
Internet Engineering Task Force Y. Oiwa

Internet-Draft H. Watanabe

Intended status: Experimental H. Takagi

Expires: August 22, 2013 RISEC, AIST

 B. Kihara

 T. Hayashi

 Lepidum

 Y. Ioku

 Yahoo! Japan

 February 18, 2013

Common Template for HTTP Message-based
Multi-hop Authentication

draft-oiwa-httpauth-multihop-template-00

Abstract

This document specifies a common protocol design template for authentication on the Hyper-text
Transport Protocol (HTTP) involving multi-hop message exchanges. To facilitate advanced
authentication technologies such as hash-based exchanges, zero-knowledge password proof, or
public-key authentications on HTTP, a kind of state management and key management facilities are
required on the general HTTP authentication message framework. Also, to optimize performance of
such authentication schemes, a well-designed mechanism for key caching and re-authentication are
needed. The template defined in this document provides a generic foundation for implementing such
advanced authentication technologies. 

Status of this Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other
groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is
at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced,
or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as “work in progress.”

This Internet-Draft will expire on August 22, 2013.

- 1 -



Copyright Notice

Copyright (c) 2013 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF
Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document.
Please review these documents carefully, as they describe your rights and restrictions with respect to
this document. Code Components extracted from this document must include Simplified BSD License
text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.

Table of Contents

1.  Introduction
    1.1.  How to Use This Document
    1.2.  Terminology
    1.3.  Document Structure and Related Documents
2.  Protocol Overview
    2.1.  Messages Overview
    2.2.  Typical Flows of the Protocol
    2.3.  Alternative Flows
3.  Message Syntax
    3.1.  Values
        3.1.1.  Tokens
        3.1.2.  Strings
        3.1.3.  Numbers
4.  Messages
    4.1.  401-INIT and 401-STALE
    4.2.  req-KEX-C1
    4.3.  401-KEX-S1
    4.4.  req-VFY-C
    4.5.  200-VFY-S
5.  Session Management
6.  Host Validation Methods
7.  Decision Procedure for Clients
8.  Decision Procedure for Servers
9.  Applying for Specific Authentication Schemes
    9.1.  Default Functions for Algorithms
10.  Application Channel Binding
11.  String Preparation
12.  Application for Proxy Authentication
13.  Methods to extend this protocol template
14.  IANA Considerations
15.  Security Considerations
    15.1.  Security Properties
    15.2.  Denial-of-service Attacks to Servers
16.  References
    16.1.  Normative References
    16.2.  Informative References
Appendix A.  (Normative) Support Functions and Notations

- 2 -



Appendix B.  (Informative) Draft Remarks from Authors
§  Authors’ Addresses

1. Introduction

This document specifies a common protocol design template for authentication on the Hyper-text
Transport Protocol (HTTP) involving multi-hop message exchanges. 

To facilitate advanced authentication technologies such as hash-based exchanges, zero-knowledge
password proof, or public-key authentications on HTTP, a kind of state management and key
management facilities are required on the general HTTP authentication message framework. Also, to
optimize performance of such authentication schemes, a well-designed mechanism for key caching
and re-authentication are needed. 

The template defined in this document provides a generic foundation for implementing such advanced
authentication technologies. Such generic foundations can reduce cumbersomeness of both designers
and implementors of such authentication protocols on HTTP. By using this template, protocol
designers can easily apply any specific authenticated key exchange (or agreement) mechanisms onto
HTTP protocol and enable authentication session management, shared-key based optimized
re-authentication. 

The design template provided on this document is mainly designed for multi-hop authentication
mechanisms which do not use connection-based session managements. Some of existing
authentication technologies applied on HTTP/1.0 or 1.1 are bound to underlying TCP connection,
which violates strict definition of HTTP stateless semantics and not directly applicable to forthcoming
HTTP/2.0. Retrofitting of such existing authentication schemes are out-of-scope of this specification
(although, an additional specification for such retrofitting _may_ be defined on top of this template). 

The template is defined using terminology and representation of existing HTTP/1.1, but it can be also
directly applied on forthcoming HTTP/2.0. 

1.1. How to Use This Document

This document is only providing a "template" for actual implementation of HTTP authentication: by
itself only it will be useless. To use this document, there must be a specific definition document for
each authentication schemes referring to this document. In other words, this document and such a
specific definitions will compose "layers" of protocol definitions, the latter will exist upon the former. 

However, for implementors’ perspective, the definitions in this document can be implemented as a
"base class" for multi-hop authentication: such class can be a common bases for "deriving"
implementations of each authentication schemes, which will avoid duplicated implementation of same
features and reduce burdens for testing such implementations one by one. 

For terminology, this document uses the following three terms for referring each "layers" of protocols: 

"The authentication template" or "this template" will refer to the common protocol template
defined in this document. 
"Authentication scheme(s)" will refer to a scheme which will realize a specific purpose/method of
authentication. Examples of these schemes (which do not always depend on "this template") are
Basic, Digest and others. Each of them will also correspond to a specific "auth-scheme" in the
HTTP headers. 

- 3 -



"Sub-algorithms" or simply "algorithms" in an authentication scheme will refer to variations
within a single authentication scheme which will provide a small differences of authentication
properties such as cryptographic strength or others. Examples of them are "auth" and "auth-int" in
Digest. Differences of used cryptographic primitives and/or parameters which provides the same
functionalities except strengths (e.g. key lengths, hash choices etc.) will often fall into this category.

1.2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in
this document are to be interpreted as described in [RFC2119].

The terms "encouraged" and "advised" are used for suggestions that do not constitute
"SHOULD"-level requirements. People MAY freely choose not to include the suggested items
regarding [RFC2119], but complying with those suggestions would be a best practice; it will improve
security, interoperability, and/or operational performance.

This document distinguishes the terms "client" and "user" in the following way: A "client" is an entity
understanding and talking HTTP and the specified authentication protocol, usually computer software;
a "user" is a (usually natural) person who wants to access data resources using "a client".

The term "natural numbers" refers to the non-negative integers (including zero) throughout this 
document.

This document treats target (codomain) of hash functions to be natural numbers. The notation
OCTETS(H(s)) gives a usual octet-string output of hash function H applied to string s.

1.3. Document Structure and Related Documents

The entire document is organized as follows: 

Section 2 presents an overview of the protocol design. 
Sections 3 to 8 define a general template for the multi-hop authentication protocol. This template
is independent of specific cryptographic primitives and authentication schemes. 
Section 9 describes requirements for each authentication schemes used with this protocol
template, and defines a few functions which will be shared among such cryptographic algorithms. 
The sections after that contain general normative and informative information about the protocol. 
The appendices contain some information that may help developers to implement the protocol.

2. Protocol Overview

The protocol template, as a whole, is designed as a natural extension to the HTTP protocol
[I-D.ietf-httpbis-p1-messaging] using a framework defined in [I-D.ietf-httpbis-p7-auth]. Internally, the
server and the client will first perform a cryptographic key exchange, defined for each authentication
schemes. The key-exchange will derive the same session keys only when the clients and servers are
agreed with the authentication credentials used. Then, both peers will verify the authentication results
by confirming the sharing of the exchanged key. This section describes a brief image of the protocol
and the exchanged messages. 

- 4 -



2.1. Messages Overview

The authentication protocol template uses six kinds of messages to perform multi-hop authentication.
These messages have specific names within this specification. 

Authentication request messages: used by the servers to request clients to start authentication. 
401-INIT message: a general message to start the authentication exchange. It is also used as
a message indicating an authentication failure. 
401-STALE message: a message indicating that it has to start a new authentication trial.

Authenticated key exchange messages: used by both peers to perform authentication and the
sharing of a session key (shared secret). 

req-KEX-C1 message: a message sent from the client. 
401-KEX-S1 message: a message sent from the server as a response to a req-KEX-C1 
message.

Authentication verification messages: used by both peers to verify the authentication results. 
req-VFY-C message: a message used by the client, requesting that the server authenticates
and authorizes the client. 
200-VFY-S message: a successful response used by the server, and also asserting that the
server is authentic to the client simultaneously.

In addition to the above, either a request or a response without any HTTP headers related to this
specification will be hereafter called a "normal request" or a "normal response", respectively. 

2.2. Typical Flows of the Protocol

In typical cases, the client access to a resource protected by authentication will follow the following
protocol sequence.

       Client                                 Server
         |                                      |
         |  ---- (1) normal request --------->  |
     GET / HTTP/1.1                             |
         |                                      |
         |  <---------------- (2) 401-INIT ---  |
         |            401 Authentication Required
         |            WWW-Authenticate: Example realm="a realm"
         |                                      |
[user,   |                                      |
 cred.]->|                                      |
         |  ---- (3) req-KEX-C1 ------------->  |
     GET / HTTP/1.1                             |
     Authorization: Example user="john",        |--> [user DB]
                    kc1="...", ...              |<-- [user info]
         |                                      |
         |  <-------------- (4) 401-KEX-S1 ---  |
         |           401 Authentication Required
         |           WWW-Authenticate: Example sid=..., ks1="...", ...
         |                                      |
     [compute] (5) compute session secret   [compute]
         |                                      |
         |                                      |
         |  ---- (6) req-VFY-C -------------->  |
     GET / HTTP/1.1                             |--> [verify (6)]
     Authorization: Example sid=...,            |<-- OK
                    vkc="...", ...              |

- 5 -



         |                                      |
         |  <--------------- (7) 200-VFY-S ---  |
[verify  |           200 OK                     |
  (7)]<--|           Authentication-Info: Example vks="..."
         |                                      |
         v                                      v

 Figure 1: Typical communication flow for first access to resource 

As usual in general HTTP protocol designs, a client will at first request a resource without any
authentication attempt (1). If the requested resource is protected by the authentication, the server
will respond with a message requesting authentication (401-INIT) (2). 
The client processes the body of the message, and waits for the user to input the authentication
credentials (such as a user name and a password). When the credentials to be used become
available, the client will send a message with the authenticated key exchange (req-KEX-C1) to
start the authentication (3). 
If the server has received a req-KEX-C1 message, the server looks up the user’s authentication
information within its user database. Then the server creates a new session identifier (sid) that
will be used to identify sets of the messages that follow it, and responds back with a message
containing a server-side authenticated key exchange value (401-KEX-S1) (4). 
At this point (5), both peers calculate a shared "session secret" using the exchanged values in the
key exchange messages. It is assumed that underlying authentication protocol will generate the
same "session secret" on both sides only when the user authentication succeeds. This session
secret will be used for the actual access authentication after this point. 
The client will send a request with a client-side authentication verification value (req-VFY-C) (6),
generated from the client-owned session secret. The server will check the validity of the
verification value using its own session secret. 
If the authentication verification value from the client was correct, it means that the client
definitely owns the credentials required for authentication. (i.e. the client authentication
succeeded.) The server will respond with a successful message (200-VFY-S) (7). 
When the client’s verification value is incorrect (e.g. because the user-supplied password was
incorrect), the server will respond with the 401-INIT message (the same one as used in (2))
instead. 
The response (200-VFY-S) may contain the server-side authentication verification value (7).
When the underlying authentication mechanism supports bidirectional authentication, clients can
check server’s identity using this information. 

2.3. Alternative Flows

As shown above, the typical flow for a first authenticated request requires three request-response pairs.
To reduce the protocol overhead, the protocol enables several short-cut flows which require fewer 
messages.

(case A) If the client knows that the resource is likely to require the authentication, the client
MAY omit the first unauthenticated request (1) and immediately send a key exchange
(req-KEX-C1 message). This will reduce one round-trip of messages. 
(case B) If both the client and the server previously shared a session secret associated with a valid
session identifier (sid), the client MAY directly send a req-VFY-C message using the existing
session identifier and corresponding session secret. This will further reduce one round-trip of
messages. 
In such cases, the server MAY have thrown out the corresponding sessions from the session table.

- 6 -



In this case, the server will respond with a 401-STALE message, indicating a new key exchange
is required. The client SHOULD retry constructing a req-KEX-C1 message in this case. 

Figure 2 depicts the shortcut flows described above. Under the appropriate settings and
implementations, most of the requests to resources are expected to meet both the criteria, and thus only
one round-trip of request/responses will be required in most cases. 

    (A) omit first request
       (2 round trips)

     Client            Server
     |                      |
     | --- req-KEX-C1 ----> |
     |                      |
     | <---- 401-KEX-S1 --- |
     |                      |
     | ---- req-VFY-C ----> |
     |                      |
     | <----- 200-VFY-S --- |
     |                      |

    (B) reusing session secret (re-authentication)

      (B-1) key available        (B-2) key expired
              (1 round trip)             (3 round trips)

     Client            Server   Client              Server
     |                      |   |                        |
     | ---- req-VFY-C ----> |   | --- req-VFY-C -------> |
     |                      |   |                        |
     | <----- 200-VFY-S --- |   | <------- 401-STALE --- |
     |                      |   |                        |
                                | --- req-KEX-C1 ------> |
                                |                        |
                                | <------ 401-KEX-S1 --- |
                                |                        |
                                | --- req-VFY-C -------> |
                                |                        |
                                | <------- 200-VFY-S --- |
                                |                        |

 Figure 2: Several alternative flows on protocol 

For more details, see Sections 7 and 8. 

3. Message Syntax

Throughout this specification, The syntax is denoted in the extended augmented BNF syntax defined
in [I-D.ietf-httpbis-p1-messaging] and [RFC5234]. The following elements are quoted from 
[RFC5234], [I-D.ietf-httpbis-p1-messaging] and [I-D.ietf-httpbis-p7-auth]: DIGIT, ALPHA, SP,
auth-scheme, quoted-string, auth-param, header-field, token, challenge, and credential.

- 7 -



Authentication schemes using this template uses three headers: WWW-Authenticate (in responses with
status code 401), Authorization (in requests), and Authentication-Info (in responses other than 401
status). These headers follow a common framework described in [I-D.ietf-httpbis-p7-auth]. The
detailed meanings for these headers are contained in Section 4. 

Each authentication scheme using this template SHALL specify a single token specific to the
underlying scheme (like Basic or Digest). All of the "auth-scheme" contained in all of those headers
MUST be that token. 

The framework in [I-D.ietf-httpbis-p7-auth] defines the syntax for the headers WWW-Authenticate
and Authorization as the syntax elements "challenge" and "credentials", respectively. The syntax for
"challenge" and "credentials" to be used with this template SHALL be name-value pairs
(#auth-param), not the "b64token" defined in [I-D.ietf-httpbis-p7-auth]. 

The Authentication-Info: header used in this protocol SHALL contain the value in same syntax as
those the "WWW-Authenticate" header, i.e. the "challenge" syntax element. 

In HTTP, the WWW-Authenticate header may contain more than one challenges. Client
implementations SHOULD be aware of and be capable of handle those cases correctly. 

3.1. Values

The parameter values contained in challenge/credentials MUST be parsed strictly conforming to the
HTTP semantics (especially un-quoting of the string parameter values). In this protocol, those values
are further categorized into the following value types: tokens, string, integer, hex-fixed-number, and 
base64-fixed-number.

For clarity, implementations are encouraged to use the canonical representations specified in the
following subsections for sending values. Recipients SHOULD accept both quoted and unquoted
representations interchangeably as specified in HTTP.

3.1.1. Tokens

Tokens will have syntax of the "token" defined in HTTP. The canonical format for tokens are
unquoted tokens.

3.1.2. Strings

All character strings outside ASCII character sets MUST be encoded using the UTF-8 encoding
[RFC3629] for the ISO 10646-1 character set [ISO.10646-1.1993], without any leading BOM
characters. Both peers are RECOMMENDED to reject any invalid UTF-8 sequences that might cause
decoding ambiguities (e.g., containing <"> in the second or later byte of the UTF-8 encoded
characters). 

If strings are representing a domain name or URI that contains non-ASCII characters, the host parts
SHOULD be encoded as it is used in the HTTP protocol layer (e.g. in a Host: header); under current
standards it will be the one defined in [RFC5890]. It SHOULD use lower-case ASCII characters. 

The canonical format for strings are quoted-string.

- 8 -



3.1.3. Numbers

The following syntax definitions gives a syntax for number-type values:

 integer          = "0" / (%x31-39 *DIGIT)      ; no leading zeros
 hex-fixed-number = 1*(2(DIGIT / %x41-46 / %x61-66))
 base64-fixed-number = 1*( ALPHA / DIGIT /
                        "-" / "." / "_" / "~" / "+" / "/" ) *"="

 Figure 3: BNF syntax for number types 

The syntax definition of the integers only allows representations that do not contain extra leading
zeros. 

The numbers represented as a hex-fixed-number MUST include an even number of characters (i.e.
multiples of eight bits). Those values are case-insensitive, and SHOULD be sent in lower-case. When
these values are generated from any cryptographic values, they SHOULD have their "natural length":
if these are generated from a hash function, these lengths SHOULD correspond to the hash size; if
these are representing elements of a mathematical set (or group), its lengths SHOULD be the shortest
for representing all the elements in the set. For example, any results of SHA-256 hash function will be
represented by 64 characters, and any elements in 2048-bit prime field (modulo a 2048-bit integer)
will be represented by 512 characters, regardless of how much 0’s will be appear in front of such
representations. Session-identifiers and other non-cryptographically generated values are represented
in any (even) length determined by the side who generates it first, and the same length SHALL be used
throughout the all communications by both peers. 

The numbers represented as base64-fixed-number SHALL be generated as follows: first, the number is
converted to a big-endian radix-256 binary representation as an octet string. The length of the
representation is determined in the same way as mentioned above. Then, the string is encoded using 
the Base 64 encoding [RFC4648] without any spaces and newlines. Implementations decoding
base64-fixed-number SHOULD reject any input data with invalid characters, excess/insufficient
paddings, or non-canonical pad bits (See Sections 3.1 to 3.5 of [RFC4648]). 

The canonical format for integer and hex-fixed-number are unquoted tokens, and that for
base64-fixed-number is quoted-string (as it will contain equal, plus signs and slashs).

4. Messages

In this section we define the six kinds of messages used in the authentication protocol along with the
formats and requirements of the headers for each message. 

To determine which message are expected to be sent, see Sections 7 and 8.

In the descriptions below, the type of allowable values for each header parameter is shown in
parenthesis after each parameter name. The "algorithm-determined" type means that the acceptable
value for the parameter is one of the types defined in Section 3, and is determined by the value of the
"algorithm" parameter and the auth-scheme to be used. The parameters marked "mandatory" SHALL
be contained in the message. The parameters marked "non-mandatory" MAY either be contained or
omitted in the message. Each parameter SHALL appear in each headers exactly once at most. 

- 9 -



All credentials and challenges MAY contain any parameters not explicitly specified in the following
sections. Recipients who do not understand such parameters MUST silently ignore those. However, all
credentials and challenges MUST meet the following criteria:

For responses, the parameters "reason", any "ks*" (where * stands for any decimal integers), and
"vks" are mutually exclusive: any challenge MUST NOT contain two or more parameters among
them. They MUST NOT contain any "kc*" and "vkc" parameters. 
For requests, the parameters "kc*" (where * stands for any decimal integers), and "vks" are
mutually exclusive and any challenge MUST NOT contain two or more parameters among them.
They MUST NOT contain any "ks*" and "vks" parameters. 

4.1. 401-INIT and 401-STALE

Every 401-INIT or 401-STALE message SHALL be a valid HTTP 401-status (Authentication
Required) message containing one (and only one: hereafter not explicitly noticed)
"WWW-Authenticate" header containing a "reason" parameter in the challenge. The challenge
SHALL contain all of the parameters marked "mandatory" below, and MAY contain those marked
"non-mandatory". 

algorithm: 
(mandatory token) specifies the authentication sub-algorithm to be used. The set of allowed
value for this field MUST be specified within each specification for a specific authentication
protocol. 

realm: 
(mandatory string) is a UTF-8 encoded string representing the name of the authentication
realm inside the authentication domain. As specified in [I-D.ietf-httpbis-p7-auth], this value
MUST always be sent in the quoted-string form. 

validation: 
(mandatory token) specifies the method of host validation. The value MUST be one of the
tokens described in Section 6, or the tokens specified in other supplemental specification
documentation. 

reason: 
(mandatory extensive-token) SHALL be an extensive-token which describes the possible
reason of the failed authentication/authorization. Both servers and clients SHALL
understand and support the following three tokens: 

initial: authentication was not tried because there was no Authorization header in the
corresponding request. 
stale-session: the provided sid; in the request was either unknown to or expired in the
server. 
auth-failed: authentication trial was failed by some reasons, possibly with a bad
authentication credentials.

Implementations MAY support the following tokens or any extensive-tokens defined outside
this specification. If clients has received any unknown tokens, these SHOULD treat these as
if it were "auth-failed" or "initial". 

reauth-needed: server-side application requires a new authentication trial, regardless of
the current status. 
invalid-parameters: authentication was not even tried in the server-side because some
parameters are not acceptable. 
internal-error: authentication was not even tried in the server-side because there is some
troubles on the server-side. 

- 10 -



user-unknown: a special case of auth-failed, suggesting that the provided user-name is
invalid. The use of this parameter is NOT RECOMMENDED for security implications, except for
special-purpose applications which makes this value sense. 
invalid-credential: ditto, suggesting that the provided user-name was valid but
authentication was failed. The use of this parameter is NOT RECOMMENDED as the same as the
above. 
authz-failed: authentication was successful, but access to the specified resource is not
authorized to the specific authenticated user. (It is different from 403 responses which suggest that the
reason of inaccessibility is other that authentication.)

Among these messages, those with the reason parameter of value "stale-session" will be called
"401-STALE" messages hereafter, because these have a special meaning in the protocol flow.
Messages with any other reason parameters will be called "401-INIT" messages. 

4.2. req-KEX-C1

Every req-KEX-C1 message SHALL be a valid HTTP request message containing an "Authorization"
header with a credential containing a "kc1" parameter. 

The credential SHALL contain the parameters with the following names: 

algorithm, realm: 
MUST be the same value as it is when received from the server. 

user: 
(non-mandatory, string) is the UTF-8 encoded name of the user. This field MUST be present
unless the authentication scheme defines other means of identifying the authenticating users
other than the textual user name. If this name comes from a user input, client software
SHOULD prepare the string using the preparation mechanism defined with each scheme (see 
Section 11 for more information) before encoding it to UTF-8. 

kc1: 
(mandatory, algorithm-determined) is the client-side key exchange value Kc1, which is

specified by the algorithm that is used. 

4.3. 401-KEX-S1

Every 401-KEX-S1 message SHALL be a valid HTTP 401-status (Authentication Required) response
message containing a "WWW-Authenticate" header with a challenge containing a "ks1" parameter. 

The challenge SHALL contain the parameters with the following names: 

algorithm, realm: 
MUST be the same value as it is when received from the client. 

sid: 
(mandatory, hex-fixed-number) MUST be a session identifier, which is a random integer.
The sid SHOULD have uniqueness of at least 80 bits or the square of the maximal estimated
transactions concurrently available in the session table, whichever is larger. See Section 5
for more details. 

ks1: 
(mandatory, algorithm-determined) is the server-side key exchange value Ks1, which is

specified by the algorithm. 

- 11 -



nc-max: 
(mandatory, integer) is the maximal value of nonce counts that the server accepts. 

nc-window: 
(mandatory, integer) the number of available nonce slots that the server will accept. The
value of the nc-window parameter is RECOMMENDED to be 32 or more. 

time: 
(mandatory, integer) represents the suggested time (in seconds) that the client can reuse the
session represented by the sid. It is RECOMMENDED to be at least 60. The value of this
parameter is, however, not directly linked to the duration that the server keeps track of the
session represented by the sid. 

path: 
(non-mandatory, string) specifies which path in the URI space the same authentication is
expected to be applied. The value is a space-separated list of URIs, in the same format as it
was specified in domain parameter [RFC2617] for the Digest authentications, and clients are
RECOMMENDED to recognize it. The all path elements contained in the parameter MUST
be inside the specified auth-domain: if not, clients SHOULD ignore such elements. 

4.4. req-VFY-C

Every req-VFY-C message SHALL be a valid HTTP request message containing an "Authorization"
header with a credential containing a "vkc" parameter. 

The parameters contained in the header are as follows: 

algorithm, realm: 
MUST be the same value as it is when received from the server for the session. 

sid: 
(mandatory, hex-fixed-number) MUST be one of the sid values that was received from the
server for the same authentication realm. 

nc: 
(mandatory, integer) is a nonce value that is unique among the requests sharing the same sid.
The values of the nonces SHOULD satisfy the properties outlined in Section 5. 

vkc: 
(mandatory, algorithm-determined) is the client-side authentication verification value VKc ,

which is specified by the algorithm. 

4.5. 200-VFY-S

Every 200-VFY-S message SHALL be a valid HTTP message that is not of the 401 (Authentication
Required) status, containing an "Authentication-Info" header with a "vks" parameter. 

The parameters contained in the header are as follows: 

sid: 
(mandatory, hex-fixed-number) MUST be the value received from the client. 

algorithm, realm: 
MUST be the same value as it is when received from the client. 

vks: 
(mandatory, algorithm-determined) is the server-side authentication verification value VKs,

which is specified by the algorithm. If the algorithm specification do not specify any specific
value for this field, the value SHALL the token "0". 

- 12 -



The header MUST be sent before the content body: it MUST NOT be sent in the trailer of a
chunked-encoded response. If a "100 Continue" response is sent from the server, the
Authentication-Info header SHOULD be included in that response, instead of the final response. 

5. Session Management

In this authentication protocol template, a session represented by an sid is set up using first four
messages (first request, 401-INIT, req-KEX-C1 and 401-KEX-S1). After sharing a session secret, this
session, along with the secret, can be used for one or more requests for resources protected by the
same realm in the same server. Note that session management is only an inside detail of the protocol
and usually not visible to normal users. If a session expires, the client and server SHOULD
automatically re-establish another session without informing the users. 

Sessions and session identifiers are local to each server (defined by scheme, host and port); the clients
MUST establish separate sessions for each port of a host to be accessed. Furthermore, sessions and
identifiers are also local to each authentication realm, even if these are provided from the same server.
The same session identifiers provided either from different servers or for different realms SHOULD be
treated as independent ones. 

The server SHOULD accept at least one req-VFY-C request for each session, given that the request
reaches the server in a time window specified by the timeout parameter in the 401-KEX-S1 message,
and that there are no emergent reasons (such as flooding attacks) to forget the sessions. After that, the
server MAY discard any session at any time and MAY send 401-STALE messages for any req-VFY-C
requests. 

The client MAY send two or more requests using a single session specified by the sid. However, for
all such requests, each value of the nonce (in the nc parameter) MUST satisfy the following
conditions: 

It is a natural number. 
The same nonce was not sent within the same session. 
It is not larger than the nc-max value that was sent from the server in the session represented by
the sid. 
It is larger than (largest-nc - nc-window), where largest-nc is the maximal value of nc which was
previously sent in the session, and nc-window is the value of the nc-window parameter which was
received from the server in the session.

The last condition allows servers to reject any nonce values that are "significantly" smaller than the
"current" value (defined by the value of nc-window) of the nonce used in the session involved. In other
words, servers MAY treat such nonces as "already received". This restriction enables servers to
implement duplicated nonce detection in a constant amount of memory (for each session). 

Servers MUST check for duplication of the received nonces, and if any duplication is detected, the
server MUST discard the session and respond with a 401-STALE message, as outlined in Section 8.
The server MAY also reject other invalid nonce values (such as ones above the nc-max limit) by
sending a 401-STALE message. 

For example, assume the nc-window value of the current session is 32, nc-max is 100, and that the
client has already used the following nonce values: {1-20, 22, 24, 30-38, 45-60, 63-72}. Then the
nonce values that can be used for next request is one of the following set: {41-44, 61-62, 73-100}. The
values {0, 21, 23, 25-29, 39-40} MAY be rejected by the server because they are not above the current

- 13 -



"window limit" (40 = 72 - 32). 

Typically, clients can ensure the above property by using a monotonically-increasing integer counter
that counts from zero upto the value of nc-max. 

The values of the nonces and any nonce-related values MUST always be treated as natural numbers
within an infinite range. Implementations using fixed-width integers or fixed-precision floating
numbers MUST correctly and carefully handle integer overflows. Such implementations are
RECOMMENDED to accept any larger values that cannot be represented in the fixed-width integer
representations, as long as other limits such as internal header-length restrictions are not involved. The
protocol is designed carefully so that both the clients and servers can implement the protocol using
only fixed-width integers, by rounding any overflowed values to the maximum possible value. 

6. Host Validation Methods

The "validation method" specifies a method to "relate" (or "bind") authentication processed by this
template with other authentications already performed in the underlying layers and to prevent
man-in-the-middle attacks. It decides the value vh that is an input to the authentication protocols. 

The valid tokens for the validation parameter and corresponding values of vh are as follows: 

host: 
hostname validation: The value vh will be the ASCII string in the following format:
"<scheme>://<host>:<port>", where <scheme>, <host>, and <port> are the URI components
corresponding to the currently accessing resource. The scheme and host are in lower-case,
and the port is in a shortest decimal representation. Even if the request-URI does not have a
port part, vh will include the default port number. 

tls-cert: 
TLS certificate validation: The value vh will be the octet string of the hash value of the
public key certificate used in the underlying TLS [RFC5246] (or SSL) connection. The hash
value is defined as the value of the entire signed certificate (specified as "Certificate" in 
[RFC5280]), hashed by the hash algorithm specified by the authentication algorithm used. 

tls-key: 
TLS shared-key validation: The value v will be the octet string of the shared master secret
negotiated in the underlying TLS (or SSL) connection.

If the HTTP protocol is used on a non-encrypted channel (TCP and SCTP, for example), the validation
type MUST be "host". If HTTP/TLS [RFC2818] (HTTPS) protocol is used with the server certificates,
the validation type MUST be "tls-cert". If HTTP/TLS protocol is used without any kind of server
certificates, the validation type MUST be "tls-key". 

If the validation type "tls-cert" is used, the server certificate provided on TLS connection MUST be
verified to make sure that the server actually owns the corresponding secret key. 

Clients MUST validate this parameter upon reception of the 401-INIT messages. 

However, when the client is a Web browser with any scripting capabilities, the underlying TLS
channel used with HTTP/TLS MUST provide server identity verification. This means (1) the
anonymous Diffie-Hellman key exchange ciphersuite MUST NOT be used, and (2) the verification of
the server certificate provided from the server MUST be performed. 

- 14 -



7. Decision Procedure for Clients

To securely implement the protocol, the user client must be careful about accepting the authenticated
responses from the server. This also holds true for the reception of "normal responses" from HTTP
servers. 

Clients SHOULD implement a decision procedure equivalent to the one shown below. (Unless
implementers understand what is required for the security, they should not alter this.) In particular,
clients SHOULD NOT accept "normal responses" unless explicitly allowed below. The labels on the
steps are for informational purposes only. Action entries within each step are checked in top-to-bottom
order, and the first clause satisfied SHOULD be taken. 

Step 1 (step_new_request): 
If the client software needs to access a new Web resource, check whether the resource is
expected to be inside some authentication realm for which the user has already been
authenticated by the authentication scheme. If yes, go to Step 2. Otherwise, go to Step 5. 

Step 2: 
Check whether there is an available sid for the authentication realm you expect. If there is
one, go to Step 3. Otherwise, go to Step 4. 

Step 3 (step_send_vfy_1): 
Send a req-VFY-C request. 

If you receive a 401-INIT message with a different authentication realm than expected,
go to Step 6. 
If you receive a 401-STALE message, go to Step 9. 
If you receive a 401-INIT message, go to Step 13. 
If you receive a 200-VFY-S message, go to Step 14. 
If you receive a normal response, go to Step 11.

Step 4 (step_send_kex1_1): 
Send a req-KEX-C1 request. 

If you receive a 401-INIT message with a different authentication realm than expected,
go to Step 6. 
If you receive a 401-KEX-S1 message, go to Step 10. 
If you receive a 401-INIT message with the same authentication realm, go to Step 13
(see Note 1). 
If you receive a normal response, go to Step 11.

Step 5 (step_send_normal_1): 
Send a request without any authentication headers related to this specification. 

If you receive a 401-INIT message, go to Step 6. 
If you receive a normal response, go to Step 11.

Step 6 (step_rcvd_init): 
Check whether you know the user’s authentication credential for the requested
authentication realm. If yes, go to Step 7. Otherwise, go to Step 12. 

Step 7: 
Check whether there is an available sid for the authentication realm you expect. If there is
one, go to Step 8. Otherwise, go to Step 9. 

Step 8 (step_send_vfy): 
Send a req-VFY-C request. 

If you receive a 401-STALE message, go to Step 9. 
If you receive a 401-INIT message, go to Step 13. 

- 15 -



If you receive a 200-VFY-S message, go to Step 14.
Step 9 (step_send_kex1): 

Send a req-KEX-C1 request. 
If you receive a 401-KEX-S1 message, go to Step 10. 
If you receive a 401-INIT message, go to Step 13 (See Note 1).

Step 10 (step_rcvd_kex1): 
Send a req-VFY-C request. 

If you receive a 401-INIT message, go to Step 13. 
If you receive a 200-VFY-S message, go to Step 14.

Step 11 (step_rcvd_normal): 
The requested resource is out of the authenticated area. The client will be in the
"UNAUTHENTICATED" status. If the response contains a request for authentications other
than the specified scheme, it MAY be handled normally. 

Step 12 (step_rcvd_init_unknown): 
The requested resource requires a authentication, and the user is not yet authenticated. The
client will be in the "AUTH-REQUESTED" status, and is RECOMMENDED to process the
content sent from the server, and to ask user for any user’s authentication credentials. When
those are supplied from the user, proceed to Step 9. 

Step 13 (step_rcvd_init_failed): 
For some reason the authentication failed: possibly the used authentication credentials are
invalid for the authenticated resource. Forget such authentication credentials (or disable,
whichever appropriate for the specific kind of credentials) for the authentication realm and
go to Step 12. 

Step 14 (step_rcvd_vfy): 
Check the validity of the received VKs value. If it is equal to the expected value, it means

that the server authentication has succeeded. The client will be in the
"AUTH-SUCCEEDED" status. 
If the value is unexpected, it is a fatal communication error. 

Note 1: 
These transitions MAY be accepted by clients, but NOT RECOMMENDED for servers to 
initiate.

Any kind of response (including a normal response) other than those shown in the above procedure
SHOULD be interpreted as a fatal communication error, and in such cases the clients SHOULD NOT
process any data (response body and other content-related headers) sent from the server. However, to
handle exceptional error cases, clients MAY accept a message without an Authentication-Info header,
if it is a Server-Error (5xx) status. The client will be in the "UNAUTHENTICATED" status in these
cases. 

Figure 4 shows a diagram of the client-side state. 

- 16 -



NEW REQUEST

the requested URI
known to be authed?

send
normal request

UNAUTHENTICATED

normal response

credentials
known?

401-INIT

AUTH_REQUESTED

NO

NO

session
available?

send
req-VFY-C

UNAUTHENTICATED

normal resonse

401-INIT
AUTH_REQUESTED:

forget credentials

send
req-KEX-C1

NO

401-INIT

AUTH_SUCCEED

200-VFY-S

401-KEX-S1

send
req-VFY-C

200-VFY-S

session
available?

send
req-VFY-C

send
req-KEX-C1

401-INIT

401-KEX-S1

200-VFY-S

401-STALE
401-STALE

NO

YES

YES

YES YES

USER/PASS INPUTED

401-INIT
         with different realm 

(1)

(2)

(3)

(4)

(5)

(7)

(8)

(9)

(6)

(11)

(11)

(12)

(13)

(10)

(14)

 Figure 4: State diagram for clients 

8. Decision Procedure for Servers

Each server SHOULD have a table of session states. This table need not be persistent over a long term;
it MAY be cleared upon server restart, reboot, or others. Each entry in the table SHOULD contain at
least the following information: 

The session identifier, the value of the sid parameter. 
The algorithm used. 
The authentication realm. 
The state of the protocol: one of "key exchanging", "authenticated", "rejected", or "inactive". 
The user name received from the client 
The boolean flag noting whether or not the session is fake. 
When the state is "key exchanging", the values of Kc1 and Ss1. 

When the state is "authenticated", the following information: 
The value of the session secret z 
The largest nc received from the client (largest-nc) 

- 17 -



For each possible nc values between (largest-nc - nc-window + 1) and max_nc, a flag
whether or not a request with the corresponding nc has been received. 

The table MAY contain other information. 

Servers SHOULD respond to the client requests according to the following procedure: 

When the server receives a normal request: 
If the requested resource is not protected by the authentication, send a normal response. 
If the resource is protected by the authentication, send a 401-INIT response.

When the server receives a req-KEX-C1 request: 
If the requested resource is not protected by the authentication, send a normal response. 
If the authentication realm specified in the req-KEX-C1 request is not the expected one, send
a 401-INIT response. 
If the server cannot validate the parameter kc1, send a 401-INIT response. 
If the received user name is either invalid, unknown or unacceptable, create a new session,
mark it a "fake" session, compute a random value as Ks1, and send a fake 401-KEX-S1

response. (Note: the server SHOULD NOT send a 401-INIT response in this case, because it
will leak the information to the client that the specified user will not be accepted. Instead,
postpone it to the response for the next req-VFY-C request.) 
Otherwise, create a new session, compute Ks1 and send a 401-KEX-S1 response.

The created session has the "key exchanging" state. 
When the server receives a req-VFY-C request: 

If the requested resource is not protected by the authentication, send a normal response. 
If the authentication realm specified in the req-VFY-C request is not the expected one, send
a 401-INIT response.

If none of above holds true, the server will lookup the session corresponding to the received sid
and the authentication realm. 

If the session corresponding to the received sid could not be found, or it is in the "inactive"
state, send a 401-STALE response. 
If the session is in the "rejected" state, send either a 401-INIT or a 401-STALE message. 
If the session is in the "authenticated" state, and the request has an nc value that was
previously received from the client, send a 401-STALE message. The session SHOULD be
changed to the "inactive" status. 
If the nc value in the request is larger than the nc-max parameter sent from the server, or if it
is not larger then (largest-nc - nc-window) (when in "authenticated" status), the server MAY
(but not REQUIRED to) send a 401-STALE message. The session SHOULD be changed to
the "inactive" status if so. 
If the session is a "fake" session, or if the received vkc is incorrect, then send a 401-INIT
response. If the session is in the "key exchanging" state, it SHOULD be changed to the
"rejected" state; otherwise, it MAY either be changed to the "rejected" status or kept in the
previous state. 
Otherwise, send a 200-VFY-S response. If the session was in the "key exchanging" state, the
session SHOULD be changed to an "authenticated" state. The maximum nc and nc flags of
the state SHOULD be updated properly. 

At any time, the server MAY change any state entries with both the "rejected" and "authenticated"
statuses to the "inactive" status, and MAY discard any "inactive" states from the table. The entries
with the "key exchanging" status SHOULD be kept unless there is an emergency situation such as a

- 18 -



server reboot or a table capacity overflow. 

9. Applying for Specific Authentication Schemes

Each authentication scheme to use this template MUST at least provide a definitions for the following 
functions:

A token for distinguishing the protocol from any others (like Basic or Digest), to be used as
"auth-scheme"s. 
A set of tokens which will be allowed in the "algorithm" field of 401-INIT message. 
* A string preparation algorithm based on [I-D.ietf-precis-framework]. (see Section 11)

Furthermore, for each sub-algorithm defined by the "algorithm" field, the following MUST be defined:

A format for representing fields "kc1", "ks1", "vkc" and "vks". 
An algorithm for computing key exchange values Kc1, Ks1. 

A hash function H to be used with the algorithm. 
* An algorithm for computing authentication confirmation values VKc , VK s. Values derived by

these algorithms SHOULD depend on the value of "nc" value used for each re-authenticating
requests using the same "sid". It SHOULD also depend on the value of the host verification value
"vh". 
* If possible, an algorithm for computing "application channel binding keys" (see Section 10).

For items marked with asterisks (*), default template functions are provided in the following sections.

9.1. Default Functions for Algorithms

If there are no specific (such as compatibility) requirements for values VKc , VK s, schemes MAY use

the default functions for computing VKc  and VKs, defined in this section. Designers of specific

authentication schemes MAY choose either to use this default function or not, depending on the nature
and the background settings for each authentication schemes to be defined. 

To use this default function, the algorithm specification SHALL specify the following values.

Shared secret z, to be computed in both server-side and client side using exchanged values.

The values VKc  and VKs are derived by the following equation. 

VK c  = H(octet(4) | OCTETS(Kc1) | OCTETS(Ks1) | OCTETS(z) | VI(nc) | VS(vh)) 

VK s = H(octet(3) | OCTETS(Kc1) | OCTETS(Ks1) | OCTETS(z) | VI(nc) | VS(vh)) 

The definitions of any support functions in the above definitions are provided in Appendix A. 

10. Application Channel Binding

Applications and upper-layer communication protocols may need authentication binding to the
HTTP-layer authenticated user. Such applications MAY use the following values as a standard shared
secret. 

- 19 -



These values are parameterized with an optional octet string (t) which may be arbitrarily chosen by
each applications or protocols. If there is no appropriate value to be specified, use a null string for t. 

The following definitions are assuming that the authentication scheme uses the default function shown
above for computing VKc  and VKs. If not, the specification for the authentication scheme is

encouraged to provide an alternative means for this purpose (e.g., either to specify the function for z,
or to specify functions b1  and b2). 

For applications requiring binding to either an authenticated user or a shared-key session (to ensure
that the requesting client is certainly authenticated), the following value b1  MAY be used. 

b1  = OCTETS(H(OCTETS(H(octet(6) | OCTETS(Kc1) | OCTETS(Ks1) | OCTETS(z) | VI(0) |

VS(vh))) | VS(t))). 

For applications requiring binding to a specific request (to ensure that the payload data is generated for
the exact HTTP request), the following value b2  MAY be used. 

b2  = OCTETS(H(OCTETS(H(octet(7) | OCTETS(Kc1) | OCTETS(Ks1) | OCTETS(z) | VI(nc) |

VS(vh))) | VS(t))). 

The definitions of any support functions in the above definitions are provided in Appendix A. 

11. String Preparation

For proper internationalization of the protocol to be designed, each authentication scheme SHOULD
specify algorithms for preparing string inputs, unless the underlying protocol does not use any kind of
human-readable (i.e., possibly-non-ASCII-capable) identifier or passwords. 

If some algorithm is suitable for each specific authentication scheme in relation to other existing
protocols, that one should be used (e.g. [RFC4013] or [I-D.melnikov-precis-saslprepbis] for any
SASL-related authentication algorithms). 

If there is no specific one to be chosen, schemes may choose the following default choice: use 
[I-D.melnikov-precis-saslprepbis] for user-identifiers and passwords-like strings, except that case
mapping of upper-case and title-case letters will NOT be applied (i.e., the string will be left
case-sensitive, for keeping compatibility with existing HTTP-based authentication mechanisms). 

12. Application for Proxy Authentication

The authentication scheme defined by using the previous sections can be applied also for proxy
authentications. In such cases, the following alterations MUST be applied:

The 407 status is to be sent and recognized for places where the 401 status is used, 
Proxy-Authenticate: header is to be used for places where WWW-Authenticate: is used, 
Proxy-Authorization: header is to be used for places where Authorization: is used, 
Proxy-Authentication-Info: header is to be used for places where Authentication-Info: is used, 
The omission of the path parameter of 401-KEX-S1 messages means that the authentication
realm will potentially cover all requests processed by the proxy, 
The scheme, host name and the port of the proxy is used for host validation tokens.

- 20 -



13. Methods to extend this protocol template

The template is designed to have fair amount of flexibility for implementing several authentication
schemes. However, if needed, specifications defining authentication schemes or authentication
algorithms MAY define its own representations for the parameters "kc1", "ks1", "vkc", and "vks",
and/or add parameters to the messages containing those parameters in supplemental specifications,
provided that syntactic and semantic requirements in Section 3, [I-D.ietf-httpbis-p1-messaging] and 
[I-D.ietf-httpbis-p7-auth] are satisfied. 

If there is more than two round-trips of messages needed for performing authentication, messaged
named "req-KEX-C2", "401-KEX-S2", "req-KEX-C3" and so on MAY be used between 401-KEX-S1
and req-VFY-C messages. These messages MUST have algorithm, realm, and sid fields as the same as
req-KEX-C1 and 401-KEX-S1. and they SHOULD have fields named "kc2", "ks2", "kc3" and so on,
respectively. 

It is RECOMMENDED that any parameters starting with "kc", "ks", "vkc" or "vks" and followed by
decimal natural numbers (e.g. kc2, ks0, vkc1, vks3 etc.) are reserved for this purpose. It is strongly
encouraged that specifications for authentication schemes do not rename or remove there fields, as
they are important for distinguishing message types. 

14. IANA Considerations

[TBD]

15. Security Considerations

15.1. Security Properties

The protocol template relies on transport security including DNS integrity for data secrecy and
integrity, regardless of any underlying authentication algorithm to be used. HTTP/TLS SHOULD
be used where transport security is not assured and/or data secrecy is important. 
When used with HTTP/TLS, if TLS server certificates are reliably verified, the protocol provides
true protection against active man-in-the-middle attacks. 

15.2. Denial-of-service Attacks to Servers

The protocol requires a server-side table of active sessions, which may become a critical point of the
server resource consumptions. For proper operation, the protocol requires that at least one key
verification request is processed for each session identifier. After that, servers MAY discard sessions
internally at any time, without causing any operational problems to clients. Clients will silently
reestablishes a new session then. 

However, if a malicious client sends too many requests of key exchanges (req-KEX-C1 messages)
only, resource starvation might occur. In such critical situations, servers MAY discard any kind of
existing sessions regardless of these statuses. One way to mitigate such attacks are that servers MAY
have a number and a time limits for unverified pending key exchange requests (in the "wa received"
status). 

- 21 -



This is a common weakness of authentication protocols with almost any kind of negotiations or states,
including Digest authentication method and most Cookie-based authentication implementations.
However, regarding the resource consumption, a situation on this authentication template is a slightly
better than the Digest, because HTTP requests without any kind of authentication requests will not
generate any kind of sessions. Session identifiers are only generated after a client starts a key
negotiation. It means that simple clients such as web crawlers will not accidentally consume
server-side resources for session managements. 

16. References

16.1. Normative References

[I-D.ietf-httpbis-p1-messaging] Fielding, R. and J. Reschke, “Hypertext Transfer Protocol
(HTTP/1.1): Message Syntax and Routing,”
draft-ietf-httpbis-p1-messaging-21 (work in progress),
October 2012 (TXT).

[I-D.ietf-httpbis-p7-auth] Fielding, R. and J. Reschke, “Hypertext Transfer Protocol
(HTTP/1.1): Authentication,” draft-ietf-httpbis-p7-auth-21
(work in progress), October 2012 (TXT).

[I-D.ietf-precis-framework] Saint-Andre, P. and M. Blanchet, “PRECIS Framework:
Preparation and Comparison of Internationalized Strings in
Application Protocols,” draft-ietf-precis-framework-06
(work in progress), September 2012 (TXT).

[I-D.melnikov-precis-saslprepbis] Saint-Andre, P. and A. Melnikov, “Preparation and
Comparison of Internationalized Strings Representing
Simple User Names and Passwords,”
draft-melnikov-precis-saslprepbis-04 (work in progress),
September 2012 (TXT).

[RFC2119] Bradner, S., “Key words for use in RFCs to Indicate
Requirement Levels,” BCP 14, RFC 2119, March 1997 
(TXT, HTML, XML).

[RFC3629] Yergeau, F., “UTF-8, a transformation format of ISO 
10646,” STD 63, RFC 3629, November 2003 (TXT).

[RFC4013] Zeilenga, K., “SASLprep: Stringprep Profile for User Names
and Passwords,” RFC 4013, February 2005 (TXT).

[RFC4648] Josefsson, S., “The Base16, Base32, and Base64 Data 
Encodings,” RFC 4648, October 2006 (TXT).

[RFC5234] Crocker, D. and P. Overell, “Augmented BNF for Syntax
Specifications: ABNF,” STD 68, RFC 5234, January 2008 
(TXT).

[RFC5246] Dierks, T. and E. Rescorla, “The Transport Layer Security
(TLS) Protocol Version 1.2,” RFC 5246, August 2008 
(TXT).

- 22 -

http://www.ietf.org/internet-drafts/draft-ietf-httpbis-p1-messaging-21.txt
http://www.ietf.org/internet-drafts/draft-ietf-httpbis-p1-messaging-21.txt
http://www.ietf.org/internet-drafts/draft-ietf-httpbis-p1-messaging-21.txt
http://www.ietf.org/internet-drafts/draft-ietf-httpbis-p7-auth-21.txt
http://www.ietf.org/internet-drafts/draft-ietf-httpbis-p7-auth-21.txt
http://www.ietf.org/internet-drafts/draft-ietf-httpbis-p7-auth-21.txt
http://www.ietf.org/internet-drafts/draft-ietf-precis-framework-06.txt
http://www.ietf.org/internet-drafts/draft-ietf-precis-framework-06.txt
http://www.ietf.org/internet-drafts/draft-ietf-precis-framework-06.txt
http://www.ietf.org/internet-drafts/draft-ietf-precis-framework-06.txt
http://www.ietf.org/internet-drafts/draft-melnikov-precis-saslprepbis-04.txt
http://www.ietf.org/internet-drafts/draft-melnikov-precis-saslprepbis-04.txt
http://www.ietf.org/internet-drafts/draft-melnikov-precis-saslprepbis-04.txt
http://www.ietf.org/internet-drafts/draft-melnikov-precis-saslprepbis-04.txt
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
http://www.rfc-editor.org/rfc/rfc2119.txt
http://xml.resource.org/public/rfc/html/rfc2119.html
http://xml.resource.org/public/rfc/xml/rfc2119.xml
http://www.rfc-editor.org/rfc/rfc3629.txt
http://tools.ietf.org/html/rfc3629
http://www.rfc-editor.org/rfc/rfc3629.txt
http://tools.ietf.org/html/rfc4013
http://tools.ietf.org/html/rfc4013
http://www.rfc-editor.org/rfc/rfc4013.txt
http://tools.ietf.org/html/rfc4648
http://tools.ietf.org/html/rfc4648
http://www.rfc-editor.org/rfc/rfc4648.txt
http://tools.ietf.org/html/rfc5234
http://tools.ietf.org/html/rfc5234
http://www.rfc-editor.org/rfc/rfc5234.txt
http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc5246
http://www.rfc-editor.org/rfc/rfc5246.txt


16.2. Informative References

[ISO.10646-1.1993] International Organization for Standardization, “Information Technology -
Universal Multiple-octet coded Character Set (UCS) - Part 1: Architecture
and Basic Multilingual Plane,” ISO Standard 10646-1, May 1993.

[ITU.X690.1994] International Telecommunications Union, “Information Technology -
ASN.1 encoding rules: Specification of Basic Encoding Rules (BER),
Canonical Encoding Rules (CER) and Distinguished Encoding Rules
(DER),” ITU-T Recommendation X.690, 1994.

[RFC2617] Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S., Leach, P.,
Luotonen, A., and L. Stewart, “HTTP Authentication: Basic and Digest
Access Authentication,” RFC 2617, June 1999 (TXT, HTML, XML).

[RFC2818] Rescorla, E., “HTTP Over TLS,” RFC 2818, May 2000 (TXT).

[RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., and W.
Polk, “Internet X.509 Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile,” RFC 5280, May 2008 (TXT).

[RFC5890] Klensin, J., “Internationalized Domain Names for Applications (IDNA):
Definitions and Document Framework,” RFC 5890, August 2010 (TXT).

[RFC5929] Altman, J., Williams, N., and L. Zhu, “Channel Bindings for TLS,”
RFC 5929, July 2010 (TXT).

Appendix A. (Normative) Support Functions and Notations

In this section we define several support functions and notations to be shared by several algorithm 
definitions:

The integers in the specification are in decimal, or in hexadecimal when prefixed with "0x".

The function octet(c) generates a single octet string whose code value is equal to c. The operator |,
when applied to octet strings, denotes the concatenation of two operands.

The function VI encodes natural numbers into octet strings in the following manner: numbers are
represented in big-endian radix-128 string, where each digit is represented by a octet within 0x80–0xff
except the last digit represented by a octet within 0x00–0x7f. The first octet MUST NOT be 0x80. For
example, VI(i) = octet(i) for i < 128, and VI(i) = octet(0x80 + (i >> 7)) | octet(i & 127) for 128 <= i <
16384. This encoding is the same as the one used for the subcomponents of object identifiers in the
ASN.1 encoding [ITU.X690.1994], and available as a "w" conversion in the pack function of several
scripting languages. 

The function VS encodes a variable-length octet string into a uniquely-decoded, self-delimited octet
string, as in the following manner: 

VS(s) = VI(length(s)) | s 

- 23 -

http://tools.ietf.org/html/rfc2617
http://tools.ietf.org/html/rfc2617
http://www.rfc-editor.org/rfc/rfc2617.txt
http://xml.resource.org/public/rfc/html/rfc2617.html
http://xml.resource.org/public/rfc/xml/rfc2617.xml
http://tools.ietf.org/html/rfc2818
http://www.rfc-editor.org/rfc/rfc2818.txt
http://tools.ietf.org/html/rfc5280
http://tools.ietf.org/html/rfc5280
http://www.rfc-editor.org/rfc/rfc5280.txt
http://tools.ietf.org/html/rfc5890
http://tools.ietf.org/html/rfc5890
http://www.rfc-editor.org/rfc/rfc5890.txt
http://tools.ietf.org/html/rfc5929
http://www.rfc-editor.org/rfc/rfc5929.txt


where length(s) is a number of octets (not characters) in s. 

Some examples:

VI(0) = "\000" (in C string notation)

VI(100) = "d"

VI(10000) = "\316\020"

VI(1000000) = "\275\204@"

VS("") = "\000"

VS("Tea") = "\003Tea"

VS("Caf<e acute>" [in UTF-8]) = "\005Caf\303\251"

VS([10000 "a"s]) = "\316\020aaaaa..." (10002 octets)

[Editorial note: Unlike the colon-separated notion used in the Basic/Digest HTTP authentication
scheme, the string generated by a concatenation of the VS-encoded strings will be unique, regardless
of the characters included in the strings to be encoded.] 

The function OCTETS converts an integer into the corresponding radix-256 big-endian octet string
having its natural length: See Section 3.1.3 for the definition of "natural length". 

Appendix B. (Informative) Draft Remarks from Authors

The following items are currently under consideration for future revisions by the authors. 

Whether to keep TLS-key validation or not. 
When keeping tls-key validation, whether to use "TLS channel binding" [RFC5929] for "tls-key"
verification (Section 6). Note that existing TLS implementations should be considered to
determine this.

Authors’ Addresses

 Yutaka Oiwa
 National Institute of Advanced Industrial Science and Technology
 Research Institute for Secure Systems
 Tsukuba Central 2
 1-1-1 Umezono
 Tsukuba-shi, Ibaraki
 JP

Email: mutual-auth-contact-ml@aist.go.jp
  
 Hajime Watanabe
 National Institute of Advanced Industrial Science and Technology
  
 Hiromitsu Takagi

- 24 -



 National Institute of Advanced Industrial Science and Technology
  
 Boku Kihara
 Lepidum Co. Ltd.
 #602, Village Sasazuka 3
 1-30-3 Sasazuka
 Shibuya-ku, Tokyo
 JP
  
 Tatsuya Hayashi
 Lepidum Co. Ltd.
  
 Yuichi Ioku
 Yahoo! Japan, Inc.
 Midtown Tower
 9-7-1 Akasaka
 Minato-ku, Tokyo
 JP

- 25 -


	Common Template for HTTP Message-based Multi-hop Authentication draft-oiwa-httpauth-multihop-template-00
	
	Abstract
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. How to Use This Document
	1.2. Terminology
	1.3. Document Structure and Related Documents

	2. Protocol Overview
	2.1. Messages Overview
	2.2. Typical Flows of the Protocol
	2.3. Alternative Flows

	3. Message Syntax
	3.1. Values
	3.1.1. Tokens
	3.1.2. Strings
	3.1.3. Numbers

	4. Messages
	4.1. 401-INIT and 401-STALE
	4.2. req-KEX-C1
	4.3. 401-KEX-S1
	4.4. req-VFY-C
	4.5. 200-VFY-S

	5. Session Management
	6. Host Validation Methods
	7. Decision Procedure for Clients
	8. Decision Procedure for Servers
	9. Applying for Specific Authentication Schemes
	9.1. Default Functions for Algorithms

	10. Application Channel Binding
	11. String Preparation
	12. Application for Proxy Authentication
	13. Methods to extend this protocol template
	14. IANA Considerations
	15. Security Considerations
	15.1. Security Properties
	15.2. Denial-of-service Attacks to Servers

	16. References
	16.1. Normative References
	16.2. Informative References

	Appendix A. (Normative) Support Functions and Notations
	Appendix B. (Informative) Draft Remarks from Authors
	Authors' Addresses



