
Ruby/Gnuplot Manual

Gordon James Miller (gmiller@bittwiddlers.com)

March 18, 2003

Contents
1 Overview 1

2 QuickStart 1
2.1 One DataSet in 2D . 1
2.2 Multiple DataSets in 2D . 3
2.3 Plotting functions . 4
2.4 Annotating Data Sets . 5
2.5 Annotating Plots . 6
2.6 Changing output format and writing to ¯les 6

1 Overview
Ruby/Gnuplot (RGnuplot) is a wrapper that provides the ability to control a
gnuplot process from within Ruby. Gnuplot is normally controlled by scripting
directives in its own language. RGnuplot provides an object-oriented interface
to allow a user to generate plots using Ruby objects.

This manual does not intend to replace Gnuplot's documentation by any
means. Instead, the intent of the document is to allow users familiar with
gnuplot to translate their knowledge into Ruby. Users that do not know Gnuplot
will still bene¯t from this, but I really encourage individuals to learn the tool.

2 QuickStart

2.1 One DataSet in 2D
require 'gplot/Gnuplot'

plot = Gnuplot::Plot.new
plot.terminal 'postscript eps'
plot.output 'demo1.eps'

1

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 10 20 30 40 50 60 70 80 90 100

’-’

x = (1..100).to_a
y = x.collect { |i| i*i }
ds = y.gpds

plot.draw ds

The routine creates a Plot object that will output an encapsulated postscript
¯le to the ¯le 'demo1.eps' then creates the dataset object with the data that is
going to be plotted. In RGnuplot there are two types of plots, 2 dimensional
and 3 dimensional, implemented by the Plot and SPlot classes. The names of
these classes correspond to the gnuplot commands to do the same type of plot.

Plot and SPlot objects control the layout and formatting of the overall
graphic being produced. Things like plot titles and x, y, and z axis information
are controlled by these objects. When instantiated with no arguments the Plot
object will spawn a gnuplot subprocess which is then written to to generate the
plots. If the Plot object is created with a ¯lename then the gnuplot commands
will go to a ¯le with that name instead of a gnuplot process. This will cause
the plot to not be created at that moment but the generated script is capable of
being loaded by the gnuplot interpreter and is useful for debugging the output
of RGnuplot.

DataSet objects control the layout, formatting, and data of each set of data
that is displayed in a Plot. There are numerous DataSet classes that apply to

2

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 10 20 30 40 50 60 70 80 90 100

’-’
’-’

di®erent classes that are capable of providing data to Gnuplot: Array, Matrix,
NArray, and String. RGnuplot adds the gpds method to the class that is capable
of providing data. Each of these will be discussed later in this document.

DataSet objects are then added to the Plot object and the draw method on
the Plot object is invoked. As a convenience, the draw method can also take a
variable number of dataset objects.

In this plot there are no annotations added to either the plot or to its dataset
so the legend and labelling is gnuplot defaults.

2.2 Multiple DataSets in 2D
Adding to the previous example, the following code displays multiple datasets
but continues to not add any annotations.

require 'gplot/Gnuplot'

plot = Gnuplot::Plot.new
plot.terminal 'postscript eps'
plot.output 'demo2.eps'

x = (1..100).to_a
y1 = x.collect { |i| i*i }
ds1 = y1.gpds

3

y2 = x.collect { |i| i*i / 2.0 }
ds2 = y2.gpds

plot.draw ds1, ds2

This example follows the same general outline as the ¯rst ¯gure. The Plot
object is created, Plot characteristics are set, then DataSets are created and
added to the plot.

2.3 Plotting functions
require 'gplot/Gnuplot'

plot = Gnuplot::Plot.new
plot.terminal 'postscript eps'
plot.output 'demo3.eps'

x = (1..100).to_a
ds1 = "4 * x".gpds

y2 = x.collect { |i| i*i / 2.0 }
ds2 = "x**2".gpds

plot.draw ds1, ds2

In this example, we rely on gnuplot's ability to specify a function as a string
and plot it. In contrast to the previous examples, these datasets are created by
invoking the gpds function on a string specifying a function of x. Gnuplot can
intepret signi¯cant functions including the the trig and hyperbolic functions as
well as many others.

2.4 Annotating Data Sets
Until now we've not done anything except add data to plots. In order to make
an acceptable plot we need to add annotations to the plot. Annotations are
either added to the Plot or to a DataSet depending on what is being annotated.
In gnuplot speak, anything that is passed as an argument to the 'plot' or 'splot'
command is a DataSet attribute, everything else is a Plot attribute.

There are two di®erent ways to add attributes to DataSets. The ¯rst mech-
anism is to pass a hash to the gpds with the attribute name as strings. The
second is to invoke the method with the same name as the attribute name on
the DataSet.

require 'gplot/Gnuplot'

4

-40

-20

 0

 20

 40

 60

 80

 100

-10 -5 0 5 10

4 * x
x**2

plot = Gnuplot::Plot.new
plot.terminal 'postscript eps'
plot.output 'demo4.eps'

x = (1..100).to_a
y = x.collect { |i| 4 * i }
ds1 = y.gpds
ds1.xgrid(x)
ds1.title("notitle")
ds1.with("lines")

y2 = x.collect { |i| i*i / 2.0 }
ds2 = "x**2".gpds({"with" => "points", "title" => "x^2"})

plot.draw ds1, ds2

In Figure 4 both methods are used. DataSet 1, ds1, is con¯gured using
methods while DataSet 2, ds2, is con¯gured by passing the options in a hash to
the initialize method. There is no advantage to using one over the other save a
religious preference on the part of the coder.

The list below shows the most commonly used DataSet properties

5

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 10 20 30 40 50 60 70 80 90 100

x^2

with Selects the style that will be used to display the data. The argument to
this should be one of either 'lines', 'points', 'linespoints', 'impulses', or any
other acceptable string for 'with'. Type 'help plot with' within gnuplot to
get help on this argument.

xgrid Set the values that should be used for the x axis. The argument to this
should be an array of values for the x axis and should be the same length
as the data. This is not the same as setting a range but simply associates
an x value for every y value.

title Set the title for this particular dataset. Set to the string 'notitle' to turn
o® the label for this dataset.

2.5 Annotating Plots

2.6 Changing output format and writing to ¯les

6

