
OAuth Working Group P. Hunt, Ed.
Internet-Draft Oracle Corporation
Intended status: Standards Track M. Ansari
Expires: January 06, 2014 Cisco
 T. Nadalin
 Microsoft
 July 05, 2013

 OAuth 2.0 SCIM Client Registration Profile
 draft-hunt-oauth-scim-client-reg-00

Abstract

 This specification defines a SCIM endpoint used to register and
 provision OAuth 2.0 clients to access a OAuth 2.0 protected service
 API in a just-in-time fashion. This draft profiles how a OAuth 2.0
 client may use SCIM and OAuth 2.0 to manage its registration.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 06, 2014.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Hunt, et al. Expires January 06, 2014 [Page 1]

Internet-Draft OAuth-SCIM-Client-Reg July 2013

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 1.1. Notational Conventions 3
 1.2. Terminology . 4
 1.3. Typical Registration Flow 6
 2. SCIM OAuth Client Resource Schema 8
 2.1. Singular Attributes 9
 2.2. Multi-valued Attributes 12
 2.3. Client Representation 13
 2.4. Relationship Between Grant Types and Response Types . . . 13
 2.5. Human Readable Client Metadata 14
 2.6. Registration Server Processing Rules 15
 3. SCIM Interaction Profile 16
 3.1. Adding A Registration 16
 3.1.1. Anonymous Registration 16
 3.1.2. Pre-Authorized Registration 17
 3.2. Reading A Registration 18
 3.3. Modifying A Registration 20
 3.4. Deleting A Registration 20
 3.5. Expired Registration 20
 4. Software Assertion Token 21
 4.1. Software Assertion Requirements 21
 5. Server Schema Configurations 22
 5.1. Resource Type . 22
 5.2. Schema Representation 22
 6. IANA Considerations . 26
 6.1. OAuth Token Endpoint Authentication Methods Registry . . 26
 6.1.1. Registration Template 27
 6.1.2. Initial Registry Contents 27
 7. Security Considerations 28
 8. Normative References . 30
 Appendix A. Acknowledgments 31
 Appendix B. Document History 31
 Authors’ Addresses . 31

1. Introduction

Hunt, et al. Expires January 06, 2014 [Page 2]

Internet-Draft OAuth-SCIM-Client-Reg July 2013

 The OAuth 2.0 Authorization Framework [RFC6749] is a framework by
 which client applications are authorized by authorization servers to
 access software API servers using access tokens issued by a token
 server. As a framework, OAuth 2.0 enables many different flows by
 which a client application may obtain an access token including
 delegated authorization from a user. Most of these flows require
 that each client have a client identifier and some means of
 authentication.

 In order for an OAuth 2.0 client to work with an OAuth authorization
 server, it must have previously obtained a client identifier
 (client_id) and a client credential (such as a password, secret, or
 authentication token). The OAuth 2.0 authorization framework does
 not define how the relationship between the client and the
 authorization server is initialized, or how a given client is
 assigned a unique client identifier. Further, because many clients
 (such as mobile applications) are copied for wide distribution,
 special security considerations are defined for those clients known
 as "public" clients. Public clients represent a high risk when
 hundreds to millions of clients share the same authentication
 credential and client_id. This draft provides a means by which
 public clients can be issued unique client identifiers to become
 confidential clients.

 This draft profiles using SCIM [I-D.ietf-scim-api] as a just-in-time
 identity management system enabling every client to register itself
 with a designated SCIM endpoint to obtain a unique OAuth 2.0
 [RFC6749] client_id and authentication credential. In addition to
 accepting a registration request, the profile specifies how the
 endpoint can be used to dynamically assign a client identifier, and
 optionally a client credential. This specification defines OAuth 2.0
 client schema and objects accessible through SCIM. The OAuth 2.0
 client schema includes metadata about the client software being
 registered as well as OAuth 2.0 protocol metadata required for the
 successful operation of a client in an OAuth 2.0 protected
 environment.

 Finally, this specification also defines how a publisher of software
 services APIs deployed in multiple environments may issue a software
 assertion that may be used by the registration endpoint to recognize
 and accept client software. Additionally, the specification also
 defines a mechanism for pre-approval of client software within an
 administrative domain.

1.1. Notational Conventions

Hunt, et al. Expires January 06, 2014 [Page 3]

Internet-Draft OAuth-SCIM-Client-Reg July 2013

 The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’, ’SHALL NOT’,
 ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’, ’MAY’, and ’OPTIONAL’ in this
 document are to be interpreted as described in [RFC2119].

 Unless otherwise noted, all the protocol parameter names and values
 are case sensitive.

1.2. Terminology

 This specification uses the terms "Access Token", "Refresh Token",
 "Authorization Code", "Authorization Grant", "Authorization Server",
 "Authorization Endpoint", "Client", "Client Identifier", "Client
 Secret", "Protected Resource", "Resource Owner", "Resource Server",
 and "Token Endpoint" defined by OAuth 2.0 [RFC6749].

 In RFC6749, a client identifier was typically given to a developer
 for inclusion in the software. As a result, client identifier often
 had two different meanings when comparing public and confidential
 clients. A confidential client tended to be deployed in limited
 locations on server platforms and thus a client identifier was
 associated with a client instance. Public clients on the other hand
 are deployed in many locations. In these cases, the client
 identifier has closer association to the software being used rather
 than the instance.

 In this specification, "client identifier" is re-scoped more narrowly
 to imply an instance of client software (or a cluster). A new term,
 "software identifier" refers to a packaging of a software that is
 deployed in one or more location. Thus for every software
 identifier, there may be one or more client identifiers.

 This specification defines the following additional terms:

 Client Registration Endpoint A SCIM endpoint through which a client
 can be registered. The means by which the URL for this endpoint
 are obtained (discovery) are out of scope for this specification.

 Client Configuration Endpoint An OAuth 2.0 protected SCIM Resource
 endpoint through which registration information for a registered
 client can be managed. This URL for this endpoint is returned by
 the authorization server in the client registration response or
 may be discovered by performing a SCIM GET query.

Hunt, et al. Expires January 06, 2014 [Page 4]

Internet-Draft OAuth-SCIM-Client-Reg July 2013

 Deployment Organization An administrative security domain under
 which, a software API is deployed and protected by an OAuth 2.0
 framework. In simple cloud deployments, the software API
 publisher and the deployment organization may be the same. In
 other scenarios, a Software Publisher may be working with many
 different deployment organizations.

 Software API Deployment A deployment instance of a software API that
 is protected by OAuth 2.0 in a particular deployment organization
 domain. For any particular software API, there may be one or
 more deployments. A software API deployment typically has an
 associated OAuth 2.0 authorization server endpoint as well as a
 client registration endpoint. The means by which endpoints are
 obtained (discovery) are out of scope for this specification.

 Software API Publisher The organization that defines a particular
 web accessible API that may deployed in one or more deployment
 environments. A publisher may be any commercial, public,
 private, or open source organization that is responsible for
 publishing and distributing software that may be protected via
 OAuth 2.0. A software API publisher may issue software
 assertions which client developers use to distribute with their
 software to facilitate registration.

 Client Developer The person or organization that builds a client
 software package and prepares it for distribution. A client
 developer may obtain a software assertion from a software
 publisher for the purposes of facilitating client registration.

 Software Assertion A signed OAuth 2.0 Bearer Token [OAuth.JWT]
 issued by an software API publisher that asserts information
 about the client software (see Section 4) that may be used by
 registration system to qualify clients for eligibility to
 register. Typically a client developer registers with a software
 API publisher to obtain a software assertion that will be
 distributed with all copies of a client application and may be
 used during the registration process to identify the client to
 the client registration endpoint.

 Initial Access Token An OAuth 2.0 access token is typically issued
 by a software API deployment’s security domain and used by the
 client at the registration endpoint in order to register a
 client. In an authenticated registration, the token is usually
 issued by the same security domain as the Service API the client
 is registering for. The content, structure, generation, and
 validation of this token are out of scope for this specification.
 The SCIM registration endpoint security policy can use this token
 to verify that the presenter is allowed to dynamically register a

Hunt, et al. Expires January 06, 2014 [Page 5]

Internet-Draft OAuth-SCIM-Client-Reg July 2013

 client. This token may be shared between multiple instances of a
 client to allow each client to register separately, thereby
 letting the authorization server use this token to tie multiple
 instances of registered clients (each with their own distinct
 client identifier) back to the party to whom the initial access
 token was issued.

 Registration Access Token A registration access token is an optional
 token a registration server may issue for the purpose of
 supporting server initiated rotation of client credentials. If
 client credentials are revoked or expired, the registered client
 may use a provided registration access token to refresh its
 registration and obtain new client credentials. When doing this,
 the client does not need to obtain an access token.

1.3. Typical Registration Flow

 +------------+ +--------------+
Client App +-(A)---------------------------------->	Software API	
Developer	[Register]	Publisher
	<--------------------------------------+	
 +-----+------+ +--------------+
 |
 v
 +------------+
 + Builds App |
 |Distribution| [Package & Distribute]
 +-----+------+ +--------------+
 (B) +---(C)-----------------------------------+ Pre-reg Auth |
 | | +--------------+
 v V
 +------------+ +--------------+
 | +-(D)-----------------------------------> |
 | | [POST/Register-Add] | | | |
 | |<--------------------------------------+ |
 | | +-----------+ | OAuth2 |
 | +-(E)------------->| OAuth2 AS | | SCIM JIT |
 | Client App | [Token Request] | Token | | Registration |
 | Deployment |<-----------------+ Endpoint | | Endpoint |
 | Instance | +-----------+ | |
 | +-(F)---------------------------------->| |
 | | [PATCH/Update][PUT/Replace][GET/Read] | |
 | |<--------------------------------------+ |
 | | | |
 | | | |
 | +-(G)---------------------------------->| |
 | | [DELETE/Unregister] | |
 | |<--------------------------------------+ |

Hunt, et al. Expires January 06, 2014 [Page 6]

Internet-Draft OAuth-SCIM-Client-Reg July 2013

 +------------+ +--------------+

 Figure 1: Figure 1: Registration Lifecycle Flow

 The abstract OAuth 2.0 SCIM JIT Client Registration flow illustrated
 in Figure 1 describes the interaction between a software API
 publisher, a client developer, a deployed client software instance
 and the software API deployment registration services in this
 specification. This figure does not demonstrate error conditions.
 This flow includes the following steps:

 (A) Optionally, a client developer registers the clent application
 with a software API publisher. The software publisher, upon
 approval, generates a signed software assertion that is returned
 to the developer. While the software assertion is defined by
 this specification, the process of issuance is out-of-scope and
 is likely a web workflow the developer follows with the
 publisher.

 (B) The client developer packages the client software with the signed
 software assertion and distributes the client application. The
 method for doing this is out-of-scope of this specification.

 (C) Upon receiving a client application software distribution, a
 deploying organization may assign an initial access token, that
 can be used to authenticate a particular distribution of client
 software for use within the deploying organization’s
 administrative domain. The mechanism for obtaining an initial
 access token and distributing it with a set of client software
 instances is out of scope of this application. One example might
 be a token supplied during the installation process of a client
 software, or it may inserted within a locally re-packaged
 distribution of the client application.

 (D) A client application performs an HTTP POST of a "Client" of a
 JSON structured resource to the registration endpoint. If the
 client received an iInitial access token in (C), it includes it
 in the HTTP Authorization field, otherwise, the registration is
 treated as an "anonymous" POST. An optional software assertion,
 received in (A), is included in the SCIM Client resource JSON
 being posted.

 Upon successful registration, the SCIM Server returns a copy of
 the successful registration, including an assigned "client_id"
 and client credential (e.g. "client_secret"). In order for the
 client to access and update its registration in the future, an
 HTTP "Location" (client configuration endpoint) is returned
 specifying the location of the created SCIM resource.

Hunt, et al. Expires January 06, 2014 [Page 7]

Internet-Draft OAuth-SCIM-Client-Reg July 2013

 (E) As with any OAuth 2.0 protected resource, before a client may
 access and update its registration, the OAuth 2.0 client MUST
 obtain an access token. If the client received a "registration
 access token" in step (D), the client MAY use it. Alternatively,
 the client obtains an access token using the normal OAuth 2.0 a
 client credential flow section 4.3 [RFC6749] to obtain an access
 token with scope "urn:oauth:scim:api:scope:registration".

 (F) The Client or Developer optionally calls the client configuration
 endpoint with a SCIM GET, PUT or PATCH request using the access
 token obtained in (E). Upon reading and or updating client
 registration data, a SCIM registration endpoint may choose to
 rotate the client credential.

 (G) The Client or Developer optionally calls the client configuration
 endpoint with a Delete request using the access token issued in
 (E).

 Clients that need to register for more than one service API should
 typically make a separate registration request for each API being
 registered.

2. SCIM OAuth Client Resource Schema

 This specification defines a new SCIM resource type known as a
 "Client" identified using the URI
 "urn:scim:schemas:oauth:Client:1.0". [[Note include in IANA
 considerations]]

 For each attribute defined, a qualifier (OPTIONAL, RECOMMENDED,
 REQUIRED) is included that indicates the usage requirement for the
 client. If the word "READ-ONLY" is used, it shall mean the attribute
 SHOULD be server generated. String attributes and mult-valued
 attributes are based on the attribute types defined in Section 3.1
 and 3.2 [I-D.ietf-scim-core-schema]. Unless otherwise stated, ALL
 client schema attributes are String based values. For example, URIs,
 email addresses, identifiers, are all defined as SCIM String
 Attributes.

 Extensions and profiles of this specification MAY expand this list.
 Authorization servers MUST accept all fields in this schema. The
 authorization server MUST ignore any additional parameters sent by
 the client that it does not understand. Clients MAY ignore
 additional parameters returned by the Server that the client does not
 understand.

Hunt, et al. Expires January 06, 2014 [Page 8]

Internet-Draft OAuth-SCIM-Client-Reg July 2013

2.1. Singular Attributes

 The following is a list of attributes that MUST have only a SINGLE
 value.

 client_id OPTIONAL. An identifier whose value SHOULD be unique for
 EACH instance registered to a registration server. The value
 SHOULD be assigned by the registration endpoint on successful
 completion of the registration. While many clients may share a
 single software_id, each client instance SHOULD have a unique
 client_id. If a client registration expires or is revoked, the
 client MAY provide its previous registration value for continuity
 purposes (see Section 3.5).

 software_assertion
 OPTIONAL. A value containing a signed sofware assertion (see
 Section 4) from a software API publisher. Values in the
 assertion MAY be used as DEFAULT values for other client
 registration metadata.

 software_id
 RECOMMENDED. A unique identifier that identifies the software
 such as a UUID. The identifier SHOULD NOT change when software
 version changes or when a new installation instance is detected.
 "software_id" is intended to help a registration endpoint
 recognize a client’s assertion that it is a prticular piece of
 software. Because of this, software identifier is usually
 associated with a particular client name. While "client_id"is
 linked to a client software deployment instance, the
 "software_id" is an identifier shared between all copies of the
 client software. Registration servers MAY use the supplied
 software identifier to determine whether a particular client
 software is approved or supported for use in the deployment
 domain.

 software_version
 RECOMMENDED. A version identifier such as a UUID or a number.
 Servers MAY use equality match to determine if a particular
 client is a particular version. "software_version" SHOULD change
 on any update to the client software. Registration servers MAY
 use the software version and identity to determine whether a
 particular client version is authorized for use in the deployment
 domain.

 client_name
 RECOMMENDED. A human-readable name of the client to be presented
 to the user. If omitted, the authorization server MAY display
 the raw "client_id" value to the user instead. It is RECOMMENDED

Hunt, et al. Expires January 06, 2014 [Page 9]

Internet-Draft OAuth-SCIM-Client-Reg July 2013

 that clients always send this field. The value of this field MAY
 be internationalized as described in Human Readable Client
 Metadata (Section 2.5).

 client_secret READ-ONLY. A value that is the OAuth 2.0
 "client_secret". This value SHOULD be assigned by the server.
 Any time the value is returned to the registered client, the
 server MAY rotate the value. Clients MUST check for any change
 in value returned and update their copy. The value is typically
 only used when the attribute "token_endpoint_auth_method" is set
 to "client_post" or "client_basic".

 client_uri
 RECOMMENDED. A URL of the homepage of the client software. If
 present, the server SHOULD display this URL to the end user in a
 clickable fashion. It is RECOMMENDED that clients always send
 this field. The value of this field MUST point to a valid Web
 page. The value of this field MAY be internationalized as
 described in Human Readable Client Metadata (Section 2.5).

 jwks_uri
 OPTIONAL. A URL for the client’s JSON Web Key Set [JWK] document
 representing the client’s public keys. The value of this field
 MUST point to a valid JWK Set. These keys MAY also be used for
 higher level protocols that require signing or encryption.

 logo_uri
 OPTIONAL. A URL that references a logo image for the client. If
 present, the server SHOULD display this image to the end user
 during approval. The value of this field MUST point to a valid
 image file. The value of this field MAY be internationalized as
 described in Human Readable Client Metadata (Section 2.5).

 policy_uri
 OPTIONAL. A URL that points to a human-readable policy document
 for the client. The authorization server SHOULD display this URL
 to the End-User if it is given. The Policy usually describes how
 an End-User’s data will be used by the client. The value of this
 field MUST point to a valid Web page. The value of this field
 MAY be internationalized as described in Human Readable Client
 Metadata (Section 2.5).

 registration_token
 READ-ONLY. An OAuth 2.0 Bearer Token [OAuth.JWT] known as the
 "registration access token". The token MAY be used by the client
 as a long-term access token used to update and manage the
 client’s registration. The token is intended to allow the client
 to refresh its registration and obtain new client credentials in

Hunt, et al. Expires January 06, 2014 [Page 10]

Internet-Draft OAuth-SCIM-Client-Reg July 2013

 the event of expiry or revocation of the client credentials by
 the service API deployment domain. When client credentials are
 rotated, the registration access token SHOULD also be rotated.

 scope
 OPTIONAL. A space separated list of scope values (as described
 in Section 3.3 [RFC6749]) that the client can use when requesting
 access tokens. The semantics of values in this list is service
 specific. If omitted, an authorization server MAY register a
 client with a default set of scopes.

 targetEndpoint
 RECOMMENDED. A URI of the service API the client is registering
 for. The server MAY provide this value in its response. Clients
 requesting access to more than one target endpoint should
 register once for each target.

 token_endpoint_auth_method
 OPTIONAL. Value containing the requested authentication method
 for the Token Endpoint. The server MAY override the requested
 value. Clients MUST check for a change in value in the
 registration response. Values defined by this specification are:

 * "none": The client is a public client as defined in OAuth 2.0
 and does not have a client secret.
 * "client_secret_post": The client uses the HTTP POST parameters
 defined in OAuth 2.0 section 2.3.1.
 * "client_secret_basic": the client uses HTTP Basic defined in
 OAuth 2.0 section 2.3.1

 Additional values can be defined via the IANA OAuth Token
 Endpoint Authentication Methods registry Section 6.1. Absolute
 URIs can also be used as values for this parameter. If
 unspecified or omitted, the default is "client_secret_basic",
 denoting HTTP Basic Authentication Scheme as specified in
 Section 2.3.1 of OAuth 2.0.

 tos_uri
 OPTIONAL. A URL that points to a human-readable "Terms of
 Service" document for the client. The authorization server
 SHOULD display this URL to the End-User if it is given. The
 Terms of Service usually describe a contractual relationship
 between the End-User and the client that the End-User accepts
 when authorizing the client. The value of this field MUST point
 to a valid Web page. The value of this field MAY be
 internationalized as described in Human Readable Client Metadata
 (Section 2.5).

Hunt, et al. Expires January 06, 2014 [Page 11]

Internet-Draft OAuth-SCIM-Client-Reg July 2013

2.2. Multi-valued Attributes

 The following is a list of SCIM multi-valued attributes that MAY be
 part of a "Client" resource.

 contacts
 OPTIONAL. One or more email addresses for people responsible for
 this client. The authorization server MAY make these addresses
 available to end users for support requests for the client. An
 authorization server MAY use these email addresses as identifiers
 for an administrative page for this client.

 redirect_uris
 RECOMMENDED. One or more redirect URI values for use in
 redirect-based flows such as the Authorization Code and Implicit
 grant types. authorization servers SHOULD require registration
 of valid redirect URIs for all clients that use these grant types
 to protect against token and credential theft attacks.

 grant_types
 OPTIONAL. One or more OAuth 2.0 grant types that the client may
 use. These grant types are defined as follows:

 * "authorization_code": The Authorization Code Grant described
 in OAuth 2.0 Section 4.1
 * "implicit": The Implicit Grant described in OAuth 2.0
 Section 4.2
 * "password": The Resource Owner Password Credentials Grant
 described in OAuth 2.0 Section 4.3
 * "client_credentials": The "Client credentials Grant" described
 in OAuth 2.0 Section 4.4
 * "refresh_token": The Refresh Token Grant described in OAuth
 2.0 Section 6.
 * "urn:ietf:params:oauth:grant-type:jwt-bearer": The JWT Bearer
 grant type defined in OAuth JWT Bearer Token Profiles
 [OAuth.JWT].
 * "urn:ietf:params:oauth:grant-type:saml2-bearer": The SAML 2
 Bearer grant type defined in OAuth SAML 2 Bearer Token
 Profiles [OAuth.SAML2].

 Authorization servers MAY allow for other values as defined in
 grant type extensions to OAuth 2.0. The extension process is
 described in OAuth 2.0 Section 2.5, and the value of this
 parameter MUST be the same as the value of the "grant_type"
 parameter passed to the Token Endpoint defined in the extension.

 response_types

Hunt, et al. Expires January 06, 2014 [Page 12]

Internet-Draft OAuth-SCIM-Client-Reg July 2013

 OPTIONAL. One or more OAuth 2.0 response types that the client
 may use. These response types are defined as follows:

 * "code": The Authorization Code response described in OAuth 2.0
 Section 4.1.
 * "token": The Implicit response described in OAuth 2.0
 Section 4.2.

 Authorization servers MAY allow for other values as defined in
 response type extensions to OAuth 2.0. The extension process is
 described in OAuth 2.0 Section 2.5, and the value of this
 parameter MUST be the same as the value of the "response_type"
 parameter passed to the Authorization Endpoint defined in the
 extension.

2.3. Client Representation

 The following is a non-normative example of a fully populated SCIM
 OAuth 2.0 client registration in JSON format.

 {
 "schemas":["urn:scim:schemas:core:1.0",
 "urn:scim:schemas:oauth:2.0:Client"],
 "id":"2060107e82-fbe3-42bd-b199-15df7081a8ae",
 "resourceType":"Client",
 "software_id":"5ed2dd14-3ef7-4655-a41d-b5bd4c5266cc",
 "software_version":"5.1.2.3.4",
 "client_name":"Example Social Client",
 "logo_uri":"https://client.example.org/logo.png",
 "jwks_uri":"https://client.example.org/my_public_keys.jwks",
 "token_endpoint_auth_method":"client_secret_post",
 "scope":"read write dolphin",
 "client_id":"2060107e82-fbe3-42bd-b199-15df7081a8ae",
 "client_secret":"Z7tk2XqLKo1CfE14374teR4V554e8JUS",
 "redirect_urls":[""https://client.example.org/callback",
 "https://client.example.org/callback2"],
 "targetEndpoint":"https://social.example.com/base"
 }

 Figure 2: Example Client Resource

2.4. Relationship Between Grant Types and Response Types

 The "grant_types" and "response_types" values described above are
 partially orthogonal, as they refer to arguments passed to different
 endpoints in the OAuth protocol. However, they are related in that
 the "grant_types" available to a client influence the
 "response_types" that the client is allowed to use, and vice versa.

Hunt, et al. Expires January 06, 2014 [Page 13]

Internet-Draft OAuth-SCIM-Client-Reg July 2013

 For instance, a "grant_types" value that includes
 "authorization_code" implies a "response_types" value that includes
 code, as both values are defined as part of the OAuth 2.0
 Authorization Code Grant. As such, a server supporting these fields
 SHOULD take steps to ensure that a client cannot register itself into
 an inconsistent state.

 The correlation between the two fields is listed in the table below.

 +---+-----------------+
 | grant_types value includes: | response_types |
 | | value includes: |
 +---+-----------------+
authorization_code	code
implicit	token
password	(none)
client_credentials	(none)
refresh_token	(none)
urn:ietf:params:oauth:grant-type:jwt-bearer	(none)
urn:ietf:params:oauth:grant-type:saml2-bearer	(none)
 +---+-----------------+

 Extensions and profiles of this document that introduce new values to
 either the "grant_types" or "response_types" parameter MUST document
 all correspondences between these two parameter types.

2.5. Human Readable Client Metadata

 [[This needs to be updated to be compatible with SCIM. There is a
 also a problem with how to limit the amount of localization data
 exchange for an instance registration. Note that mobile clients tend
 to only need one preferred language while web clients represent many
 clients and may have more than 20 languages to support.]]

 Human-readable Client Metadata values and client Metadata values that
 reference human-readable values MAY be represented in multiple
 languages and scripts. For example, the values of fields such as
 "client_name", "tos_uri", "policy_uri", "logo_uri", and "client_uri"
 might have multiple locale-specific values in some client
 registrations.

Hunt, et al. Expires January 06, 2014 [Page 14]

Internet-Draft OAuth-SCIM-Client-Reg July 2013

 To specify the languages and scripts, BCP47 [RFC5646] language tags
 are added to client Metadata member names, delimited by a #
 character. Since JSON member names are case sensitive, it is
 RECOMMENDED that language tag values used in Claim Names be spelled
 using the character case with which they are registered in the IANA
 Language Subtag Registry [IANA.Language]. In particular, normally
 language names are spelled with lowercase characters, region names
 are spelled with uppercase characters, and languages are spelled with
 mixed case characters. However, since BCP47 language tag values are
 case insensitive, implementations SHOULD interpret the language tag
 values supplied in a case insensitive manner. Per the
 recommendations in BCP47, language tag values used in Metadata member
 names should only be as specific as necessary. For instance, using
 "fr" might be sufficient in many contexts, rather than "fr-CA" or
 "fr-FR".

 For example, a client could represent its name in English as
 ""client_name#en": "My Client"" and its name in Japanese as
 ""client_name#ja-Jpan-JP":
 "\u30AF\u30E9\u30A4\u30A2\u30F3\u30C8\u540D"" within the same
 registration request. The authorization server MAY display any or
 all of these names to the Resource Owner during the authorization
 step, choosing which name to display based on system configuration,
 user preferences or other factors.

 If any human-readable field is sent without a language tag, parties
 using it MUST NOT make any assumptions about the language, character
 set, or script of the string value, and the string value MUST be used
 as-is wherever it is presented in a user interface. To facilitate
 interoperability, it is RECOMMENDED that clients and servers use a
 human-readable field without any language tags in addition to any
 language-specific fields, and it is RECOMMENDED that any human-
 readable fields sent without language tags contain values suitable
 for display on a wide variety of systems.

 Implementer’s Note: Many JSON libraries make it possible to reference
 members of a JSON object as members of an Object construct in the
 native programming environment of the library. However, while the
 "#" character is a valid character inside of a JSON object’s member
 names, it is not a valid character for use in an object member name
 in many programming environments. Therefore, implementations will
 need to use alternative access forms for these claims. For instance,
 in JavaScript, if one parses the JSON as follows, "var j =
 JSON.parse(json);", then the member "client_name#en-us" can be
 accessed using the JavaScript syntax "j["client_name#en-us"]".

2.6. Registration Server Processing Rules

Hunt, et al. Expires January 06, 2014 [Page 15]

Internet-Draft OAuth-SCIM-Client-Reg July 2013

 A registration server MAY override any value that a client requests
 during the registration process (including any omitted values) and
 replace the requested value with a server generated value or default
 at the server’s discretion.

 If a software assertion is provided the registration server SHOULD
 validate the assertion as per Section 4.

3. SCIM Interaction Profile

 All calls to the registration endpoint follow the HTTP verbs defined
 in [I-D.ietf-scim-api].

 All resources accessible through the SCIM client registration
 endpoint are OAuth 2.0 protected. Clients that require access to
 their own registration resource, MAY use the registration access
 token ("registration_token") returned after registration, OR obtain
 an access token from the token server endpoint using the client
 credentials flow Section 4.4 [RFC6749], and scope
 "urn:oauth:scim:api:scope:registration".

 The initial access token used in the initial registration SHOULD NOT
 be used for this purpose of managing or updating client resources.
 Access to the client registration base for the purpose of adding a
 new registration MAY permit anonymous access as desribed in the next
 section.

 Clients SHOULD NOT be able to access the registration resources of
 other clients.

 Clients with expired client credentials SHOULD follow the procedures
 in Section 3.5.

3.1. Adding A Registration

 Adding a registration follows the normal SCIM method for creating a
 resource (an HTTP POST) as described in Section 3.1
 [I-D.ietf-scim-api].

3.1.1. Anonymous Registration

 The SCIM registration endpoint MAY support anonymous registration for
 those clients that have not been issued an initial access token. For
 those clients that have been issued a software assertion, the clients
 SHOULD include this assertion in the software_assertion field of the
 client resource being created. The Server SHOULD validate the
 assertion and validate the issuer, subject, audience, and expiry
 fields as described in Section 4.1.

Hunt, et al. Expires January 06, 2014 [Page 16]

Internet-Draft OAuth-SCIM-Client-Reg July 2013

 For a non-normative example, see Figure 2. In the anonymous case,
 the "HTTP Authorization" header is omitted.

3.1.2. Pre-Authorized Registration

 A pre-authorized registration is where the client or the installer of
 the client has been issued an initial access token which may be used
 to call the SCIM registration endpoint. Clients should use the token
 by inserting the appropriate value in the HTTP Authorization header.
 Additionally, as with anonymous registrations, clients MAY include a
 software assertion. For example, a non-normative registration (line
 breaks inserted for readability):

 POST /Users HTTP/1.1
 Host: example.com
 Accept: application/json
 Content-Type: application/json
 Authorization: Bearer h480djs93hd8
 Content-Length: ...

 {
 "schemas":["urn:scim:schemas:core:1.0",
 "urn:scim:schemas:oauth:2.0:Client"],
 "software_id":"5ed2dd14-3ef7-4655-a41d-b5bd4c5266cc",
 "software_assertion":"eyJhbGciOiJSUzI1NiJ9.",
 "software_version":"5.1.2.3.4",
 "client_name":"Example Social Client",
 "logo_uri":"https://client.example.org/logo.png",
 "jwks_uri":"https://client.example.org/my_public_keys.jwks",
 "token_endpoint_auth_method":"client_secret_post",
 "scope":"read write dolphin",
 "redirect_urls":[""https://client.example.org/callback",
 "https://client.example.org/callback2"],
 "targetEndpoint":"https://social.example.com/base"
 }

 Figure 2: Figure 3: Client Registration Request

 On successful processing, the SCIM endpoint would respond with:

 HTTP/1.1 201 Created
 Content-Type: application/json
 Location:
 https://example.com/v2/Clients/2060107e82-42bd-b199-15df7081a8ae
 ETag: W/"e180ee84f0671b1"

 {
 "schemas":["urn:scim:schemas:core:1.0",

Hunt, et al. Expires January 06, 2014 [Page 17]

Internet-Draft OAuth-SCIM-Client-Reg July 2013

 "urn:scim:schemas:oauth:2.0:Client"],
 "resourceType":"Client",
 "id":"2060107e82-42bd-b199-15df7081a8ae",
 "software_id":"5ed2dd14-3ef7-4655-a41d-b5bd4c5266cc",
 "software_assertion":"eyJhbGciOiJSUzI1NiJ9.",
 "software_version":"5.1.2.3.4",
 "client_name":"Example Social Client",
 "logo_uri":"https://client.example.org/logo.png",
 "jwks_uri":"https://client.example.org/my_public_keys.jwks",
 "token_endpoint_auth_method":"client_secret_post",
 "scope":"read write dolphin",
 "client_id":"2060107e82-fbe3-42bd-b199-15df7081a8ae",
 "client_secret":"Z7tk2XqLKo1CfE14374teR4V554e8JUS",
 "redirect_urls":[""https://client.example.org/callback",
 "https://client.example.org/callback2"],
 "targetEndpoint":"https://social.example.com/base"
 }

 Figure 4: Client Registration Response

 Clients SHOULD read the response and review and retain the following
 items:

 o The client SHOULD remember the "HTTP Location" returned. This
 location is used for future registration updates and client
 credential rotation.
 o The client MUST read the assigned "client_id" value and retain for
 use in all authorization server interactions with the associated
 target endpoint.
 o If returned, the client SHOULD retain the "registration_token" as
 a credential that can be used to access and update the client’s
 registration.
 o The client MUST read the "token_endpoint_auth_method" to obtain
 the authentication method the server has chosen for the client.
 o Based on the returned token endpoint authentication method
 returned, the client MUST read the registration for the
 appropriate client credential such as "token_secret".

3.2. Reading A Registration

 When a server receives a GET request from an HTTP client whose access
 token is assigned to the OAuth 2.0 client that is the subject of the
 registration, the server MAY elect to rotate the client credential
 (e.g. client_secret) or other relevant attributes. If the access
 request is not from the registered client (such as an administrator),
 the server SHOULD NOT change any registration values. [[should the
 server mask anything?]]

Hunt, et al. Expires January 06, 2014 [Page 18]

Internet-Draft OAuth-SCIM-Client-Reg July 2013

 Reading a client resource is done using the SCIM HTTP GET verb as
 defined in Section 3.2 [I-D.ietf-scim-api]

 A client resource may be retrieved using the "location" returned from
 the original client registration. The registration MAY be retrieved
 directly using this URL. If the location is not available, the
 current values of the registration can be obtained by querying this
 URL, or by searching the "/Clients" with a query parameter for
 client_id that corresponds to the client’s "client_id".

 GET /Clients/?
 filter=client_id%20eq%2060107e82-fbe3-42bd-b199-15df7081a8ae

 Host: example.com
 Accept: application/json
 Authorization: Bearer deadbeef

 Figure 3: Figure 5: Retrieving a Registration

 If found, the server will respond with a HTTP 200 message containing
 a single client resource, with one or more attributes:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "totalResults":1,
 "schemas":["urn:scim:schemas:core:1.0",
 "urn:scim:schemas:oauth:Client:1.0"],
 "Resources":[
 {
 "id":"2060107e82-fbe3-42bd-b199-15df7081a8ae",
 "resourceType":"Client",
 "software_id":"5ed2dd14-3ef7-4655-a41d-b5bd4c5266cc",
 "software_version":"5.1.2.3.4",
 "client_name":"Example Social Client",
 ...
 "token_endpoint_auth_method":"client_secret_post",
 "client_id":"2060107e82-fbe3-42bd-b199-15df7081a8ae",
 "client_secret":"Z7tk2XqLKo1CfE14374teR4V554e8JUS"
 }
]
 }

 Figure 6: Retrieving Registration Response

 If no resource is found, the server will respond with a HTTP 200
 message containing zero result resources.

Hunt, et al. Expires January 06, 2014 [Page 19]

Internet-Draft OAuth-SCIM-Client-Reg July 2013

 When a client returns its own record, clients should check for
 updates to the following items:

 o The client MUST read the assigned "client_id" value and retain for
 use in all authorization server interactions with the associated
 target endpoint.
 o If returned, the client SHOULD update the "registration_token" as
 a credential that can be used to access and update the client’s
 registration.
 o The client MUST read the "token_endpoint_auth_method" to obtain
 the authentication method the server has chosen for the client.
 o Based on the returned token endpoint authentication method
 returned, the client MUST read the registration for any changes to
 client credential such as "token_secret".

3.3. Modifying A Registration

 Modification of a client resource can be done using the SCIM PUT or
 PATCH verbs as defined in Section 3.3 [I-D.ietf-scim-api].

 When a server receives a PUT or PATCH request from an HTTP client
 whose access token is assigned to the OAuth 2.0 client that is the
 subject of the registration, the server MAY elect to rotate the
 client credential (e.g. client_secret) or other relevant attributes.

3.4. Deleting A Registration

 De-registration of a client resource can be done using the SCIM
 DELETE verbs as defined in Section 3.4 [I-D.ietf-scim-api]. When a
 delete is completed, all associated client credentials and access
 tokens MUST be revoked or invalidated.

3.5. Expired Registration

 An expired registration occurs when the client’s credential has
 expired, or has been revoked by the registration service. On expiry,
 access tokens issued to the client MUST be revoked or invalidated.

 If, on registration, the client was returned a registration access
 token ("registration_token"), the client MAY obtain new credentials
 by simply retrieving its client profile using the registration token
 and the SCIM GET verb at the location returned after the initial
 registration (see Figure 3).

 Clients that do not have a valid registration access token MAY re-
 register as a new client instance. In such case, the client MAY
 include it’s existing "client_id"in its client meta data as
 "client_id"for tracking purposes only. In such cases, the old

Hunt, et al. Expires January 06, 2014 [Page 20]

Internet-Draft OAuth-SCIM-Client-Reg July 2013

 client_id SHOULD NOT be re-activated and the server SHOULD issue a
 new client_id value.

4. Software Assertion Token

 A software assertion is an ’authorization’ bearer JSON Web Token as
 defined in Section 2.1 [OAuth.JWT]. While the software assertion is
 a JWT authorization token, it SHOULD not be used with the
 authorization server token endpoint. It is used by the client
 registration endpoint for the purpose of registration. A software
 assertion is a statement of claims about the client software being
 registered and SHOULD NOT be used as an authentication of the
 software.

 Software assertions may be generated by a software API publisher for
 the purpose of allowing a developer to incorporate a signed assertion
 that can be used to register client software at more than one
 Software API deployment.

4.1. Software Assertion Requirements

 In order to create and validate a software assertion, the following
 requirements apply in addition to those stated in Section 3
 [OAuth.JWT].

 1. The JWT MAY contain any claim specified in Section 2.
 2. The JWT MUST contain an "iss" (issuer) claim that contains a
 unique identifier for the entity that issued the JWT. This value
 SHOULD correspond to the software API publisher.
 3. The JWT MUST contain a "sub" (subject) claim that contains a
 unique value corresponding to the "software_id". This number is
 MAY be assigned by the software API publisher.
 4. The JWT MUST contain an "aud" (audience) claim containing a value
 that is ONE of the following:

 * A value that identifies one or more software API deployments,
 where the client software MAY be registered.
 * A value "urn:oauth:scim:reg:generic" which indicates the
 assertion MAY be used with any software API deployment
 environment.
 5. The JWT MUST contain an "exp" (expiration) claim that limits the
 time window during which the JWT can be used to register clients.
 When registering clients, the registration server MUST verify
 that the expiration time has not passed, subject to allowable
 clock skew between systems, and reject expired JWTs. The
 authorization server SHOULD NOT use this value to revoke an
 existing client registration.

Hunt, et al. Expires January 06, 2014 [Page 21]

Internet-Draft OAuth-SCIM-Client-Reg July 2013

5. Server Schema Configurations

 [[This section to be revised pending clarification of schema
 extensions methodology in draft-ietf-core-schema]]

5.1. Resource Type

 The following is a normative JSON representation of a SCIM
 "ResourceType" representing a client resorce in a SCIM server
 returned by querying "GET [scimendpoint}/ResourceTypes". "..."
 indicates other ResourceTypes removed for clarity.

 [
 ...
 {
 "name": "Client",
 "endpoint": "/Clients",
 "schema": "urn:scim:schemas:oauth:2.0"
 },
 ...
]

 Figure 7: Client Resource Type

5.2. Schema Representation

 The following is a normative exammple of the SCIM "Schema" for a
 client in JSON format returned when querying "GET {scimendpoint}/
 Schemas".

 { "id":"urn:scim:schemas:oauth:2.0:Client",
 "name":"Client",
 "description":"OAuth 2 Client",
 "schema":["urn:scim:core:1.0",
 "urn:scim:schemas:oauth:2.0"],
 "endpoint":"/Clients",
 "attributes":[
 {
 "name":"id",
 "type":"string",
 "multiValued":false,
 "description":"Unique identifier for the SCIM resource....",
 "readOnly":true,
 "required":true,
 "caseExact":false
 },
 {
 "name":"client_id",

Hunt, et al. Expires January 06, 2014 [Page 22]

Internet-Draft OAuth-SCIM-Client-Reg July 2013

 "type":"string",
 "multiValued":false,
 "description":
 "OAuth 2.0 client_id assigned to the registered client.",
 "readOnly":false,
 "required":false,
 "caseExact":true
 },
 {
 "name":"software_assertion",
 "type":"string",
 "multiValued":false,
 "description":
 "A signed JWT assertion about the client.",
 "readOnly":false,
 "required":false,
 "caseExact":true
 },
 {
 "name":"software_id",
 "type":"string",
 "multiValued":false,
 "description":"Unique identifier for client software.",
 "readOnly":false,
 "required":false,
 "caseExact":true
 },
 {
 "name":"software_version",
 "type":"string",
 "multiValued":false,
 "description":"A version identifier for the software.",
 "readOnly":false,
 "required":false,
 "caseExact":true
 },
 {
 "name":"client_name",
 "type":"string",
 "multiValued":false,
 "description":"A human readable name of the client.",
 "readOnly":false,
 "required":false,
 "caseExact":true
 },
 {
 "name":"client_secret",
 "type":"string",

Hunt, et al. Expires January 06, 2014 [Page 23]

Internet-Draft OAuth-SCIM-Client-Reg July 2013

 "multiValued":false,
 "description":
 "A client secret assigned by the registration endpoint.",
 "readOnly":true,
 "required":false,
 "caseExact":true
 },
 {
 "name":"client_uri",
 "type":"string",
 "multiValued":false,
 "description":
 "URL of homepage for client(displayable to an end-user).",
 "readOnly":false,
 "required":false,
 "caseExact":true
 },
 {
 "name":"jwks_uri",
 "type":"string",
 "multiValued":false,
 "description":"A URL for the client’s JSON Web Key Set.",
 "readOnly":false,
 "required":false,
 "caseExact":true
 },
 {
 "name":"logo_uri",
 "type":"string",
 "multiValued":false,
 "description":"A URL that references a logo image for client.",
 "readOnly":false,
 "required":false,
 "caseExact":true
 },
 {
 "name":"policy_uri",
 "type":"string",
 "multiValued":false,
 "description":
 "A URL of a human-readable policy document for the client.",
 "readOnly":false,
 "required":false,
 "caseExact":true
 },
 {
 "name":"registration_token",
 "type":"string",

Hunt, et al. Expires January 06, 2014 [Page 24]

Internet-Draft OAuth-SCIM-Client-Reg July 2013

 "multiValued":false,
 "description":
 "A token issued to client for updating its registration.",
 "readOnly":true,
 "required":false,
 "caseExact":true
 },
 {
 "name":"scope",
 "type":"string",
 "multiValued":false,
 "description":"Registered OAuth 2 scopes the client uses.",
 "readOnly":false,
 "required":false,
 "caseExact":true
 },
 {
 "name":"targetEndpoint",
 "type":"string",
 "multiValued":false,
 "description":
 "The OAuth2 resource endpoint the client intends to access.",
 "readOnly":false,
 "required":false,
 "caseExact":true
 },
 {
 "name":"token_endpoint_auth_method",
 "type":"string",
 "multiValued":false,
 "description":"OAuth 2 Token Endpoint authorization method.",
 "readOnly":false,
 "required":false,
 "caseExact":true
 },
 {
 "name":"tos_uri",
 "type":"string",
 "multiValued":false,
 "description":
 "A URL pointing to a human readable terms of service.",
 "readOnly":false,
 "required":false,
 "caseExact":true
 },
 {
 "name":"contacts",
 "type":"string",

Hunt, et al. Expires January 06, 2014 [Page 25]

Internet-Draft OAuth-SCIM-Client-Reg July 2013

 "multiValued":true,
 "description":
 "One or more email addresses of contacts for client.",
 "readOnly":false,
 "required":false,
 "caseExact":true
 },
 {
 "name":"redirect_uris",
 "type":"string",
 "multiValued":true,
 "description":"One or more OAuth 2 redirect URI values.",
 "readOnly":false,
 "required":false,
 "caseExact":true
 },
 {
 "name":"grant_types",
 "type":"string",
 "multiValued":true,
 "description":
 "One or more OAuth 2 grant types the client may use.",
 "readOnly":false,
 "required":false,
 "caseExact":true
 },
 {
 "name":"response_types",
 "type":"string",
 "multiValued":true,
 "description":"One or more OAuth 2 response types.",
 "readOnly":false,
 "required":false,
 "caseExact":true
 },
]
 }

 Figure 8: Client Schema Representation

6. IANA Considerations

6.1. OAuth Token Endpoint Authentication Methods Registry

 This specification establishes the OAuth Token Endpoint
 Authentication Methods registry.

Hunt, et al. Expires January 06, 2014 [Page 26]

Internet-Draft OAuth-SCIM-Client-Reg July 2013

 Additional values for use as "token_endpoint_auth_method" metadata
 values are registered with a Specification Required ([RFC5226]) after
 a two-week review period on the oauth-ext-review@ietf.org mailing
 list, on the advice of one or more Designated Experts. However, to
 allow for the allocation of values prior to publication, the
 Designated Expert(s) may approve registration once they are satisfied
 that such a specification will be published.

 Registration requests must be sent to the oauth-ext-review@ietf.org
 mailing list for review and comment, with an appropriate subject
 (e.g., "Request to register token_endpoint_auth_method value:
 example").

 Within the review period, the Designated Expert(s) will either
 approve or deny the registration request, communicating this decision
 to the review list and IANA. Denials should include an explanation
 and, if applicable, suggestions as to how to make the request
 successful.

 IANA must only accept registry updates from the Designated Expert(s)
 and should direct all requests for registration to the review mailing
 list.

6.1.1. Registration Template

 Token Endpoint Authorization Method name:
 The name requested (e.g., "example"). This name is case
 sensitive. Names that match other registered names in a case
 insensitive manner SHOULD NOT be accepted.

 Change controller:
 For Standards Track RFCs, state "IETF". For others, give the name
 of the responsible party. Other details (e.g., postal address,
 email address, home page URI) may also be included.

 Specification document(s):
 Reference to the document(s) that specify the token endpoint
 authorization method, preferably including a URI that can be used
 to retrieve a copy of the document(s). An indication of the
 relevant sections may also be included but is not required.

6.1.2. Initial Registry Contents

 The OAuth Token Endpoint Authentication Methods registry’s initial
 contents are:

 o Token Endpoint Authorization Method name: "none"
 o Change controller: IETF

Hunt, et al. Expires January 06, 2014 [Page 27]

Internet-Draft OAuth-SCIM-Client-Reg July 2013

 o Specification document(s): [[this document]]

 o Token Endpoint Authorization Method name: "client_secret_post"
 o Change controller: IETF
 o Specification document(s): [[this document]]

 o Token Endpoint Authorization Method name: "client_secret_basic"
 o Change controller: IETF
 o Specification document(s): [[this document]]

7. Security Considerations

 Since requests to the client registration endpoint result in the
 transmission of clear-text credentials (in the HTTP request and
 response), the server MUST require the use of a transport-layer
 security mechanism when sending requests to the registration
 endpoint. The server MUST support TLS 1.2 RFC 5246 [RFC5246] and/or
 TLS 1.0 [RFC2246] and MAY support additional transport-layer
 mechanisms meeting its security requirements. When using TLS, the
 client MUST perform a TLS/SSL server certificate check, per RFC 6125
 [RFC6125].

 Since the SCIM client configuration endpoint is an OAuth 2.0
 protected resource, it SHOULD have some rate limiting on failures to
 prevent initial access tokens from being disclosed though repeated
 access attempts.

 For clients that use redirect-based grant types such as Authorization
 Code and Implicit, authorization servers SHOULD require clients to
 register their "redirect_uris". Requiring clients to do so can help
 mitigate attacks where rogue actors inject and impersonate a validly
 registered client and intercept its authorization code or tokens
 through an invalid redirect URI.

 The authorization server MUST treat all client metadata, including
 software assertions, as self-asserted. A rogue client might use the
 name and logo for the legitimate client, which it is trying to
 impersonate. An authorization server needs to take steps to mitigate
 this phishing risk, since the logo could confuse users into thinking
 they’re logging in to the legitimate client. For instance, an
 authorization server could warn if the domain/site of the logo
 doesn’t match the domain/site of redirect URIs. An authorization
 server can also present warning messages to end users about untrusted
 clients in all cases, especially if such clients have been
 dynamically registered and have not been trusted by any users at the
 authorization server before.

Hunt, et al. Expires January 06, 2014 [Page 28]

Internet-Draft OAuth-SCIM-Client-Reg July 2013

 Authorization servers MAY assume that registered client software
 sharing the same software assertion, software_id, and other metadata
 SHOULD have similar operational behaviour metrics. Similarly,
 Authorization server administrators MAY use software_id and
 software_version to facilitate normal change control and approval
 management of client software including:

 o Approval of specific clients software for use with specific
 protected resources.
 o Lifecycle management and support of specific software versions as
 indicated by software_version.
 o Revocation of groups of client credentials and associated access
 tokens when support issues or security risks identified with a
 particular client software as identified by software_id and
 software_version.

 In a situation where the authorization server is supporting open
 client registration, it must be extremely careful with any URL
 provided by the client that will be displayed to the user (e.g.
 "logo_uri", "tos_uri", "client_uri", and "policy_uri"). For
 instance, a rogue client could specify a registration request with a
 reference to a drive-by download in the "policy_uri". The
 authorization server SHOULD check to see if the "logo_uri",
 "tos_uri", "client_uri", and "policy_uri" have the same host and
 scheme as the those defined in the array of "redirect_uris" and that
 all of these resolve to valid Web pages.

 Access tokens issued to clients to facilitate update or retrieval of
 client registrations SHOULD be short lived.

 Clients SHOULD rotate their client credentials before they expire by
 obtaining an access token from the authorization server using the
 registration scope. If a client has not successfully rotated its
 credential prior to expiry, the client MUST register as a new client.

 If a client is deprovisioned from a server (due to expiry or de-
 registration), any outstanding Registration Access Token for that
 client MUST be invalidated at the same time. Otherwise, this can
 lead to an inconsistent state wherein a client could make requests to
 the client configuration endpoint where the authentication would
 succeed but the action would fail because the client is no longer
 valid.

 Clients that are unable to retain a client credential for the life of
 the client instance MAY NOT register and should continue to be
 treated as Public clients as defined by OAuth 2.0.

Hunt, et al. Expires January 06, 2014 [Page 29]

Internet-Draft OAuth-SCIM-Client-Reg July 2013

8. Normative References

 [I-D.ietf-scim-api]
 Drake, T., Mortimore, C., Ansari, M., Grizzle, K., and E.
 Wahlstroem, "System for Cross-Domain Identity
 Management:Protocol", draft-ietf-scim-api-00 (work in
 progress), August 2012.

 [I-D.ietf-scim-core-schema]
 Mortimore, C., Harding, P., Madsen, P., and T. Drake,
 "System for Cross-Domain Identity Management: Core
 Schema", draft-ietf-scim-core-schema-00 (work in
 progress), August 2012.

 [IANA.Language]
 Internet Assigned Numbers Authority (IANA), "Language
 Subtag Registry", 2005.

 [JWK] Jones, M., "JSON Web Key (JWK)", draft-ietf-jose-json-web-
 key (work in progress), May 2013.

 [OAuth.JWT]
 Jones, M., Campbell, B., and C. Mortimore, "JSON Web Token
 (JWT) Bearer Token Profiles for OAuth 2.0", draft-ietf-
 oauth-jwt-bearer (work in progress), March 2013.

 [OAuth.SAML2]
 Campbell, B., Mortimore, C., and M. Jones, "SAML 2.0
 Bearer Assertion Profiles for OAuth 2.0", draft-ietf-
 oauth-saml2-bearer (work in progress), March 2013.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2246] Dierks, T. and C. Allen, "The TLS Protocol Version 1.0",
 RFC 2246, January 1999.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [RFC4627] Crockford, D., "The application/json Media Type for
 JavaScript Object Notation (JSON)", RFC 4627, July 2006.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 May 2008.

Hunt, et al. Expires January 06, 2014 [Page 30]

Internet-Draft OAuth-SCIM-Client-Reg July 2013

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [RFC5646] Phillips, A. and M. Davis, "Tags for Identifying
 Languages", BCP 47, RFC 5646, September 2009.

 [RFC6125] Saint-Andre, P. and J. Hodges, "Representation and
 Verification of Domain-Based Application Service Identity
 within Internet Public Key Infrastructure Using X.509
 (PKIX) Certificates in the Context of Transport Layer
 Security (TLS)", RFC 6125, March 2011.

 [RFC6749] Hardt, D., "The OAuth 2.0 Authorization Framework", RFC
 6749, October 2012.

 [RFC6750] Jones, M. and D. Hardt, "The OAuth 2.0 Authorization
 Framework: Bearer Token Usage", RFC 6750, October 2012.

Appendix A. Acknowledgments

 This draft was based upon in large part upon the work in draft-ietf-
 oauth-dyn-reg-12. The author would like to thank Justin Richter and
 the members of the OAuth Working Group.

 In turn, the authors thank the OAuth Working Group, the User-Managed
 Access Working Group, and the OpenID Connect Working Group
 participants for their input to this document. In particular, the
 following individuals have been instrumental in their review and
 contribution to various versions of this document: Amanda Anganes,
 Tim Bray, Domenico Catalano, Donald Coffin, George Fletcher, Thomas
 Hardjono, Torsten Lodderstedt, Eve Maler, Josh Mandel, Nov Matake,
 Nat Sakimura, Christian Scholz, and Hannes Tschofenig.

Appendix B. Document History

 [[to be removed by the RFC editor before publication as an RFC]]

 -00

 o First draft based on work from draft-ietf-oauth-dyn-reg-12.

Authors’ Addresses

 Phil Hunt (editor)
 Oracle Corporation

 Email: phil.hunt@yahoo.com

Hunt, et al. Expires January 06, 2014 [Page 31]

Internet-Draft OAuth-SCIM-Client-Reg July 2013

 Morteza Ansari
 Cisco

 Email: moransar@cisco.com

 Tony Nadalin
 Microsoft

 Email: tonynad@microsoft.com

Hunt, et al. Expires January 06, 2014 [Page 32]

