
Controlled Delay Active Queue Management
draft-nichols-tsvwg-codel-01

Abstract

The “persistently full buffer” problem has been discussed in the
IETF community since the early 80’s [RFC896]. The IRTF’s End-to-End
Working Group called for the deployment of active queue management
to solve the problem in 1998 [RFC2309]. Despite the awareness and
recommendations, the “full buffer” problem has not gone away, but on
the contrary has become worse as buffers have grown in size and
proliferated and today’s networks proved intractable for available
AQM approaches. The overall problem is presently known as
“bufferbloat”[TSVBB2011, BB2011] and has become increasingly
important, particularly at the consumer edge.

This document describes a recently developed AQM, Controlled Delay
(CoDel) algorithm, which was designed to work in modern networking
environments and can be deployed as a major part of the solution to
bufferbloat [CODEL2012]. The goal of the CoDel work is to provide a
solution with cost-effective implementation that is particularly
well-suited to the consumer edge.

Status of this Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF), its areas, and its working groups. Notje that
other groups may also distribute working documents as Internet-
Drafts. The list of current Internet-Drafts can be accessed at
http://www.ietf.org/1id-abstracts.html/.

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

Internet-Drafts are draft documents valid for a maximum of six
months and may be updated, replaced, or obsoleted by other documents
at any time. It is inappropriate to use Internet-Drafts as
reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on August 24, 2013.

Transport Area Working Group! ! K. Nichols
Internet-Draft! ! Pollere, Inc.
Intended status: Informational! ! V. Jacobson
Expires: August 24, 2013! ! Google, Inc.
! ! February 24, 2013

Nichols & Jacobson! Expires August 24, 2013! [Page 1]

http://datatracker.ietf.org/drafts/current/
http://datatracker.ietf.org/drafts/current/
http://www.ietf.org/shadow.html
http://www.ietf.org/shadow.html

Copyright Notice

Copyright (c) 2013 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal
Provisions Relating to IETF Documents (http://trustee.ietf.org/
license-info) in effect on the date of publication of this document.
Please review these documents carefully, as they describe your
rights and restrictions with respect to this document.

Code Components extracted from this document must include the
license as included with the code in Section 4.

Table of Contents

1. ..Introduction! 3
2.Conventions used in this document! 4
3.The Controlled Delay (CoDel) Approach! 4

3.1.Overview of CoDel’s Algorithm! 5
3.2. ...About the interval! 6
3.3. ..About the target! 6
3.4. ..Non-starvation! 7
3.5.Target and Interval in Bursty MACs! 8
3.6.Use with multiple queues! 8
3.7. .Use of stochastic bins or sub-queues to improve performance! 8

4.Annotated Pseudo-code for CoDel! 9
4.1. ...Data Types! 11
4.2.Per-queue state (codel_queue_t instance variables)! 11
4.3. ..Constants! 11
4.4. ...Enque routine! 11
4.5. ...Deque routine! 12
4.6. ..Helper routines! 13
4.7.Implementation considerations! 14

5.CoDel for specialized networks! 15
6.Resources and Additional Information! 15
7. ..Security Considerations! 16
8. ...IANA Considerations! 16
9. ..Conclusions! 16
10. ..References! 16

10.1.Normative References! 16
10.2.Informative References! 16

11. ...Acknowledgments! 18

Internet-Draft! Controlled Delay Active Queue Management ! February 2013

Nichols & Jacobson! Expires August 24, 2013! [Page 2]

1. Introduction

The need for queue management has been evident for decades.
Unfortunately, the development and deployment of effective active
queue management has been hampered by persistent misconceptions
about the cause and meaning of queues. Network buffers exist to
absorb the packet bursts that occur naturally in statistically
multiplexed networks. Short-term mismatches in traffic arrival and
departure rates that arise from upstream resource contention,
transport conversation startup transients and/or changes in the
number of conversations sharing a link create queues in the buffers.
Unfortunately, other network behavior can cause queues to fill and
their effects aren’t nearly as benign. Discussion of these issues
and why the solution isn’t just smaller buffers can be found in
[RFC2309],[VANQ2006],[REDL1998] and [CODEL2012]. It is critical to
understand the difference between the necessary and useful “good”
queue and the counterproductive “bad” queue.

Recent papers [CMNTS] question how widespread bufferbloat actually
is. It is certainly difficult to measure that and those papers do
not claim to do so. Certainly, there are places, particularly at the
network edge, where bufferbloat occurs and impacts performance. The
correct solution is a cost-effective AQM that “does no harm” if its
subject buffer is not bloated. We believe this is an appropriate
response to the problem where dramatic protocol changes are the
wrong response.

Many approaches to active queue management (AQM) have been developed
over the past two decades, but none has been widely deployed due to
performance problems. When designed with the wrong conceptual model
for queues, AQMs have limited operational range, require a lot of
configuration tweaking, and frequently impair rather than improve
performance. Today, the demands on an effective AQM are even
greater: many network devices must work across a range of
bandwidths, either due to link variations or due to the mobility of
the device. CoDel has been designed to meet the following goals:

o is parameterless – has no knobs for operators, users, or
implementers to adjust

o treats “good queue” and “bad queue” differently, that is, keeps
delay low while permitting necessary bursts of traffic

o controls delay while insensitive (or nearly so) to round trip
delays, link rates and traffic loads; this goal is to “do no
harm” to network traffic while controlling delay

o adapts to dynamically changing link rates with no negative impact
on utilization

Internet-Draft! Controlled Delay Active Queue Management ! February 2013

Nichols & Jacobson! Expires August 24, 2013! [Page 3]

o is simple and efficient (can easily span the spectrum from low-
end, linux-based access points and home routers up to high-end
commercial router silicon)

With no changes to parameters, we have found CoDel to work across a
wide range of conditions, with varying links and the full range of
terrestrial round trip times. CoDel has been implemented in Linux
very efficiently and should lend itself to silicon implementation.
Further, CoDel is well-adapted for use in multiple queued devices
due to its use of sojourn time.

Since CoDel was published (4/2012), a number of talented and
enthusiastic implementers and experimenters have been working with
CoDel with promising results. CoDel has been implemented along with
stochastic flow queuing for better traffic management. CoDel has
also been applied successfully in data center networks which have
different properties than the consumer edge. Much of this work can
be located starting from: http://www.bufferbloat.net/projects/codel.

2. Conventions used in this document

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC-2119 [RFC2119].

In this document, these words will appear with that interpretation
only when in ALL CAPS. Lower case uses of these words are not to be
interpreted as carrying RFC-2119 significance.

In this document, the characters ">>" preceding an indented line(s)
indicates a compliance requirement statement using the key words
listed above. This convention aids reviewers in quickly identifying
or finding the explicit compliance requirements of this RFC.

3. The Controlled Delay (CoDel) Approach

CoDel has three major innovations that distinguish it from prior
AQMs: use of local queue minimum to track congestion (“bad queue”),
use of an efficient single state variable representation of that
tracked statistic, and the use of packet sojourn time time as the
observed datum, rather than packets, bytes, or rates. The local
minimum queue provides an accurate and robust measure of standing
queue and has an efficient implementation since it is sufficient to
keep a single state variable of how long the minimum has been above
or below a target value rather than retaining all the local values
to compute the minimum. By tracking the packet sojourn time in the
buffer, CoDel is using the actual delay experienced by each packet,
which is independent of link rate, gives superior performance to use
of buffer size, and is directly related to the user-visible
performance.

Internet-Draft! Controlled Delay Active Queue Management ! February 2013

Nichols & Jacobson! Expires August 24, 2013! [Page 4]

In addition to lending itself to an efficient single state variable
implementation, use of the minimum value has important advantages in
implementation. The minimum packet sojourn can only be decreased
when a packet is dequeued which means that all the work of CoDel can
take place when packets are dequeued for transmission and that no
locks are needed in the implementation. The minimum is the only
statistic with this property. The only addition to code at packet
arrival is creation of a timestamp of packet arrival time. If the
buffer is full when a packet arrives, the packet is dropped as
usual.

3.1. Overview of CoDel’s Algorithm

To ensure that link utilization is not adversely affected, CoDel’s
design assumes that a small “target” standing queue delay (discussed
in more detail below) is acceptable and that it is unacceptable to
drop packets when the drop would leave the queue empty or there are
fewer than a maximum transmission unit (MTU) worth of bytes in the
buffer. A persistent delay above the target indicates a standing
queue. The standing queue can be detected by tracking the (local)
minimum queue delay packets experience. To ensure that this minimum
value does not become stale, it has to have been experienced
recently, which is can be determined by using an appropriate
interval of time (discussed further below). When the queue delay
has exceeded the target for at least an interval, a packet is
dropped and a control law used to set the next drop time. The next
drop time is decreased in inverse proportion to the square root of
the number of drops since the dropping state was entered, using the
well-known relationship of drop rate to throughput to get a linear
change in throughput. [REDL1998, MACTCP1997] When the queue delay
goes below target, the controller stops dropping. No drops are
carried out if the buffer contains fewer than an MTU worth of bytes.
Additional logic prevents re-entering the dropping state too soon
after exiting it and resumes the dropping state at a recent control
level, if one exists. Target and interval are constants with
straightforward interpretations described below.

CoDel only enters its dropping state when the local minimum sojourn
delay has exceeded an acceptable value for standing queue for an
“interval” long enough to for normal bursts to dissipate. This
ensures that a burst of packets will not be dropped as long as the
burst can be cleared from the queue within a reasonable interval.

CoDel’s efficient implementation and lack of configuration are
unique features and make it suitable to manage modern packet
buffers. The three innovations: minimum statistic, simplified single
state variable tracking of minimum, and use of queue sojourn time
lead directly to these unique features. For more background and
results on CoDel, see [CODEL2012], available on-line at
queue.acm.org.

Internet-Draft! Controlled Delay Active Queue Management ! February 2013

Nichols & Jacobson! Expires August 24, 2013! [Page 5]

3.2. About the interval

The interval constant is chosen to give endpoints time to react to a
drop without being so long that response times suffer. As such, it
is clearly related to RTT. Since RTTs vary across connections and
are not known apriori, the best policy is to use a value on the
order of or slightly larger than the RTT seen by most of the
connections using a link. It’s fortunate that CoDel is fairly
insensitive to interval since it’s difficult to give a definitive
histogram of RTTs seen on the normal consumer edge link.

A setting of 100ms works well across a range of RTTs from 10ms to 1
second (excellent performance is achieved in the range from 10 ms to
300ms). For devices intended for the normal, terrestrial internet
interval SHOULD have the value of 100ms. Smaller values are likely
to cause CoDel to over drop packets since insufficient time is given
to senders to react and this will most adversely affect a long-lived
TCP with an RTT long compared to interval.

A CoDel control law more independent of interval is future work.

3.3. About the target

The target value constant is the maximum acceptable standing queue
delay above which CoDel is dropping or preparing to drop and below
which CoDel will not drop. Our initial focus with CoDel is on
devices for the open internet, in particular the consumer edge,
where bottleneck standing queues of a few milliseconds are
acceptable for ordinary internet traffic.

The target value derives from an analytically derived range which
was further studied with many simulations. Analysis centers on a
single TCP connection since this is easiest to analyze and is more
difficult to keep utilization high than with more connections. With
a sufficiently large buffer, the link utilization for the single TCP
flow can reach 100% but the delay will increase. If no queue is
permitted, A Reno TCP will only get 75% utilization. We want a value
for the target, the maximum acceptable standing queue, that gets a
good utilization for the long-lived TCP flow while holding down the
delay. Conceptually, if this TCP connection were sharing the link
with other short-lived flows, it would be able to achieve an
excellent utilization while presenting a short delay to these other,
possibly interactive, flows. Fortunately, analysis shows that a very
small standing queue gives close to 100% utilization and this holds
for Reno, Cubic, and Westwood. Pictures of this can be seen at
[TSV84]. The analysis was done by normalizing the queue size to a
percentage of RTT and using the average “power” (throughput over
delay) performance metric. The ideal range for the permitted
standing queue is between 5 and 10% of the RTT of the TCP
connection.

Internet-Draft! Controlled Delay Active Queue Management ! February 2013

Nichols & Jacobson! Expires August 24, 2013! [Page 6]

We expected additional impact when TCPs are mixed with other traffic
and experiencing a number of different RTTs. Accordingly, we
experimented with values between 1 and 20 milliseconds for RTTs from
30 to 500ms and link bandwidths of 64Kbps to 100Mbps to determine a
target that gives consistently high utilization while controlling
delay across a range of bandwidths, RTTs, and traffic loads. Below a
target of 5ms, utilization suffers for some conditions and traffic
loads, above 5ms we saw very little or no improvement in
utilization. Thus target SHOULD be set to 5ms.

If a CoDel link has only or primarily long-lived TCP flows sharing a
link to congestion but not overload, the median delay through the
link will tend to the target value. For bursty traffic loads and for
overloaded conditions (where it is difficult or impossible for all
the arriving flows to be accommodated, the median queues will be
longer than target).

By inhibiting drops when there is less than an (outbound link) MTU
worth of bytes in the buffer, CoDel adapts to very low bandwidth
links. This is shown in [CODEL2012] and interested parties should
see the discussion of results there. Unpublished studies were
carried out down to 64Kbps. The drop inhibit condition can be
expanded to include a test to retain sufficient bytes or packets to
fill an allocation in a request-and-grant MAC.

CoDel has to see sojourn times that remain above target for an
entire interval in order to enter the drop state. Any packet with a
sojourn time less than target will reset the time that the queue was
last below the target. Since internet traffic has very dynamic
characteristics, the actual sojourn delays experienced by packets
varies greatly and is often less than the target unless the overload
is excessive. When a link is not overloaded, it is not a bottleneck
and packet sojourn times will be small or nonexistent. In the usual
case, there are only one or two places along a path where packets
will encounter a bottleneck (usually at the edge), so the amount of
queuing delay experienced by a packet should be less than 10 ms even
under extremely congested conditions. Contrast this to the queuing
delays that grow to orders of seconds that have led to the
“bufferbloat” term [NETAL2010, CHARRB2007].

3.4. Non-starvation

CoDel’s goals are to control delay with little or no impact on link
utilization and to be deployed on a wide range of link bandwidth,
including varying rate links, without reconfiguration. To keep from
making drops when it would starve the output link, CoDel makes
another check before dropping to see if at least an MTU worth of
bytes remains in the buffer. If not, the packet SHOULD NOT be

Internet-Draft! Controlled Delay Active Queue Management ! February 2013

Nichols & Jacobson! Expires August 24, 2013! [Page 7]

dropped and, currently, CoDel exits the drop state. The MTU size can
be set to the largest packet seen so far or read from the driver.

3.5. Target and Interval in Bursty MACs

Regrettably, there seems to be some confusion about the role of
target and interval. In particular, many experimenters believe the
value of target needs to be increased when the lower layers have a
bursty nature where packets are transmitted for short periods
interspersed with idle periods where the link is waiting for
permission to send. CoDel will “see” the effective transmission rate
over an interval and increasing target will just lead to longer
queue delays. On the other hand, if an additional delay is added to
the round trip time of most or all packets due to the waiting time
for a transmission, it may be necessary to increase interval by that
extra delay. That is, target SHOULD NOT be adjusted but interval MAY
need to be adjusted. For more on this (and pictures) see
pollere.net/

3.6. Use with multiple queues

Unlike other AQMs, CoDel is easily adapted to multiple queue
systems. With other approaches there is always a question of how to
account for the fact that each queue receives less than the full
link rate over time and usually sees a varying rate over time. This
is exactly what CoDel excels at: using a packet’s sojourn time in
the buffer completely bypasses this problem. A separate CoDel
algorithm can run on each queue, but each CoDel uses the packet
sojourn time the same way a single queue CoDel does. Just as a
single queue CoDel adapts to changing link bandwidths[CODEL2012], so
do the multiple queue CoDels. When testing for queue occupancy
before dropping, the total occupancy of all bins should be used.

3.7. Use of stochastic bins or sub-queues to improve performance

Shortly after the release of the CoDel pseudocode, Eric Dumazet
created fq_codel, applying CoDel to each bin, or queue, used in an
SFQ (stochastic fair queuing) approach. (To understand further, see
[SFQ1990] or the linux sfq at http://linux.die.net/man/8/tc-sfq.)
Fq_codel hashes on the packet header fields to determine a specific
bin, or sub-queue, for each five-tuple flow, and runs CoDel on each
bin or sub-queue thus creating a well-mixed output flow and
obviating issues of reverse path flows (including “ack
compression”). Dumazet’s code is part of the CeroWrt project code at
the bufferbloat.net’s web site.

Inspired by Dumazet’s work, we’ve experimented with an ns-2
simulator version with excellent results thus far: median queues
remain small across a range of traffic patterns that includes
bidirectional file transfers (that is, the same traffic sent in both

Internet-Draft! Controlled Delay Active Queue Management ! February 2013

Nichols & Jacobson! Expires August 24, 2013! [Page 8]

http://linux.die.net/man/8/tc-sfq
http://linux.die.net/man/8/tc-sfq

directions on a link), constant bit-rate VoIP-like flows, and
emulated web traffic and utilizations are consistently better than
single queue CoDel, generally very close to 100%. Our original
version differed slightly from Dumazet’s by using a packet-based
round robin of the bins rather than byte-based DRR and by doing a
simple drop tail when bins are full and there may be other minor
differences in implementation. There are some experimental additions
that permit head or tail drop from fullest bin and a quantum-based
rounding. Andrew McGregor has an ns-3 version of fq_codel and we
have heard good reports of his results.

This approach is to provide a better traffic mixing on the wire and
to tend to isolate a larger flow or flows. For real priority
treatment, use of DiffServ isolation is encouraged. We’ve
experimented with creating a queue that gets all the UDP traffic in
the simulation (which is all simulated VoiP and low bandwidth) but
this approach has to be applied with caution in the real world. Some
experimenters are trying rounding with a small quantum (on the order
of a voice packet size) but this also needs thorough study.

There are a number of open issues that should be studied. In
particular, if the number of different queues or bins is too large,
the scheduling will be the dominant factor, not the AQM; it is NOT
the case that more bins are always better. In our simulations, we
have found good behavior across mixed traffic types with smaller
numbers of queues, 8-16 for a 5Mbps link. This configuration seemed
to give the best behavior for voice, web browsing and file transfers
where increased numbers of bins seemed to favor file transfers at
the expense of the other traffic. Our work has been very preliminary
and we encourage others to take this up and to explore analytic
modeling. It would be good to see the effects of different numbers
of bins on a range of traffic models, something like an updated
version of [BMPFQ].

Implementers should consider using this type of approach if possible
as it deals with many problems beyond the reach of an AQM alone. As
more experiments are completed, future versions of this draft may be
able to include particular pseudocode for a recommended approach.

4. Annotated Pseudo-code for CoDel

What follows is the CoDel algorithm in C++-like pseudo-code. Since
CoDel adds relatively little new code to a basic tail-drop fifo-
queue, we’ve tried to highlight just these additions by presenting
CoDel as a sub-class of a basic fifo-queue base class. There have
been a number of minor variants in the code and our reference
pseudo-code has not yet been completely updated.

Internet-Draft! Controlled Delay Active Queue Management ! February 2013

Nichols & Jacobson! Expires August 24, 2013! [Page 9]

Implementors are strongly encouraged to also look at Eric Dumazet's
Linux kernel version of CoDel - a well-written, well tested, real-
world, C-based implementation. As of this writing, it is at:
http://git.kernel.org/?p=linux/kernel/git/torvalds/
linux.git;a=blob_plain;f=net/sched/sch_codel.c;hb=HEAD

This code is open-source with a dual BSD/GPL license:

Codel - The Controlled-Delay Active Queue Management algorithm

Copyright (C) 2011-2012 Kathleen Nichols <nichols@pollere.com>

 Redistribution and use in source and binary forms, with or
without modification, are

permitted provided that the following conditions are met:

* Redistributions of source code must retain the above
copyright notice, this list of conditions, and the following
disclaimer, without modification.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials
provided with the distribution.

* The names of the authors may not be used to endorse or
promote products derived from this software without specific
prior written permission.

 Alternatively, provided that this notice is retained in full,
this software may be distributed under the terms of the GNU
General Public License ("GPL") version 2, in which case the
provisions of the GPL apply INSTEAD OF those given above.

 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

Internet-Draft! Controlled Delay Active Queue Management ! February 2013

Nichols & Jacobson! Expires August 24, 2013! [Page 10]

4.1. Data Types

time_t is an integer time value in units convenient for the system.
Resolution to at least a millisecond is required and better
resolution is useful up to the minimum possible packet time
on the output link; 64- or 32-bit widths are acceptable but
with 32 bits the resolution should be no finer than 2^{-16}
to leave enough dynamic range to represent a wide range of
queue waiting times. Narrower widths also have implementation
issues due to overflow (wrapping) and underflow (limit cycles
because of truncation to zero) that are not addressed in this
pseudocode. The code presented here uses 0 as a flag value to
indicate "no time set."

packet_t* is a pointer to a packet descriptor. We assume it has a
tstamp field capable of holding a time_t and that field is
available for use by CoDel (it will be set by the enque
routine and used by the deque routine).

queue_t is a base class for queue objects (the parent class for
codel_queue_t objects). We assume it has enque() and deque()
methods that can be implemented in child classes. We assume
it has a bytes() method that returns the current queue size
in bytes. This can be an approximate value. The method is
invoked in the deque() method but shouldn't require a lock
with the enque() method.

flag_t is a Boolean.

4.2. Per-queue state (codel_queue_t instance variables)

time_t first_above_time; // Time when we'll declare we're above
! ! ! ! ! ! ! ! // target (0 if below)
time_t drop_next;!! ! // Time to drop next packet
uint32_t count;! ! ! // Packets dropped since entering drop state
flag_t dropping;! ! ! // Equal to 1 if in drop state

4.3. Constants

time_t target = MS2TIME(5); // Target queue delay (5 ms)
time_t interval = MS2TIME(100); // Sliding-minimum window (100ms)
u_int maxpacket = 512; // Maximum packet size in bytes
! ! ! ! ! ! ! // (should use interface MTU)

4.4. Enque routine

All the work of CoDel is done in the deque routine. The only CoDel
addition to enque is putting the current time in the packet’s tstamp
field so that the deque routine can compute the packet's sojourn
time.

Internet-Draft! Controlled Delay Active Queue Management ! February 2013

Nichols & Jacobson! Expires August 24, 2013! [Page 11]

void codel_queue_t::enque(packet_t* pkt)
{
 pkt->timestamp() = clock();
 queue_t::enque(pkt);
}

4.5. Deque routine

This is the heart of CoDel. There are two branches: In packet-
dropping state (meaning that the queue-sojourn time has gone above
target and hasn't come down yet), then we need to check if it's time
to leave or if it's time for the next drop(s); if we're not in
dropping state, then we need to decide if it's time to enter and do
the initial drop.

Packet* CoDelQueue::deque()
{
 double now = clock();;
 dodequeResult r = dodeque(now);

 if (dropping_) {
 if (! r.ok_to_drop) {
 // sojourn time below target - leave dropping state
 dropping_ = 0;
 }
 // Time for the next drop. Drop current packet and dequeue
 // next. If the dequeue doesn't take us out of dropping
 // state, schedule the next drop. A large backlog might
 // result in drop rates so high that the next drop should
 // happen now, hence the ‘while’ loop. Increment count_
! ! // outside of the loop.
 while (now >= drop_next_ && dropping_) {
 drop(r.p);
 r = dodeque(now);
 if (! r.ok_to_drop) {
 // leave dropping state
 dropping_ = 0;
 } else {
 !! ++count_;
 // schedule the next drop.
 drop_next_ = control_law(drop_next_);
 }
 }

 // If we get here we’re not in dropping state. The 'ok_to_drop'
 // return from dodeque means that the sojourn time has been
 // above 'target' for 'interval' so enter dropping state.
 } else if (r.ok_to_drop) {
 drop(r.p);
 r = dodeque(now);

Internet-Draft! Controlled Delay Active Queue Management ! February 2013

Nichols & Jacobson! Expires August 24, 2013! [Page 12]

 dropping_ = 1;

 // If min went above target close to when it last went
 // below, assume that the drop rate that controlled the
 // queue on the last cycle is a good starting point to
 // control it now. ('drop_next' will be at most 'interval'
 // later than the time of the last drop so 'now - drop_next'
 // is a good approximation of the time from the last drop
 // until now.)
 count_ = (count_ > 2 && now - drop_next_ < 8*interval_)?
 count_ - 2 : 1;
 drop_next_ = control_law(now);
 }
 return (r.p);
}

4.6. Helper routines

Since the degree of multiplexing and nature of the traffic sources
is unknown, CoDel acts as a closed-loop servo system that gradually
increases the frequency of dropping until the queue is controlled
(sojourn time goes below target). This is the control law that
governs the servo. It has this form because of the sqrt(p)
dependence of TCP throughput on drop probability. Note that for
embedded systems or kernel implementation, the inverse sqrt can be
computed efficiently using only integer multiplication. See Eric
Dumazet's excellent Linux CoDel implementation for example code (in
file net/sched/sch_codel.c of the kernel source for 3.5 or newer
kernels).

time_t codel_queue_t::control_law(time_t t)
{
 return t + interval / sqrt(count);
}

Next is a helper routine the does the actual packet dequeue and
tracks whether the sojourn time is above or below target and, if
above, if it has remained above continuously for at least interval.
It returns two values, a Boolean indicating if it is OK to drop
(sojourn time above target for at least interval) and the packet
dequeued.

typedef struct {
 packet_t* p;
 flag_t ok_to_drop;
} dodeque_result;

dodeque_result codel_queue_t::dodeque(time_t now)
{
 dodequeResult r = { NULL, queue_t::deque() };

Internet-Draft! Controlled Delay Active Queue Management ! February 2013

Nichols & Jacobson! Expires August 24, 2013! [Page 13]

 if (r.p == NULL) {
 // queue is empty - we can't be above target
 first_above_time_ = 0;
 return r;
 }

 // To span a large range of bandwidths, CoDel runs two
 // different AQMs in parallel. One is sojourn-time-based
 // and takes effect when the time to send an MTU-sized
 // packet is less than target. The 1st term of the "if"
 // below does this. The other is backlog-based and takes
 // effect when the time to send an MTU-sized packet is >=
 // target. The goal here is to keep the output link
 // utilization high by never allowing the queue to get
 // smaller than the amount that arrives in a typical
 // interarrival time (MTU-sized packets arriving spaced
 // by the amount of time it takes to send such a packet on
 // the bottleneck). The 2nd term of the "if" does this.
 time_t sojourn_time = now - r.p->tstamp;
 if (sojourn_time_ < target_ || bytes() <= maxpacket_) {
 // went below - stay below for at least interval
 first_above_time_ = 0;
 } else {
 if (first_above_time_ == 0) {
 // just went above from below. if still above at
 // first_above_time, will say it’s ok to drop.
 first_above_time_ = now + interval_;
 } else if (now >= first_above_time_) {
 r.ok_to_drop = 1;
 }
 }
 return r;
}

4.7. Implementation considerations

Since CoDel requires relatively little per-queue state and no direct
communication or state sharing between the enqueue and dequeue
routines, it's relatively simple to add it to almost any packet
processing pipeline, including ASIC- or NPU-based forwarding
engines. One issue to think about is dodeque's use of a 'bytes()'
function to find out about how many bytes are currently in the
queue. This value does not need to be exact. If the enqueue part of
the pipeline keeps a running count of the total number of bytes it
has put into the queue and the dequeue routine keeps a running count
of the total bytes it has removed from the queue, 'bytes()' is just
the difference between these two counters. 32 bit counters are more
than adequate. Enqueue has to update its counter once per packet
queued but it doesn't matter when (before, during or after the
packet has been added to the queue). The worst that can happen is a

Internet-Draft! Controlled Delay Active Queue Management ! February 2013

Nichols & Jacobson! Expires August 24, 2013! [Page 14]

slight, transient, underestimate of the queue size which might cause
a drop to be briefly deferred.

5. CoDel for specialized networks

CoDel’s constants are set for use in devices in the open Internet.
They have been chosen so that a device, such as a small WiFi router,
can be sold without the need for those values to be made adjustable,
a “parameterless” implementation. CoDel is useful in environments
with significantly different characteristics from the normal
internet, for example, in switches used as a cluster interconnect
within a data center. Since cluster traffic is entirely internal to
the data center, round trip latencies are low (typically <100us) but
bandwidths are high (1-40Gbps) so it's relatively easy for the
aggregation phase of a distributed computation (e.g., the Reduce
part of a Map/Reduce) to persistently fill then overflow the modest
per-port buffering available in most high speed switches. A CoDel
configured for this environment (target and interval in the
microsecond rather than millisecond range) can minimize drops (or
ECN marks) while keeping throughput high and latency low.

Devices destined for these environments MAY have different
constants, ones that are suitable for those environments. But these
settings will cause problems such as over dropping and low
throughput if used on the open Internet so devices that allow the
CoDel constants to be configured MUST default to Internet
appropriate values given in this document.

6. Resources and Additional Information

CoDel is being implemented and tested in a range of environments.
Dave Taht has been instrumental in the integration and distribution
of bufferbloat solutions, including CoDel, and has set up a website
for CeroWRT implementers. This is an active area of work and an
excellent place to track developments. Eric Dumazet has put CoDel
into the Linux distribution. Andrew McGregor has an ns-3
implementation of both CoDel and FQ_CoDel and we have made our ns-2
implementation public. Dave Taht set up a web site and mailing list
for implementers and Eric Dumazet put CoDel into the Linux
distribution. An experiment by Stanford graduate students
successfully duplicated our published work using the linux code
which can be found at: http://
reproducingnetworkresearch.wordpress.com/2012/06/06/solving-
bufferbloat-the-codel-way/.

Cable Labs is actively experimenting with CoDel, fq_codel, and
sfqcodel for cable modem simulation models.

Our ns-2 simulations are available at http://pollere.net/CoDel.html.
We continue to do some small experiments and are periodically

Internet-Draft! Controlled Delay Active Queue Management ! February 2013

Nichols & Jacobson! Expires August 24, 2013! [Page 15]

http://reproducingnetworkresearch.wordpress.com/2012/06/06/solving-bufferbloat-the-codel-way/
http://reproducingnetworkresearch.wordpress.com/2012/06/06/solving-bufferbloat-the-codel-way/
http://reproducingnetworkresearch.wordpress.com/2012/06/06/solving-bufferbloat-the-codel-way/
http://reproducingnetworkresearch.wordpress.com/2012/06/06/solving-bufferbloat-the-codel-way/
http://reproducingnetworkresearch.wordpress.com/2012/06/06/solving-bufferbloat-the-codel-way/
http://reproducingnetworkresearch.wordpress.com/2012/06/06/solving-bufferbloat-the-codel-way/
http://pollere.net/CoDel.html
http://pollere.net/CoDel.html

updating the code. Cable Labs has funded some additions to the
simulator sfqcodel code which should be made public in the future.
The basic algorithm of CoDel remains unchanged, but we continue to
experiment with drop interval setting when resuming the drop state,
whether to “clear out” extremely aged packets from the queue, and
other minor details. Our approach to changes is to only make them if
we are both convinced they do more good than harm, both
operationally and in the implementation. With this in mind, some of
these issues won’t be settled until we can get more experimental
deployment. Our ns-2 version of stochastic flow binning is also
available at our site.

7. Security Considerations

This document describes an active queue management algorithm for
implementation in networked devices. There are no specific security
exposures associated with CoDel.

8. IANA Considerations

This document does not require actions by IANA.

9. Conclusions

CoDel is a very general, efficient, parameterless active queue
management approach that can be applied to single or multiple
queues. It is a critical tool in solving bufferbloat. CoDel’s
settings MAY be modified for other special-purpose networking
applications.

On-going projects are creating a deployable CoDel in Linux routers
and experimenting with applying CoDel to stochastic queuing with
very promising results.

10.References

10.1. Normative References

[RFC896]!Nagle, J., "Congestion Control in IP/TCP Internetworks",
RFC 896, January 1984.

[RFC2309]!Braden, R. et al., "Recommendations on Queue Management
and Congestion Avoidance in the Internet", RFC 2309, April
1998.

10.2. Informative References

Internet-Draft! Controlled Delay Active Queue Management ! February 2013

Nichols & Jacobson! Expires August 24, 2013! [Page 16]

[TSV2011] Gettys, J., “Bufferbloat: Dark Buffers in the Internet”,
presentation to Transport Area Open Meeting, http://
www.ietf.org/proceedings/80/tsvarea.html, IETF 80, March,
2011.

[BB2011]!Gettys, J. and K. Nichols, "Bufferbloat: Dark Buffers in
the Internet", Communications of the ACM 9(11) pp. 57-65.

[BMPFQ] Suter, B., et. al., “Buffer Management Schemes for
Supporting TCP in Gigabit Routers with Per-flow Queueing”,
IEEE Journal on Selected Areas in Communications Vol. 17
Issue 6, June, 1999, pp. 1159-1169.

[CMNTS] Allman, M., “Comments on Bufferbloat”, Computer
Communication Review Vol. 43 No. 1, January, 2013, pp.
31-37.

[CODEL2012] Nichols, K. and V. Jacobson, “Controlling Queue Delay”,
Communications of the ACM Vol. 55 No. 11, July, 2012, pp.
42-50.

[VANQ2006] Jacobson, V., “A Rant on Queues”, talk at MIT Lincoln
Labs, Lexington, MA, July, 2006, http://www.pollere.net/
Pdfdocs/QrantJul06.pdf

[REDL1998] Jacobson, V., K. Nichols and K. Poduri, “RED in a
Different Light”,September, 1999, http://
www.cnaf.infn.it/~ferrari/papers/ispn/red_light_9_30.pdf

[NETAL2010] Kreibich, C., et. al., “Netalyzr: Illuminating the Edge
Network”, Proceedings of the Internet Measurement
Conference, Melbourne, Australia, 2010.

[TSV84] Jacobson, V., slides and talk at TSV meeting IETF 84,
http://www.ietf.org/proceedings/84/slides/slides-84-
tsvarea-4.pdf and http://recordings.conf.meetecho.com/
Recordings/watch.jsp?
recording=IETF84_TSVAREA&chapter=part_3

[CHARB2007] Dischinger, M., et. al, “Characterizing Residential
Broadband Networks”, Proceedings of the Internet
Measurement Conference, San Diego, CA, 2007.

[MACTCP1997] Mathis, M., J. Semke, J. Mahdavi, “The Macroscopic
Behavior of the TCP Congestion Avoidance Algorithm”, ACM
SIGCOMM Computer Communications Review, Vol. 27 no. 1,
Jan. 2007.

[SFQ1990] McKenney, P., “Stochastic Fairness Queuing”, Proceedings
of IEEE INFOCOMM’90, San Francisco, 1990.

Internet-Draft! Controlled Delay Active Queue Management ! February 2013

Nichols & Jacobson! Expires August 24, 2013! [Page 17]

http://www.ietf.org/proceedings/80/tsvarea.html
http://www.ietf.org/proceedings/80/tsvarea.html
http://www.ietf.org/proceedings/80/tsvarea.html
http://www.ietf.org/proceedings/80/tsvarea.html
http://www.pollere.net/Pdfdocs/QrantJul06.pdf
http://www.pollere.net/Pdfdocs/QrantJul06.pdf
http://www.pollere.net/Pdfdocs/QrantJul06.pdf
http://www.pollere.net/Pdfdocs/QrantJul06.pdf
http://www.cnaf.infn.it/~ferrari/papers/ispn/red_light_9_30.pdf
http://www.cnaf.infn.it/~ferrari/papers/ispn/red_light_9_30.pdf
http://www.cnaf.infn.it/~ferrari/papers/ispn/red_light_9_30.pdf
http://www.cnaf.infn.it/~ferrari/papers/ispn/red_light_9_30.pdf
http://www.ietf.org/proceedings/84/slides/slides-84-tsvarea-4.pdf
http://www.ietf.org/proceedings/84/slides/slides-84-tsvarea-4.pdf
http://www.ietf.org/proceedings/84/slides/slides-84-tsvarea-4.pdf
http://www.ietf.org/proceedings/84/slides/slides-84-tsvarea-4.pdf
http://recordings.conf.meetecho.com/Recordings/watch.jsp?recording=IETF84_TSVAREA&chapter=part_3
http://recordings.conf.meetecho.com/Recordings/watch.jsp?recording=IETF84_TSVAREA&chapter=part_3
http://recordings.conf.meetecho.com/Recordings/watch.jsp?recording=IETF84_TSVAREA&chapter=part_3
http://recordings.conf.meetecho.com/Recordings/watch.jsp?recording=IETF84_TSVAREA&chapter=part_3
http://recordings.conf.meetecho.com/Recordings/watch.jsp?recording=IETF84_TSVAREA&chapter=part_3
http://recordings.conf.meetecho.com/Recordings/watch.jsp?recording=IETF84_TSVAREA&chapter=part_3

11. Acknowledgments

The authors wish to thank Jim Gettys for constructive nagging, Dave
Taht and Eric Dumazet for “getting it” and making it real, Andrew
McGregor for his ns-3 simulation and all those who have expressed
interest in CoDel.

Authors’ Addresses

Kathleen Nichols
Pollere, Inc.
325M Sharon Park Drive #214
Menlo Park, CA 94025
!
Email: nichols@pollere.com

Van Jacobson
Google, Inc.
1600 Amphitheatre Pkwy
Mountain View, CA 94043

!
Email: vanj@google.com

Internet-Draft! Controlled Delay Active Queue Management ! February 2013

Nichols & Jacobson! Expires August 24, 2013! [Page 18]

mailto:vanj@google.com
mailto:vanj@google.com

