NAME
Cdt - container data types

SYNOPSIS
#include <graphviz/cdt.h>

DICTIONAR Y TYPES
Void_t*;
Dt _t;
Dtdisc _t;
Dtmethod t;
Dtlink _t;
Dtstat_t;

DICTIONAR Y CONTROL
Dt _t* dtopen(Dtdisc_tdisc, Dtmethod_t* meth);
int dtclose(Dt_t*dt);
void dtclear(dt);
Dtmethod_t* dtmethod(Dt_t* dt, Dtmethod_t* meth);
Dtdisc_t* dtdisc(Dt_t*dt, Dtdisc_t* disc, int type);
Dt t* dtview(Dt_t* dt, Dt_t* view);

STORAGE METHODS
Dtmethod_t* Dtset;
Dtmethod_t* Dtbag;
Dtmethod_t* Dtoset;
Dtmethod_t* Dtobag;
Dtmethod_t* Dtlist;
Dtmethod_t* Dtstack;
Dtmethod_t* Dtqueue;

DISCIPLINE
typedef \0id_t* (*Dtmake_f)(Dt_t*, Void_t*, Dtdisc_t*);
typedef wid (*Dtfree_f)(Dt_t*, Void_t*, Dtdisc_t*);
typedef int (*Dtcompar_f)(Dt_t*, Void_t*, Void_t*, Dtdisc_t*);
typedef unsigned int (*Dthash_f)(Dt_t*, Void_t*, Dtdisc_t*);
typedef \0id_t* (*Dtmemory_f)(Dt_t*,Void_t*, size_t, Dtdisc_t*);
typedef int (*Dtevent_f)(Dt_t*, int, Void_t*, Dtdisc_t*);

OBJECT OPERATIONS
Void_t* dtinsert(Dt_t*dt, Void_t* obj);
Void_t* dtdelete(Dt_t*dt, Void_t* obj);
Void_t* dtsearch(Dt_t'dt, Void_t* obj);
Void_t* dtmatch(Dt_t*dt, Void_t* key);
Void_t* dtfirst(Dt_t* dt);
Void_t* dtnext(Dt_t* dt, Void_t* obj);
Void_t* dtlast(Dt_t*dt);
Void_t* dtprev(Dt_t* dt, Void_t* obj);
Void_t* dtfinger(Dt_t*dt);
Void_t* dtrenev(Dt_t* dt, Void_t* obj);
int dtwalk(Dt_t* dt, int (*userf)(Dt_t*, Void_t*, Void_t*), Void_t*);
Dtlink_t* dtflatten(Dt_t* dt);
Dtlink_t* dtlink(Dt_t*, Dtlink_t* link);
Void_t* dtobj(Dt_t* dt, Dtlink_t* link);
Dtlink_t* dtextract(Dt_t* dt);
int dtrestore(Dt_t*dt, Dtlink_t* link);

DICTIONAR Y STATUS
Dt_t* dtvnext(Dt_t* dt);
int dtvcount(Dt_t*dt);
Dt_t* dtvhere(Dt_t*dt);
int dtsize(Dt_t*dt);
int dtstat(Dt_t*dt, Dtstat_t*, int all);
HASH FUNCTIONS
unsigned int dtstrhash(unsigned int h, char*istrn);
unsigned int dtcharhash(unsigned int h, unsigned char c);

DESCRIPTION
Cdt manages run-time dictionaries using standard container data types: unordered set/multiset, ordered
set/multiset, list, stack, and queue.

DICTIONAR Y TYPES
Void_t*
This type is used to pass objects betw€dnand application codeVoid_t is defined as void for ANSI-C
and C++ and char for other compilation environments.

Dt _t
This is the type of a dictionary handle.

Dtdisc_t
This defines the type of a discipline structure which describes object lay-out and manipulation functions.

Dtmethod_t
This defines the type of a container method.

Dtlink _t
This is the type of a dictionary object holder (see dtdisc().)

Dtstat_t
This is the type of a structure to return dictionary statistics (see dtstat().)

DICTIONAR Y CONTROL
Dt_t* dtopen(Dtdisc_t* disc, Dtmethod_t* meth)
This creates a medictionary disc is a discipline structure to describe object formmaeth specifies a
manipulation method. dtopen() returns thevrdictionary or NULL on error.

int dtclose(Dt_t* dt)
This deletes dt and its objectiote that dtclose() fails if dt is being viewed by some other dictionaries (see
dtview()). dtclose(xeturns 0 on success and -1 on error.

void dtclear(Dt_t* dt)
This deletes all objects in dt without closing dt.

Dtmethod_t dtmethod(Dt_t* dt, Dtmethod_t* meth)
If meth is NULL, dtmethod() returns the current meth@therwise, it changes the storage method of dt to
meth. Objecbrder remains the same during a method switch among Dtlist, Dtstack and DtGueted-
ing to and from Dtset/Dtbag and Dtoset/Dtobag may cause objects to be rehashed, reorderededesemo
the case requires. dtmethod() returns the previous method or NULL on error.

Dtdisc_t* dtdisc(Dt_t* dt, Dtdisc_t* disc, int type)
If disc is NULL, dtdisc() returns the current disciplin®therwise, it changes the discipline of dt to disc.
Objects may be rehashed, reordered, or xechas Pppropriate. typecan be ay bit combination of
DT_SAMECMP and DT_SAMEHASH. DT_SAMECMP means that objects will compare exactly the
same as before thus obviating the need for reordering or removwnglu@icates. DT_SAMEHASH

means that hash values of objects remain the same thiadiredp the need to rehash. dtdisc() returns the
previous discipline on success and NULL on error.

Dt_t* dtview(Dt_t* dt, Dt_t* view)
A viewpath allows a search or walk starting from a dictionary to continue to anativéaw() first termi-
nates ay current viav from dt to another dictionaryThen, if viev is NULL, dtview returns the terminated
view dictionary. If view is not NULL, a viewpath from dt to vie is established. dtvie() returns dt on
success and NULL on error.

If two dictionaries on the same viewpathvhathe same a&lues for the discipline fields Dtdisc_t.link,
Dtdisc_t.ley, Dtdisc_t.size, and Dtdisc_t.hashf, it is expected tlegt hashing will be the same. If not,
undefined behaviors may result during a search or a walk.

STORAGE METHODS
Storage methods are of type Dtmethod_@tlt supports the following methods:

Dtoset
Dtobag
Objects are ordered by comparisons. Dtoset keeps unigue objects. Dtobag allows repeatable objects.

Dtset

Dtbag
Objects are unordered. Dtset keeps unique objdatbag allows repeatable objects and/agis keeps
them together (note the effect on dictionary walking.)

Dtlist
Objects are kept in a listNew objects are inserted either in front@frrent object (see dtfinger()) if this is
defined or at list front if there is no current object.

Dtstack
Objects are kept in a stack, i.e., ivaese order of insertion. Thus, the last object inserted is at stack top
and will be the first to be deleted.

Dtqueue
Objects are kept in a queue, i.e., in order of insertion. Thus, the first object inserted is at queue head and
will be the first to be deleted.

DISCIPLINE
Object format and associated management functions are defined in the type Dtdisc_t:

typedef struct

{int key, Sze;
int link;
Dtmalke_f malef;
Dtfree f freef;
Dtcompar_f comparf;
Dthash_f hashf;
Dtmemory_f memoryf;
Dtevent f eventf;

} Dtdisc_t;

int key, sze
Each object obj is identified by &k used for object comparison or hashirgey should be non-ngetive
and defines an offset into obj. If size igyaeve, the ley is a rull-terminated string with starting address
*(Void_t**)((char*)obj+key). If size is zero, thedy is a nll-terminated string with starting address
(Void_t*)((char*)obj+key). Finally, if size is positve, the key is a lyte array of length size starting at
(Void_t*)((char*)obj+key).

int link
Let obj be an object to be inserted into dt as discussew.bdidink is neaive, an internally allocated
object holder is used to hold obj. Otherwise, obj shoule lzaDlink_t structure embedded link bytes into
it, i.e., at address (Dtlink_t*)((char*)obj+link).

Void_t* (*makef)(Dt_t* dt, Void_t* obj, Dtdisc_t* disc)
If makef is not NULL, dtinsert(dt,obj) will call it to maka ©py of obj suitable for insertion into dtif
makef is NULL, obj itself will be inserted into dt.

void (*freef)(Dt_t* dt, Void_t* obj, Dtdisc_t* disc)
If not NULL, freef is used to destyalata associated with obj.

int (*comparf)(Dt_t* dt, Void_t* key1, Void_t* key2, Dtdisc_t* disc)
If not NULL, comparf is used to comparedweys. Itsreturn value should be <0, =0, or >0 to indicate
whether leyl is analler, equal to, or larger thangy?2. All three values are significant for method Dtoset
and Dtobag.For other methods, a zerahle indicates equality and a non-zero value indicates inequality
If (*comparf)() is NULL, an internal function is used to compare thgslas @fined by the Dtdisc_t.size
field.

unsigned int (*hashf)(Dt_t* dt, Void_t* key, Dtdisc_t* disc)
If not NULL, hashf is used to compute the hash valueegf k is required that &ys compared equal will
also hae same hashalues. Ifhashf is NULL, an internal function is used to hash #aed defined by the
Dtdisc_t.size field.

Void_t* (*memoryf)(Dt_t* dt, Void_t* addr , Sze_t size, Dtdisc_t* disc)
If not NULL, memoryf is used to allocate and free memadfyhen addr is NULL, a memory segment of
size size is requestedf addr is not NULL and size is zero, addr is to be freed. If addr is not NULL and
size is positie, addr is to be resized to thevgh sze. If memoryfis NULL,malloc(3) is used. When dic-
tionaries share memarg record of the first allocated memorygseent should be kept so that it can be used
to initialize nev dictionaries (see bela)

int (*eventf)(Dt_t* dt, int type, Void_t* data, Dtdisc_t* disc)
If not NULL, eventf announces variousvents. Ifit returns a ngdive \value, the calling operation will ter
minate with &ilure. Unlessoted otherwise, a non-gaive return value let the calling function proceed
normally. Following are the eents:

DT_OPEN:
dt is being opened. Ifventf returns zero, the opening process proceeds normallpositive
return \alue indicates that dt uses memory already initialized by a different dictiotrathat
case, *(\0id_t**)data should be set to the first allocated memory segment as discussed in memo-
ryf. dtopen()may fail if this segment is not returned or if it has not been properly initialized.

DT_CLOSE:
dt is being closed.

DT_DISC:
The discipline of dt is being changed to savrame given in (Dtdisc_t*)data.

DT_METH:
The method of dt is being changed to @ wae given in (Dtmethod_t*)data.

OBJECT OPERATIONS
Void_t* dtinsert(Dt_t* dt, Void_t* obj)
This inserts an object prototyped by obj into dt. If there is an existing object in dt matching obj and the
storage method is Dtset or Dtoset, dtinsert() will simply return the matching object. Otherwise, a ne
object is inserted according to the method in uSee Dtdisc_t.makef for object constructiattinsert()
returns the ng@ object, a matching object as noted, or NULL on error.

Void_t* dtdelete(Dt_t* dt, Void_t* obj)
If obj is not NULL, the first object matching it is deleteldi.obj is NULL, methods Dtstack and Dtqueue
delete respeately stack top or queue head while other methods do nothing. See Dtdisc_t.freef for object
destruction. dtdelete(gturns the deleted objecwéa if it was deallocated) or NULL on error.

Void_t* dtsearch(Dt_t* dt, Void_t* obyj)

Void_t* dtmatch(Dt_t* dt, Void_t* key)
These functions find an object matching obj ey kther from dt or from some dictionary accessible from
dt via a viewpath (see dtvig).) dtsearch(and dtmatch() return the matching object or NULL on failure.

Void_t* dtfirst(Dt_t* dt)

Void_t* dtnext(Dt_t* dt, Void_t* obj)
dtfirst() returns the first object in dttnext() returns the object following obj. Objects are ordered based on
the storage method in usEor Dtoset and Dtobag, objects are ordered by object comparifon®tstack,
objects are ordered inverse order of insertionFor Dtqueue, objects are ordered in order of insertieor.
Ditlist, objects are ordered by list positioRor Dtset and Dtbag, objects use some internal ordering which
may change on grsearch, insert, or delete operatioriherefore, these operations should not be used dur
ing a walk on a dictionary using either Dtset or Dtbag.

Objects in a dictionary or a viewpath can balked using a for(;;) loop as b&lo Note that only one loop
can be used at a time per dictionaBoncurrent or nested loops may result in unexpected behaviors.
for(obj = dftfirst(dt); obj; obj = dtnext(dt,obj))

Void_t* dtlast(Dt_t* dt)

Void_t* dtpr ev(Dt_t* dt, Void_t* obj)
dtlast() and dtprev() are Ekdfirst() and dtnext() but work in verse order Note that dictionaries on a
viewpath are still walked in order but objects in each dictionary are walkedensesorder.

Void_t* dtfinger(Dt_t* dt)
This function returns theurrent object of dt, if ary. The current object is defined after a successful call to
one of dtsearch(), dtmatch(), dtinsert(), dtfirst(), dtnext(), dtlast(), ondgjpras a dde effect of this imple-
mentation ofCdt, when a dictionary is based on Dtoset and Dtobag, the current objeesys dlefined and
is the root of the tree.

Void_t* dtrenew(Dt_t* dt, Void_t* obj)
This function repositions and perhaps rehashes an object obj aftey itaskbeen changeditrenav() only
works if obj is the current object (see dtfinger()).

dtwalk(Dt_t* dt, int (*userf)(Dt_t*, Void_t*, Void_t*), Void_t* data)
This function calls (*userf)(alk,obj,data) on each object in dt and other dictionariemwakle from it.
walk is the dictionary containing objf userf() returns a <0 value, dtwalk() terminates and returns the same
vaue. dtwalk() returns 0 on completion.

Dtlink_t* dtflatten(Dt_t* dt)
Dtlink_t* dtlink(Dt_t* dt, Dtlink_t* link)
Void_t* dtobj(Dt_t* dt, Dtlink_t* link)
Using dtfirst()/dtnext() or dtlast()/dtprev() to walk a single dictionary can incur significant cost due to func-
tion calls. For efficient walking of a single directory (i.e., no wigathing), dtflatten() and dtlink() can be
used. Objectt dt are made into a linked list and walked as follows:
for(link = dtflatten(dt); link; link = dtlink(dt,link))

Note that dtflatten() returns a list of type Dtlink_t*, natid/ t*. That is, it returns a dictionary holder
pointer not a user object pointer (although both are the same if the discipline field link is gaivag
The macro function dtlink() returns the dictionary holder object following lifitkhe macro function
dtobj(dt,link) returns the user object associated with linkyde that the flattened object list is unflattened
on ary dictionary operations other than dtlink().

Dtlink_t* dtextract(Dt_t* dt)

int dtrestore(Dt_t* dt, Dtlink_t* link)
dtextract() extracts all objects from dt and makes it appear engtgstore() repopulates dt with objects
previously obtained via digract(). dtrestore(ill fail if dt is not empty These functions can be used to
share a same dt handle among ynsets of objects.They are useful to reduce dictionarywehead in an
application that creates concurrently malictionaries. Itis important that the same discipline and method
are in use at both extraction and restoration. Otherwise, undefined behaviors may result.

DICTIONAR Y INFORMATION

Dt_t* dtvnext(Dt_t* dt)
This returns the dictionary that dt is viewing, ifyan

int dtvcount(Dt_t* dt)
This returns the number of dictionaries thatwii.

Dt_t* dtvhere(Dt_t* dt)
This returns the dictionary v vieble from dt where an objectas found from the most recent search or
walk operation.

int dtsize(Dt_t* dt)
This function returns the number of objects stored in dt.

int dtstat(Dt_t *dt, Dtstat_t* st, int all)
This function reports dictionary statistics. If all is non-zero, all fields of st are fill#erwise, only the
dt_type and dt_size fields are filled. It returns O on success and -1 on error.

Dtstat_t contains the beidfields:

int dt_type:
This is one of DT_SETDT_BAG, DT_OSET DT_OBAG, DT_LIST, DT_STACK, and
DT_QUEUE.

int dt_size:
This contains the number of objects in the dictionary.

int dt_n:

For Dtset and Dtbag, this is the number of non-empty chains in the hash FablBtoset and
Dtobag, this is the deepestékin the tree (counting from zero.) Eaclvékin the tree contains all
nodes of equal distance from the root node. dt_n and the betofields are undefined for other
methods.

int dt_max:

For Dtbag and Dtset, this is the size of a largest chion.Dtoset and Dtobag, this is the size of a
largest leel.

int* dt_count:
For Dtset and Dtbag, this is the list of counts for chains of particular siges.example,
dt_count[1] is the number of chains of sizeFor Dtoset and Dtobag, this is the list of sizes of the
levels. For example, dt_count[1] is the size ofékl.

HASH FUNCTIONS
unsigned int dtcharhash(unsigned int h, char c)
unsigned int dtstrhash(unsigned int h, char* strint n)
These functions compute hash values from bytes or striigharhash() computes awéash value from
byte ¢ and seed value lltstrhash() computes awdash value from string str and seed value h. If n is
positive, gr is a byte array of length n; otherwise, str is a null-terminated string.

IMPLEMENT ATION NOTES
Dtset and Dtbag are based on hash tables witledtosfront collision chains. Dtoset and Dtobag are based
on top-down splay trees. Dtlist, Dtstack and Dtqueue are based on doubly linked list.

AUTHOR
Kiem-Phong Vo, kpv@research.att.com

