by this specification, duplicate names, or names that do
not occur as header parameters within the JWE. Use of this header parameter is OPTIONAL.
This header parameter MUST be understood by implementations.

An example use, along with a hypothetical exp (expiration-time) field is:
{"alg":"RSA-OAEP",

"enc":"A256GCM",
llcritll : [llexpll],

"exp":1363284000
}

] TOC
4.2. Public Header Parameter Names
Additional Header Parameter Names can be defined by those using JWEs. However, in order
to prevent collisions, any new Header Parameter Name SHOULD either be registered in the
IANA JSON Web Signature and Encryption Header Parameters registry [JWS] or be a Public
Name: a value that contains a Collision Resistant Namespace. In each case, the definer of
the name or value needs to take reasonable precautions to make sure they are in control of
the part of the namespace they use to define the Header Parameter Name.
New header parameters should be introduced sparingly, as they can result in non-
interoperable JWEs.
) TOC
4.3. Private Header Parameter Names
A producer and consumer of a JWE may agree to use Header Parameter Names that are
Private Names: names that are not Reserved Names Section 4.1 or Public Names
Section 4.2. Unlike Public Names, Private Names are subject to collision and should be
used with caution.
)) TOC
5. Producing and Consuming JWEs
TOC

5.1. Message Encryption

The message encryption process is as follows. The order of the steps is not significant in
cases where there are no dependencies between the inputs and outputs of the steps.

1. Determine the Key Management Mode employed by the algorithm used to
determine the Content Encryption Key (CEK) value. (This is the algorithm
recorded in the alg (algorithm) header parameter of the resulting JWE.)

2. When Key Wrapping, Key Encryption, or Key Agreement with Key Wrapping are
employed, generate a random Content Encryption Key (CEK) value. See RFC
4086 [RFC4086] for considerations on generating random values. The CEK MUST
have a length equal to that required for the block encryption algorithm.

3. When Direct Key Agreement or Key Agreement with Key Wrapping are employed,
use the key agreement algorithm to compute the value of the agreed upon key.
When Direct Key Agreement is employed, let the Content Encryption Key (CEK)
be the agreed upon key. When Key Agreement with Key Wrapping is employed,
the agreed upon key will be used to wrap the CEK.

4. When Key Wrapping, Key Encryption, or Key Agreement with Key Wrapping are
employed, encrypt the CEK to the recipient (see Section 6.1) and let the result
be the JWE Encrypted Key.

5. Otherwise, when Direct Key Agreement or Direct Encryption are employed, let
the JWE Encrypted Key be the empty octet sequence.

6. When Direct Encryption is employed, let the Content Encryption Key (CEK) be the
shared symmetric key.

7. Baseb64url encode the JWE Encrypted Key to create the Encoded JWE Encrypted
Key.

8. Generate a random JWE Initialization Vector of the correct size for the block
encryption algorithm (if required for the algorithm); otherwise, let the JWE
Initialization Vector be the empty octet sequence.

9. Base64url encode the JWE Initialization Vector to create the Encoded JWE
Initialization Vector.

10. Compress the Plaintext if a zip parameter was included.
11. Serialize the (compressed) Plaintext into an octet sequence M.

12. Create a JWE Header containing the encryption parameters used. Note that
white space is explicitly allowed in the representation and no canonicalization
need be performed before encoding.

13. Base64url encode the octets of the UTF-8 representation of the JWE Header to
create the Encoded JWE Header.

14. If the JWE JSON Serialization is being used, repeat this process for each recipient.

15. Let the value X be the concatenation of the Encoded JWE Header values
computed above, with a tilde ('~') character between each Encoded JWE Header
value. (In the single recipient case, X is simply the single Encoded JWE Header
value.)

16. Let the value Y be the concatenation of the Encoded JWE Encrypted Key values
computed above, with a tilde ('~') character between each Encoded JWE
Encrypted Key value. The order of the Encoded JWE Encrypted Key values MUST
be the same as the order of the corresponding Encoded JWE Header values in
the previous step. (In the single recipient case, Y is simply the single Encoded
JWE Encrypted Key value.)

17. Let the Additional Authenticated Data value be the octets of the ASCII
representation of the concatenation of X, a period ('.") character, and Y.

18. Encrypt M using the CEK, the JWE Initialization Vector, and the Additional
Authenticated Data value using the specified block encryption algorithm to
create the JWE Ciphertext value and the JWE Authentication Tag (which is the
Authentication Tag output from the encryption operation).

19. Base64url encode the JWE Ciphertext to create the Encoded JWE Ciphertext.

20. Baseb4url encode the JWE Authentication Tag to create the Encoded JWE
Authentication Tag.

21. The five encoded parts are the result values used in both the JWE Compact
Serialization and the JWE JSON Serialization representations.

22. Create the desired serialized output. The JWE Compact Serialization of this result
is the concatenation of the Encoded JWE Header, the Encoded JWE Encrypted
Key, the Encoded JWE Initialization Vector, the Encoded JWE Ciphertext, and the
Encoded JWE Authentication Tag in that order, with the five strings being
separated by four period ('.") characters. The JWE JSON Serialization is described
in Section 7.

. TOC
5.2. Message Decryption

The message decryption process is the reverse of the encryption process. The order of the
steps is not significant in cases where there are no dependencies between the inputs and
outputs of the steps. If any of these steps fails, the JWE MUST be rejected.

1. Parse the serialized input to determine the values of the Encoded JWE Header,
the Encoded JWE Encrypted Key, the Encoded JWE Initialization Vector, the
Encoded JWE Ciphertext, and the Encoded JWE Authentication Tag. When using
the JWE Compact Serialization, these five values are represented as text strings
in that order, separated by four period ('.") characters. The JWE JSON Serialization
is described in Section 7.

2. The Encoded JWE Header, the Encoded JWE Encrypted Key, the Encoded JWE
Initialization Vector, the Encoded JWE Ciphertext, and the Encoded JWE
Authentication Tag MUST be successfully base64url decoded following the
restriction that no padding characters have been used.

3. The resulting JWE Header MUST be completely valid JSON syntax conforming to
RFC 4627 [RFC4627].

4. The resulting JWE Header MUST be validated to only include parameters and
values whose syntax and semantics are both understood and supported or that
are specified as being ignored when not understood.

5. Determine the Key Management Mode employed by the algorithm specified by

the alg (algorithm) header parameter.

. Verify that the JWE uses a key known to the recipient.

When Direct Key Agreement or Key Agreement with Key Wrapping are employed,

use the key agreement algorithm to compute the value of the agreed upon key.

When Direct Key Agreement is employed, let the Content Encryption Key (CEK)

be the agreed upon key. When Key Agreement with Key Wrapping is employed,

the agreed upon key will be used to decrypt the JWE Encrypted Key.

8. When Key Wrapping, Key Encryption, or Key Agreement with Key Wrapping are
employed, decrypt the JWE Encrypted Key to produce the Content Encryption Key

~o

(CEK). The CEK MUST have a length equal to that required for the block
encryption algorithm. Note that when there are multiple recipients, each
recipient will only be able decrypt any JWE Encrypted Key values that were
encrypted to a key in that recipient's possession. It is therefore normal to only be
able to decrypt one of the per-recipient JWE Encrypted Key values to obtain the
CEK value. To mitigate against attacks described in RFC 3218 [RFC3218], the
recipient MUST NOT distinguish between format, padding, and length errors of
encrypted keys. It is strongly recommended, in the event of receiving an
improperly formatted key, that the receiver substitute a randomly generated
CEK and proceed to the next step, to mitigate timing attacks.

9. Otherwise, when Direct Key Agreement or Direct Encryption are employed, verify
that the JWE Encrypted Key value is empty octet sequence.

10. When Direct Encryption is employed, let the Content Encryption Key (CEK) be the
shared symmetric key.

11. If the JWE JSON Serialization is being used, repeat this process for each recipient
contained in the representation.

12. Let the value X be the concatenation of the Encoded JWE Header values
identified above, with a tilde ('~') character between each Encoded JWE Header
value. (In the single recipient case, X is simply the single Encoded JWE Header
value.)

13. Let the value Y be the concatenation of the Encoded JWE Encrypted Key values
identified above, with a tilde ('~') character between each Encoded JWE
Encrypted Key value. The order of the Encoded JWE Encrypted Key values MUST
be the same as the order of the corresponding Encoded JWE Header values in
the previous step. (In the single recipient case, Y is simply the single Encoded
JWE Encrypted Key value.)

14. Let the Additional Authenticated Data value be the octets of the ASCII
representation of the concatenation of X, a period ('.") character, and Y.

15. Decrypt the JWE Ciphertext using the CEK, the JWE Initialization Vector, the
Additional Authenticated Data value, and the JWE Authentication Tag (which is
the Authentication Tag input to the calculation) using the specified block
encryption algorithm, returning the decrypted plaintext and verifying the JWE
Authentication Tag in the manner specified for the algorithm, rejecting the input
without emitting any decrypted output if the JWE Authentication Tag is incorrect.

16. Uncompress the decrypted plaintext if a zip parameter was included.

17. Output the resulting Plaintext.

5.3. String Comparison Rules TOC

Processing a JWE inevitably requires comparing known strings to values in JSON objects. For
example, in checking what the encryption method is, the Unicode string encoding enc will be
checked against the member names in the JWE Header to see if there is a matching Header
Parameter Name.

Comparisons between JSON strings and other Unicode strings MUST be performed by
comparing Unicode code points without normalization as specified in the String Comparison
Rules in Section 5.3 of [JWS].

6. Encrypting JWEs with Cryptographic Algorithms o

JWE uses cryptographic algorithms to encrypt the Plaintext and the Content Encryption Key
(CEK) and to provide integrity protection for the]WE Header, JWE Encrypted Key, and JWE
Ciphertext. The JSON Web Algorithms (JWA) [JWA] specification specifies a set of
cryptographic algorithms and identifiers to be used with this specification and defines
registries for additional such algorithms. Specifically, Section 4.1 specifies a set of alg
(algorithm) header parameter values and Section 4.2 specifies a set of enc (encryption
method) header parameter values intended for use this specification. It also describes the
semantics and operations that are specific to these algorithms.

Public keys employed for encryption can be identified using the Header Parameter methods
described in Section 4.1 or can be distributed using methods that are outside the scope of
this specification.

6.1. CEK Encryption TOC

JWE supports three forms of Content Encryption Key (CEK) encryption:

e Asymmetric encryption under the recipient's public key.

e Symmetric encryption under a key shared between the sender and receiver.

e Symmetric encryption under a key agreed upon between the sender and
receiver.

See the algorithms registered for enc usage in the IANA JSON Web Signature and Encryption
Algorithms registry [JWA] and Section 4.1 of the JSON Web Algorithms (JWA) [JWA]
specification for lists of encryption algorithms that can be used for CEK encryption.

7. JSON Serialization TOC

The JWE JSON Serialization represents encrypted content as a JSON object with a recipients
member containing an array of per-recipient information, an initialization_vector
member containing a shared Encoded JWE Initialization Vector value, a ciphertext member
containing a shared Encoded JWE Ciphertext value, and an authentication_tag member
containing a shared Encoded JWE Authentication Tag value. Each member of the recipients
array is a JSON object with a header member containing an Encoded JWE Header value and
an encrypted_key member containing an Encoded JWE Encrypted Key value.

Unlike the JWE Compact Serialization, content using the JWE JSON Serialization MAY be
encrypted to more than one recipient. Each recipient requires:

¢ a JWE Header value specifying the cryptographic parameters used to encrypt the
JWE Encrypted Key to that recipient and the parameters used to encrypt the
plaintext to produce the JWE Ciphertext; this is represented as an Encoded JWE
Header value in the header member of an object in the recipients array.

¢ a JWE Encrypted Key value used to encrypt the ciphertext; this is represented as
an Encoded JWE Encrypted Key value in the encrypted_key member of the
same object in the recipients array.

Therefore, the syntax is:

{"recipients":[
{"header":"<header 1 contents>",
"encrypted_key":"<encrypted key 1 contents>"},

{"header":"<header N contents>",
"encrypted_key":"<encrypted key N contents>"}],
"initialization_vector":"<initialization vector contents>",
"ciphertext":"<ciphertext contents>",
"authentication_tag":"<authentication tag contents>"

3

The contents of the Encoded JWE Header, Encoded JWE Encrypted Key, Encoded JWE
Initialization Vector, Encoded JWE Ciphertext, and Encoded JWE Authentication Tag values are
exactly as specified in the rest of this specification. They are interpreted and validated in the
same manner, with each corresponding header and encrypted_key value being created
and validated together.

All recipients use the same JWE Ciphertext, JWE Initialization Vector, and JWE Authentication
Tag values, resulting in potentially significant space savings if the message is large.
Therefore, all header parameters that specify the treatment of the JWE Ciphertext value
MUST be the same for all recipients. This primarily means that the enc (encryption method)
header parameter value in the JWE Header for each recipient MUST be the same.

7.1. Example JWE-JS TOC

This section contains an example using the JWE JSON Serialization. This example
demonstrates the capability for encrypting the same plaintext to multiple recipients.

Two recipients are present in this example: the first using the RSAES-PKCS1-V1 5 algorithm
to encrypt the Content Encryption Key (CEK) and the second using RSAES OAEP to encrypt
the CEK. The Plaintext is encrypted using the AES_128 CBC_HMAC_SHA_ 256 algorithm and
the same block encryption parameters to produce the common JWE Ciphertext value. The
two Decoded JWE Header Segments used are:

{"alg":"RSA1_5","enc":"A128CBC-HS256"}
and:
{"alg":"RSA-OAEP", "enc":"A128CBC-HS256"}

The keys used for the first recipient are the same as those in Appendix A.2, as is the
Plaintext used. The encryption key used for the second recipient is the same as that used in
Appendix A.3; the block encryption keys and parameters for the second recipient are the
same as those for the first recipient (which must be the case, since the Initialization Vector
and Ciphertext are shared). Thus, the same two Encoded JWE Header and JWE Encoded
Encrypted Key values are used in this example as are used in those examples.

The value X used as part of the AAD value is the concatenation of the Encoded JWE Header
values, separated by a tilde ('~') character. In this example, the value of X (with line breaks
for display purposes only) is:

eyJhbGci0iJSUGEXxXzUiLCJ1bmMiOiJIBMTI4Q0JDLUNTMjU2INO

eyJhbGci0iJBMTI4S1cilCJI1bmMi0OiJIBMTI4Q0JDLUNTMjU2IN0O

The value Y used as part of the AAD value is the concatenation of the Encoded JWE Encrypted
Key values, separated by a tilde ('~') character. In this example, the value of Y (with line
breaks for display purposes only) is:

nJa_uE2DOwl1Kz-0cwSbKFzj302xYSI-RLBM6hbVGmP4axtJQPA9SOpo3s3NMk
mOmkkawnfwPNjpcOmc3z79cuQWkQPFQo-mDxmogz8dxBcheaTUg3ZvpbGCXxZ
JDYENRWiZ5M9BilLy@9BIF5mHp85QL6XED1JEZMONh-1uT11gPDcDD79qWtrCfE
JmMNmTsx5fcB2PTACVEQOt_YmOXXx5_GueitlnILKXLR2YnfOmfLhEcC5LebpWy
EHW6WZzQ4iH9SIcIupPV1iKCzmJcPrDBJ5Fc_KMBcXBinaS__wftNywaGgfi_N
Ssx24LxtK6fIkejRIMBmCTxvOTg8CtXxpURigg

6KB707dMOYTIgHtLVtgWQ8mKwboJW30f91locizkDTHzBC2I1rT100Q

The AAD value used for the block encryption is the octets of the ASCII representation of the
concatenation of X, a period ('.') character, and Y. This concatenation (with line breaks for
display purposes only) is:

eyJhbGci0iJSUGEXxXzUiLCJI1bmMiOiJBMTI4Q0JDLUNTMjU2INO

eyJhbGci0iJBMTI4S1cilCI1bmMiOiJIBMTI4Q0JDLUNTMjU2IN0O

nJa_uE2DOwl1Kz-0cwSbKFzj302xYSI-RLBM6hbVGmP4axtJQPA9SOpo3s3NMk
mOmkkawnfwPNjpcOmc3z79cuQWkQPFQo-mDxmogz8dxBcheaTUg3ZvpbGCXxZ
JDYENRWiZ5M9BilLy@9BIF5mHp85QL6XED1JEZMONh-1uT11gPDcDD79qWtrCfE
JmMNmTsx5fcB2PTACVEQOt_YmOXXx5_GueitlnILKXLR2YnfOmfLhEcC5LebpWy
EHW6WZzQ4iH9SIcIupPV1iKCzmJcPrDBJ5Fc_KMBcXBinaS__ wftNywaGgfi_N

Ssx24LxtK6fIkejR1IMBmCTxvOTg8CtxpURigg

6KB707dM9YTIgHtLVtgWQ8mKwboJW30f91locizkDTHzBC2I1rT100Q

The complete JSON Web Encryption JSON Serialization (JWE-JS) for these values is as follows
(with line breaks for display purposes only):

{"recipients":[
{"header":
"eyJhbGci0iJSUGEXXzUilLCJ1bmMi0OiJBMTI4QOJIDLUNTMjU2INn0",
"encrypted_key":
"nJa_uE2DOw1Kz-0cwSbKFzj302xYSI-RLBM6hbVGmMP4axtJQPA9SOpP03s3NMk
mOmkkawnfwPNjpcOmc3z79cuQWkQPFQo-mDxmogz8dxBcheaTUg3ZvpbGCXxZ
jDYENRWiZ5M9BilLy@9BIF5mHp85QL6XED1JEZMOh-1uT11gPDcDD79qWtrCfE
JmMNmfsx5fcB2PfAcVtQOt_YmOXx5_ GuOitlnILKXLR2YnfI9mfLhEcC5LebpWy
EHW6WzQ4iH9SIcIupPV1iKCzmJcPrDBJ5Fc_KMBcXBinaS__ wftNywaGgfi N
Ssx24LxtK6fIkejR1IMBmCTxvOTg8CtxpURigg"},
{"header":
"eyJhbGci0iJBMTI4S1cilLCJ1bmMi0iJBMTI4Q0JDLUNRTMjU2INn0",
"encrypted_key":
"6KB707dMIOYTIgHtLvtgWQ8mKwboJW30f91locizkDTHzBC2I1rT100Q"}],
"initialization_vector":
"AXY8DCtDaGlsbGljb3RozZQ",
"ciphertext":
"KD1TtXchhZTGufMYmOYGS4HT fxPSUr fmgqCHXaI9wOGY",
"authentication_tag":
"L1hRZFfphc2f5X3nTTJP6g"
}

. . . TOC
8. Implementation Considerations
The JWE Compact Serialization is mandatory to implement. Implementation of the JWE JSON
Serialization is OPTIONAL.
. . TOC
9. IANA Considerations
TOC

9.1. Registration of JWE Header Parameter Names

This specification registers the Header Parameter Names defined in Section 4.1 in the IANA
JSON Web Signature and Encryption Header Parameters registry [JWS].

9.1.1. Registry Contents —

Header Parameter Name: alg

Header Parameter Usage Location(s): JWE

Change Controller: IETF

Specification Document(s): Section 4.1.1 of [[this document]]

Header Parameter Name: enc

Header Parameter Usage Location(s): JWE

Change Controller: IETF

Specification Document(s): Section 4.1.2 of [[this document]]

Header Parameter Name: epk
Header Parameter Usage Location(s): IWE

e Change Controller: IETF
Specification Document(s): Section 4.1.3 of [[this document]]

Header Parameter Name: zip

Header Parameter Usage Location(s): JWE

Change Controller: IETF

Specification Document(s): Section 4.1.4 of [[this document]]

Header Parameter Name: jku

Header Parameter Usage Location(s): JWE

Change Controller: IETF

Specification Document(s): Section 4.1.5 of [[this document]]

Header Parameter Name: jwk

Header Parameter Usage Location(s): JWE

Change Controller: IETF

Specification document(s): Section 4.1.6 of [[this document]]

Header Parameter Name: x5u

Header Parameter Usage Location(s): JWE

Change Controller: IETF

Specification Document(s): Section 4.1.7 of [[this document]]

Header Parameter Name: x5t

Header Parameter Usage Location(s): JWE

Change Controller: IETF

Specification Document(s): Section 4.1.8 of [[this document]]

Header Parameter Name: x5c¢

Header Parameter Usage Location(s): JWE

Change Controller: IETF

Specification Document(s): Section 4.1.9 of [[this document]]

Header Parameter Name: kid

Header Parameter Usage Location(s): JWE

Change Controller: IETF

Specification Document(s): Section 4.1.10 of [[this document]]

Header Parameter Name: typ

Header Parameter Usage Location(s): JWE

Change Controller: IETF

Specification Document(s): Section 4.1.11 of [[this document]]

Header Parameter Name: cty

Header Parameter Usage Location(s): JWE

Change Controller: IETF

Specification Document(s): Section 4.1.12 of [[this document]]

Header Parameter Name: apu

Header Parameter Usage Location(s): JWE

Change Controller: IETF

Specification Document(s): Section 4.1.13 of [[this document]]

Header Parameter Name: apv

Header Parameter Usage Location(s): JWE

Change Controller: IETF

Specification Document(s): Section 4.1.14 of [[this document]]

Header Parameter Name: crit

Header Parameter Usage Location(s): JWS

Change Controller: IETF

Specification Document(s): Section 4.1.15 of [[this document]]

9.2. JSON Web Signature and Encryption Type Values Registration —

9.2.1. Registry Contents

This specification registers the JWE and JWE-JS type values in the IANA JSON Web Signature
and Encryption Type Values registry [JWS]:

"typ" Header Parameter Value: JWE

Abbreviation for MIME Type: application/jwe

Change Controller: IETF

Specification Document(s): Section 4.1.11 of [[this document]]

"typ" Header Parameter Value: JWE-JS

Abbreviation for MIME Type: application/jwe-js

Change Controller: IETF

Specification Document(s): Section 4.1.11 of [[this document]]

9.3. Media Type Registration

9.3.1. Registry Contents

This specification registers the application/jwe and application/jwe-js Media Types
[RFC2046] in the MIME Media Type registry [RFC4288] to indicate, respectively, that the
content is a JWE using the JWE Compact Serialization or a JWE using the JWE JSON
Serialization.

Type Name: application

Subtype Name: jwe

Required Parameters: n/a

Optional Parameters: n/a

Encoding considerations: JWE values are encoded as a series of base64url

encoded values (some of which may be the empty string) separated by period

(".") characters

e Security Considerations: See the Security Considerations section of [[this
document]]

¢ Interoperability Considerations: n/a

¢ Published Specification: [[this document]]

o Applications that use this media type: OpenID Connect and other applications
using encrypted JWTs

¢ Additional Information: Magic number(s): n/a, File extension(s): n/a, Macintosh
file type code(s): n/a

e Person & email address to contact for further information: Michael B. Jones,

mbj@microsoft.com

Intended Usage: COMMON

Restrictions on Usage: none

Author: Michael B. Jones, mbj@microsoft.com

Change Controller: IETF

Type Name: application

Subtype Name: jwe-js

Required Parameters: n/a

Optional Parameters: n/a

Encoding considerations: JWE-JS values are represented as a JSON Object; UTF-8
encoding SHOULD be employed for the JSON object.

Security Considerations: See the Security Considerations section of [[this
document]]

Interoperability Considerations: n/a

Published Specification: [[this document]]

Applications that use this media type: TBD

Additional Information: Magic number(s): n/a, File extension(s): n/a, Macintosh
file type code(s): n/a

e Person & email address to contact for further information: Michael B. Jones,
mbj@microsoft.com

TOC

TOC

TOC

Intended Usage: COMMON

Restrictions on Usage: none

Author: Michael B. Jones, mbj@microsoft.com
Change Controller: IETF

TOC

10. Security Considerations

All of the security issues faced by any cryptographic application must be faced by a
JWS/JWE/JWK agent. Among these issues are protecting the user's private and symmetric
keys, preventing various attacks, and helping the user avoid mistakes such as inadvertently
encrypting a message for the wrong recipient. The entire list of security considerations is
beyond the scope of this document.

All the security considerations in the JWS specification also apply to this specification.
Likewise, all the security considerations in XML Encryption 1.1
[W3C.CR-xmlenc-corel-20120313] also apply, other than those that are XML specific.

When decrypting, particular care must be taken not to allow the JWE recipient to be used as
an oracle for decrypting messages. RFC 3218 [RFC3218] should be consulted for specific
countermeasures to attacks on RSAES-PKCS1-V1 5. An attacker might modify the contents
of the alg parameter from RSA-0OAEP to RSA1_5 in order to generate a formatting error that
can be detected and used to recover the CEK even if RSAES OAEP was used to encrypt the
CEK. It is therefore particularly important to report all formatting errors to the CEK, Additional
Authenticated Data, or ciphertext as a single error when the JWE is rejected.

TOC

11. References

TOC

11.1. Normative References

[ITU.X690.1994] International Telecommunications Union, “Information Technology - ASN.1 encoding rules: Specification of

[JWA]

[JWK]
[ws]

[RFC1421]
[RFC1951]
[RFC20461]
[RFC2119]

[RFC2818]
[RFC3629]
[RFC39861]

[RFC40861]
[RFC4288]
[RFC4627]

[RFC4648]
[RFC52461]

[RFC5280]

T2 rD_

Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER),” ITU-
T Recommendation X.690, 1994.

Jones, M., “JSON Web Algorithms (JWA),” draft-ietf-jose-json-web-algorithms (work in progress),
April 2013 (HTML).

Jones, M., “ISON Web Key (JWK),” draft-ietf-jose-json-web-key (work in progress), April 2013 (HTML).

Jones, M., Bradley, ., and N. Sakimura, “JSON Web Signature (JWS),"” draft-ietf-jose-json-web-
signature (work in progress), April 2013 (HTML).

Linn, J., “Privacy Enhancement for Internet Electronic Mail: Part I: Message Encryption and
Authentication Procedures,” RFC 1421, February 1993 (TXT).

Deutsch, P., “DEFLATE Compressed Data Format Specification version 1.3,” RFC 1951, May 1996
(IXT, PS, PDF).

Freed, N. and N. Borenstein, “Multipurpose Internet Mail Extensions (MIME) Part Two: Media
Types,” RFC 2046, November 1996 (TXT).

Bradner, S., “Key words for use in RFCs to Indicate Requirement Levels,” BCP 14, RFC 2119,
March 1997 (TXT, HTML, XML).

Rescorla, E., “HTTP Over TLS,” RFC 2818, May 2000 (TXT).
Yergeau, F., “UTF-8, a transformation format of ISO 10646,” STD 63, RFC 3629, November 2003 (TXT).

Berners-Lee, T., Fielding, R., and L. Masinter, “Uniform Resource Identifier (URI): Generic
Syntax,” STD 66, RFC 3986, January 2005 (TXT, HTML, XML).

Eastlake, D., Schiller, J., and S. Crocker, “Randomness Requirements for Security,” BCP 106, RFC 4086,
June 2005 (TXT).

Freed, N. and J. Klensin, “Media Type Specifications and Registration Procedures,” RFC 4288,
December 2005 (TXT).

Crockford, D., “The application/json Media Type for JavaScript Object Notation (JSON),” RFC 4627,
July 2006 (TXT).
Josefsson, S., “The Basel6, Base32, and Base64 Data Encodings,” RFC 4648, October 2006 (TXT).

Dierks, T. and E. Rescorla, “The Transport Layer Security (TLS) Protocol Version 1.2,” RFC 5246,
August 2008 (TXT).

Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., and W. Polk, “Internet X.509 Public Key
Infrastructure Certificate and Certificate Revocation List (CRL) Profile,” RFC 5280, May 2008
(IXT).

mailto:mbj@microsoft.com
http://tools.ietf.org/html/draft-ietf-jose-json-web-algorithms
http://tools.ietf.org/html/draft-ietf-jose-json-web-algorithms
mailto:mbj@microsoft.com
http://tools.ietf.org/html/draft-ietf-jose-json-web-key
http://tools.ietf.org/html/draft-ietf-jose-json-web-key
mailto:mbj@microsoft.com
mailto:ve7jtb@ve7jtb.com
mailto:n-sakimura@nri.co.jp
http://tools.ietf.org/html/draft-ietf-jose-json-web-signature
http://tools.ietf.org/html/draft-ietf-jose-json-web-signature
mailto:104-8456@mcimail.com
http://tools.ietf.org/html/rfc1421
http://www.rfc-editor.org/rfc/rfc1421.txt
mailto:ghost@aladdin.com
http://tools.ietf.org/html/rfc1951
http://www.rfc-editor.org/rfc/rfc1951.txt
http://www.rfc-editor.org/rfc/rfc1951.ps
http://www.rfc-editor.org/rfc/rfc1951.pdf
mailto:ned@innosoft.com
mailto:nsb@nsb.fv.com
http://tools.ietf.org/html/rfc2046
http://www.rfc-editor.org/rfc/rfc2046.txt
mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://www.rfc-editor.org/rfc/rfc2119.txt
http://xml.resource.org/public/rfc/html/rfc2119.html
http://xml.resource.org/public/rfc/xml/rfc2119.xml
http://tools.ietf.org/html/rfc2818
http://www.rfc-editor.org/rfc/rfc2818.txt
http://tools.ietf.org/html/rfc3629
http://www.rfc-editor.org/rfc/rfc3629.txt
mailto:timbl@w3.org
mailto:fielding@gbiv.com
mailto:LMM@acm.org
http://tools.ietf.org/html/rfc3986
http://www.rfc-editor.org/rfc/rfc3986.txt
http://xml.resource.org/public/rfc/html/rfc3986.html
http://xml.resource.org/public/rfc/xml/rfc3986.xml
http://tools.ietf.org/html/rfc4086
http://www.rfc-editor.org/rfc/rfc4086.txt
http://tools.ietf.org/html/rfc4288
http://www.rfc-editor.org/rfc/rfc4288.txt
http://tools.ietf.org/html/rfc4627
http://www.rfc-editor.org/rfc/rfc4627.txt
http://tools.ietf.org/html/rfc4648
http://www.rfc-editor.org/rfc/rfc4648.txt
http://tools.ietf.org/html/rfc5246
http://www.rfc-editor.org/rfc/rfc5246.txt
http://tools.ietf.org/html/rfc5280
http://www.rfc-editor.org/rfc/rfc5280.txt

LYV
xmlenc-corel-
20120313]

Eastlake, D., Reagle, J., Roessler, T., and F. Hirsch, “XML Encryption Syntax and Processing Version
1.1,” World Wide Web Consortium CR CR-xmlenc-corel-20120313, March 2012 (HTML).

TOC

11.2. Informative References

[I-D.mcgrew-aead-
aes-cbc-hmac-sha2]
[I-D.rescorla-jsms]

[JSE]
wT]

[RFC3218]
[RFC4122]

[RFC5652]

McGrew, D. and K. Paterson, “Authenticated Encryption with AES-CBC and HMA C-SHA ,” draft-
mcgrew-aead-aes-cbc-hmac-sha2-01 (work in progress), October 2012 (TXT).

Rescorla, E. and J. Hildebrand, “JavaScript Message Security Format,” draft-rescorla-jsms-00 (work
in progress), March 2011 (TXT).

Bradley,). and N. Sakimura (editor), “/SON Simple Encryption,” September 2010.

Jones, M., Bradley, J., and N. Sakimura, “JSON Web Token (JWT),” draft-ietf-oauth-json-web-
token (work in progress), April 2013 (HTML).

Rescorla, E., “Preventing the Million Message Attack on Cryptographic Message Syntax,”
RFC 3218, January 2002 (TXT).

Leach, P., Mealling, M., and R. Salz, “A Universally Unique IDentifier (UUID) URN
Namespace,” RFC 4122, July 2005 (TXT, HTML, XML).

Housley, R., “Cryptographic Message Syntax (CMS),” STD 70, RFC 5652, September 2009 (TXT).

TOC
Appendix A. JWE Examples
This section provides examples of JWE computations.
. TOC
A.1. Example JWE using RSAES OAEP and AES GCM
This example encrypts the plaintext "The true sign of intelligence is not knowledge but
imagination." to the recipient using RSAES OAEP and AES GCM. The representation of this
plaintext is:
[84, 104, 101, 32, 116, 114, 117, 101, 32, 115, 105, 103, 110, 32, 111, 102, 32, 105, 110,
116, 101, 108, 108, 105, 103, 101, 110, 99, 101, 32, 105, 115, 32, 110, 111, 116, 32, 107,
110, 111, 119, 108, 101, 100, 103, 101, 32, 98, 117, 116, 32, 105, 109, 97, 103, 105, 110, 97,
116, 105, 111, 110, 46]
TOC
A.1.1. JWE Header
The following example JWE Header declares that:
¢ the Content Encryption Key is encrypted to the recipient using the RSAES OAEP
algorithm to produce the JWE Encrypted Key and
¢ the Plaintext is encrypted using the AES GCM algorithm with a 256 bit key to
produce the Ciphertext.
{"alg":"RSA-OAEP", "enc":"A256GCM"}
TOC

A.1.2. Encoded JWE Header

Base64url encoding the octets of the UTF-8 representation of the JWE Header yields this
Encoded JWE Header value:

eyJhbGci0iJSUGEtTOFFUCISIMVUYYI6IKEYNTZHQOO1fQ

http://www.w3.org/TR/2012/CR-xmlenc-core1-20120313
http://www.w3.org/TR/2012/CR-xmlenc-core1-20120313
http://tools.ietf.org/html/draft-mcgrew-aead-aes-cbc-hmac-sha2-01
http://www.ietf.org/internet-drafts/draft-mcgrew-aead-aes-cbc-hmac-sha2-01.txt
http://tools.ietf.org/html/draft-rescorla-jsms-00
http://www.ietf.org/internet-drafts/draft-rescorla-jsms-00.txt
http://jsonenc.info/enc/1.0/
mailto:mbj@microsoft.com
mailto:ve7jtb@ve7jtb.com
mailto:n-sakimura@nri.co.jp
http://tools.ietf.org/html/draft-ietf-oauth-json-web-token
http://tools.ietf.org/html/draft-ietf-oauth-json-web-token
http://tools.ietf.org/html/rfc3218
http://www.rfc-editor.org/rfc/rfc3218.txt
mailto:paulle@microsoft.com
mailto:michael@refactored-networks.com
mailto:rsalz@datapower.com
http://tools.ietf.org/html/rfc4122
http://www.rfc-editor.org/rfc/rfc4122.txt
http://xml.resource.org/public/rfc/html/rfc4122.html
http://xml.resource.org/public/rfc/xml/rfc4122.xml
http://tools.ietf.org/html/rfc5652
http://www.rfc-editor.org/rfc/rfc5652.txt

A.1.3. Content Encryption Key (CEK) —

Generate a 256 bit random Content Encryption Key (CEK). In this example, the value is:

[177, 161, 244, 128, 84, 143, 225, 115, 63, 180, 3, 255, 107, 154, 212, 246, 138, 7, 110, 91,
112, 46, 34, 105, 47, 130, 203, 46, 122, 234, 64, 252]

TOC

A.1.4. Key Encryption

Encrypt the CEK with the recipient's public key using the RSAES OAEP algorithm to produce
the JWE Encrypted Key. In this example, the RSA key parameters are:

Parameter
Name

Value

Modulus

Exponent

Private
Exponent

[161, 168, 84, 34, 133, 176, 208, 173, 46, 176, 163, 110, 57, 30, 135, 227, 9, 31, 226,
128, 84, 92, 116, 241, 70, 248, 27, 227, 193, 62, 5, 91, 241, 145, 224, 205, 141, 176,
184, 133, 239, 43, 81, 103, 9, 161, 153, 157, 179, 104, 123, 51, 189, 34, 152, 69, 97,
69, 78, 93, 140, 131, 87, 182, 169, 101, 92, 142, 3, 22, 167, 8, 212, 56, 35, 79, 210,
222,192, 208, 252, 49, 109, 138, 173, 253, 210, 166, 201, 63, 102, 74, 5, 158, 41, 90,
144, 108, 160, 79, 10, 89, 222, 231, 172, 31, 227, 197, 0, 19, 72, 81, 138, 78, 136, 221,
121, 118, 196, 17, 146, 10, 244, 188, 72, 113, 55, 221, 162, 217, 171, 27, 57, 233, 210,
101, 236, 154, 199, 56, 138, 239, 101, 48, 198, 186, 202, 160, 76, 111, 234, 71, 57,
183, 5, 211, 171, 136, 126, 64, 40, 75, 58, 89, 244, 254, 107, 84, 103, 7, 236, 69, 163,
18, 180, 251, 58, 153, 46, 151, 174, 12, 103, 197, 181, 161, 162, 55, 250, 235, 123,
110, 17, 11, 158, 24, 47, 133, 8, 199, 235, 107, 126, 130, 246, 73, 195, 20, 108, 202,
176, 214, 187, 45, 146, 182, 118, 54, 32, 200, 61, 201, 71, 243, 1, 255, 131, 84, 37
111, 211, 168, 228, 45, 192, 118, 27, 197, 235, 232, 36, 10, 230, 248, 190, 82, 182
140, 35, 204, 108, 190, 253, 186, 186, 27]

[1,0, 1]

[144, 183, 109, 34, 62, 134, 108, 57, 44, 252, 10, 66, 73, 54, 16, 181, 233, 92, 54, 219,
101, 42, 35, 178, 63, 51, 43, 92, 119, 136, 251, 41, 53, 23, 191, 164, 164, 60, 88, 227,
229, 152, 228, 213, 149, 228, 169, 237, 104, 71, 151, 75, 88, 252, 216, 77, 251, 231,
28, 97, 88, 193, 215, 202, 248, 216, 121, 195, 211, 245, 250, 112, 71, 243, 61, 129, 95,
39, 244, 122, 225, 217, 169, 211, 165, 48, 253, 220, 59, 122, 219, 42, 86, 223, 32, 236,
39, 48, 103, 78, 122, 216, 187, 88, 176, 89, 24, 1, 42, 177, 24, 99, 142, 170, 1, 146, 43,
3, 108, 64, 194, 121, 182, 95, 187, 134, 71, 88, 96, 134, 74, 131, 167, 69, 106, 143,
121, 27, 72, 44, 245, 95, 39, 194, 179, 175, 203, 122, 16, 112, 183, 17, 200, 202, 31,
17, 138, 156, 184, 210, 157, 184, 154, 131, 128, 110, 12, 85, 195, 122, 241, 79, 251,
229, 183, 117, 21, 123, 133, 142, 220, 153, 9, 59, 57, 105, 81, 255, 138, 77, 82, 54, 62,
216, 38, 249, 208, 17, 197, 49, 45, 19, 232, 157, 251, 131, 137, 175, 72, 126, 43, 229,
69, 179, 117, 82, 157, 213, 83, 35, 57, 210, 197, 252, 171, 143, 194, 11, 47, 163, 6,
253, 75, 252, 96, 11, 187, 84, 130, 210, 7, 121, 78, 91, 79, 57, 251, 138, 132, 220, 60,
224,173, 56, 224, 201]

The resulting JWE Encrypted Key value is:

[2, 151, 206, 44, 38, 131, 110, 171, 63, 37, 115, 216, 203, 98, 61, 223, 187, 255, 198, 106,

243, 143,
247, 236,
246, 141,

226, 44, 179, 89, 134, 232, 208, 7, 153, 226, 85, 136, 206, 163, 218, 93, 12, 30,
120, 135, 71, 87, 37, 54, 4, 138, 6, 86, 239, 104, 134, 249, 36, 90, 36, 106, 228, 50,
134, 83, 60, 15, 83, 1, 220, 42, 220, 85, 8, 87, 42, 7, 248, 247, 157, 127, 167, 165

28, 133, 69, 139, 98, 134, 12, 75, 41, 96, 203, 80, 1, 19, 12, 72, 23, 18, 238, 155, 37, 199,

167, 229,

135, 80, 159, 135, 113, 129, 43, 43, 51, 181, 83, 4, 133, 159, 230, 104, 89, 38, 224,

246, 21, 10, 194, 108, 190, 174, 130, 183, 119, 224, 216, 34, 79, 58, 205, 23, 212, 49, 238,

197, 146,
202, 117,
216, 162,
39, 4, 38,
120, 163,

168, 32, 98, 42, 113, 183, 138, 225, 113, 14, 229, 173, 33, 229, 48, 46, 36, 230,
243, 180, 116, 172, 31, 53, 36, 155, 166, 238, 108, 22, 186, 81, 23, 5, 118, 21, 52,
161, 120, 204, 142, 58, 55, 223, 191, 132, 194, 51, 158, 81, 41, 126, 212, 87, 133
230, 125, 28, 111, 2, 240, 33, 193, 213, 100, 89, 252, 158, 60, 62, 87, 170, 118, 17,
183, 193, 228, 157, 112, 22, 165, 23, 6, 214, 237, 184, 98, 127, 3, 101, 222, 232, 1,

33,174, 92, 194, 59]

A.1.5. Encoded JWE Encrypted Key —

Base64url encode the JWE Encrypted Key to produce the Encoded JWE Encrypted Key. This
result (with line breaks for display purposes only) is:

ApfOLCaDbqgs_JXPYy2I937v_xmrzj-Iss1imG6NAHmeJViM63j210MHvTseIdHVyU2
BIoGVu9ohvkkWiRg5DL2jYZTPA9TAdwq3FUIVyoH-Pedf6elHIVFi2KGDESpYMtQ
ARMMSBCcS7ps1x6f1lh1Cfh3GBKysztVMEhZ_maFkm4PYVCsJsvq6Ct3fg2CIPOsSOX
1DHuUXxZKoIGIqcheK4XE05a0h5TAUJObKdATfOOdKWINSSbpu5sFrpRFWV2FTTYoqF4
zI46N9-_hMIznlEpftRXhScEJuZ9HG8C8CHB1WRZ_J48PleqdhF407fB5J1wFqUX
BtbtuGJ_A2Xe6AEhrlzCOw

TOC
A.1.6. Initialization Vector
Generate a random 96 bit JWE Initialization Vector. In this example, the value is:
[227, 197, 117, 252, 2, 219, 233, 68, 180, 225, 77, 219]
Base64url encoding this value yields the Encoded JWE Initialization Vector value:
48V1_ALb6USG4U3b
TOC

A.1.7. Additional Authenticated Data Parameter

Concatenate the Encoded JWE Header value, a period ('.") character, and the Encoded JWE
Encrypted Key to create the Additional Authenticated Data parameter. This result (with line
breaks for display purposes only) is:

eyJhbGci0iJSUGEtTOFFUCISIMVUYYI6IKEYNTZHQOOifQ.
ApfOLCaDbqgs_JXPYy2I937v_xmrzj-Iss1imG6NAHmeJViM63j210MHvTseIdHVyU2
BIoGVu9ohvkkWiRg5DL2]jYZTPA9TAdwq3FUIVyoH-Pedf6elHIVFi2KGDESpYMtQ
ARMMSBcS7ps1x6f1lh1Cfh3GBKysztVMEhZ _maFkm4PYVCsJsvq6Ct3fg2CIPOsSOX
1DHUXZKoIGIqcheK4XE05a0h5TAUJObKAFOOdKwTNSSbpu5sFrpRFwWV2FTTYoqF4
2I46N9-_hMIznlEpftRXhScEJuZ9HG8C8CHB1WRZ_J48PleqdhF407fB5J1wFqUX
BtbtuGJ_A2Xe6AEhrlzCOw

The representation of this value is:

[101, 121, 74, 104, 98, 71, 99, 105, 79, 105, 74, 83, 85, 48, 69, 116, 84, 48, 70, 70, 85, 67,
73, 115, 73, 109, 86, 117, 89, 121, 73, 54, 73, 107, 69, 121, 78, 84, 90, 72, 81, 48, 48, 105,
102, 81, 46, 65, 112, 102, 79, 76, 67, 97, 68, 98, 113, 115, 95, 74, 88, 80, 89, 121, 50, 73, 57,
51, 55, 118, 95, 120, 109, 114, 122, 106, 45, 73, 115, 115, 49, 109, 71, 54, 78, 65, 72, 109,
101, 74, 86, 105, 77, 54, 106, 50, 108, 48, 77, 72, 118, 102, 115, 101, 73, 100, 72, 86, 121,
85, 50, 66, 73, 111, 71, 86, 117, 57, 111, 104, 118, 107, 107, 87, 105, 82, 113, 53, 68, 76, 50,
106, 89, 90, 84, 80, 65, 57, 84, 65, 100, 119, 113, 51, 70, 85, 73, 86, 121, 111, 72, 45, 80,
101, 100, 102, 54, 101, 108, 72, 73, 86, 70, 105, 50, 75, 71, 68, 69, 115, 112, 89, 77, 116, 81,
65, 82, 77,77, 83, 66, 99, 83, 55, 112, 115, 108, 120, 54, 102, 108, 104, 49, 67, 102, 104, 51,
71, 66, 75, 121, 115, 122, 116, 86, 77, 69, 104, 90, 95, 109, 97, 70, 107, 109, 52, 80, 89, 86,
67, 115, 74, 115, 118, 113, 54, 67, 116, 51, 102, 103, 50, 67, 74, 80, 79, 115, 48, 88, 49, 68,
72,117, 120, 90, 75, 111, 73, 71, 73, 113, 99, 98, 101, 75, 52, 88, 69, 79, 53, 97, 48, 104, 53,
84, 65, 117, 74, 79, 98, 75, 100, 102, 79, 48, 100, 75, 119, 102, 78, 83, 83, 98, 112, 117, 53,
115, 70, 114, 112, 82, 70, 119, 86, 50, 70, 84, 84, 89, 111, 113, 70, 52, 122, 73, 52, 54, 78,
57, 45, 95, 104, 77, 73, 122, 110, 108, 69, 112, 102, 116, 82, 88, 104, 83, 99, 69, 74, 117, 90,
57,72,71, 56, 67, 56, 67, 72, 66, 49, 87, 82, 90, 95, 74, 52, 56, 80, 108, 101, 113, 100, 104,
70, 52, 111, 55, 102, 66, 53, 74, 49, 119, 70, 113, 85, 88, 66, 116, 98, 116, 117, 71, 74, 95,
65, 50, 88, 101, 54, 65, 69, 104, 114, 108, 122, 67, 79, 119]

. . TOC
A.1.8. Plaintext Encryption

Encrypt the Plaintext with AES GCM using the CEK as the encryption key, the JWE Initialization
Vector, and the Additional Authenticated Data value above, requesting a 128 bit
Authentication Tag output. The resulting Ciphertext is:

[229, 236, 166, 241, 53, 191, 115, 196, 174, 43, 73, 109, 39, 122, 233, 96, 140, 206, 120, 52,
51, 237, 48, 11, 190, 219, 186, 80, 111, 104, 50, 142, 47, 167, 59, 61, 181, 127, 196, 21, 40,
82, 242, 32, 123, 143, 168, 226, 73, 216, 176, 144, 138, 247, 106, 60, 16, 205, 160, 109, 64,
63, 192]

The resulting Authentication Tag value is:

[130, 17, 32, 198, 120, 167, 144, 113, 0, 50, 158, 49, 102, 208, 118, 152]

] TOC
A.1.9. Encoded JWE Ciphertext

Base64url encode the Ciphertext to create the Encoded JWE Ciphertext. This result (with line

breaks for display purposes only) is:
5eym8TW_c8SuK01ltJ3rpYIz0eDQz7TALVtu6UGO0oMo4vpzs9tX_EFShS8iB7j6ji
SdiwkIr3ajwQzaBtQD_A

. TOC
A.1.10. Encoded JWE Authentication Tag

Base64url encode the Authentication Tag to create the Encoded JWE Authentication Tag. This

result is:
ghEgxninkHEAMp4xZtB2mA

) TOC
A.1.11. Complete Representation

Assemble the final representation: The Compact Serialization of this result is the

concatenation of the Encoded JWE Header, the Encoded JWE Encrypted Key, the Encoded JWE

Initialization Vector, the Encoded JWE Ciphertext, and the Encoded JWE Authentication Tag in

that order, with the five strings being separated by four period ('.") characters.

The final result in this example (with line breaks for display purposes only) is:
eyJhbGciOiJSUGELTOFFUCISIMVUYyI6IKEYNTZHQOOifQ.
ApfOLCaDbqgs_JXPYy2I937v_xmrzj-Iss1imG6NAHmeJViM63j210MHvTseIdHVyU2
BIoGVu9ohvkkWiRg5DL2]jYZTPA9TAdwq3FUIVyoH-Pedf6elHIVFi2KGDESpYMtQ
ARMMSBCcS7ps1x6f1lh1Cfh3GBKysztVMEhZ _maFkm4PYVCsJsvq6Ct3fg2CIPOsSOX
1DHUXZKoIGIqcheK4XE05a0h5TAUJObKAFOOdKwTNSSbpu5sFrpRFwWV2FTTYoqF4
2I46N9-_hMIznlEpftRXhScEJuZ9HG8C8CHB1WRZ_J48PleqdhF407fB5J1wFqUX
BtbtuGJ_A2Xe6AEhrlzCOw.
48V1_ALb6US04U3b.
5eym8TW_c8SuK01tJ3rpYIz0eDQz7TALVtubUG90Mo4vpzs9tX EFShS8iB7j6ji
SdiwkIr3ajwQzaBtQD_A.
ghEgxninkHEAMp4xZtB2mA

TOC

A.1.12. Validation

This example illustrates the process of creating a JWE with RSA OAEP and AES GCM. These
results can be used to validate JWE decryption implementations for these algorithms. Note
that since the RSAES OAEP computation includes random values, the encryption results
above will not be completely reproducible. However, since the AES GCM computation is

deterministic, the JWE Encrypted Ciphertext values will be the same for all encryptions
performed using these inputs.

A.2. Example JWE using RSAES-PKCS1-V1_5 and AES_128 CBC_HMAC_SHA 256 M=

This example encrypts the plaintext "Live long and prosper." to the recipient using RSAES-
PKCS1-V1 5 and AES_128 CBC_HMAC_SHA 256. The representation of this plaintext is:

[76, 105, 118, 101, 32, 108, 111, 110, 103, 32, 97, 110, 100, 32, 112, 114, 111, 115, 112,
101, 114, 46]

A.2.1. JWE Header TOC

The following example JWE Header (with line breaks for display purposes only) declares that:

¢ the Content Encryption Key is encrypted to the recipient using the RSAES-
PKCS1-V1 5 algorithm to produce the JWE Encrypted Key and

¢ the Plaintext is encrypted using the AES 128 CBC_HMAC_SHA 256 algorithm to
produce the Ciphertext.

{"alg":"RSA1 5", "enc":"A128CBC-HS256"}

A.2.2. Encoded JWE Header TOC

Base64url encoding the octets of the UTF-8 representation of the JWE Header yields this
Encoded JWE Header value:

eyJhbGci0iJSUGEXxXzUiLCJ1bmMi0iJBMTI4Q0JDLUhTMjU2INnO

A.2.3. Content Encryption Key (CEK) _—

Generate a 256 bit random Content Encryption Key (CEK). In this example, the key value is:

[4, 211, 31, 197, 84, 157, 252, 254, 11, 100, 157, 250, 63, 170, 106, 206, 107, 124, 212, 45,
111, 107, 9, 219, 200, 177, 0, 240, 143, 156, 44, 207]

A.2.4. Key Encryption TOC

Encrypt the CEK with the recipient's public key using the RSAES-PKCS1-V1 5 algorithm to
produce the JWE Encrypted Key. In this example, the RSA key parameters are:

Parameter

Value
Name

[177, 119, 33, 13, 164, 30, 108, 121, 207, 136, 107, 242, 12, 224, 19, 226, 198, 134,
17,71, 173, 75, 42, 61, 48, 162, 206, 161, 97, 108, 185, 234, 226, 219, 118, 206, 118,
5,169, 224, 60, 181, 90, 85, 51, 123, 6, 224, 4, 122, 29, 230, 151, 12, 244, 127, 121,
25, 4, 85, 220, 144, 215, 110, 130, 17, 68, 228, 129, 138, 7, 130, 231, 40, 212, 214, 17,

179, 28, 124, 151, 178, 207, 20, 14, 154, 222, 113, 176, 24, 198, 73, 211, 113, 9, 33,
178, 80, 13, 25, 21, 25, 153, 212, 206, 67, 154, 147, 70, 194, 192, 183, 160, 83, 98,
236, 175, 85, 23, 97, 75, 199, 177, 73, 145, 50, 253, 206, 32, 179, 254, 236, 190, 82,
73, 67, 129, 253, 252, 220, 108, 136, 138, 11, 192, 1, 36, 239, 228, 55, 81, 113, 17, 25,
140, 63, 239, 146, 3, 172, 96, 60, 227, 233, 64, 255, 224, 173, 225, 228, 229, 92, 112,
72,99, 97, 26, 87, 187, 123, 46, 50, 90, 202, 117, 73, 10, 153, 47, 224, 178, 163, 77,
48, 46, 154, 33, 148, 34, 228, 33, 172, 216, 89, 46, 225, 127, 68, 146, 234, 30, 147, 54,
146, 5, 133, 45, 78, 254, 85, 55, 75, 213, 86, 194, 218, 215, 163, 189, 194, 54, 6, 83,
36, 18, 153, 53, 7, 48, 89, 35, 66, 144, 7, 65, 154, 13, 97, 75, 55, 230, 132, 3, 13, 239,
71]

Exponent [1, 0, 1]

[84, 80, 150, 58, 165, 235, 242, 123, 217, 55, 38, 154, 36, 181, 221, 156, 211, 215,
100, 164, 90, 88, 40, 228, 83, 148, 54, 122, 4, 16, 165, 48, 76, 194, 26, 107, 51, 53
179, 165, 31, 18, 198, 173, 78, 61, 56, 97, 252, 158, 140, 80, 63, 25, 223, 156, 36, 203,
214, 252, 120, 67, 180, 167, 3, 82, 243, 25, 97, 214, 83, 133, 69, 16, 104, 54, 160, 200,
41, 83, 164, 187, 70, 153, 111, 234, 242, 158, 175, 28, 198, 48, 211, 45, 148, 58, 23,
62, 227, 74, 52, 117, 42, 90, 41, 249, 130, 154, 80, 119, 61, 26, 193, 40, 125, 10, 152,

Private 174, 227, 225, 205, 32, 62, 66, 6, 163, 100, 99, 219, 19, 253, 25, 105, 80, 201, 29, 252,

Exponent 157, 237, 69, 1, 80, 171, 167, 20, 196, 156, 109, 249, 88, 0, 3, 152, 38, 165, 72, 87, 6,
152, 71, 156, 214, 16, 71, 30, 82, 51, 103, 76, 218, 63, 9, 84, 163, 249, 91, 215, 44,
238, 85, 101, 240, 148, 1, 82, 224, 91, 135, 105, 127, 84, 171, 181, 152, 210, 183, 126,
24, 46, 196, 90, 173, 38, 245, 219, 186, 222, 27, 240, 212, 194, 15, 66, 135, 226, 178,
190, 52, 245, 74, 65, 224, 81, 100, 85, 25, 204, 165, 203, 187, 175, 84, 100, 82, 15, 11,
23, 202, 151, 107, 54, 41, 207, 3, 136, 229, 134, 131, 93, 139, 50, 182, 204, 93, 130,
89]

Modulus

The resulting JWE Encrypted Key value is:

[156, 150, 191, 184, 77, 131, 211, 9, 74, 207, 227, 156, 193, 38, 202, 23, 56, 247, 211, 108,
88, 72, 143, 145, 44, 19, 58, 133, 181, 70, 152, 254, 26, 198, 210, 80, 60, 15, 82, 210, 154,
55,179, 115, 76, 146, 99, 166, 146, 70, 176, 157, 252, 15, 54, 58, 92, 210, 103, 55, 207, 191,
92, 185, 5, 164, 64, 241, 80, 163, 233, 131, 198, 106, 32, 207, 199, 113, 5, 200, 94, 105, 53
32, 221, 155, 233, 108, 96, 151, 197, 152, 195, 96, 67, 81, 90, 38, 121, 51, 208, 98, 47, 45,
61, 4, 129, 121, 152, 122, 124, 229, 2, 250, 92, 64, 245, 36, 70, 76, 58, 31, 181, 185, 61, 101,
168, 240, 220, 12, 62, 253, 169, 107, 107, 9, 241, 9, 152, 217, 159, 179, 30, 95, 112, 29, 143,
124, 7, 21, 181, 13, 45, 253, 137, 142, 95, 30, 127, 26, 237, 34, 183, 89, 200, 44, 165, 203,
71,102, 39, 127, 217, 159, 46, 17, 28, 11, 146, 222, 110, 149, 178, 16, 117, 186, 91, 52, 56,
136, 127, 82, 33, 194, 46, 164, 245, 117, 136, 160, 179, 152, 151, 15, 172, 48, 73, 228, 87,
63, 40, 192, 92, 92, 24, 167, 105, 47, 255, 193, 251, 77, 203, 6, 134, 129, 248, 191, 53, 43,
49, 219, 130, 241, 180, 174, 159, 34, 71, 163, 70, 83, 1, 152, 39, 241, 191, 68, 224, 240, 43
113, 165, 68, 98, 130]

A.2.5. Encoded JWE Encrypted Key _—

Base64url encode the JWE Encrypted Key to produce the Encoded JWE Encrypted Key. This
result (with line breaks for display purposes only) is:

nJa_uE2DOwlKz-0cwSbKFzj302xYSI-RLBM6hbVGmP4axtJQPA9SOp0o3s3NMkmOm
kkawnfwPNjpcOmc3z79cuQWkQPFQo-mDxmogz8dxBcheaTUg3ZvpbGCXxZjDYENR
WiZ5M9BiLy®@9BIF5mHP85QL6XED1JEZMOh-1uT11qPDcDD79gWtr CFEIMNmT sx5f
CB2PfAcVtQOt_YmOXx5_GuOitlnILKXLR2YnfO9mfLhEcC5LebpWyEHW6WZzQ41iH9S
IcIupPV1iKCzmJcPrDBJ5Fc_KMBcXBinaS__ wftNywaGgfi_ NSsx24LxtK6fIkej
R1IMBmCfxvOTg8CtxpURigg

g w - - Toc
A.2.6. Initialization Vector

Generate a random 128 bit JWE Initialization Vector. In this example, the value is:

[3, 22, 60, 12, 43, 67, 104, 105, 108, 108, 105, 99, 111, 116, 104, 101]

Base64url encoding this value yields the Encoded JWE Initialization Vector value:

AXY8DCtDaGlsbGljb3RoZQ

A.2.7. Additional Authenticated Data Parameter —

Concatenate the Encoded JWE Header value, a period ('.") character, and the Encoded JWE
Encrypted Key to create the Additional Authenticated Data parameter. This result (with line
breaks for display purposes only) is:

eyJhbGci0iJSUBGEXXzUilLCJ1bmMi0iJBMTI4Q0JDLUhRTMjU2ING.
nJa_uE2DOwl1Kz-0cwSbKFzj302xYSI-RLBM6hbVGmP4axtJQPA9SOpo3s3NMkmOm
kkawnfwPNjpcOmc3z79cuQWkQPFQo-mDxmogz8dxBcheaTUg3ZvpbGCXXZjDYENR
WiZ5M9BiLy@9BIF5mMHp85QL6XED1JEZMOh-1uT11gPDcDD79qWtrCFEImNmfsx5f
CB2PfAcCVtQOt_YmOXx5_GuOitinILKXLR2YnfI9mfLhEcC5LebpWyEHWEWZzQ4iH9S
IcIupPV1iKCzmJcPrDBJ5Fc_KMBcXBinaS__wftNywaGgfi_ NSsx24LxtK6fIkej
R1IMBmCfxvOTg8CtxpURigg

The representation of this value is:

[101, 121, 74, 104, 98, 71, 99, 105, 79, 105, 74, 83, 85, 48, 69, 120, 88, 122, 85, 105, 76, 67,
74, 108, 98, 109, 77, 105, 79, 105, 74, 66, 77, 84, 73, 52, 81, 48, 74, 68, 76, 85, 104, 84, 77,
106, 85, 50, 73, 110, 48, 46, 110, 74, 97, 95, 117, 69, 50, 68, 48, 119, 108, 75, 122, 45, 79,
99, 119, 83, 98, 75, 70, 122, 106, 51, 48, 50, 120, 89, 83, 73, 45, 82, 76, 66, 77, 54, 104, 98,
86, 71, 109, 80, 52, 97, 120, 116, 74, 81, 80, 65, 57, 83, 48, 112, 111, 51, 115, 51, 78, 77,
107, 109, 79, 109, 107, 107, 97, 119, 110, 102, 119, 80, 78, 106, 112, 99, 48, 109, 99, 51,
122, 55, 57, 99, 117, 81, 87, 107, 81, 80, 70, 81, 111, 45, 109, 68, 120, 109, 111, 103, 122,
56, 100, 120, 66, 99, 104, 101, 97, 84, 85, 103, 51, 90, 118, 112, 98, 71, 67, 88, 120, 90, 106,
68, 89, 69, 78, 82, 87, 105, 90, 53, 77, 57, 66, 105, 76, 121, 48, 57, 66, 73, 70, 53, 109, 72,
112, 56, 53, 81, 76, 54, 88, 69, 68, 49, 74, 69, 90, 77, 79, 104, 45, 49, 117, 84, 49, 108, 113
80, 68, 99, 68, 68, 55, 57, 113, 87, 116, 114, 67, 102, 69, 74, 109, 78, 109, 102, 115, 120, 53,
102, 99, 66, 50, 80, 102, 65, 99, 86, 116, 81, 48, 116, 95, 89, 109, 79, 88, 120, 53, 95, 71,
117, 48, 105, 116, 49, 110, 73, 76, 75, 88, 76, 82, 50, 89, 110, 102, 57, 109, 102, 76, 104, 69,
99, 67, 53, 76, 101, 98, 112, 87, 121, 69, 72, 87, 54, 87, 122, 81, 52, 105, 72, 57, 83, 73, 99,
73,117, 112, 80, 86, 49, 105, 75, 67, 122, 109, 74, 99, 80, 114, 68, 66, 74, 53, 70, 99, 95, 75,
77, 66, 99, 88, 66, 105, 110, 97, 83, 95, 95, 119, 102, 116, 78, 121, 119, 97, 71, 103, 102,
105, 95, 78, 83, 115, 120, 50, 52, 76, 120, 116, 75, 54, 102, 73, 107, 101, 106, 82, 108, 77,
66, 109, 67, 102, 120, 118, 48, 84, 103, 56, 67, 116, 120, 112, 85, 82, 105, 103, 103]

A.2.8. Plaintext Encryption —

Encrypt the Plaintext with AES_128 CBC_HMAC_SHA_256 using the CEK as the encryption
key, the JWE Initialization Vector, and the Additional Authenticated Data value above. The
steps for doing this using the values from Appendix A.3 are detailed in Appendix B. The
resulting Ciphertext is:

[40, 57, 83, 181, 119, 33, 133, 148, 198, 185, 243, 24, 152, 230, 6, 75, 129, 223, 127, 19,
210, 82, 183, 230, 168, 33, 215, 104, 143, 112, 56, 102]

The resulting Authentication Tag value is:

[125, 141, 148, 252, 124, 121, 85, 199, 215, 154, 42, 68, 149, 209, 225, 48]

A.2.9. Encoded JWE Ciphertext _—

Baseb64url encode the Ciphertext to create the Encoded JWE Ciphertext. This result is:

KD1TtXchhZTGufMYmOYGS4HTfXxPSUrfmgqCHXaI9wOGY

A.2.10. Encoded JWE Authentication Tag —

Base64url encode the Authentication Tag to create the Encoded JWE Authentication Tag. This
result is:

fY2U_Hx5VcTfXmipEldHhMA

TOC
A.2.11. Complete Representation

Assemble the final representation: The Compact Serialization of this result is the
concatenation of the Encoded JWE Header, the Encoded JWE Encrypted Key, the Encoded JWE
Initialization Vector, the Encoded JWE Ciphertext, and the Encoded JWE Authentication Tag in
that order, with the five strings being separated by four period ('.") characters.

The final result in this example (with line breaks for display purposes only) is:

eyJhbGci0iJSUBGEXXzUilLCJ1bmMi0iJBMTI4Q0JDLUhRTMjU2INO.
nJa_uE2DOwl1Kz-0cwSbKFzj302xYSI-RLBM6hbVGmP4axtJQPA9SOpo3s3NMkmOm
kkawnfwPNjpcOmc3z79cuQWkQPFQo-mDxmogz8dxBcheaTUg3ZvpbGCXXZjDYENR
WiZ5M9BilLy@9BIF5mMHp85QL6XED1JEZMOh-1uT11gPDcDD79qWtrCFEImNmfsx5f
CB2PfAcCVtQOt_YmOXx5_GuOitinILKXLR2YnfI9mfLhEcC5LebpWyEHWEWZzQ4iH9S
IcIupPV1iKCzmJcPrDBJ5Fc_KMBcXBinaS__wftNywaGgfi_ NSsx24LxtK6fIkej
R1IMBmCfxvOTg8CtxpURigg.

AXY8DCtDaGlsbGljb3R0ZQ.

KD1TtXchhZTGufMYmOYGS4HT fxPSUrfmgCHXaI9wOGY .
fY2U_Hx5VcfXmipEldHhMA

A.2.12. Validation TOC

This example illustrates the process of creating a JWE with RSAES-PKCS1-V1 5 and

AES _CBC _HMAC_SHAZ2. These results can be used to validate JWE decryption
implementations for these algorithms. Note that since the RSAES-PKCS1-V1 5 computation
includes random values, the encryption results above will not be completely reproducible.
However, since the AES CBC computation is deterministic, the JWE Encrypted Ciphertext
values will be the same for all encryptions performed using these inputs.

A.3. Example JWE using AES Key Wrap and AES GCM _—

This example encrypts the plaintext "Live long and prosper." to the recipient using AES Key
Wrap and AES GCM. The representation of this plaintext is:

[76, 105, 118, 101, 32, 108, 111, 110, 103, 32, 97, 110, 100, 32, 112, 114, 111, 115, 112,
101, 114, 46]

A.3.1. JWE Header TOC

The following example JWE Header declares that:

¢ the Content Encryption Key is encrypted to the recipient using the AES Key Wrap

algorithm with a 128 bit key to produce the JWE Encrypted Key and
¢ the Plaintext is encrypted using the AES 128 CBC_HMAC_SHA 256 algorithm to
produce the Ciphertext.

{"alg":"A128KW", "enc":"A128CBC-HS256"}

TOC
A.3.2. Encoded JWE Header

Base64url encoding the octets of the UTF-8 representation of the JWE Header yields this
Encoded JWE Header value:

eyJhbGci0iJBMTI4S1cilCJ1bmMi0iJBMTI4Q0JDLUhTMjU2INO

A.3.3. Content Encryption Key (CEK) —

Generate a 256 bit random Content Encryption Key (CEK). In this example, the value is:

[4, 211, 31, 197, 84, 157, 252, 254, 11, 100, 157, 250, 63, 170, 106, 206, 107, 124, 212, 45,
111, 107, 9, 219, 200, 177, 0, 240, 143, 156, 44, 207]

. TOC
A.3.4. Key Encryption

Encrypt the CEK with the shared symmetric key using the AES Key Wrap algorithm to produce
the JWE Encrypted Key. In this example, the shared symmetric key value is:

[25, 172, 32, 130, 225, 114, 26, 181, 138, 106, 254, 192, 95, 133, 74, 82]
The resulting JWE Encrypted Key value is:

[232, 160, 123, 211, 183, 76, 245, 132, 200, 128, 123, 75, 190, 216, 22, 67, 201, 138, 193,
186, 9, 91, 122, 31, 246, 90, 28, 139, 57, 3, 76, 124, 193, 11, 98, 37, 173, 61, 104, 57]

TOC
A.3.5. Encoded JWE Encrypted Key
Base64url encode the JWE Encrypted Key to produce the Encoded JWE Encrypted Key. This
result is:
6KB707dMOYTIgHtLVtgWQ8mKwboJW30f91locizkDTHzZBC2I1rT100Q
TOC

A.3.6. Initialization Vector

Generate a random 128 bit JWE Initialization Vector. In this example, the value is:
[3, 22, 60, 12, 43, 67, 104, 105, 108, 108, 105, 99, 111, 116, 104, 101]

Base64url encoding this value yields the Encoded JWE Initialization Vector value:

AXY8DCtDaGlsbGljb3RoZQ

A.3.7. Additional Authenticated Data Parameter —

Concatenate the Encoded JWE Header value, a period ('.") character, and the Encoded JWE
Encrypted Key to create the Additional Authenticated Data parameter. This result (with line
breaks for display purposes only) is:

eyJhbGci0iJBMTI4S1cilCJ1bmMi0iJBMTI4Q0JDLUNTMjU2ING.
6KB707dMOYTIgHtLVtgWQ8mKwboJW30f91locizkDTHzBC2I1rT100Q

The representation of this value is:

[101, 121, 74, 104, 98, 71, 99, 105, 79, 105, 74, 66, 77, 84, 73, 52, 83, 49, 99, 105, 76, 67,
74, 108, 98, 109, 77, 105, 79, 105, 74, 66, 77, 84, 73, 52, 81, 48, 74, 68, 76, 85, 104, 84, 77,
106, 85, 50, 73, 110, 48, 46, 54, 75, 66, 55, 48, 55, 100, 77, 57, 89, 84, 73, 103, 72, 116, 76,
118, 116, 103, 87, 81, 56, 109, 75, 119, 98, 111, 74, 87, 51, 111, 102, 57, 108, 111, 99, 105,
122, 107, 68, 84, 72, 122, 66, 67, 50, 73, 108, 114, 84, 49, 111, 79, 81]

. . TOC
A.3.8. Plaintext Encryption
Encrypt the Plaintext with AES_128 CBC_HMAC_SHA 256 using the CEK as the encryption
key, the JWE Initialization Vector, and the Additional Authenticated Data value above. The
steps for doing this using the values from this example are detailed in Appendix B. The
resulting Ciphertext is:
[40, 57, 83, 181, 119, 33, 133, 148, 198, 185, 243, 24, 152, 230, 6, 75, 129, 223, 127, 19,
210, 82, 183, 230, 168, 33, 215, 104, 143, 112, 56, 102]
The resulting Authentication Tag value is:
[8, 65, 248, 101, 45, 185, 28, 218, 232, 112, 83, 79, 84, 221, 18, 172]
] TOC
A.3.9. Encoded JWE Ciphertext
Base64url encode the Ciphertext to create the Encoded JWE Ciphertext. This result is:
KD1TtXchhZTGUufMYmOYGS4HffXPSUrfmgqCHXaI9w0OGY
L TOC
A.3.10. Encoded JWE Authentication Tag
Base64url encode the Authentication Tag to create the Encoded JWE Authentication Tag. This
result is:
CEH4ZS25HNrocFNPVNOSrA
TOC

A.3.11. Complete Representation

Assemble the final representation: The Compact Serialization of this result is the
concatenation of the Encoded JWE Header, the Encoded JWE Encrypted Key, the Encoded JWE
Initialization Vector, the Encoded JWE Ciphertext, and the Encoded JWE Authentication Tag in
that order, with the five strings being separated by four period ('.") characters.

The final result in this example (with line breaks for display purposes only) is:

eyJhbGci0iJBMTI4S1cilCJ1bmMi0iJBMTI4Q0JDLUNRTMjU2ING.
6KB707dM9YTIgHtLVtgWQ8mKwboJW30f91locizkDTHzBC2I1rT100Q.
AXY8DCtDaGlsbGljb3R0ZQ.

KD1TtXchhZTGufMYmOYGS4HT fxPSUrfmgCHXaI9wOGY .
CEH4ZS25HNrocFNPVNOSrA

A.3.12. Validation TOC

This example illustrates the process of creating a JWE with symmetric key wrap and

AES CBC _HMAC_SHAZ2. These results can be used to validate JWE decryption
implementations for these algorithms. Also, since both the AES Key Wrap and AES GCM
computations are deterministic, the resulting JWE value will be the same for all encryptions
performed using these inputs. Since the computation is reproducible, these results can also
be used to validate JWE encryption implementations for these algorithms.

Appendix B. Example AES_128 CBC_HMAC_SHA_256 Computation —

This example shows the steps in the AES 128 CBC_HMAC_SHA 256 authenticated
encryption computation using the values from the example in Appendix A.3. As described
where this algorithm is defined in Sections 4.8 and 4.8.3 of JWA, the AES_CBC_HMAC_SHA2
family of algorithms are implemented using Advanced Encryption Standard (AES) in Cipher
Block Chaining (CBC) mode with PKCS #5 padding to perform the encryption and an HMAC
SHA-2 function to perform the integrity calculation - in this case, HMAC SHA-256.

B.1. Extract MAC_KEY and ENC_KEY from Key s

The 256 bit AES_128 CBC_HMAC_SHA 256 key K used in this example is:

[4, 211, 31, 197, 84, 157, 252, 254, 11, 100, 157, 250, 63, 170, 106, 206, 107, 124, 212, 45,
111, 107, 9, 219, 200, 177, 0, 240, 143, 156, 44, 207]

Use the first 128 bits of this key as the HMAC SHA-256 key MAC_KEY, which is:

[4, 211, 31, 197, 84, 157, 252, 254, 11, 100, 157, 250, 63, 170, 106, 206]

Use the last 128 bits of this key as the AES CBC key ENC_KEY, which is:

[107, 124, 212, 45, 111, 107, 9, 219, 200, 177, 0, 240, 143, 156, 44, 207]

Note that the MAC key comes before the encryption key in the input key K; this is in the

opposite order of the algorithm names in the identifiers "AES_128 CBC_HMAC_SHA_ 256"
and A128CBC-HS256.

B.2. Encrypt Plaintext to Create Ciphertext _—

Encrypt the Plaintext with AES in Cipher Block Chaining (CBC) mode using PKCS #5 padding
using the ENC_KEY above. The Plaintext in this example is:

[76, 105, 118, 101, 32, 108, 111, 110, 103, 32, 97, 110, 100, 32, 112, 114, 111, 115, 112,
101, 114, 46]

The encryption result is as follows, which is the Ciphertext output:

[40, 57, 83, 181, 119, 33, 133, 148, 198, 185, 243, 24, 152, 230, 6, 75, 129, 223, 127, 19,
210, 82, 183, 230, 168, 33, 215, 104, 143, 112, 56, 102]

B.3. Create 64 Bit Big Endian Representation of AAD Length —

The Additional Authenticated Data (AAD) in this example is:

[101, 121, 74, 104, 98, 71, 99, 105, 79, 105, 74, 66, 77, 84, 73, 52, 83, 49, 99, 105, 76, 67,
74, 108, 98, 109, 77, 105, 79, 105, 74, 66, 77, 84, 73, 52, 81, 48, 74, 68, 76, 85, 104, 84, 77,
106, 85, 50, 73, 110, 48, 46, 54, 75, 66, 55, 48, 55, 100, 77, 57, 89, 84, 73, 103, 72, 116, 76,
118, 116, 103, 87, 81, 56, 109, 75, 119, 98, 111, 74, 87, 51, 111, 102, 57, 108, 111, 99, 105,
122, 107, 68, 84, 72, 122, 66, 67, 50, 73, 108, 114, 84, 49, 111, 79, 81]

This AAD is 106 bytes long, which is 848 bits long. The octet string AL, which is the number of
bits in AAD expressed as a big endian 64 bit unsigned integer is:

[0,0,0,0,0,0, 3, 80]

TOoC
B.4. Initialization Vector Value
The Initialization Vector value used in this example is:
[3, 22, 60, 12, 43, 67, 104, 105, 108, 108, 105, 99, 111, 116, 104, 101]
TOC

B.5. Create Input to HMAC Computation

Concatenate the AAD, the Initialization Vector, the Ciphertext, and the AL value. The result of
this concatenation is:

[101, 121, 74, 104, 98, 71, 99, 105, 79, 105, 74, 66, 77, 84, 73, 52, 83, 49, 99, 105, 76, 67,
74, 108, 98, 109, 77, 105, 79, 105, 74, 66, 77, 84, 73, 52, 81, 48, 74, 68, 76, 85, 104, 84, 77,
106, 85, 50, 73, 110, 48, 46, 54, 75, 66, 55, 48, 55, 100, 77, 57, 89, 84, 73, 103, 72, 116, 76,
118, 116, 103, 87, 81, 56, 109, 75, 119, 98, 111, 74, 87, 51, 111, 102, 57, 108, 111, 99, 105
122,107, 68, 84, 72, 122, 66, 67, 50, 73, 108, 114, 84, 49, 111, 79, 81, 3, 22, 60, 12, 43, 67
104, 105, 108, 108, 105, 99, 111, 116, 104, 101, 40, 57, 83, 181, 119, 33, 133, 148, 198§, 185,
243, 24, 152, 230, 6, 75, 129, 223, 127, 19, 210, 82, 183, 230, 168, 33, 215, 104, 143, 112,
56, 102, 0,0,0,0,0, 0, 3, 80]

B.6. Compute HMAC Value TOC

Compute the HMAC SHA-256 of the concatenated value above. This result M is:

[8, 65, 248, 101, 45, 185, 28, 218, 232, 112, 83, 79, 84, 221, 18, 172, 50, 145, 207, 8, 14, 74,
44, 220, 100, 117, 32, 57, 239, 149, 173, 226]

B.7. Truncate HMAC Value to Create Authentication Tag o

Use the first half (128 bits) of the HMAC output M as the Authentication Tag output T. This
truncated value is:

[8, 65, 248, 101, 45, 185, 28, 218, 232, 112, 83, 79, 84, 221, 18, 172]

Appendix C. Possible Compact Serialization for Multiple Recipients s

The JWE encryption process in Section 5.1, and in particular in steps 15 and 16, hint at a
possible compact serialization when there are multiple recipients. This possible compact
serialization concatenates instances of the per-recipient fields, separating them with tilde
("~") characters, which are URL-safe.

The concatenation of the Encoded JWE Header values goes before the first period ('.")
character in the compact serialization. The concatenation of the corresponding Encoded JWE
Encoded Key values goes between the first and second period ('.") characters in the compact
serialization.

A complete compact serialization of the multi-recipient JWE in Section 7.1 (with line breaks
for display purposes only) would be:

eyJhbGci0iJSUGEXxXzUiLCJI1bmMiOiJIBMTI4Q0JDLUNTMjU2IN0O
eyJhbGci0iJBMTI4S1cilCJI1bmMiOiJIBMTI4Q0JDLUNTMjU2INO

nJa_uE2DOwl1Kz-0cwSbKFzj302XxYSI-RLBM6hbVGmP4axtJQPA9SOpo3s3NMk
mOmkkawnfwPNjpcOmc3z79cuQWkQPFQo-mDxmogz8dxBcheaTUg3ZvpbGCXxZ
jJDYENRWiZ5M9BilLy@9BIF5mHp85QL6XED1JEZMOh-1uT11gPDcDD79qWtrCfE
JmMNmFsx5fcB2PFAcVEQOt_YmOXXx5_GuOitlnILKXLR2YnfOmfLhEcC5LebpWy
EHW6WZzQ4iH9SIcIupPV1iKCzmJcPrDBJ5Fc_KMBcXBinaS__ wftNywaGgfi_N
Ssx24LxtK6fIkejRIMBmCfxvOTg8CtXxpURigg

6KB707dMOYTIgHtLVvtgWQ8mKwboJW30f91locizkDTHzZBC2I1rT100Q
AXY8DCtDaGlsbGljb3RoZQ
KD1TtXchhZTGUfMYmOYGS4H T fXPSUrfmgCHXaI9wOGY

L1hRZFfphc2f5X3nTTJP6g

Note that the octets of the UTF-8 representation of the first two parts of this serialization,
including the period ('.") character separating them, are used as the AAD value in step 17 of
the JWE encryption process in Section 5.1.

This representation is suggested for those who may desire or require a compact, URL-safe
serialization of JWEs with multiple recipients. It is a suggestion to implementers for whom this
functionality would be valuable, and not a normative part of this specification.

Appendix D. Acknowledgements _—

Solutions for encrypting JSON content were also explored by JSON Simple Encryption [JSE]
and JavaScript Message Security Format [I-D.rescorla-jsms], both of which significantly
influenced this draft. This draft attempts to explicitly reuse as many of the relevant concepts
from XML Encryption 1.1 [W3C.CR-xmlenc-corel-20120313] and RFC 5652 [RFC5652] as
possible, while utilizing simple compact JSON-based data structures.

Special thanks are due to John Bradley and Nat Sakimura for the discussions that helped
inform the content of this specification and to Eric Rescorla and Joe Hildebrand for allowing
the reuse of text from [I-D.rescorla-jsms] in this document.

Thanks to Axel Nennker, Emmanuel Raviart, Brian Campbell, and Edmund Jay for validating
the examples in this specification.

This specification is the work of the JOSE Working Group, which includes dozens of active and
dedicated participants. In particular, the following individuals contributed ideas, feedback, and
wording that influenced this specification:

Richard Barnes, John Bradley, Brian Campbell, Breno de Medeiros, Dick Hardt, Jeff Hodges,
Edmund Jay, James Manger, Tony Nadalin, Axel Nennker, Emmanuel Raviart, Nat Sakimura,
Jim Schaad, Hannes Tschofenig, and Sean Turner.

Jim Schaad and Karen O'Donoghue chaired the JOSE working group and Sean Turner and

Stephen Farrell served as Security area directors during the creation of this specification.

Appendix E. Document History

[[to be removed by the RFC editor before publication as an RFC]]

-10

-09

-08

-07

Changed the JWE processing rules for multiple recipients so that a single AAD
value contains the header parameters and encrypted key values for all the
recipients, enabling AES GCM to be safely used for multiple recipients.
Added an appendix suggesting a possible compact serialization for JWEs with
multiple recipients.

Added JWE JSON Serialization, as specified by draft-jones-jose-jwe-json-
serialization-04.

Registered application/jwe-js MIME type and JWE-JS typ header parameter
value.

Defined that the default action for header parameters that are not understood is

to ignore them unless specifically designated as "MUST be understood" or
included in the new crit (critical) header parameter list. This addressed issue
#6.

o Corrected x5c description. This addressed issue #12.
e Changed from using the term "byte" to "octet" when referring to 8 bit values.
o Added Key Management Mode definitions to terminology section and used the

defined terms to provide clearer key management instructions. This addressed
issue #5.

Added text about preventing the recipient from behaving as an oracle during
decryption, especially when using RSAES-PKCS1-V1 5.

o Changed from using the term "Integrity Value" to "Authentication Tag".
¢ Changed member name from integrity_value to authentication_tag in

the JWE JSON Serialization.

Removed Initialization Vector from the AAD value since it is already integrity
protected by all of the authenticated encryption algorithms specified in the JWA
specification.

Replaced A128CBC+HS256 and A256CBC+HS512 with A128CBC-HS256 and
A256CBC-HS512. The new algorithms perform the same cryptographic
computations as [I-D.mcgrew-aead-aes-cbc-hmac-sha2], but with the
Initialization Vector and Authentication Tag values remaining separate from the
Ciphertext value in the output representation. Also deleted the header
parameters epu (encryption PartyUInfo) and epv (encryption PartyVinfo), since
they are no longer used.

Replaced uses of the term "AEAD" with "Authenticated Encryption", since the
term AEAD in the RFC 5116 sense implied the use of a particular data
representation, rather than just referring to the class of algorithms that perform
authenticated encryption with associated data.

Applied editorial improvements suggested by Jeff Hodges and Hannes
Tschofenig. Many of these simplified the terminology used.

Clarified statements of the form "This header parameter is OPTIONAL" to "Use of

this header parameter is OPTIONAL".

Added a Header Parameter Usage Location(s) field to the IANA JSON Web
Signature and Encryption Header Parameters registry.

Added seriesInfo information to Internet Draft references.

¢ Added a data length prefix to PartyUInfo and PartyVInfo values.
¢ Updated values for example AES CBC calculations.
¢ Made several local editorial changes to clean up loose ends left over from to the

decision to only support block encryption methods providing integrity. One of

TOC

these changes was to explicitly state that the enc (encryption method) algorithm

-06

-05

-04

-03

-02

must be an Authenticated Encryption algorithm with a specified key length.

Removed the int and kdf parameters and defined the new composite
Authenticated Encryption algorithms A128CBC+HS256 and A256CBC+HS512 to
replace the former uses of AES CBC, which required the use of separate integrity
and key derivation functions.

Included additional values in the Concat KDF calculation -- the desired output
size and the algorithm value, and optionally PartyUinfo and PartyVinfo values.
Added the optional header parameters apu (agreement PartyUInfo), apv
(agreement PartyVinfo), epu (encryption PartyUInfo), and epv (encryption
PartyVinfo). Updated the KDF examples accordingly.

Promoted Initialization Vector from being a header parameter to being a top-
level JWE element. This saves approximately 16 bytes in the compact
serialization, which is a significant savings for some use cases. Promoting the
Initialization Vector out of the header also avoids repeating this shared value in
the JSON serialization.

Changed x5c (X.509 Certificate Chain) representation from being a single string
to being an array of strings, each containing a single base64 encoded DER
certificate value, representing elements of the certificate chain.

¢ Added an AES Key Wrap example.
¢ Reordered the encryption steps so CMK creation is first, when required.
¢ Correct statements in examples about which algorithms produce reproducible

results.

Support both direct encryption using a shared or agreed upon symmetric key,
and the use of a shared or agreed upon symmetric key to key wrap the CMK.
Added statement that "StringOrURI values are compared as case-sensitive
strings with no transformations or canonicalizations applied".

¢ Updated open issues.
¢ Indented artwork elements to better distinguish them from the body text.

Refer to the registries as the primary sources of defined values and then
secondarily reference the sections defining the initial contents of the registries.
Normatively reference XML Encryption 1.1 [W3C.CR-xmlenc-corel-20120313]
for its security considerations.

Reference draft-jones-jose-jwe-json-serialization instead of draft-jones-json-web-
encryption-json-serialization.

e Described additional open issues.
e Applied editorial suggestions.

Added the kdf (key derivation function) header parameter to provide crypto
agility for key derivation. The default KDF remains the Concat KDF with the SHA-
256 digest function.

Reordered encryption steps so that the Encoded JWE Header is always created
before it is needed as an input to the Authenticated Encryption "additional
authenticated data" parameter.

Added the cty (content type) header parameter for declaring type information
about the secured content, as opposed to the typ (type) header parameter,
which declares type information about this object.

Moved description of how to determine whether a header is for a JWS or a JWE
from the JWT spec to the JWE spec.

Added complete encryption examples for both Authenticated Encryption and
non-Authenticated Encryption algorithms.

Added complete key derivation examples.

Added "Collision Resistant Namespace" to the terminology section.

Reference ITU.X690.1994 for DER encoding.

Added Registry Contents sections to populate registry values.

Numerous editorial improvements.

¢ When using Authenticated Encryption algorithms (such as AES GCM), use the
"additional authenticated data" parameter to provide integrity for the header,
encrypted key, and ciphertext and use the resulting "authentication tag" value as
the JWE Authentication Tag.

o Defined KDF output key sizes.

o Generalized text to allow key agreement to be employed as an alternative to key
wrapping or key encryption.

e Changed compression algorithm from gzip to DEFLATE.

Clarified that it is an error when a kid value is included and no matching key is

found.

Clarified that JWEs with duplicate Header Parameter Names MUST be rejected.

Clarified the relationship between typ header parameter values and MIME types.

Registered application/jwe MIME type and "JWE" typ header parameter value.

Simplified]WK terminology to get replace the "JWK Key Object" and "JWK

Container Object" terms with simply "JSON Web Key (JWK)" and "JSON Web Key

Set (JWK Set)" and to eliminate potential confusion between single keys and sets

of keys. As part of this change, the Header Parameter Name for a public key

value was changed from jpk (JSON Public Key) to jwk (JSON Web Key).

e Added suggestion on defining additional header parameters such as x5t#S256
in the future for certificate thumbprints using hash algorithms other than SHA-1.

o Specify RFC 2818 server identity validation, rather than RFC 6125 (paralleling the
same decision in the OAuth specs).

o Generalized language to refer to Message Authentication Codes (MACs) rather
than Hash-based Message Authentication Codes (HMACs) unless in a context
specific to HMAC algorithms.

o Reformatted to give each header parameter its own section heading.

-01

e Added an integrity check for non-Authenticated Encryption algorithms.

o Added jpk and x5c header parameters for including JWK public keys and X.509
certificate chains directly in the header.

¢ Clarified that this specification is defining the JWE Compact Serialization.
Referenced the new JWE-JS spec, which defines the JWE JSON Serialization.

¢ Added text "New header parameters should be introduced sparingly since an
implementation that does not understand a parameter MUST reject the JWE".

¢ Clarified that the order of the encryption and decryption steps is not significant in
cases where there are no dependencies between the inputs and outputs of the
steps.

¢ Made other editorial improvements suggested by JOSE working group
participants.

-00

e Created the initial IETF draft based upon draft-jones-json-web-encryption-02 with
no normative changes.

¢ Changed terminology to no longer call both digital signatures and HMACs
"signatures".

Authors' Addresses TOC

Michael B. Jones
Microsoft
Email: mbj@microsoft.com

URI: http://self-issued.info/

Eric Rescorla
RTFM, Inc.
Email: ekr@rtfm.com

Joe Hildebrand
Cisco Systems, Inc.

Email: jhildebr@cisco.com

mailto:mbj@microsoft.com
http://self-issued.info/
mailto:ekr@rtfm.com
mailto:jhildebr@cisco.com

	JSON Web Encryption (JWE) draft-ietf-jose-json-web-encryption-10
	Abstract
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Notational Conventions
	2. Terminology
	3. JSON Web Encryption (JWE) Overview
	3.1. Example JWE using RSAES OAEP and AES GCM
	3.2. Example JWE using RSAES-PKCS1-V1_5 and AES_128_CBC_HMAC_SHA_256
	4. JWE Header
	4.1. Reserved Header Parameter Names
	4.1.1. "alg" (Algorithm) Header Parameter
	4.1.2. "enc" (Encryption Method) Header Parameter
	4.1.3. "epk" (Ephemeral Public Key) Header Parameter
	4.1.4. "zip" (Compression Algorithm) Header Parameter
	4.1.5. "jku" (JWK Set URL) Header Parameter
	4.1.6. "jwk" (JSON Web Key) Header Parameter
	4.1.7. "x5u" (X.509 URL) Header Parameter
	4.1.8. "x5t" (X.509 Certificate Thumbprint) Header Parameter
	4.1.9. "x5c" (X.509 Certificate Chain) Header Parameter
	4.1.10. "kid" (Key ID) Header Parameter
	4.1.11. "typ" (Type) Header Parameter
	4.1.12. "cty" (Content Type) Header Parameter
	4.1.13. "apu" (Agreement PartyUInfo) Header Parameter
	4.1.14. "apv" (Agreement PartyVInfo) Header Parameter
	4.1.15. "crit" (Critical) Header Parameter
	4.2. Public Header Parameter Names
	4.3. Private Header Parameter Names
	5. Producing and Consuming JWEs
	5.1. Message Encryption
	5.2. Message Decryption
	5.3. String Comparison Rules
	6. Encrypting JWEs with Cryptographic Algorithms
	6.1. CEK Encryption
	7. JSON Serialization
	7.1. Example JWE-JS
	8. Implementation Considerations
	9. IANA Considerations
	9.1. Registration of JWE Header Parameter Names
	9.1.1. Registry Contents
	9.2. JSON Web Signature and Encryption Type Values Registration
	9.2.1. Registry Contents
	9.3. Media Type Registration
	9.3.1. Registry Contents
	10. Security Considerations
	11. References
	11.1. Normative References
	11.2. Informative References
	Appendix A. JWE Examples
	A.1. Example JWE using RSAES OAEP and AES GCM
	A.1.1. JWE Header
	A.1.2. Encoded JWE Header
	A.1.3. Content Encryption Key (CEK)
	A.1.4. Key Encryption
	A.1.5. Encoded JWE Encrypted Key
	A.1.6. Initialization Vector
	A.1.7. Additional Authenticated Data Parameter
	A.1.8. Plaintext Encryption
	A.1.9. Encoded JWE Ciphertext
	A.1.10. Encoded JWE Authentication Tag
	A.1.11. Complete Representation
	A.1.12. Validation
	A.2. Example JWE using RSAES-PKCS1-V1_5 and AES_128_CBC_HMAC_SHA_256
	A.2.1. JWE Header
	A.2.2. Encoded JWE Header
	A.2.3. Content Encryption Key (CEK)
	A.2.4. Key Encryption
	A.2.5. Encoded JWE Encrypted Key
	A.2.6. Initialization Vector
	A.2.7. Additional Authenticated Data Parameter
	A.2.8. Plaintext Encryption
	A.2.9. Encoded JWE Ciphertext
	A.2.10. Encoded JWE Authentication Tag
	A.2.11. Complete Representation
	A.2.12. Validation
	A.3. Example JWE using AES Key Wrap and AES GCM
	A.3.1. JWE Header
	A.3.2. Encoded JWE Header
	A.3.3. Content Encryption Key (CEK)
	A.3.4. Key Encryption
	A.3.5. Encoded JWE Encrypted Key
	A.3.6. Initialization Vector
	A.3.7. Additional Authenticated Data Parameter
	A.3.8. Plaintext Encryption
	A.3.9. Encoded JWE Ciphertext
	A.3.10. Encoded JWE Authentication Tag
	A.3.11. Complete Representation
	A.3.12. Validation
	Appendix B. Example AES_128_CBC_HMAC_SHA_256 Computation
	B.1. Extract MAC_KEY and ENC_KEY from Key
	B.2. Encrypt Plaintext to Create Ciphertext
	B.3. Create 64 Bit Big Endian Representation of AAD Length
	B.4. Initialization Vector Value
	B.5. Create Input to HMAC Computation
	B.6. Compute HMAC Value
	B.7. Truncate HMAC Value to Create Authentication Tag
	Appendix C. Possible Compact Serialization for Multiple Recipients
	Appendix D. Acknowledgements
	Appendix E. Document History
	Authors' Addresses

