
 TOC OAuth Working Group J. Richer

Internet-Draft The MITRE Corporation

Intended status: Standards Track M. Jones

Expires: August 10, 2014 Microsoft

 J. Bradley

 Ping Identity

 M. Machulak

 Newcastle University

 P. Hunt

 Oracle Corporation

 February 6, 2014

OAuth 2.0 Dynamic Client Registration Core
Protocol

draft-ietf-oauth-dyn-reg-16
Abstract

This specification defines mechanisms used to dynamically register OAuth 2.0 clients at
authorization servers.

Status of this Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note
that other groups may also distribute working documents as Internet-Drafts. The list of
current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated,
replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-
Drafts as reference material or to cite them other than as “work in progress.”

This Internet-Draft will expire on August 10, 2014.

Copyright Notice

Copyright (c) 2014 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and
restrictions with respect to this document. Code Components extracted from this document
must include Simplified BSD License text as described in Section 4.e of the Trust Legal
Provisions and are provided without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction
 1.1. Notational Conventions
 1.2. Terminology
 1.3. Protocol Flow
2. Client Metadata
 2.1. Relationship between Grant Types and Response Types

 TOC

 TOC

 2.1. Relationship between Grant Types and Response Types
3. Software Statement
4. Client Registration Endpoint
 4.1. Client Registration Request
 4.2. Client Registration Response
5. Responses
 5.1. Client Information Response
 5.2. Client Registration Error Response
6. IANA Considerations
 6.1. OAuth Registration Client Metadata Registry
 6.1.1. Registration Template
 6.1.2. Initial Registry Contents
 6.2. OAuth Token Endpoint Authentication Methods Registry
 6.2.1. Registration Template
 6.2.2. Initial Registry Contents
7. Security Considerations
8. References
 8.1. Normative References
 8.2. Informative References
Appendix A. Use Cases
 A.1. Open versus Protected Dynamic Client Registration
 A.1.1. Open Dynamic Client Registration
 A.1.2. Protected Dynamic Client Registration
 A.2. Registration Without or With Software Statements
 A.2.1. Registration Without a Software Statement
 A.2.2. Registration With a Software Statement
 A.3. Registration by the Client or the Developer
 A.3.1. Registration by the Client
 A.3.2. Registration by the Developer
 A.4. Client ID per Client Instance or per Client Software
 A.4.1. Client ID per Client Software Instance
 A.4.2. Client ID Shared between all Instances of Client Software
 A.5. Stateful or Stateless Registration
 A.5.1. Stateful Client Registration
 A.5.2. Stateless Client Registration
Appendix B. Acknowledgments
Appendix C. Document History
§ Authors' Addresses

1. Introduction

In order for an OAuth 2.0 client to utilize an OAuth 2.0 authorization server, the client needs
specific information to interact with the server, including an OAuth 2.0 Client ID to use at that
server. This specification describes how an OAuth 2.0 client can be dynamically registered
with an authorization server to obtain this information.

As part of the registration process, this specification also defines a mechanism for the client
to present the authorization server with a set of metadata, such as a set of valid redirection
URIs. This metadata can either be communicated in a self-asserted fashion or as a set of
metadata called a software statement, which can be signed; in the case of a signed software
statement, the signer is vouching for the validity of the data about the client.

The mechanisms defined in this specification can be used either for a client to dynamically
register itself with authorization servers or for a client developer to programmatically register
the client with authorization servers.

1.1. Notational Conventions

The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL NOT', 'SHOULD', 'SHOULD
NOT', 'RECOMMENDED', 'MAY', and 'OPTIONAL' in this document are to be interpreted as
described in .

Unless otherwise noted, all the protocol parameter names and values are case sensitive.

[RFC2119]

 TOC

 TOC

1.2. Terminology

This specification uses the terms "Access Token", "Refresh Token", "Authorization Code",
"Authorization Grant", "Authorization Server", "Authorization Endpoint", "Client", "Client
Identifier", "Client Secret", "Protected Resource", "Resource Owner", "Resource Server",
"Response Type", and "Token Endpoint" defined by [RFC6749] and uses the term
"Claim" defined by [JWT].

This specification defines the following terms:

Client Developer
The person or organization that builds a client software package and prepares it
for distribution. A client developer obtains a software statement from a software
publisher, or self-generates one for the purposes of facilitating client registration.

Client Instance
A deployed instance of a piece of client software. Multiple instances of the same
piece of client software MAY use the same Client ID value at an authorization
server, provided that the Redirection URI values and potentially other values
dictated by authorization server policy are the same for all instances.

Client Software
Software implementing an OAuth 2.0 client.

Client Registration Endpoint
OAuth 2.0 endpoint through which a client can be registered at an authorization
server. The means by which the URL for this endpoint is obtained are out of scope
for this specification.

Initial Access Token
OAuth 2.0 access token optionally issued by an Authorization Server and used to
authorize calls to the client registration endpoint. The type and format of this
token are likely service-specific and are out of scope for this specification. The
means by which the authorization server issues this token as well as the means by
which the registration endpoint validates this token are out of scope for this
specification.

Deployment Organization
An administrative security domain under which, a software API is deployed and
protected by an OAuth 2.0 framework. In simple cloud deployments, the software
API publisher and the deployment organization may be the same. In other
scenarios, a software publisher may be working with many different deployment
organizations.

Software API Deployment
A deployment instance of a software API that is protected by OAuth 2.0 in a
particular deployment organization domain. For any particular software API, there
may be one or more deployments. A software API deployment typically has an
associated OAuth 2.0 authorization server endpoint as well as a client registration
endpoint. The means by which endpoints are obtained (discovery) are out of scope
for this specification.

Software API Publisher
The organization that defines a particular web accessible API that may deployed in
one or more deployment environments. A publisher may be any commercial,
public, private, or open source organization that is responsible for publishing and
distributing software that may be protected via OAuth 2.0. A software API publisher
may issue software statements which client developers use to distribute with their
software to facilitate registration. In some cases a software API publisher and a
client developer may be the same organization.

Software Statement
A JSON Web Token (JWT) that asserts metadata values about the client
software. The JWT MUST be signed and contain an iss (issuer) claim if its
metadata values are being attested to by the issuer; if the metadata values are
not being attested to, the JWT MAY be unsigned. This can be used by the
registration system to qualify clients for eligibility to register. It may also be
accepted by some authorization servers directly as a Client ID value, without prior
registration.

OAuth 2.0
JSON Web Token (JWT)

[JWT]

 TOC

 TOC

1.3. Protocol Flow

 +--------(A)- Initial Access Token (OPTIONAL)
 |
 | +----(B)- Software Statement (OPTIONAL)
 | |
 v v
 +-----------+ +---------------+
	--(C)- Client Registration Request -->	Client
Client or		Registration
Developer	<-(D)- Client Information Response ---	Endpoint
	+---------------+	
 +-----------+

Figure 1: Abstract Dynamic Client Registration Flow

The abstract OAuth 2.0 client dynamic registration flow illustrated in Figure 1 describes the
interaction between the client or developer and the endpoint defined in this specification. This
figure does not demonstrate error conditions. This flow includes the following steps:

(A)
Optionally, the client or developer is issued an initial access token giving access to
the client registration endpoint. The method by which the initial access token is
issued to the client or developer is out of scope for this specification.

(B)
Optionally, the client or developer is issued a software statement for use with the
client registration endpoint. The method by which the software statement is issued
to the client or developer is out of scope for this specification.

(C)
The client or developer calls the client registration endpoint with its desired
registration metadata, optionally including the initial access token from (A) if one
is required by the authorization server.

(D)
The authorization server registers the client and returns the client's registered
metadata, a client identifier that is unique at the server, a set of client credentials
such as a client secret if applicable for this client, and possibly other values.

2. Client Metadata

Clients have a set of metadata values associated with their unique client identifier at an
authorization server, such as the list of valid redirect URIs.

The client metadata values are used in two ways:

as input values to registration requests, and
as output values in registration responses.

These client metadata values are defined by this specification:

redirect_uris
Array of redirect URIs for use in redirect-based flows such as the authorization
code and implicit grant types. It is RECOMMENDED that clients using these flows
register this parameter, and an authorization server SHOULD require registration
of valid redirect URIs for all clients that use these grant types to protect against
token and credential theft attacks.

token_endpoint_auth_method
The requested authentication method for the token endpoint. Values defined by
this specification are:

none: The client is a public client as defined in OAuth 2.0 and
does not have a client secret.
client_secret_post: The client uses the HTTP POST
parameters defined in OAuth 2.0 section 2.3.1.

 TOC

parameters defined in OAuth 2.0 section 2.3.1.
client_secret_basic: the client uses HTTP Basic defined in
OAuth 2.0 section 2.3.1

Additional values can be defined via the IANA OAuth Token Endpoint
Authentication Methods Registry . Absolute URIs can also be used as
values for this parameter without being registered. If unspecified or omitted, the
default is client_secret_basic, denoting HTTP Basic Authentication Scheme as
specified in Section 2.3.1 of OAuth 2.0.

grant_types
Array of OAuth 2.0 grant types that the Client may use. These grant types are
defined as follows:

authorization_code: The Authorization Code Grant
described in OAuth 2.0 Section 4.1
implicit: The Implicit Grant described in OAuth 2.0 Section
4.2
password: The Resource Owner Password Credentials Grant
described in OAuth 2.0 Section 4.3
client_credentials: The Client Credentials Grant described
in OAuth 2.0 Section 4.4
refresh_token: The Refresh Token Grant described in OAuth
2.0 Section 6.
urn:ietf:params:oauth:grant-type:jwt-bearer: The
JWT Bearer Grant defined in

 [OAuth.JWT].
urn:ietf:params:oauth:grant-type:saml2-bearer: The
SAML 2 Bearer Grant defined in

 [OAuth.SAML2].

Authorization Servers MAY allow for other values as defined in grant type
extensions to OAuth 2.0. The extension process is described in OAuth 2.0 Section
2.5. If the token endpoint is used in the grant type, the value of this parameter
MUST be the same as the value of the grant_type parameter passed to the
token endpoint defined in the extension.

response_types
Array of the OAuth 2.0 response types that the Client may use. These response
types are defined as follows:

code: The Authorization Code response described in OAuth
2.0 Section 4.1.
token: The Implicit response described in OAuth 2.0 Section
4.2.

Authorization servers MAY allow for other values as defined in response type
extensions to OAuth 2.0. The extension process is described in OAuth 2.0 Section
2.5. If the authorization endpoint is used by the grant type, the value of this
parameter MUST be the same as the value of the response_type parameter
passed to the authorization endpoint defined in the extension.

Authorization servers MUST accept all fields in this list. Extensions and profiles of this
specification MAY expand this list. For instance, the
specification defines additional client metadata values. The authorization server MUST ignore
any client metadata values sent by the Client that it does not understand.

Client metadata values can either be communicated directly in the body of a registration
request, as described in , or included as claims in a software statement, as
described in . If the same client metadata name is present in both locations, the
value in the software statement SHOULD take precedence.

2.1. Relationship between Grant Types and Response Types

The grant_types and response_types values described above are partially orthogonal, as
they refer to arguments passed to different endpoints in the OAuth protocol. However, they
are related in that the grant_types available to a client influence the response_types that

Section 6.2

OAuth JWT Bearer Token
Profiles

OAuth SAML 2 Bearer
Token Profiles

[OAuth.Registration.Metadata]

Section 4.1
Section 3

 TOC

 TOC

the client is allowed to use, and vice versa. For instance, a grant_types value that includes
authorization_code implies a response_types value that includes code, as both values
are defined as part of the OAuth 2.0 authorization code grant. As such, a server supporting
these fields SHOULD take steps to ensure that a client cannot register itself into an
inconsistent state.

The correlation between the two fields is listed in the table below.

grant_types value includes: response_types value includes:

authorization_code code

implicit token

password (none)

client_credentials (none)

refresh_token (none)

urn:ietf:params:oauth:grant-type:jwt-bearer (none)

urn:ietf:params:oauth:grant-type:saml2-bearer (none)

Extensions and profiles of this document that introduce new values to either the
grant_types or response_types parameter MUST document all correspondences between
these two parameter types.

3. Software Statement

A Software Statement is a JSON Web Token (JWT) that asserts metadata values about
the client software. The JWT MUST be signed and contain an iss (issuer) claim if its metadata
values are being attested to by the issuer; if the metadata values are not being attested to,
the JWT MAY be unsigned. This can be used by the registration system to qualify clients for
eligibility to register. It may also be accepted by some authorization servers directly as a
Client ID value, without prior registration.

To obtain a software statement, a client developer may generate a client specific JWT, or a
client developer may register with a software API publisher to obtain a software statement.
The statement is typically distributed with all copies of a client application.

The criteria by which authorization servers determine whether to trust and utilize the
information in a software statement is beyond the scope of this specification.

If the authorization server determines that the claims in a software statement uniquely
identify a piece of software, the same Client ID value MAY be returned for all dynamic
registrations using that software statement. However, authorization servers MAY alternatively
return a unique Client ID value for each dynamic registration of a piece of software.

In some cases, authorization servers MAY choose to accept a software statement value
directly as a Client ID in an authorization request, without a prior dynamic client registration
having been performed. The circumstances under which an authorization server would do so,
and the specific software statement characteristics required in this case, are beyond the
scope of this specification.

4. Client Registration Endpoint

The client registration endpoint is an OAuth 2.0 endpoint defined in this document that is
designed to allow a client to be registered with the authorization server. The client
registration endpoint MUST accept HTTP POST messages with request parameters encoded
in the entity body using the application/json format. The client registration endpoint
MUST be protected by a transport-layer security mechanism, and the server MUST support
TLS 1.2 [RFC5246] and/or TLS 1.0 and MAY support additional
transport-layer mechanisms meeting its security requirements. When using TLS, the Client
MUST perform a TLS/SSL server certificate check, per [RFC6125].

[JWT]

RFC 5246 [RFC2246]

RFC 6125

 TOC

The client registration endpoint MAY be an OAuth 2.0 protected resource and accept an initial
access token in the form of an [RFC6749] access token to limit registration to
only previously authorized parties. The method by which the initial access token is obtained
by the registrant is generally out-of-band and is out of scope for this specification. The
method by which the initial access token is verified and validated by the client registration
endpoint is out of scope for this specification.

To support open registration and facilitate wider interoperability, the client registration
endpoint SHOULD allow initial registration requests with no authorization (which is to say, with
no OAuth 2.0 access token in the request). These requests MAY be rate-limited or otherwise
limited to prevent a denial-of-service attack on the client registration endpoint.

The client registration endpoint MUST ignore all parameters it does not understand.

4.1. Client Registration Request

This operation registers a new client to the authorization server. The authorization server
assigns this client a unique client identifier, optionally assigns a client secret, and associates
the metadata given in the request with the issued client identifier. The request includes any
client metadata parameters being specified for the client during the registration. The
authorization server MAY provision default values for any items omitted in the client
metadata.

Client metadata values may also be provided in a software statement, as described in
. Software statements are included in registration requests using this registration

parameter:

software_statement
A software statement containing client metadata values about the client software
as claims.

To register, the client or developer sends an HTTP POST to the client registration endpoint
with a content type of application/json. The HTTP Entity Payload is a [RFC4627]
document consisting of a JSON object and all parameters as top-level members of that JSON
object.

For example, if the server supports open registration (with no initial access token), the client
could send the following registration request to the client registration endpoint:

The following is a non-normative example request not using an initial access token (with line
wraps within values for display purposes only):

 POST /register HTTP/1.1
 Content-Type: application/json
 Accept: application/json
 Host: server.example.com

 {
 "redirect_uris":[
 "https://client.example.org/callback",
 "https://client.example.org/callback2"],
 "token_endpoint_auth_method":"client_secret_basic",
 "example_extension_parameter": "example_value"
 }

Alternatively, if the server supports authorized registration, the developer or the client will be
provisioned with an initial access token (the method by which the initial access token is
obtained is out of scope for this specification). The developer or client sends the following
authorized registration request to the client registration endpoint. Note that the initial access
token sent in this example as an OAuth 2.0 Bearer Token , but any OAuth 2.0
token type could be used by an authorization server.

The following is a non-normative example request using an initial access token (with line
wraps within values for display purposes only):

OAuth 2.0

Section 3

JSON

[RFC6750]

 TOC

 TOC

 TOC

 POST /register HTTP/1.1
 Content-Type: application/json
 Accept: application/json
 Authorization: Bearer ey23f2.adfj230.af32-developer321
 Host: server.example.com

 {
 "redirect_uris":["https://client.example.org/callback",
 "https://client.example.org/callback2"],
 "token_endpoint_auth_method":"client_secret_basic",
 "example_extension_parameter": "example_value"
 }

In the following example, some registration parameters are conveyed as claims in a software
statement (with line wraps within values for display purposes only):

 POST /register HTTP/1.1
 Content-Type: application/json
 Accept: application/json
 Host: server.example.com

 {
 "redirect_uris":[
 "https://client.example.org/callback",
 "https://client.example.org/callback2"
],
 "software_statement":"eyJhbGciOiJFUzI1NiJ9.
 eyJpc3Mi[...omitted for brevity...].
 J9l-ZhwP[...omitted for brevity...]",
 "extension_parameter":"foo"
 }

4.2. Client Registration Response

Upon successful registration, the authorization server generates a new client identifier for the
client. This client identifier MUST be unique at the server and MUST NOT be in use by any
other client. The server responds with an HTTP 201 Created code and a body of type
application/json with content as described in .

Upon an unsuccessful registration, the authorization server responds with an error, as
described in .

5. Responses

The following responses are sent in response to registration requests.

5.1. Client Information Response

The response contains the client identifier as well as the client secret, if the client is a
confidential client. The response MAY contain additional fields as specified by extensions to
this specification.

client_id
REQUIRED. Unique client identifier. It MUST NOT be currently valid for any other
distinct registered client. It MAY be the same as the Client ID value used by other
instances of this client, provided that the Redirection URI values and potentially

Section 5.1

Section 5.2

 TOC

instances of this client, provided that the Redirection URI values and potentially
other values dictated by authorization server policy are the same for all instances.

client_secret
OPTIONAL. The client secret. If issued, this MUST be unique for each client_id.
This value is used by confidential clients to authenticate to the token endpoint as
described in [RFC6749] Section 2.3.1.

client_id_issued_at
OPTIONAL. Time at which the Client Identifier was issued. The time is represented
as the number of seconds from 1970-01-01T0:0:0Z as measured in UTC until the
date/time.

client_secret_expires_at
REQUIRED if client_secret is issued. Time at which the client_secret will
expire or 0 if it will not expire. The time is represented as the number of seconds
from 1970-01-01T0:0:0Z as measured in UTC until the date/time.

Additionally, the Authorization Server MUST return all registered metadata about this client,
including any fields provisioned by the authorization server itself. The authorization server
MAY reject or replace any of the client's requested metadata values submitted during the
registration or update requests and substitute them with suitable values.

The response is an application/json document with all parameters as top-level members
of a [RFC4627].

If a software statement was used as part of the registration, its value SHOULD be returned in
the response and its value MUST be returned if the authorization server supports registration
management operations that would require its
presence in subsequent operations. Client metadata elements used from the software
statement MUST also be returned directly as top-level client metadata values in the
registration response (possibly with different values, since the values requested and the
values used may differ).

Following is a non-normative example response:

 HTTP/1.1 200 OK
 Content-Type: application/json
 Cache-Control: no-store
 Pragma: no-cache

 {
 "client_id":"s6BhdRkqt3",
 "client_secret": "cf136dc3c1fc93f31185e5885805d",
 "client_id_issued_at":2893256800,
 "client_secret_expires_at":2893276800,
 "redirect_uris":[
 "https://client.example.org/callback",
 "https://client.example.org/callback2"],
 "grant_types": ["authorization_code", "refresh_token"],
 "token_endpoint_auth_method": "client_secret_basic",
 "example_extension_parameter": "example_value"
 }

5.2. Client Registration Error Response

When an OAuth 2.0 error condition occurs, such as the client presenting an invalid initial
access token, the authorization server returns an error response appropriate to the OAuth
2.0 token type.

When a registration error condition occurs, the authorization server returns an HTTP 400
status code (unless otherwise specified) with content type application/json consisting of
a [RFC4627] describing the error in the response body.

The JSON object contains two members:

error
Single ASCII error code string.

OAuth 2.0

JSON object

[OAuth.Registration.Management]

JSON object

 TOC

 TOC

 TOC

Single ASCII error code string.
error_description

Human-readable ASCII text description of the error used for debugging.

This specification defines the following error codes:

invalid_redirect_uri
The value of one or more redirect_uris is invalid.

invalid_client_metadata
The value of one of the client metadata fields is invalid and the server has rejected
this request. Note that an Authorization server MAY choose to substitute a valid
value for any requested parameter of a client's metadata.

invalid_software_statement
The software statement presented is invalid.

unapproved_software_statement
The software statement presented is not approved for use with this authorization
server.

Following is a non-normative example of an error response (with line wraps for display
purposes only):

 HTTP/1.1 400 Bad Request
 Content-Type: application/json
 Cache-Control: no-store
 Pragma: no-cache

 {
 "error":"invalid_redirect_uri",
 "error_description":"The redirect URI http://sketchy.example.com
 is not allowed for this server."
 }

6. IANA Considerations

6.1. OAuth Registration Client Metadata Registry

This specification establishes the OAuth Registration Client Metadata registry.

OAuth registration client metadata values are registered with a Specification Required
() after a two-week review period on the oauth-ext-review@ietf.org mailing list, on
the advice of one or more Designated Experts. However, to allow for the allocation of values
prior to publication, the Designated Expert(s) may approve registration once they are
satisfied that such a specification will be published.

Registration requests must be sent to the oauth-ext-review@ietf.org mailing list for review
and comment, with an appropriate subject (e.g., "Request to register OAuth Registration
Client Metadata name: example").

Within the review period, the Designated Expert(s) will either approve or deny the registration
request, communicating this decision to the review list and IANA. Denials should include an
explanation and, if applicable, suggestions as to how to make the request successful.

IANA must only accept registry updates from the Designated Expert(s) and should direct all
requests for registration to the review mailing list.

6.1.1. Registration Template

Client Metadata Name:
The name requested (e.g., "example"). This name is case sensitive. Names that
match other registered names in a case insensitive manner SHOULD NOT be

[RFC5226]

 TOC

 TOC

match other registered names in a case insensitive manner SHOULD NOT be
accepted.

Client Metadata Description:
Brief description of the metadata value (e.g., "Example description").

Change controller:
For Standards Track RFCs, state "IETF". For others, give the name of the
responsible party. Other details (e.g., postal address, email address, home page
URI) may also be included.

Specification document(s):
Reference to the document(s) that specify the token endpoint authorization
method, preferably including a URI that can be used to retrieve a copy of the
document(s). An indication of the relevant sections may also be included but is
not required.

6.1.2. Initial Registry Contents

The initial contents of the OAuth Registration Client Metadata registry are:

Client Metadata Name: redirect_uris
Client Metadata Description: Array of redirect URIs for use in redirect-based flows
Change controller: IESG
Specification document(s): [[this document]]

Client Metadata Name: token_endpoint_auth_method
Client Metadata Description: Requested authentication method for the token
endpoint
Change controller: IESG
Specification document(s): [[this document]]

Client Metadata Name: grant_types
Client Metadata Description: Array of OAuth 2.0 grant types that the Client may
use
Change controller: IESG
Specification document(s): [[this document]]

Client Metadata Name: response_types
Client Metadata Description: Array of the OAuth 2.0 response types that the
Client may use
Change controller: IESG
Specification document(s): [[this document]]

6.2. OAuth Token Endpoint Authentication Methods Registry

This specification establishes the OAuth Token Endpoint Authentication Methods registry.

Additional values for use as token_endpoint_auth_method metadata values are registered
with a Specification Required () after a two-week review period on the oauth-ext-
review@ietf.org mailing list, on the advice of one or more Designated Experts. However, to
allow for the allocation of values prior to publication, the Designated Expert(s) may approve
registration once they are satisfied that such a specification will be published.

Registration requests must be sent to the oauth-ext-review@ietf.org mailing list for review
and comment, with an appropriate subject (e.g., "Request to register
token_endpoint_auth_method value: example").

Within the review period, the Designated Expert(s) will either approve or deny the registration
request, communicating this decision to the review list and IANA. Denials should include an
explanation and, if applicable, suggestions as to how to make the request successful.

IANA must only accept registry updates from the Designated Expert(s) and should direct all
requests for registration to the review mailing list.

[RFC5226]

 TOC

 TOC

 TOC

6.2.1. Registration Template

Token Endpoint Authorization Method Name:
The name requested (e.g., "example"). This name is case sensitive. Names that
match other registered names in a case insensitive manner SHOULD NOT be
accepted.

Change controller:
For Standards Track RFCs, state "IETF". For others, give the name of the
responsible party. Other details (e.g., postal address, email address, home page
URI) may also be included.

Specification document(s):
Reference to the document(s) that specify the token endpoint authorization
method, preferably including a URI that can be used to retrieve a copy of the
document(s). An indication of the relevant sections may also be included but is
not required.

6.2.2. Initial Registry Contents

The initial contents of the OAuth Token Endpoint Authentication Methods registry are:

Token Endpoint Authorization Method Name: none
Change controller: IESG
Specification document(s): [[this document]]

Token Endpoint Authorization Method Name: client_secret_post
Change controller: IESG
Specification document(s): [[this document]]

Token Endpoint Authorization Method Name: client_secret_basic
Change controller: IESG
Specification document(s): [[this document]]

7. Security Considerations

Since requests to the client registration endpoint result in the transmission of clear-text
credentials (in the HTTP request and response), the Authorization Server MUST require the
use of a transport-layer security mechanism when sending requests to the registration
endpoint. The server MUST support TLS 1.2 [RFC5246] and/or TLS 1.0

 and MAY support additional transport-layer mechanisms meeting its security
requirements. When using TLS, the Client MUST perform a TLS/SSL server certificate check,
per [RFC6125].

For clients that use redirect-based grant types such as authorization_code and
implicit, authorization servers SHOULD require clients to register their redirect_uris.
Requiring clients to do so can help mitigate attacks where rogue actors inject and
impersonate a validly registered client and intercept its authorization code or tokens through
an invalid redirect URI.

Public clients MAY register with an authorization server using this protocol, if the authorization
server's policy allows them. Public clients use a none value for the
token_endpoint_auth_method metadata field and are generally used with the implicit
grant type. Often these clients will be short-lived in-browser applications requesting access to
a user's resources and access is tied to a user's active session at the authorization server.
Since such clients often do not have long-term storage, it's possible that such clients would
need to re-register every time the browser application is loaded. Additionally, such clients
may not have ample opportunity to unregister themselves using the delete action before the
browser closes. To avoid the resulting proliferation of dead client identifiers, an authorization
server MAY decide to expire registrations for existing clients meeting certain criteria after a
period of time has elapsed.

Since different OAuth 2.0 grant types have different security and usage parameters, an

RFC 5246
[RFC2246]

RFC 6125

 TOC

 TOC

 TOC

 TOC

Since different OAuth 2.0 grant types have different security and usage parameters, an
authorization server MAY require separate registrations for a piece of software to support
multiple grant types. For instance, an authorization server might require that all clients using
the authorization_code grant type make use of a client secret for the
token_endpoint_auth_method, but any clients using the implicit grant type do not use
any authentication at the token endpoint. In such a situation, a server MAY disallow clients
from registering for both the authorization_code and implicit grant types
simultaneously. Similarly, the authorization_code grant type is used to represent access
on behalf of an end user, but the client_credentials grant type represents access on
behalf of the client itself. For security reasons, an authorization server could require that
different scopes be used for these different use cases, and as a consequence it MAY disallow
these two grant types from being registered together by the same client. In all of these
cases, the authorization server would respond with an invalid_client_metadata error
response.

8. References

8.1. Normative References

[JWT] Jones, M., Bradley, J., and N. Sakimura, “JSON Web Token (JWT),” draft-ietf-
oauth-json-web-token (work in progress), January 2014 (HTML).

[OAuth.JWT] Jones, M., Campbell, B., and C. Mortimore, “JSON Web Token (JWT) Profile for
OAuth 2.0 Client Authentication and Authorization Grants,” draft-ietf-oauth-
jwt-bearer (work in progress), December 2013 (HTML).

[OAuth.Registration.Management] Richer, J., Jones, M., Bradley, J., Machulak, M., and P. Hunt, “OAuth 2.0
Dynamic Client Registration Management Protocol,” draft-ietf-oauth-dyn-reg-
management (work in progress), February 2014 (HTML).

[OAuth.SAML2] Campbell, B., Mortimore, C., and M. Jones, “SAML 2.0 Profile for OAuth 2.0
Client Authentication and Authorization Grants,” draft-ietf-oauth-saml2-bearer
(work in progress), December 2013 (HTML).

[RFC2119] Bradner, S., “Key words for use in RFCs to Indicate Requirement Levels,”
BCP 14, RFC 2119, March 1997 (TXT, HTML, XML).

[RFC2246] Dierks, T. and C. Allen, “The TLS Protocol Version 1.0,” RFC 2246, January 1999
(TXT).

[RFC4627] Crockford, D., “The application/json Media Type for JavaScript Object Notation
(JSON),” RFC 4627, July 2006 (TXT).

[RFC5226] Narten, T. and H. Alvestrand, “Guidelines for Writing an IANA Considerations
Section in RFCs,” BCP 26, RFC 5226, May 2008 (TXT).

[RFC5246] Dierks, T. and E. Rescorla, “The Transport Layer Security (TLS) Protocol Version
1.2,” RFC 5246, August 2008 (TXT).

[RFC6125] Saint-Andre, P. and J. Hodges, “Representation and Verification of Domain-
Based Application Service Identity within Internet Public Key Infrastructure
Using X.509 (PKIX) Certificates in the Context of Transport Layer Security
(TLS),” RFC 6125, March 2011 (TXT).

[RFC6749] Hardt, D., “The OAuth 2.0 Authorization Framework,” RFC 6749, October 2012
(TXT).

[RFC6750] Jones, M. and D. Hardt, “The OAuth 2.0 Authorization Framework: Bearer Token
Usage,” RFC 6750, October 2012 (TXT).

8.2. Informative References

[OAuth.Registration.Metadata] Richer, J., Jones, M., Bradley, J., Machulak, M., and P. Hunt, “OAuth 2.0 Dynamic
Client Registration Metadata,” draft-ietf-oauth-dyn-reg-metadata (work in progress),
February 2014 (HTML).

Appendix A. Use Cases

This appendix describes different ways that this specification can be utilized, including
describing some of the choices that may need to be made. Some of the choices are
independent and can be used in combination, whereas some of the choices are interrelated.

mailto:mbj@microsoft.com
mailto:ve7jtb@ve7jtb.com
mailto:n-sakimura@nri.co.jp
http://tools.ietf.org/html/draft-ietf-oauth-json-web-token
http://tools.ietf.org/html/draft-ietf-oauth-json-web-token
mailto:mbj@microsoft.com
mailto:brian.d.campbell@gmail.com
mailto:cmortimore@salesforce.com
http://tools.ietf.org/html/draft-ietf-oauth-jwt-bearer
http://tools.ietf.org/html/draft-ietf-oauth-jwt-bearer
mailto:jricher@mitre.org
mailto:mbj@microsoft.com
mailto:ve7jtb@ve7jtb.com
mailto:m.p.machulak@ncl.ac.uk
mailto:phil.hunt@yahoo.com
http://tools.ietf.org/html/draft-ietf-oauth-dyn-reg-management
http://tools.ietf.org/html/draft-ietf-oauth-dyn-reg-management
mailto:brian.d.campbell@gmail.com
mailto:cmortimore@salesforce.com
mailto:mbj@microsoft.com
http://tools.ietf.org/html/draft-ietf-oauth-saml2-bearer
http://tools.ietf.org/html/draft-ietf-oauth-saml2-bearer
mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://www.rfc-editor.org/rfc/rfc2119.txt
http://xml.resource.org/public/rfc/html/rfc2119.html
http://xml.resource.org/public/rfc/xml/rfc2119.xml
mailto:tdierks@certicom.com
mailto:callen@certicom.com
http://tools.ietf.org/html/rfc2246
http://www.rfc-editor.org/rfc/rfc2246.txt
http://tools.ietf.org/html/rfc4627
http://www.rfc-editor.org/rfc/rfc4627.txt
http://tools.ietf.org/html/rfc5226
http://www.rfc-editor.org/rfc/rfc5226.txt
http://tools.ietf.org/html/rfc5246
http://www.rfc-editor.org/rfc/rfc5246.txt
http://tools.ietf.org/html/rfc6125
http://www.rfc-editor.org/rfc/rfc6125.txt
http://tools.ietf.org/html/rfc6749
http://www.rfc-editor.org/rfc/rfc6749.txt
http://tools.ietf.org/html/rfc6750
http://www.rfc-editor.org/rfc/rfc6750.txt
mailto:jricher@mitre.org
mailto:mbj@microsoft.com
mailto:ve7jtb@ve7jtb.com
mailto:m.p.machulak@ncl.ac.uk
mailto:phil.hunt@yahoo.com
http://tools.ietf.org/html/draft-ietf-oauth-dyn-reg-metadata
http://tools.ietf.org/html/draft-ietf-oauth-dyn-reg-metadata

 TOC

 TOC

 TOC

 TOC

 TOC

 TOC

 TOC

 TOC

 TOC

A.1. Open versus Protected Dynamic Client Registration

A.1.1. Open Dynamic Client Registration

Authorization servers that support open registration allow registrations to be made with no
initial access token. This allows all client software to register with the authorization server.

A.1.2. Protected Dynamic Client Registration

Authorization servers that support protected registration require that an initial access token
be used when making registration requests. While the method by which a client or developer
receives this initial access token and the method by which the authorization server validates
this initial access token are out of scope for this specification, a common approach is for the
developer to use a manual pre-registration portal at the authorization server that issues an
initial access token to the developer.

A.2. Registration Without or With Software Statements

A.2.1. Registration Without a Software Statement

When a software statement is not used in the registration request, the authorization server
must be willing to use client metadata values without them being signed (and thereby
attested to) by any authority. (Note that this choice is independent of the Open versus
Protected choice, and that an initial access token is another possible form of attestation.)

A.2.2. Registration With a Software Statement

A software statement can be used in a registration request to provide attestation for a set of
client metadata values for a piece of client software by an authority. This can be useful when
the authorization server wants to restrict registration to client software attested to by a set of
authorities or when it wants to know that multiple registration requests refer to the same
piece of client software.

A.3. Registration by the Client or the Developer

A.3.1. Registration by the Client

In some use cases, client software will dynamically register itself with an authorization server
to obtain a Client ID and other information needed to interact with the authorization server. In
this case, no Client ID for the authorization server is packaged with the client software.

A.3.2. Registration by the Developer

 TOC

 TOC

 TOC

 TOC

 TOC

 TOC

 TOC

In some cases, the developer (or development software being used by the developer) will
pre-register the client software with the authorization server or a set of authorization servers.
In this case, the Client ID value(s) for the authorization server(s) can be packaged with the
client software.

A.4. Client ID per Client Instance or per Client Software

A.4.1. Client ID per Client Software Instance

In some cases, each deployed instance of a piece of client software will dynamically register
and obtain distinct Client ID values. This can be advantageous, for instance, if the code flow is
being used, as it also enables each client instance to have its own client secret. This can be
useful for native clients, which cannot maintain the secrecy of a client secret value packaged
with the software, but which may be able to maintain the secrecy of a per-instance client
secret.

A.4.2. Client ID Shared between all Instances of Client Software

In some cases, each deployed instance of a piece of client software will share a common
Client ID value. For instance, this is often the case for native client using implicit flow, when no
client secret is involved. Particular authorization servers might choose, for instance, to
maintain a mapping between software statement values and Client ID values, and return the
same Client ID value for all registration requests for a particular piece of software. The
circumstances under which an authorization server would do so, and the specific software
statement characteristics required in this case, are beyond the scope of this specification.

A.5. Stateful or Stateless Registration

A.5.1. Stateful Client Registration

In some cases, authorization servers will maintain state about registered clients, typically
indexing this state using the Client ID value. This state would typically include the client
metadata values associated with the client registration, and possibly other state specific to
the authorization server's implementation. When stateful registration is used, operations to
support retrieving and/or updating this state may be supported, as described in the

 specification.

A.5.2. Stateless Client Registration

In some cases, authorization servers will be implemented in a manner the enables them to
not maintain any local state about registered clients. One means of doing this is to encode
all the registration state in the returned Client ID value, and possibly encrypting the state to
the authorization server to maintain the confidentiality and integrity of the state.

Appendix B. Acknowledgments

The authors thank the OAuth Working Group, the User-Managed Access Working Group, and
the OpenID Connect Working Group participants for their input to this document. In particular,

[OAuth.Registration.Management]

 TOC

the OpenID Connect Working Group participants for their input to this document. In particular,
the following individuals have been instrumental in their review and contribution to various
versions of this document: Amanda Anganes, Derek Atkins, Tim Bray, Domenico Catalano,
Donald Coffin, Vladimir Dzhuvinov, George Fletcher, Thomas Hardjono, Phil Hunt, William Kim,
Torsten Lodderstedt, Eve Maler, Josh Mandel, Nov Matake, Tony Nadalin, Nat Sakimura,
Christian Scholz, and Hannes Tschofenig.

Appendix C. Document History

[[to be removed by the RFC editor before publication as an RFC]]

-16

Replaced references to draft-jones-oauth-dyn-reg-metadata and draft-jones-
oauth-dyn-reg-management with draft-ietf-oauth-dyn-reg-metadata and draft-
ietf-oauth-dyn-reg-management.
Addressed review comments by Phil Hunt and Tony Nadalin.

-15

Partitioned the Dynamic Client Registration specification into core, metadata,
and management specifications. This built on work first published as draft-richer-
oauth-dyn-reg-core-00 and draft-richer-oauth-dyn-reg-management-00.
Added the ability to use Software Statements. This built on work first published
as draft-hunt-oauth-software-statement-00 and draft-hunt-oauth-client-
association-00.
Created the IANA OAuth Registration Client Metadata registry for registering
Client Metadata values.
Defined Client Instance term and stated that multiple instances can use the
same Client ID value under certain circumstances.
Rewrote the introduction.
Rewrote the Use Cases appendix.

-14

Added software_id and software_version metadata fields
Added direct references to RFC6750 errors in read/update/delete methods

-13

Fixed broken example text in registration request and in delete request
Added security discussion of separating clients of different grant types
Fixed error reference to point to RFC6750 instead of RFC6749
Clarified that servers must respond to all requests to configuration endpoint,
even if it's just an error code
Lowercased all Terms to conform to style used in RFC6750

-12

Improved definition of Initial Access Token
Changed developer registration scenario to have the Initial Access Token gotten
through a normal OAuth 2.0 flow
Moved non-normative client lifecycle examples to appendix
Marked differentiating between auth servers as out of scope
Added protocol flow diagram
Added credential rotation discussion
Called out Client Registration Endpoint as an OAuth 2.0 Protected Resource
Cleaned up several pieces of text

-11

Added localized text to registration request and response examples.
Removed client_secret_jwt and private_key_jwt.
Clarified tos_uri and policy_uri definitions.
Added the OAuth Token Endpoint Authentication Methods registry for registering
token_endpoint_auth_method metadata values.
Removed uses of non-ASCII characters, per RFC formatting rules.

Removed uses of non-ASCII characters, per RFC formatting rules.
Changed expires_at to client_secret_expires_at and issued_at to
client_id_issued_at for greater clarity.
Added explanatory text for different credentials (Initial Access Token,
Registration Access Token, Client Credentials) and what they're used for.
Added Client Lifecycle discussion and examples.
Defined Initial Access Token in Terminology section.

-10

Added language to point out that scope values are service-specific
Clarified normative language around client metadata
Added extensibility to token_endpoint_auth_method using absolute URIs
Added security consideration about registering redirect URIs
Changed erroneous 403 responses to 401's with notes about token handling
Added example for initial registration credential

-09

Added method of internationalization for Client Metadata values
Fixed SAML reference

-08

Collapsed jwk_uri, jwk_encryption_uri, x509_uri, and x509_encryption_uri into a
single jwks_uri parameter
Renamed grant_type to grant_types since it's a plural value
Formalized name of "OAuth 2.0" throughout document
Added JWT Bearer Assertion and SAML 2 Bearer Assertion to example grant
types
Added response_types parameter and explanatory text on its use with and
relationship to grant_types

-07

Changed registration_access_url to registration_client_uri
Fixed missing text in 5.1
Added Pragma: no-cache to examples
Changed "no such client" error to 403
Renamed Client Registration Access Endpoint to Client Configuration Endpoint
Changed all the parameter names containing "_url" to instead use "_uri"
Updated example text for forming Client Configuration Endpoint URL

-06

Removed secret_rotation as a client-initiated action, including removing client
secret rotation endpoint and parameters.
Changed _links structure to single value registration_access_url.
Collapsed create/update/read responses into client info response.
Changed return code of create action to 201.
Added section to describe suggested generation and composition of Client
Registration Access URL.
Added clarifying text to PUT and POST requests to specify JSON in the body.
Added Editor's Note to DELETE operation about its inclusion.
Added Editor's Note to registration_access_url about alternate syntax proposals.

-05

changed redirect_uri and contact to lists instead of space delimited strings
removed operation parameter
added _links structure
made client update management more RESTful
split endpoint into three parts
changed input to JSON from form-encoded
added READ and DELETE operations
removed Requirements section
changed token_endpoint_auth_type back to token_endpoint_auth_method to
match OIDC who changed to match us

-04

 TOC

removed default_acr, too undefined in the general OAuth2 case
removed default_max_auth_age, since there's no mechanism for supplying a
non-default max_auth_age in OAuth2
clarified signing and encryption URLs
changed token_endpoint_auth_method to token_endpoint_auth_type to match
OIDC

-03

added scope and grant_type claims
fixed various typos and changed wording for better clarity
endpoint now returns the full set of client information
operations on client_update allow for three actions on metadata: leave existing
value, clear existing value, replace existing value with new value

-02

Reorganized contributors and references
Moved OAuth references to RFC
Reorganized model/protocol sections for clarity
Changed terminology to "client register" instead of "client associate"
Specified that client_id must match across all subsequent requests
Fixed RFC2XML formatting, especially on lists

-01

Merged UMA and OpenID Connect registrations into a single document
Changed to form-parameter inputs to endpoint
Removed pull-based registration

-00

Imported original UMA draft specification

Authors' Addresses

 Justin Richer
 The MITRE Corporation

Email: jricher@mitre.org

 Michael B. Jones
 Microsoft

Email: mbj@microsoft.com
URI: http://self-issued.info/

 John Bradley
 Ping Identity

Email: ve7jtb@ve7jtb.com

 Maciej Machulak
 Newcastle University

Email: m.p.machulak@ncl.ac.uk
URI: http://ncl.ac.uk/

 Phil Hunt
 Oracle Corporation

Email: phil.hunt@yahoo.com

mailto:jricher@mitre.org
mailto:mbj@microsoft.com
http://self-issued.info/
mailto:ve7jtb@ve7jtb.com
mailto:m.p.machulak@ncl.ac.uk
http://ncl.ac.uk/
mailto:phil.hunt@yahoo.com

	OAuth 2.0 Dynamic Client Registration Core Protocol draft-ietf-oauth-dyn-reg-16
	Abstract
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Notational Conventions
	1.2. Terminology
	1.3. Protocol Flow
	2. Client Metadata
	2.1. Relationship between Grant Types and Response Types
	3. Software Statement
	4. Client Registration Endpoint
	4.1. Client Registration Request
	4.2. Client Registration Response
	5. Responses
	5.1. Client Information Response
	5.2. Client Registration Error Response
	6. IANA Considerations
	6.1. OAuth Registration Client Metadata Registry
	6.1.1. Registration Template
	6.1.2. Initial Registry Contents
	6.2. OAuth Token Endpoint Authentication Methods Registry
	6.2.1. Registration Template
	6.2.2. Initial Registry Contents
	7. Security Considerations
	8. References
	8.1. Normative References
	8.2. Informative References
	Appendix A. Use Cases
	A.1. Open versus Protected Dynamic Client Registration
	A.1.1. Open Dynamic Client Registration
	A.1.2. Protected Dynamic Client Registration
	A.2. Registration Without or With Software Statements
	A.2.1. Registration Without a Software Statement
	A.2.2. Registration With a Software Statement
	A.3. Registration by the Client or the Developer
	A.3.1. Registration by the Client
	A.3.2. Registration by the Developer
	A.4. Client ID per Client Instance or per Client Software
	A.4.1. Client ID per Client Software Instance
	A.4.2. Client ID Shared between all Instances of Client Software
	A.5. Stateful or Stateless Registration
	A.5.1. Stateful Client Registration
	A.5.2. Stateless Client Registration
	Appendix B. Acknowledgments
	Appendix C. Document History
	Authors' Addresses

