
 TOC Internet Engineering Task Force P. Hallam-Baker

Internet-Draft Comodo Group Inc.

Intended status: Standards Track May 17, 2013

Expires: November 18, 2013

Web Services Connect Protocol
draft-hallambaker-wsconnect-00

Abstract

Many Web Services share a requirement for establishing and maintaining a persistent
connection between the client and service.

Status of this Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note
that other groups may also distribute working documents as Internet-Drafts. The list of
current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated,
replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-
Drafts as reference material or to cite them other than as “work in progress.”

This Internet-Draft will expire on November 18, 2013.

Copyright Notice

Copyright (c) 2013 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and
restrictions with respect to this document. Code Components extracted from this document
must include Simplified BSD License text as described in Section 4.e of the Trust Legal
Provisions and are provided without warranty as described in the Simplified BSD License.

Table of Contents

1. Definitions
 1.1. Requirements Language
2. Purpose
3. Omnibroker Connection Maintenance Service
 3.1. Authentication
 3.1.1. Broker Authentication
 3.1.2. Device Authentication
 3.1.3. Illustrative example
 3.2. OBPConnection
 3.2.1. Message: Message
 3.2.2. Message: Response
 3.2.3. Message: ErrorResponse
 3.2.4. Message: Request
 3.2.5. Structure: Cryptographic
 3.2.6. Structure: ImageLink
 3.2.7. Structure: Connection
 3.2.8. Bind

 TOC

 TOC

 TOC

 TOC

 TOC

 TOC

 3.2.9. Message: BindRequest
 3.2.10. Message: BindResponse
 3.2.11. Message: OpenRequest
 3.2.12. Message: OpenResponse
 3.2.13. Message: TicketRequest
 3.2.14. Message: TicketResponse
 3.2.15. Unbind
 3.2.16. Message: UnbindRequest
 3.2.17. Message: UnbindResponse
4. Mutual Authentication
 4.1. PIN Authentication
 4.2. Example: Latin PIN Code
 4.3. Example: Cyrillic PIN Code
 4.4. Stateless server
 4.5. Established Key
 4.6. Out of Band Confirmation
5. Acknowledgements
6. Security Considerations
 6.1. Denial of Service
 6.2. Breach of Trust
 6.3. Coercion
7. To do
8. IANA Considerations
9. Normative References
Appendix A. Example Data.
 A.1. Ticket A
 A.2. Ticket B
§ Author's Address

1. Definitions

1.1. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
interpreted as described in [RFC2119].

2. Purpose

3. Omnibroker Connection Maintenance Service

3.1. Authentication

The principle function of the OBP Connection Maintenance Protocol is to establish and
maintain the cryptographic parameters used to authenticate and encrypt

The user needs to authenticate the broker service regardless of any authentication
requirements of the broker.

3.1.1. Broker Authentication

RFC 2119

 TOC

 TOC

The OBP connection maintenance protocol transport MUST provide a trustworthy means of
verifying the identity of the broker (e.g. an Extended Validation SSL certificate).

If the device supports a display capability, authentication of the device and user MAY be
achieved by means of an authentication image. Such an authentication image is generated
by the broker and passed to the client in the OpenResponse message. The user then verifies
that the image presented on the device display is the same as that presented on the
account maintenance console.

3.1.2. Device Authentication

If device authentication is required, the mechanism to be used depends on the capabilities of
the device, the requirements of the broker and the existing relationship between the user
and the broker.

If the device supports some means of data entry, authentication MAY be achieved by
entering a passcode into the device that was previously delivered to the user out of band.

The passcode authentication mechanism allows the device to establish a proof that it knows
the passcode without disclosing the passcode. This property provides protection against
Man-In-The-Middle type disclosure attacks.

3.1.3. Illustrative example

Alice is an employee of Example Inc. which runs its own local omnibroker service
'example.com'. To configure her machine for use with this service, Alice contacts her network
administrator who assigns her the account identifier 'alice' and obtains a PIN number from
the service 'Q80370-1RA606-F04B'

Alice enters the values 'alice@example.com' and 'Q80370-1RA606-F04B' into her
Omnibroker-enabled Web browser.

The Web browser uses the local DNS to resolve 'example.com' and establishes a HTTPS
connection to the specified IP address. The client verifies that the certificate presented has a
valid certificate chain to an embedded trust anchor under an appropriate certificate policy
(e.g. compliant with Extended Validation Criteria defined by CA-Browser Forum).

Having established an authenticated and encrypted TLS session to the Omnibroker service,
the client sends an OpenRequest message to begin the process of mutual authentication.
This message specifies the cryptographic parameters supported by the client
(Authentication, Encryption) and a nonce value (Challenge), device identification parameters
(DeviceID, DeviceURI, DeviceName) and the name of the account being requested.

The client does not specify the PIN code in the request, nor is the request authenticated.
Instead the client informs the server that it has a PIN code that can be supplied if necessary.

Post / HTTP/1.1
Host: example.com
Cache-Control: no-store
Content-Type: Application/json;charset=UTF-8
Content-Length: 470

{
 "OpenRequest": {
 "Encryption": ["HS256",
 "HS384",
 "HS512",
 "HS256T128"],
 "Authentication": ["A128CBC",
 "A256CBC",
 "A128GCM",
 "A256GCM"],

 "Account": "alice",
 "Domain": "example.com",
 "HavePasscode": true,
 "HaveDisplay": true,
 "Challenge": "d2gdVeQesS3UTOgtK4JSEg==",
 "DeviceID": "Serial:0002212",
 "DeviceURI": "http://comodo.com/dragon/v3.4",
 "DeviceName": "Comodo Dragon"}}

The service receives the request. If the request is consistent with the access control policy for
the server it returns a reply that specifies the chosen cryptographic parameters
(Cryptographic), responds to the client issued by the client to establish server proof of
knowsledge of the PIN (ChallengeResponse) and issues a challenge to the client (Challenge).

The cryptographic parameters specify algorithms to be used for encryption and
authentication, a shared secret and a ticket value. Note that while the shared secret is
exchanged in plaintext form in the HTTP binding, the connection protocol MUST provide
encryption.

HTTP/1.1 203 Passcode
Content-Type: application/json;charset=UTF-8
Content-Length: 500

{
 "OpenResponse": {
 "Status": 203,
 "StatusDescription": "Passcode",
 "Cryptographic": [{
 "Secret": "11bmdFi9Et7KIUg8aeN2AQ==",
 "Encryption": "A128CBC",
 "Authentication": "HS256",
 "Ticket":
 "TUMnorO0SjHHS7D2uFcGlRYJ0Hd3eibwe0ogptoNMQuCYmCHfHAJcJlyvi
 j8WoXDglTSOkctnmoBzl8W0NLSlcgSyZcmsAyoWs8y1Rn2ZlO2WBgoWrFIO
 qPa4oB29dgs/ei6ieINZtmvXNCm2NUkWA=="}],
 "Challenge": "alX8aAWH6acSqO3FTT94HA==",
 "ChallengeResponse": "enT5myMw8w2hV4H32Ntx/g=="}}

To complete the transaction, the client sends a TicketRequest message to the serice
containing a response to the PIN challenge sent by the service (ChallengeResponse). The
TicketRequest message is authenticated under the shared secret specified in the
OpenResponse message.

Post / HTTP/1.1
Host: example.com
Cache-Control: no-store
Content-Type: Application/json;charset=UTF-8
Content-Length: 78
Content-Integrity:
 mac=cjkMkfnnYP8JYWZAbRLvtpqImmOK3rsrOT1XcvAgHDk=;
 ticket=TUMnorO0SjHHS7D2uFcGlRYJ0Hd3eibwe0ogptoNMQuCYmCHfHAJcJlyvi
 j8WoXDglTSOkctnmoBzl8W0NLSlcgSyZcmsAyoWs8y1Rn2ZlO2WBgoWrFIOqPa4
 oB29dgs/ei6ieINZtmvXNCm2NUkWA==

{
 "TicketRequest": {
 "ChallengeResponse": "TctLOG74cwpm26YNpEibcQ=="}}

If the response to the PIN challenge is correct, the service responds with a message that
specifies a set of cryptographic parameters to be used to authenticate future interactions
with the service (Cryptographic) and a set of connection parameters for servers supporting
the Query Service (Service).

In this case the server returns three connections, each offering a different transport protocol
option. Each connection specifies its own set of cryptographic parameters (or will when the
code is written for that).

HTTP/1.1 200 Complete
Content-Type: application/json;charset=UTF-8
Content-Length: 1907
Content-Integrity:
 mac=nKhjR1r2eYPga0rmDfHT4HOvgQ+EuUoQPwzIl0btljs=;
 ticket=TUMnorO0SjHHS7D2uFcGlRYJ0Hd3eibwe0ogptoNMQuCYmCHfHAJcJlyvi
 j8WoXDglTSOkctnmoBzl8W0NLSlcgSyZcmsAyoWs8y1Rn2ZlO2WBgoWrFIOqPa4
 oB29dgs/ei6ieINZtmvXNCm2NUkWA==

{
 "TicketResponse": {
 "Status": 200,
 "StatusDescription": "Complete",
 "Cryptographic": [{
 "Protocol": "OBPConnection",
 "Secret": "HQuQg4GkzTwTVoGxar0EXg==",
 "Encryption": "A128CBC",
 "Authentication": "HS256",
 "Ticket":
 "0ulMVMMfY/pLHZ0FlIy2zDnNycYz9Znvs3JJYQGlZ+dWaxMNxm/jLEsJd/
 0qsAc5qp8fjBoMN49V9DkDgM4UYJxVriqfr64RyTTgug2taHY="}],
 "Service": [{
 "Name": "obp1.example.com",
 "Port": 443,
 "Address": "10.1.2.3",
 "Priority": 1,
 "Weight": 100,
 "Transport": "WebService",
 "Cryptographic": {
 "Protocol": "OBPQuery",
 "Secret": "kezeXxhkzXgxY7vpkHUb1g==",
 "Encryption": "A128CBC",
 "Authentication": "HS256",
 "Ticket":
 "jpBXvI7/0WTmwI2NN4n7Vvw96nbS9LpSsSNMIkdapiUoLikSkjpgMrtb
 VKz5lHOPloCgAyZXxfZpQRsp4oPY4BcRaMw6F5na62IHnBVDeXg="}},
 {
 "Name": "dns1.example.com",
 "Port": 53,
 "Address": "10.1.2.2",
 "Priority": 1,
 "Weight": 100,
 "Transport": "DNS",
 "Cryptographic": {
 "Protocol": "OBPQuery",
 "Secret": "Wk3m7DlL/GStBBm3xUjyzg==",
 "Encryption": "A128CBC",
 "Authentication": "HS256",
 "Ticket":
 "Q9r4hXefHhLvgpKHVg3w2p7VptVH9qidGiIa4Nw3Zp5hZR816h9+PRj5
 sye1jmIhy4sYA/jfK/g4OrSngK9xWO7Qg3/iQ+YTAchKQjdJtN4="}},
 {
 "Name": "udp.example.com",
 "Port": 5000,
 "Address": "10.1.2.2",
 "Priority": 1,
 "Weight": 100,
 "Transport": "UDP",
 "Cryptographic": {
 "Protocol": "OBPQuery",
 "Secret": "wBiguG9FGj08nS/c/njp4Q==",
 "Encryption": "A128CBC",
 "Authentication": "HS256",

 TOC

 TOC

 TOC

 "Ticket":
 "F8LPKTL+XaAX0eJsM22fdJ37BRS816dKXD66UbD8NAVKOgOu556uS8WW
 AMj+dJbJaErUzo/vw7tY0icCu1bw8qHmOO4gzhbSbD4Nga2EAU4="}}]}
 }

When Alice's machine is to be transfered to another employee, the Unbind transaction is
used. The only parameter is the Ticket identifying the device association (Ticket).

Post / HTTP/1.1
Host: example.com
Cache-Control: no-store
Content-Type: Application/json;charset=UTF-8
Content-Length: 25
Content-Integrity:
 mac=bZU61eCOW4nVnfdJNS719HL4IsNVxtoTgoRt+mqLbWY=;
 ticket=0ulMVMMfY/pLHZ0FlIy2zDnNycYz9Znvs3JJYQGlZ+dWaxMNxm/jLEsJd/
 0qsAc5qp8fjBoMN49V9DkDgM4UYJxVriqfr64RyTTgug2taHY=

{
 "UnbindRequest": {}}

Since the unbind response represents the termination the relationship with the Omnibroker,
the response merely reports the success or failure of the request.

HTTP/1.1 0
Content-Type: application/json;charset=UTF-8
Content-Length: 26
Content-Integrity:
 mac=9P1FmroeFU7y9qHgXdSFXH2qSImh0cQpaSgZrx5IswM=;
 ticket=0ulMVMMfY/pLHZ0FlIy2zDnNycYz9Znvs3JJYQGlZ+dWaxMNxm/jLEsJd/
 0qsAc5qp8fjBoMN49V9DkDgM4UYJxVriqfr64RyTTgug2taHY=

{
 "UnbindResponse": {}}

The 'Ticket' value presented in the foregoing examples is a sequence of binary data
generated by the service is opaque to the client. Services MAY generate ticket values with a
substructure that enable the service to avoid the need to maintain server side state.

In the foregoing example, the ticket structures generated by the service encode the
cryptographic parameter data, the shared secret, account identifier and an authentication
value. The initial ticket value generated additionally encodes the values of the client and
service challeng values for use in calculating the necessary ChallengeResponse.

3.2. OBPConnection

3.2.1. Message: Message

3.2.2. Message: Response

Status : Integer [0..1]
Application layer server status code

StatusDescription : String [0..1]
Describes the status code (ignored by processors)

 TOC

 TOC

 TOC

 TOC

 TOC

3.2.3. Message: ErrorResponse

An error response MAY be returned in response to any request.

Note that requests MAY be rejected by the code implementing the transport binding before
application processing begins and so a server is not guaranteed to provide an error response
message.

3.2.4. Message: Request

Ticket : Binary [1..1]
Opaque ticket issued by the server that identifies the cryptographic parameters
for encryption and authentication of the message payload.

3.2.5. Structure: Cryptographic

Parameters describing a cryptographic context.

Protocol : Label [0..1]
OBP tickets MAY be restricted to use with either the management protocol
(Management) or the query protocol (Query). If so a service would typically specify
a ticket with a long expiry time or no expiry for use with the management protocol
and a separate ticket for use with the query protocol.

Secret : Binary [1..1]
Shared secret

Encryption : Label [1..1]
Encryption Algorithm selected

Authentication : Label [1..1]
Authentication Algorithm selected

Ticket : Binary [1..1]
Opaque ticket issued by the server that identifies the cryptographic parameters
for encryption and authentication of the message payload.

Expires : DateTime [0..1]
Date and time at which the context will expire

3.2.6. Structure: ImageLink

Algorithm : Label [0..1]
Image encoding algorithm (e.g. JPG, PNG)

Image : Binary [0..1]
Image data as specified by algorithm

3.2.7. Structure: Connection

Contains information describing a network connection.

Name : Name [0..1]
DNS Name. Since one of the functions of an OBP service is name resolution, a
DNS name is only used to establish a connection if connection by means of the IP
address fails.

Port : Integer [0..1]
TCP or UDP port number.

Address : String [0..1]
IPv4 (32 bit) or IPv6 (128 bit) service address

 TOC

 TOC

 TOC

 TOC

Priority : Integer [0..1]
Service priority. Services with lower priority numbers SHOULD be attempted
before those with higher numbers.

Weight : Integer [0..1]
Weight to be used to select between services of equal priority.

Transport : Label [0..1]
OBP Transport binding to be used valid values are HTTP, DNS and UDP.

Expires : DateTime [0..1]
Date and time at which the specified connection context will expire.

3.2.8. Bind

Binding a device is a two step protocol that begins with the Start Query followed by a
sequence of Ticket queries.

3.2.9. Message: BindRequest

The following parameters MAY occur in either a StartRequest or TicketRequest:

Encryption : Label [0..Many]
Encryption Algorithm that the client accepts. A Client MAY offer multiple
algorithms. If no algorithms are specified then support for the mandatory to
implement algorithm is assumed. Otherwise mandatory to implement algorithms
MUST be specified explicitly.

Authentication : Label [0..Many]
Authentication Algorithm that the client accepts. If no algorithms are specified
then support for the mandatory to implement algorithm is assumed. Otherwise
mandatory to implement algorithms MUST be specified explicitly.

3.2.10. Message: BindResponse

The following parameters MAY occur in either a StartResponse or TicketResponse:

Cryptographic : Cryptographic [0..Many]
Cryptographic Parameters.

Service : Connection [0..Many]
A Connection describing an OBP service point

3.2.11. Message: OpenRequest

The OpenRequest Message is used to begin a device binding transaction. Depending on the
authentication requirements of the service the transaction may be completed in a single
query or require a further Ticket Query to complete.

If authentication is required, the mechanism to be used depends on the capabilities of the
device, the requirements of the broker and the existing relationship between the user and
the broker.

If the device supports some means of data entry, authentication MAY be achieved by
entering a passcode previously delivered out of band into the device.

The OpenRequest specifies the properties of the service (Account, Domain) and Device (ID,
URI, Name) that will remain constant throughout the period that the device binding is active
and parameters to be used for the mutual authentication protocol.

Account : String [0..1]
Account name of the user at the OBP service

Domain : Name [0..1]

 TOC

 TOC

 TOC

 TOC

 TOC

Domain name of the OBP broker service
HavePasscode : Boolean [0..1] Default =False

If 'true', the user has entered a passcode value for use with passcode
authentication.

HaveDisplay : Boolean [0..1] Default =False
Specifies if the device is capable of displaying information to the user or not.

Challenge : Binary [0..1]
Client challenge value to be used in authentication challenge

DeviceID : URI [0..1]
Device identifier unique for a particular instance of a device such as a MAC or EUI-
64 address expressed as a URI

DeviceURI : URI [0..1]
Device identifier specifying the type of device, e.g. an xPhone.

DeviceName : String [0..1]
Descriptive name for the device that would distinguish it from other similar
devices, e.g. 'Alice's xPhone".

3.2.12. Message: OpenResponse

An Open request MAY be accepted immediately or be held pending completion of an inband
or out-of-band authentication process.

The OpenResponse returns a ticket and a set of cryptographic connection parameters in
either case. If the

Challenge : Binary [0..1]
Challenge value to be used by the client to respond to the server authentication
challenge.

ChallengeResponse : Binary [0..1]
Server response to authentication challenge by the client

VerificationImage : ImageLink [0..Many]
Link to an image to be used in an image verification mechanism.

3.2.13. Message: TicketRequest

The TicketRequest message is used to (1) complete a binding request begun with an
OpenRequest and (2) to refresh ticket or connection parameters as necessary.

ChallengeResponse : Binary [0..1]
The response to a server authentication challenge.

3.2.14. Message: TicketResponse

The TicketResponse message returns cryptographic and/or connection context information to
a client.

3.2.15. Unbind

Requests that a previous device association be deleted.

3.2.16. Message: UnbindRequest

Since the ticket identifies the binding to be deleted, the only thing that the unbind message
need specify is that the device wishes to cancel the binding.

 TOC

 TOC

 TOC

3.2.17. Message: UnbindResponse

Reports on the success of the unbinding operation.

If the server reports success, the client SHOULD delete the ticket and all information relating
to the binding.

A service MAY continue to accept a ticket after an unbind request has been granted but
MUST NOT accept such a ticket for a bind request.

4. Mutual Authentication

A Connection Service MAY require that a connection request be authenticated. Three
authentication mechanisms are defined.

PIN Code: The client and server demonstrate mutual knowledge of a PIN code
previously exchanged out of band.

Established Key: The client and server demonstrate knowledge of the private key
associated with a credential previously established. This MAY be a public key or a
symmetric key.

Out of Band Confirmation: The request for access is forwarded to an out of band
confirmation service.

4.1. PIN Authentication

[Motivation]

Although the PIN value is never exposed on the wire in any form, the protcol considers the
PIN value to be a text encoded in UTF8 encoding.

[Considerations for PIN character set choice discussed in body of draft, servers MUST support
numeric only, clients SHOULD support full Unicode]

The PIN Mechanism is a three step process:

The client sends an OpenRequest message to the Service containing a challenge
value CC.

The service returns an OpenResponse message containing to the client a server
challenge value SV and a server response value SR.

The client sends a TicketRequest message to the service containing a client
response value CR.

Since no prior authentication key has been the OpenRequest and OpenResponse messages
are initially sent without authentication and authentication values established the Challenge-
Response mechanism.

The Challenge values CC, and SC are cryptographic nonces. The nonces SHOULD be
generated using an appropriate cryptographic random source. The nonces MUST be at least
as long as 128 bits, MUST be at least the minimum key size of the authentication algorithm
used and MUST NOT more than 640 bits in length (640 bits should be enough for anybody).

The server response and client response values are generated using an authentication
algorithm selected by the server from the choices proposed by the client in the OpenRequest
message.

The algorithn chosen may be a MAC algorithm or an encrypt-with-authentication (EWA)
algorithm. If an EWA is specified, the encrypted data is discarded and only the authentication

 TOC

value is used in its place.

Let A(d,k) be the authentication value obtained by applying the authentication algorithm with
key k to data d.

To create the Server Response value, the UTF8 encoding of the PIN value 'P' is first converted
into a symmetric key KPC by using the Client challenge value as the key truncating if
necessary and then applied to the of the OpenRequest message:

KPC = A (PIN, CC) SR = A (Secret + SC + OpenRequest, KPC)

In the Web Service Binding, the Payload of the message is the HTTP Body as presented on
the wire. The Secret and Server Challenge are presented in their binary format and the '+'
operator stands for simple concatenation of the binary sequences.

This protocol construction ensures that the party constructing SR:

Knows the PIN code value (through the construction of KPC).

Is responding to the Open Request Message (SR depends on OpenRequest).

Has knowlege of the secret key which MUST be used to authenticate the
following TicketRequest/TicketResponse interaction that will establish the actual
connection.

Does not provide an oracle the PIN value. That is, the protocol does not provide
a service that reveals the (since the value SR includes the value SC which is a
random nonce generated by the server and cannot be predicted by the client).

To create the Client Response value, secret key is applied to the PIN value and server
Challenge:

CR = A (PIN + SC + OpenRequest, Secret)

Note that the server can calculate the value of the Client Response token at the time that it
generates the Server Challenge. This minimizes the amount of state that needs to be carried
from one request to the next in the Ticket value when using the stateless server
implementation described in section

This protocol construction ensures that the of CR

Knows the PIN value.

Is respoding to the OpenResponse generated by the server.

Note that while disclosure of an oracle for the PIN value is a concern in the construction of
CR, this is not the case in the construction of SR since the client has already demonstrated
knowledge of the PIN value.

4.2. Example: Latin PIN Code

The Connection Request example of section demonstrates the use of an
alphanumeric PIN code using the Latin alphabet.

The PIN code is [] and the authentication algorithm is []. The value KP is thus:

[TBS]

The data over which the hash value is calulated is Secret + SC + OpenRequest:

[TBS]

Applying the derrived key to the data produces the server response:

The data for the client response is PIN + SC:

[TBS]

Section 4.4

Section 3.1.3

 TOC

 TOC

 TOC

 TOC

Applying the secret key to the data produces the client response:

[TBS]

4.3. Example: Cyrillic PIN Code

If the PIN code in the earlier example was [] the value KP would be:

[TBS]

The Server Response would be:

[TBS]

The rest of the protocol would then continue as before.

4.4. Stateless server

The protocol is designed to permit but not require a stateless implementation by the server
using the Ticket value generated by the server to pass state from the first server transaction
to the second.

In the example shown in , the server generates a 'temporary ticket' containing
the following information:

If a server uses the Ticket to transmit state in this way it MUST protect the confidentiality of
the ticket using a strong means of encryption and authentication.

4.5. Established Key

The Established Key mechanism is used when the parties have an existing shared key or
public key credential.

The [Open request open response are authenticated under the respective keys]

SR=CC, CR=SC

4.6. Out of Band Confirmation

The Out Of Band Confirmation mechanism is a three step process in which:

The client makes an OpenRequest message to the service and obtains an
OpenResponse message.

The service is informed that the service has been authorized through an out of
band process.

The client makes a TicketRequest to the service and obtains a TicketResponse
message to complete the exchange.

Since no prior authentication key has been the OpenRequest and OpenResponse messages
are sent without authentication.

The principal concern in the Out Of Band Confirmation mechanism is ensuring that the party
authorizing the request is able to identify which party originated the request they are
attempting to identify.

If a device has the ability to display an image it MAY set the HasDisplay=true in the
OpenRequest message. If the broker recieves an OpenRequest with the HasDisplay value set

Section 3.1.3

 TOC

 TOC

 TOC

 TOC

 TOC

 TOC

 TOC

 TOC

to true, the OpenResponse MAY contain one or more VerificationImage entries specifying
image data that is to be displayed to the user by both the client and the confirmation
interface.

Before confirming the request, the user SHOULD verify that the two images are the same
and reject the request in the case that they are not.

Many devices do not have a display capability, in particular an embedded device such as a
network switch or a thermostat. In this case the device MAY be identified by means of the
information provided in DeviceID, DeviceURI, DeviceImage and DeviceName.

5. Acknowledgements

[List of contributors]

6. Security Considerations

6.1. Denial of Service

6.2. Breach of Trust

6.3. Coercion

7. To do

Formatting of the abstract data items needs to be improved

8. IANA Considerations

[TBS list out all the code points that require an IANA registration]

9. Normative References

[RFC1035] Mockapetris, P., “Domain names - implementation and specification,” STD 13, RFC 1035, November 1987
(TXT).

[RFC2119] Bradner, S., “Key words for use in RFCs to Indicate Requirement Levels,” BCP 14, RFC 2119, March 1997
(TXT, HTML, XML).

[RFC4366] Blake-Wilson, S., Nystrom, M., Hopwood, D., Mikkelsen, J., and T. Wright, “Transport Layer Security (TLS)
Extensions,” RFC 4366, April 2006 (TXT).

[X.509] International Telecommunication Union, “ITU-T Recommendation X.509 (11/2008): Information technology -
Open systems interconnection - The Directory: Public-key and attribute certificate frameworks,” ITU-T
Recommendation X.509, November 2008.

[X.680] International Telecommunication Union, “ITU-T Recommendation X.680 (11/2008): Information technology -
Abstract Syntax Notation One (ASN.1): Specification of basic notation,” ITU-T Recommendation X.680,
November 2008.

http://tools.ietf.org/html/rfc1035
http://www.rfc-editor.org/rfc/rfc1035.txt
mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://www.rfc-editor.org/rfc/rfc2119.txt
http://xml.resource.org/public/rfc/html/rfc2119.html
http://xml.resource.org/public/rfc/xml/rfc2119.xml
http://tools.ietf.org/html/rfc4366
http://www.rfc-editor.org/rfc/rfc4366.txt
http://www.itu.int/itu-t/recommendations/rec.aspx?rec=X.509
http://www.itu.int/itu-t/recommendations/rec.aspx?rec=X.680

 TOC

 TOC

 TOC

 TOC

Appendix A. Example Data.

A.1. Ticket A

A.2. Ticket B

Author's Address

 Phillip Hallam-Baker
 Comodo Group Inc.

Email: philliph@comodo.com

mailto:philliph@comodo.com

	Web Services Connect Protocol draft-hallambaker-wsconnect-00
	Abstract
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Definitions
	1.1. Requirements Language
	2. Purpose
	3. Omnibroker Connection Maintenance Service
	3.1. Authentication
	3.1.1. Broker Authentication
	3.1.2. Device Authentication
	3.1.3. Illustrative example
	3.2. OBPConnection
	3.2.1. Message: Message
	3.2.2. Message: Response
	3.2.3. Message: ErrorResponse
	3.2.4. Message: Request
	3.2.5. Structure: Cryptographic
	3.2.6. Structure: ImageLink
	3.2.7. Structure: Connection
	3.2.8. Bind
	3.2.9. Message: BindRequest
	3.2.10. Message: BindResponse
	3.2.11. Message: OpenRequest
	3.2.12. Message: OpenResponse
	3.2.13. Message: TicketRequest
	3.2.14. Message: TicketResponse
	3.2.15. Unbind
	3.2.16. Message: UnbindRequest
	3.2.17. Message: UnbindResponse
	4. Mutual Authentication
	4.1. PIN Authentication
	4.2. Example: Latin PIN Code
	4.3. Example: Cyrillic PIN Code
	4.4. Stateless server
	4.5. Established Key
	4.6. Out of Band Confirmation
	5. Acknowledgements
	6. Security Considerations
	6.1. Denial of Service
	6.2. Breach of Trust
	6.3. Coercion
	7. To do
	8. IANA Considerations
	9. Normative References
	Appendix A. Example Data.
	A.1. Ticket A
	A.2. Ticket B
	Author's Address

